
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 147–168. DOI:10.13154/tches.v2020.i3.147-168

Revisiting a Methodology for Efficient CNN
Architectures in Profiling Attacks

Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel

imec-COSIC, KU Leuven Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. This work provides a critical review of the paper by Zaid et al. titled
“Methodology for Efficient CNN Architectures in Profiling attacks”, which was pub-
lished in TCHES Volume 2020, Issue 1. This work studies the design of CNN networks
to perform side-channel analysis of multiple implementations of the AES for embedded
devices. Based on the authors’ code and public data sets, we were able to cross-check
their results and perform a thorough analysis. We correct multiple misconceptions
by carefully inspecting different elements of the model architectures proposed by
Zaid et al. First, by providing a better understanding on the internal workings of
these models, we can trivially reduce their number of parameters on average by
52%, while maintaining a similar performance. Second, we demonstrate that the
convolutional filter’s size is not strictly related to the amount of misalignment in the
traces. Third, we show that increasing the filter size and the number of convolutions
actually improves the performance of a network. Our work demonstrates once again
that reproducibility and review are important pillars of academic research. Therefore,
we provide the reader with an online Python notebook which allows to reproduce
some of our experiments1 and additional example code is made available on Github.2

Keywords: Side-Channel Analysis · Machine Learning · Deep Learning

1 Introduction
Machine learning techniques gained a substantial interest in the recent literature on
side-channel analysis [PSB+18, CCC+19, Tim19, ZBHV20, PHJ+19]. This rapid increase
in research volume in an emerging topic creates the need for a critical review of these
results. In this work, we take a critical look at a recent manuscript published in Trans-
actions on Cryptographic Hardware and Embedded Systems. Specifically, we evaluate
the work by Zaid et al. titled “Methodology for Efficient CNN Architectures in Profiling
attacks” [ZBHV20]. The goal of their work is to propose a general methodology for
designing Convolutional Neural Networks (CNN) depending on the nature of the target
side-channel measurements. More precisely, they provide a few CNN design guidelines to
decide on the filter size and the number of convolutional blocks to employ.

We demonstrate that these design guidelines are largely based on misconceptions and
misattributions of empirical gains, and that even the authors themselves do not always
adhere to their own design guidelines. The aim of this paper is certainly not to devalue the
research results of [ZBHV20], but to build on previous results and instigate the progress of
our field. Note that, it is common in the machine learning community to correct or point
out misattributions in already-published papers [LS19, MDB17, DBK+18].

1https://colab.research.google.com/drive/1S4ixlEoLm9HqtP3Ku0vqZxm0-S9mq-Cw
2https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.147-168
mailto:firstname.lastname@esat.kuleuven.be
https://colab.research.google.com/drive/1S4ixlEoLm9HqtP3Ku0vqZxm0-S9mq-Cw
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA
http://creativecommons.org/licenses/by/4.0/


148 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

We hope that our paper clarifies some of the misunderstandings from the original work,
and that it helps to start a discussion on where the future of machine learning based SCA
research should be headed.

Contributions. The contributions of our work can be summarised as follows:

• Preprocessing techniques. We demonstrate how the first convolutional layer
proposed by Zaid et al. can be replaced by classical preprocessing techniques. By
doing so, we trivially reduce the model’s complexity on average by 52%. We provide
extensive experiments using several preprocessing techniques and demonstrate how
they can influence the model’s performance.

• Model design parameters. Through experimentation, we study the effect of
network parameters such as filter size and the number of convolutional blocks. By
performing these investigations, we demonstrate that the design guidelines outlined
in the manuscript by Zaid et al. do not form a generally applicable methodology. By
alleviating some of their misconceptions we provide a more intuitive reasoning which
can aid towards the design of a general methodology.

• Reproducibility. By providing the reader with a Python notebook we ensure that
the experiments outlined in this paper are easily reproducible. Furthermore, our
implementations can be used to build and improve upon our work.

The remainder of this paper is structured as follows. In Sect. 2, we provide some of
the necessary background on the specific topics discussed in this work. In Sect. 3, we
investigate different preprocessing techniques and how they influence the performance of
the trained networks. Different visualization techniques to assign attribution to certain
input samples are discussed in Sect. 4. In Sect. 5 and 6, we provide an intuition as to
why the models proposed by Zaid et al. worked and show that the filter size is not solely
related to the amount of misalignment. Finally, in Sect. 7 we conclude and provide the
reader with topics for future research.

2 Background
Several papers on the topic of machine-learning based side-channel attacks introduce the
basic concepts [PSB+18, Tim19]; therefore we do not see a need to repeat those here.
Profiled side-channel attacks correspond to Time Series Classification (TSC) problem.
Several works regarding this topic are published and provide valuable information, from
which we highlight the review manuscripts by Bagnall et al. [BLB+17] and Fawaz et
al. [FFW+19]. They provide a thorough inspection of the most recent advances within
the TSC domain, defining a solid base for successful machine learning based side-channel
attacks. For an introduction to the topic of profiled side-channel attacks using neural
networks based methods, we point to the work by Benadjila et al. [PSB+18], who conduct
a broad investigation on deep learning algorithms, discussing the relationship with classical
template attacks. Additionally, the paper provides an open-source dataset known as
ASCAD, enabling reproducibility, and easing comparison with future results. Finally, as
our work is a thorough analysis of the work by Zaid et al. we recommend the reader to
read their manuscript [ZBHV20].

2.1 Datasets
Throughout this paper, we will use the same datasets as those used in the work by Zaid et
al. All datasets are split equally, where 90% of the profiling traces are used for training,



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 149

and the remaining 10% are used for validation. Finally, the attack (or test) set is used as
provided.

1. ASCAD: Was introduced by Benadjila et al. with the goal of having a public dataset
which can be used to evaluate machine learning techniques [PSB+18]. The dataset
consists of traces captured from a masked AES implementation running on an 8-bit
ATmega8515 smart card with an operating frequency of 4 MHz. The raw traces
cover the first round of AES and consist of 100k samples each. The traces are the
result of acquiring the electromagnetic (EM) radiations with a sample rate of 2 GS/s
samples per second.
Benadjila et al. pre-selected 700 samples, therefore greatly simplifying the classifica-
tion task. These 700 samples contain information on the first round S-Box processing
of the third byte. Two additional datasets are generated which introduce a random
shift to evaluate the robustness of machine learning techniques on misaligned traces.
Each of the three variants consists of 50k profiling traces and 10k attack traces. We
refer to the dataset without desynchronization, as ASCAD_N0, and the datasets with
a maximum shift of 50 and 100 as ASCAD_N50, and ASCAD_N100, respectively.

2. DPA-contest v4: Was released as part of the fourth edition of the DPA con-
test. The dataset provides traces of a (rotating S-boxes) masked AES-256 software
implementation on an 8-bit ATmega163 smart card controlled by a SASEBO-W
board [NSGD12]. The EM measurements were acquired using a sampling rate of
500 MS/s. Each measurement consists of 435,002 samples covering the first round of
AES.
In their paper, Zaid et al. [ZBHV20], knowing the mask value, consider this
implementation unprotected. Furthermore, a subset of 4000 samples per trace is
used. The sensitive variable for this dataset is the first S-Box output XORed with
the mask. In its reduced form the dataset consists of 4,500 profiling traces and 500
attack traces. It is unclear to us where this dataset originates from and how the
subset was created. Nevertheless, we use the dataset as provided by Zaid et al. and
will refer to it as DPAv4_mod.

3. AES_HD: Was introduced by Picek et al. [PHJ+19] and targets an unprotected
AES-128 implemented on a Xilinx Virtex-5 FPGA as part of a SASEBO GII SCA
evaluation board. The EM measurements consist of 1250 samples each. The leakage
model targets the Hamming distance of the register overwrite in the last round. The
profiling set contains 50k traces and the attack set consists of 25k traces.

4. AES_RD: The last dataset was provided by Coron and Kizhvatov [CK09]. The
target is an implementation of AES-128 using a random delay countermeasure on an
ATmega16 8-bit AVR microcontroller. The raw power traces where reduced to 3500
samples (one sample per CPU clock) covering the first round of AES. The target
label is the output of the first S-Box. Both the profiling set and attack set consist of
25k traces.

2.2 Preprocessing techniques
Profiled side-channel attacks can be considered a time series classification task. The goal of
the model is to predict the class (target sensitive variable) of a side-channel measurement.

In the field of time series classification, it is common practice to preprocess the data
before training the machine learning model [BLB+17, FFW+19]. For example, the data
provided as part of the UCR time series classification archive has been standardized to have
zero mean and unit variance to remove the effects of offset and scale [DKK+18, DBK+18].



150 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Dau et al. provide an intuitive reasoning (using the GunPoint dataset as an example) as
to why the data has been standardized [DBK+18].

Multiple examples in the SCA literature demonstrate the use of standardization
techniques for template attacks. For example, Montminy et al. demonstrated the efficacy
of zero-mean unit-variance normalization in the context of portable multivariate template
attacks [MBTL13]. Lemke-Rust and Paar also note the use of standardization in their
work on multivariate Gaussian mixture models for higher-order profiled attacks [LP07].
Choudary et al. document differences in measurements across different measurement
campaigns with the same device [CK18]. However, for some reason, the use of normalization
or standardization has not been widely adopted or reported in the context of machine
learning based side-channel attacks.

Similarly to Dau et al. we can provide an intuitive reasoning as to why preprocessing
the raw data can lead to better results in the context of side-channel attacks. Two sets
of side-channel measurements (e.g. a profiling and attack set) can have subtle differences.
Differences over multiple measurement campaigns occur because of environmental changes
(e.g. temperature [CEM18, MMR20]), changes in the measurement setup (e.g. supply
voltage and oscilloscope settings [MMR20, CK14]), or because of slight differences between
target devices (i.e. the portability problem [MBTL13, CK14]). Compensating for this
offset and scaling can make it easier for the model to learn a classification which generalises.
Nevertheless, in some specific cases a model can benefit from the information provided
by the raw measurements [DBK+18]. As shown later in Sect. 3, it is therefore important
to experiment with multiple preprocessing strategies. Additionally, normalizing all input
features of a neural network to lie within a similar range can greatly increase the convergence
rate of the training process [LBOM12].

In the machine learning context, the inputs to a model are often referred to as input
features, whereas in the specific case of side-channel analysis, these input features are the
measurement samples. Throughout this work we use both terms interchangeably. We refer
to feature based preprocessing techniques as those techniques that normalize the input
data (side-channel traces) per sample. On the other hand, horizontal or instance based
preprocessing techniques, will be applied on a per trace basis.

We explore the effects of commonly used preprocessing techniques in the context of
deep learning based profiled side-channel attacks. We experiment with both feature and
instance based techniques. Specifically, we will explore the effects of scaling between 0
and 1 (as performed by Zaid et al.), scaling between -1 and 1, and standardizing the data
(zero-mean unit-variance).

2.3 Visualization techniques
Multiple visualization techniques have been proposed to alleviate the black-box nature of
Neural Networks (NNs).

The goal of these techniques is to assign attribution to the input features [ACÖG18].
The attribution is calculated with respect to the specific target neuron related to the
correct class for a given example in the classification task. The result of combining the
attributions of every input feature is known as the attribution map, which has the same
dimensions as the input.

Several approaches exist to designate the contribution of the multiple input features. On
the one hand, Perturbation-based Forward Propagation relies on making perturbations to
single neurons or inputs, and examining the impact on subsequent neurons in the network.
On the other hand, Backpropagation-Based approaches propagate a signal backwards from
an output neuron through the network until the inputs in a single pass.

Perturbation-based Forward Propagation. Perturbation-based methods compute the
attribution map by occluding or altering the input before running a forward pass on the



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 151

new input. Several strategies have been proposed for this approach [ZF14, ZT15, ZCAW17].
Perturbation-based techniques provide good results, but tend to be slow as the total number
of input features becomes larger. Moreover, provided the non-linear nature of NNs, the
outcome is highly influenced by the number of features altered at each iteration [ACÖG18].

Backpropagation-based. Backpropagation-based approaches determine the attributions
from every input feature in a single forward and backward pass through the network.
There are four methods that are more prominent within this category:

1. Layer-wise Relevance Propagation (LRP): Bach et al. [BBM+15] presented
the technique known as LRP, that proposes two approaches: on the one hand, a
Taylor-type decomposition; on the other hand, layer-wise propagation relevance. It
applies a propagation rule that distributes class relevance found at a given layer onto
the previous layer. The layer-wise propagation rule is computed with a backward
pass through the network.

2. Gradient * Input: Proposed by Shrikumar et al. [SGK17a], this technique aims
to enhance the sharpness of the attribution maps. To do so, the partial derivatives
of the output with respect to the input are multiplied with the input itself.

3. Integrated Gradients: Introduced by Sundararajan et al. [STY17], this method
makes use of the derivatives as well, similarly to the previous proposal. However,
instead of computing the attribution with a single derivative, evaluated at a single
point x, Integrated Gradients computes the average gradient. Furthermore, the input
ranges linearly from the average x̄ to x.

4. DeepLIFT: Shrikumar et al.’s method [SGK17b] explains the difference in the
output from some “reference” output with respect to the difference between a
“reference” input and the input provided. The attribution accredited to each unit
i represents the relative effect of the unit when activated by the provided input
compared to the activation with the “reference” input.

Multiple alternative techniques have been proposed within this category [SVZ14, ZF14,
SDBR15, SCD+17, MLB+17]. The side-channel community has also actively looked into
this problem. The paper from Masure et al. [MDP19] proposes Gradient Visualization
(GV), a method similar to the Gradient * Input previously presented. Hettwer et al.
[HGG19] conclude that LRP was the most successful method in their experiments. Perin et
al. [PEC19] propose the technique called backward propagation path, which is an extension
of the LRP method.

However, we use the work by Ancona et al. [ACÖG18], that revisits multiple method-
ologies and proposes a unified framework called DeepExplain3. They prove that the
LRP and DeepLIFT methods can also be defined as computing backpropagation for a
modified gradient function. Additionally, they define a new metric (known as Sensitivity-n)
and compare the previous methods against this metric. In our experiments we use the
DeepExplain framework to create the attribution maps using the Gradient * Input method.

2.3.1 Weight Visualization and Heatmaps [ZBHV20]

Despite all the previous visualization techniques available in the literature (Sect. 2.3) to
illustrate the Points of Interest (PoI) of an input trace, Zaid et al. [ZBHV20] propose two
new visualization techniques in addition to the techniques introduced above. They propose
the methods weight visualization and heatmaps, the first one used for synchronized traces,
and the second one for desynchronized traces.

3https://github.com/marcoancona/DeepExplain

https://github.com/marcoancona/DeepExplain


152 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

The first method, weight visualization, is based on the weights of the first Fully
Connected (FC) layer after the flatten layer. The second one, heatmap, is based on the
activations of an intermediate layer.

Weight Visualization. In this method, the weights of the first fully connected layer
following the flatten layer are analysed. This technique is defined as follows:

W vis
m [i] = 1

n
[flatten−1]
f

(i+1)×n
[flatten−1]
f∑

j=i×n
[flatten−1]
f

|W [flatten+1]
m [j]| , (1)

where W vis
m [i] is the weight visualization at a particular point i, for the m-th neuron of the

first FC layer after the flatten layer (denoted as [flatten+ 1]), and i ∈ [0, len([flatten−
1]). Similarly, [flatten − 1] denotes the last convolutional layer before the flatten layer.
n

[flatten−1]
f represents the number of filters in [flatten− 1], and W [flatten+1]

m the weights
of the first fully connected layer.

Originally, the paper by Zaid et al. refers to the weights of the flatten layer (W [flatten]
m ).

As a flatten layer does not have any trainable weights, we updated the definition to more
clearly reflect that the weight visualization technique uses the weights of the first fully
connected layer (W [flatten+1]

m ). Finally, the full weight visualization is defined as:

W vis[i] = 1
n

[flatten+1]
u

n[flatten+1]
u ∑

m=0
W vis

m [i] , (2)

in which n
[flatten+1]
u is the number of neurons in [flatten + 1]. The magnitude of the

average weights is used to assign relevance to an intermediate feature for the classification
task.

Heatmaps. The heatmap representation is computed as the average output over all filters
of a convolutional operation, defined in [ZBHV20] as:

H [h] = 1
n

[h]
f

n
[h]
f∑

i=0
(input[h] ~ f

[h]
i ) , (3)

where H [h] denotes the heatmap associated with the h-th layer, f [h]
i the i-th filter of the

convolution at that layer, and n[h]
f the number of filters in the given convolution. The

heatmap helps to understand the role of each convolutional layer in the learning process.

3 Preprocessing
Preprocessing the input data is of paramount importance when training a neural network to
ensure that it can converge quickly. In this section, we discuss the preprocessing techniques
used by Zaid et al. and show how they can be improved, resulting in networks with up to
69.97% less trainable parameters. We show that the first convolutional block used in the
networks by Zaid et al. acts as a network internal preprocessing unit, and hence, that it
can be removed given an appropriate preprocessing of the input trace.



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 153

3.1 Convolutions with filter size one
One remarkable addition to the networks proposed by Zaid et al. is the use of a convolutional
layer with filter size one. A convolutional filter is shifted over the entire input time series.
As the filter has a size of one, it only has two trainable parameters, a weight and a bias.
The result of this filter is that each sample of each input trace is multiplied by the same
weight after which the bias is added, followed by the application of the non-linear activation
function. More formally, for each input sample xi, we compute σ(w × xi + b), where σ is
the non-linear activation function, w is the weight, and b is the bias.

Therefore, using a one-dimensional convolution with filter size one at the input of a
time series classification network, as proposed by Zaid et al. seems rather counter-intuitive.
However, simply removing this layer from the provided networks makes it increasingly
difficult for the networks to converge to a working solution. According to the explanation
provided by the authors, this layer helps the network to focus its attention on the leaking
Points of Interest (PoI). We conjecture that this layer is simply learning to scale the
provided input which, in combination with batch normalization, allows the network to
learn at an increased rate. Variations of this technique are sometimes referred to as network
internal preprocessing [NZ12], but it does not seem to be a widely adopted technique.

Intuitively, if the first hidden layer uses four filters of size one, it will learn four
scaled and shifted representations of the network’s input (the power trace). Therefore, we
hypothesise that this first layer can be omitted by properly preprocessing the input data.

Nevertheless, convolutions with kernels or filters of size one are employed in state-of-
the-art classification networks [SLJ+15, FLF+19]. In these cases they are referred to as
bottlenecks, used to reduce the dimensionality of the intermediate representation.

3.2 Experiments
In Sect. 3.1 we conjecture that the first convolutional layer with filters of size one can
be omitted if the traces are preprocessed properly. In order to verify or disprove this
hypothesis, we performed several experiments on the networks proposed by Zaid et al. and
on slightly modified versions thereof. We exclusively remove the first convolutional layer
(with filter size one) and the accompanying batch normalization. By deleting this first
convolutional layer, we also remove the non-linearity resulting from its activation function.
Note that a convolutional block is composed of a convolutional layer, batch normalization,
and a pooling layer. We do keep the first average pooling layer as it performs dimensionality
reduction. We do not perform any hyperparameter tuning on the modified networks and
present our experimental results as is.

We train both the modified and the original networks in combination with different
preprocessing strategies. In the case of aligned traces, Zaid et al. used the Sklearn
MinMaxScaler function to scale the input features between 0 and 1. However, when
training neural networks it is recommended to either standardise the data (zero mean and
unit variance) or to scale it between -1 and 1. Scaling input features between 0 and 1 (all
inputs are positive) slows down the rate at which the network can converge [LBOM12].

Recall from Sect. 2.2 that feature based normalization techniques are applied per input
sample over all traces whereas instance based techniques are applied on a per trace basis. In
these experiments, we compare feature scaling between 0 and 1 (as employed in the original
work), feature scaling between -1 and 1, and zero-mean unit-variance standardization.
Even though Zaid et al. did not use any preprocessing techniques in the case of misaligned
traces, we investigate horizontal or instance based feature scaling between 0 and 1 and
between -1 and 1, as well as instance based standardization. While we limit ourselves
to these specific preprocessing strategies, it may be worth exploring the combination of
techniques (e.g. horizontal standardization followed by feature standardization), providing
the network with multiple preprocessed versions of the original data or using non-linear



154 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

transformations such as the Box-Cox transform [RHMV19].
The profiling data was split into training and validation data using a 90-10 split for each

dataset. Each combination of model and preprocessing strategy was trained and evaluated
ten times, each time using a different split and a random weight initialization. The ten
distinct splits are generated in a reproducible manner and reused for each model. For both
the modified and unmodified networks we use the same training strategy as documented
by Zaid et al. We set the training parameters for each of the ASCAD datasets to be the
same (50 epochs, batch size of 50, and a learning rate of 0.005). These parameters provide
more stable results for both networks, and were modified because the parameters provided
by Zaid et al. for ASCAD_N100 do not work for us when we try to train their models.
Furthermore, the goal of our work is to study the network architectures and not the model
optimization.

Table 1 shows the number of parameters in the networks proposed by Zaid et al. and
the modified networks trained during the presented experiments. Our models entail a
reduction of up to 70.0% in the number of trainable parameters, while still producing
similar results. In the following, the results shown in Fig. 1 and 2 are discussed for each
dataset.

Table 1: The number of trainable parameters for each of the models proposed by Zaid et
al. and the number of trainable parameters after removing the first convolutional layer
while preserving the first average pooling layer.

Dataset
Network parameters

([ZBHV20])
Network parameters

(Sect. 3.2)
Network parameters

reduced by
ASCAD 16,960 6,436 62.1%
ASCAD-50 87,279 41,052 53.0%
ASCAD-100 142,044 42,652 70.0%
DPAv4_mod 8,782 4,770 45.7%
AES_HD 3,282 2,020 38.5%
AES_RD 12,760 7,112 44.3%

Aligned datasets (Fig. 1). The results for the aligned datasets (ASCAD, DPAv4_mod
and AES_HD) are all quite similar. The first convolutional layer (with filter size one)
can be replaced by feature standardization or feature scaling between -1 and 1. These
results also corroborate our previously stated hypothesis that the first convolutional block
(in the models proposed by Zaid et al.) is learning to properly scale the inputs. On the
contrary, feature scaling between 0 and 1 (as used by Zaid et al.) no longer works on any
of the datasets when the first layer is removed. Interestingly, we can see that training the
model as proposed by Zaid et al. on the aligned ASCAD dataset does not always result in
a converging model (as indicated by the error bands in the top-left plot in Fig. 1). Further
analysis revealed that this effect is due to the random weight initialisation, as the same
weights led to similar results on different splits of the profiling data. This indicates that
the proposed model in combination with the used training strategy is not a robust solution,
and the same effect can be observed in some of the misaligned datasets.

Misaligned datasets (Fig. 2). Zaid et al. do not perform any preprocessing on the raw
measurements in the case of trace desynchronization or misalignment. In each case,
properly preprocessing the data leads to more consistent results, even without modifying
the models. The error bands show that for some combinations of models and preprocessing
strategies the models were unable to consistently converge.



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 155

Figure 1: Each plot shows the evolution of the average rank of the correct key hypothesis
over the number of traces used for the attack. For each model we performed 100 attacks
on random subsets of the attack set. The error bands indicate the difference between
multiple experiments on different splits of the profiling dataset. Comparison between the
models proposed by Zaid et al. (left) and those same models without the first convolutional
layer (right). The models are trained on the aligned datasets using different preprocessing
techniques.

In the case of AES_RD, our simplified model performs slightly worse. We found that
we can compensate for this by training the model for more epochs. Another interesting
observation is that, without any preprocessing, the simplified models were never able to
converge. Instead, for the misaligned datasets, not preprocessing the data does work in some
cases. The main difference is that, in the aligned case, the simplified models are essentially
Multi Layer Perceptron (MLP) models without any form of normalization. On the other
hand, the simplified models for the unaligned scenario still have convolutional blocks which
include batch normalization. Below, we study the effect of the batch normalization.

3.2.1 Batch Normalization

To study the effect of batch normalization on the models proposed by Zaid et al. and our
simplified versions, we remove batch normalization from both models for the ASCAD_N100
dataset. As before, we train each model on the same ten splits. To compensate for removing
batch normalization, we train for 200 epochs instead of 50 and reduce the learning rate
to 0.001. We save the model state based on the validation accuracy, and the model state
after completing 200 epochs. The results of this experiment are shown in Fig. 3.

Neither the original model proposed by Zaid et al. nor the simplified model manage to
converge when the traces are not preprocessed. However, when the traces are preprocessed
using horizontal standardization, both models consistently converge. Using horizontal
standardization, the best model according to the validaton loss metric was found after
on average 98 epochs for the model by Zaid et al. and after 144 epochs for the simplified



156 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Figure 2: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
misaligned datasets using different preprocessing techniques. Best viewed on screen.

model. Without preprocessing, the best model according to the validaton loss metric was
found after on average 32 epochs for the model by Zaid et al. and after 46 epochs for the
simplified model.

Figure 3: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
ASCAD_N100 dataset. Batch normalization has been removed for both models.

3.3 Conclusion
The experiments presented in this section demonstrate the importance of preprocessing the
traces before training the model. We demonstrate that the preprocessing strategies adopted
in [ZBHV20] and many other papers are suboptimal for these datasets. Additionally, we
demonstrate that the first convolutional block with filters of size one behaves as a network
internal preprocessing unit, which does not provide any clear advantage over traditional
preprocessing techniques. Finally, our results show that by using batch normalization one



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 157

might not always have to perform preprocessing to get good results. However, the datasets,
training strategy and models used in this manuscript always benefit from preprocessing.

As shown in Table 1 removing the first convolutional layer reduces the network param-
eters on average by 52%. This reduction does not provide a significant practical advantage
on the used datasets as the original networks are already small by today’s standards.
However, this reduction will be more pronounced and important on more realistic datasets
with longer traces.

4 On the correct use of visualization techniques
In this section, we present how techniques previously introduced in the deep learning
community perform equally well or even better than the weight visualization technique
introduced in [ZBHV20]. Additionally, we argue that the conclusions drawn from the
proposed techniques are inaccurate, which led to erroneous results, on which we elaborate
in subsequent sections.

4.1 Visualization techniques
Zaid et al. argue that techniques such as Gradient Visualization [MDP19] are “not ap-
propriate if we want to interpret the convolutional part of the network”. The weight
visualization proposed by Zaid et al. attempts to visualize how the network learns relevant
information by looking at the weights of the first FC layer of the classification part.

However, this methodology is unable to precisely locate the Points of Interest in the
actual input trace. To get those samples, backpropagation methods are needed, bringing us
to the techniques presented in Sect. 2.3. In our experiments, these methods (as implemented
in the DeepExplain framework), obtain similar or even better results. We illustrate this
comparison in Fig. 4. From the options available in DeepExplain, we choose the first
method, Gradient*Input, but similar results can be obtained with other techniques.

Figure 4: Weight Visualization as used by Zaid et al. (top) versus Gradient*input
(bottom) for filter size 1 (left) and filter size 100 (right), using DPAv4_mod traces. Note
the differences in x-axis scale between both techniques and the differences in y-axis scale
between the different experiments.

Figure 4 illustrates the results for the model corresponding to the DPAv4_mod dataset
proposed by Zaid et al. which has a single convolutional block with filters of size one. To



158 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

generate the plots on the left, we used the exact same model, whereas to generate the
plots on the right, we solely changed the filter size to 100. The top row shows the weight
visualization as defined in Eqn. (2) (note that we obtain the same results as in [ZBHV20]).
The bottom row illustrates the results when applying the Gradient*Input technique from
the output (propagating back until the input). We see that both results show similarities,
but also important differences.

The first difference we observe is the result of the visualization when applying bigger
filter sizes. Due to the size of the filter, we can see in the weight visualization that the
relevant data is spread out over multiple points. On the other hand, with Gradient*Input,
we can more precisely determine the PoI since the representation goes back completely
to the input. The second and most important difference, is the fact that the weight
visualization size does not correspond to the input size, hindering the precise localization
of the PoI. Note that the input trace has a length of 4000 samples. Figure 15 in [ZBHV20]
demonstrates the same effect, if the intermediate representation is reduced too much
(because of pooling) the weight vizualization technique is no longer able to accurately
identify the leaking input samples.

4.2 Interpretation of the visualization techniques

We believe that the interpretation provided by the authors of [ZBHV20] based on the
weight visualization technique is inaccurate, and this led to erroneous conclusions. They
use this technique as a conclusive factor to quantify the performance of the network, based
on the magnitude of the weights.

Based on the results provided in Fig. 14 of [ZBHV20], Zaid et al. conclude in Sect. 4.2
(of the same work) that: “If we want to precisely define the temporal space where leakages
occur, we recommend to minimize the length of the filters in order to reduce the risk
of entanglement”. An effect similar to the results presented in Fig. 14 from [ZBHV20]
can be observed in the top-right plot of Fig. 4 (this manuscript), where the relevance of
the PoI is also spread out. According to the conclusion of Zaid et al., this spread harms
the performance of the network leading to the conclusion that a network using bigger
filter sizes performs worse than using smaller sizes. However, if one would look at the
Gradient*Input results, and following the same reasoning, the conclusions drawn would be
the opposite.

An intuitive way to demonstrate that this conclusion might not be correct is to evaluate
the attack performance of the two models, the first one with filters of size one in the first
convolutional block (as used by Zaid et al.), and the other one with filters of size 100.
Figure 5 presents the result for this experiment, on both the DPAv4_mod dataset and
ASCAD_N0 dataset. According to the interpretation given by Zaid et al., the model
with filter size 100 should perform worse on the attack set than the one with filter size 1.
However, the results from Fig. 5 suggest the opposite. Certainly, the model trained with
bigger filter size does not perform worse than the one trained with smaller filter size. We
further investigate the effect of the filter size in Sect. 5.

Following a similar argument for the number of convolutional blocks, Zaid et al. conclude
in Sect. 4.3 of their manuscript that: “the deeper the network, the less confident it is in its
feature detection”. This claim is based on Fig. 15, and 16 from Appendix D, where we can
see how the magnitude of the weights diminishes with the number of convolutional blocks.
We present in-depth investigations regarding the number of convolutional blocks in Sect. 6
to demonstrate that the conclusions from Zaid et al. are erroneous.



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 159

Figure 5: Guessing entropy comparing different filter sizes (1 and 100) on the same model
used for the DPAv4_mod dataset.

5 Entanglement and Filter size
In this section, we describe the concept of entanglement introduced in [ZBHV20], analyze
its effect, and revisit the conclusions that Zaid et al. draw from this concept on the filter
size. Moreover, we show how the performance of a network can improve by increasing the
filter size, contrary to the claims of [ZBHV20].

5.1 Entanglement
Zaid et al. coin a new concept called entanglement. They introduce this concept in order to
explain the effect of a convolutional filter whose goal is to extract relevant input samples,
and how these extracted features are distributed in subsequent layers of the network.
Entanglement, in this context, means that relevant information (from the input) is shared
and mixed within multiple convoluted samples. This effect causes a horizontal spread of
the PoI over several convoluted points. According to the authors of [ZBHV20]: “increasing
the length of the filter causes entanglement and reduces the weight related to a single
information and therefore, the network confidence”. In order to locate the leakage source
more precisely, they propose to minimize the length of the filters to reduce the effect of
entanglement.

Zaid et al. attempt to demonstrate the relevance of entanglement and why, according
to their criterion, bigger filter sizes perform worse using their weight visualization method
(cf. Fig. 14 from [ZBHV20]). As shown in previous section, we claim that the weight
visualization method does not provide suitable results to claim that a network with longer
filters performs worse.

In the top graphs of Fig. 4, we can see the effect of the entanglement, and how the
leaking samples are more distributed in the horizontal axis when the filter size increases.
On the contrary, as we see from the Gradient*Input (bottom plots of Fig. 4), the exact
relevant Points of Interest from the actual input trace are successfully revealed, no matter
which filter size was used. Moreover, as shown in Fig. 5, the model with bigger filter size
performs equally well (if not better) than the model with filter size 1. These examples
illustrate, and experimentally validate, that the argument about entanglement diminishing
the performance of a neural network is flawed.

Our intuition is that the goal of a filter is to detect a certain pattern. This objective
can be achieved by combining multiple layers of small filters (as is often the case in
image classification networks) or by training bigger filters, which should also be able to
detect a smaller pattern, by learning and fine-tuning the right weights. This matches the
experimental results shown in the bottom-right plot of Fig. 4, regardless of the filter size
we can still accurately trace back the leaking samples.

Our experiments indicate that the problem of entanglement is non existent in this
context, and leads to incorrect conclusions. Therefore, we find the concept of entanglement,



160 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

which has a suggestive colloquial meaning, unnecessary. [LS19]. In the following section,
we provide further experiments on the influence of the filter size to support our claim.

5.2 Filter size
Fawaz et al. [FLF+19] claim that a bigger filter size is capable of detecting longer patterns,
which trivially would also detect the smaller patterns. They define the concept of Receptive
Field (RF), a theoretical value that quantifies the maximum field of view of a neural
network in a one-dimensional space. In other words, it refers to the number of input
samples that a weight from further layers in the network sees, or, how many input samples
affect one weight deeper in the network. Fig. 6 shows a graphical definition of this concept.
This notion is only used for the convolutional parts of the models.

Figure 6: Receptive field representation from a two-layers CNN. Taken from [FLF+19]

According to the previous analysis, bigger filters determine more robust and generic
networks, but also increase the number of parameters that have to be trained. Therefore, we
want to find a compromise between the feature detection capabilities and the performance
of the network.

Experiments

In the following, we present several examples to illustrate the effect of the filter size
on the performance of a network on the different datasets with misaligned traces. As
demonstrated in Sect. 3, these are the only cases where convolutions are needed.

Following the conclusions from Sect. 3, we use the simplified models for the subsequent
experiments. We pick horizontal standardization as the preprocessing method as it gives
good results overall. As illustrated in Figs. 1 and 2, the error bands for this preprocessing
technique are slim, giving a higher confidence in the results of the experiments below. The
three models used in the experiments have the same structure: two convolutional blocks
preceded by an average pooling. In these models we only change the filter size as this is
the parameter we try to investigate. Thus, we isolate this parameter so the changes are
solely due to the changes in the filter size.

In these experiments, we train several models on the ASCAD_N50 and ASCAD_N100
datasets, each of the trained models is based on the simplified ASCAD_N50 model. We
conduct similar experiments on the AES_RD datasets using the simplified AES_RD
model. We exclusively change the filter size of the first convolutional block (leaving the
pooling size and stride as is) to generate new models with smaller or bigger filter sizes.

From the results shown in Fig. 7, we observe that small filter sizes lead to non-converging
models for the desynchronized ASCAD datasets. Interestingly, this effect is not observed as
much on the AES_RD dataset. Additionally, we note that there is no significant difference



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 161

Figure 7: Effect of the filter size on the performance of a network when attacking the
datasets ASCAD_N50 (left), ASCAD_N100 (right), and AES_RD (bottom).

in performance when training the same network on the ASCAD_N50 and ASCAD_N100
datasets with a filter size of 15. Moreover, increasing the filter size does not have a negative
impact on the network performance for these datasets.

These results again suggest the non-existance of entanglement and are in line with the
results of Fawaz et al. since it appears that the network fails to recognize the pattern to
make the correct classifications when the filter size is reduced excessively.

We note that the model trained on AES_RD does not seem to be influenced as much
by the filter size. One intuitive explanation for this observation is that for this dataset each
clock cycle is represented by a single time sample, which might make it easier to detect
the leaking pattern using a small filter. We note that this is a speculative statement which
we did not thoroughly investigate. It is clear that a good filter size will depend on the
underlying features that have to be detected. While increasing the filter size does not have
a negative impact on the ASCAD dataset the results could be different in measurements
suffering from dynamic misalignment.

5.3 Filter size on desynchronized traces

In [ZBHV20], Zaid et al. propose to use a filter size of N [0]

2 for the second convolutional
block, where N [0] is the maximum shift in the input traces. In contrast, we believe that
the filter size is mostly related to the pattern which has to be detected by the network.
Additionally, from the experiment presented above, we can conclude that the boundaries
proposed by Zaid et al. on the filter size are not needed to cope with certain degree of
misalignment in the traces, but we can confirm that indeed the filter size is affected by the
presence of desynchronization.

In Fig. 7, we see how a filter size of 25 behaves best in both ASCAD_N50 and
ASCAD_N100 datasets. Moreover, filter sizes 10 and 15, respectively, perform very
similarly.

To strengthen our argument, we noted that Zaid et al. do not follow their recommen-
dations when choosing the filter size for the model associated with the AES_RD dataset.
By using the Gradient*Input technique for a few individual traces we can clearly see the
amount of desynchronization present in the dataset. For example, as shown in Fig. 8
the dataset contains traces which are shifted by at least 1000 samples. According to the
methodology provided by Zaid et al. the suitable filter size should be 500 provided the



162 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

misalignment of 1000 samples. Nevertheless, Zaid et al. choose a filter size of 50. As
demonstrated by our previous results (Fig. 7), convolutional filters with a size as small as
two still work on this dataset.

Figure 8: Points of Interest for two traces from the AES_RD dataset showing the mis-
alignment within the different traces. These plots are generated using the Gradient*Input
method.

Finally, we see that there is some relationship between the filter size and the degree
of misalignment, since for ASCAD_N50 a filter size of 7 works, but not in the case of
ASCAD_100. So while there might be some influence from the amount of misalignment on
the best filter size there are certainly other factors at play. To decide the filter length for
training a network, we have to take into account both the length of the pattern to analyze
and the desynchronization, and find a trade-off between the filter size and the number
of parameters that this filter entails. This trade-off could additionally be influenced by
countermeasures like shuffling and dummy rounds and by the acquisition paramaters.

6 Number of Convolutional blocks

Zaid et al. also provide conclusions on the number of convolutional blocks, and how they
affect the performance of a neural network: “we can see that, the deeper the network, the
less confident it is in its feature detection” ([ZBHV20], Sect. 4.3 at the end of Page 12).
Again, similarly as with the filter size, this claim contradicts the results in [FLF+19]. From
their experiments, Fawaz et al. conclude that increasing the depth does not necessarily
result in a better model, but it does not seem to diminish performance. They also note
that a shallower architecture contains a significantly lower Receptive Field, which entailed
lower accuracy in the models tested.

To claim that deeper networks perform worse on the feature detection task, Zaid et
al. once again draw their conclusion from the weight visualization and the value of the
weights (see Fig. 15 and 16 from Appendix D in [ZBHV20]). As already mentioned before,
we believe this is not the correct method to draw these conclusions. In the following
experiments, we show that adding convolutional blocks can indeed have a positive impact
on the network’s performance. We expect that for longer traces the advantage would be
more prominent as was also indicated by Fawaz et al. [FFW+19].



Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 163

6.1 Experiments
For these experiments, we use the simplified models with horizontal standardization
preprocessing. The three models have two convolutional blocks, preceded by an initial
average pooling. However, to successfully realize these experiments, we need to modify the
pooling size of the first convolutional block. This is necessary due to the small size of the
traces; applying a pooling operation with size 25 and stride 25, divides the trace by the
same amount, making it impossible to use more than one convolutional block.

We replicate the first convolutional block in full (including convolution, batch nor-
malization, and average pooling) several times, keeping the rest of the hyperparameters
untouched. This way, the compared models solely differ in the number of intermediate
convolutional blocks. To better illustrate the impact of the extra convolutional blocks, we
start from the models which, due to their small filter size, did not perform well in Sect. 5.2.

From the experiments performed in previous sections, we noticed that the simplified
ASCAD_N50 model with filter size 5 did not work on any of the evaluated ASCAD
datasets. In the case of the simplified AES_RD model, we saw that even the model with
filter size 2 can successfully attack the AES_RD dataset, although the performance is lower
compared to other filter sizes. We employ these models for the subsequent experiments,
selecting similar pooling sizes of 5 and 2, respectively. We replicate the first convolutional
block two times for the ASCAD models and six times for the AES_RD model.

Figure 9: Effect of the number of convolutional blocks on the performance of a network
when attacking the datasets ASCAD_N50 (left) and ASCAD_N100 (right), using the
model Simplified ASCAD_N50.

6.2 Conclusions
The results in Fig. 9 show that adding one additional convolutional block significantly
increases the performance on both ASCAD datasets. Since the pooling size used for the
AES_RD traces is smaller, we have room to increase the number of convolutional blocks
up until six. Based on the results shown in the bottom plot of Fig. 9, we clearly see that
the greater the number of convolutional blocks, the better the model performs.

Similarly to increasing the filter size, expanding the number of convolutional blocks also
broadens the Receptive Field of the deeper points in the network. This in turn increases
the size of the pattern recognized in the input trace.

With these experiments, we can experimentally confirm that the addition of more
convolutional blocks improves the performance of the network and makes it more confident



164 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

regarding feature detection, contrary to what Zaid et al. claimed. Naturally, as with the
filter size, the number of convolutional blocks to add in the architecture of a NN entails
a new trade-off between the number of trainable parameters and the performance of the
network.

A note on pooling size

In the last two sections, we have analyzed in depth the effect of the filter size and the
number of convolutional blocks. For these experiments, we always left the pooling size
constant (as well as many other parameters). It is important to note that the pooling size
also affects the performance of a network. By looking at Figs. 7 and 9 we see that the
respective plots “Filter size = 2” and “# Convs. = 1” only differ on the average pooling
size, which has values 25 and 2, respectively. From these results, we can observe that the
performance of the model with filter size 25 is significantly better. Again, the greater the
pooling size, the greater the Receptive Field of the deeper points in the network, which,
as we saw before, helps to improve the confidence of the model. Certainly, as Zaid et al.
mentioned, a too large pooling size would lead to information loss, so we have to find a
compromise.

This suggests that the pooling size (and stride) is also an important factor to take
into account when designing an architecture. The analysis of the pooling layer is outside
the scope of this paper. However, we believe it is an interesting feature to study in more
depth, in combination with the use of global average pooling.

7 Discussion and Conclusions
We have shown how some of the design methodologies outlined in [ZBHV20] are based
on misconceptions and misattributions. By providing a more credible explanation for the
empirical gains in their work, we assist other scientists who are building on these results.

The experiments and observations outlined in this paper help to form an intuition for
how to design a neural network for profiled side-channel attacks. Therefore, our work also
shows the importance of performing an ablation study when a new technique or model
architecture is proposed.

Specifically, we demonstrated the importance of properly preprocessing the side-channel
traces, and that the first convolutional block proposed by Zaid et al. can be omitted. This
resulted in a trivial reduction in size of the networks on average by 52% while maintaining
similar performance. Additionally, we showed that the filter size is not directly related to
the amount of desynchronization in the traces. This observation is consistent with what
would be expected from the knowledge of other domains, i.e. the translation invariability
of CNNs copes with the misalignment and the filter size is related to the intrinsic nature
of the features we want to extract.

It seems that Zaid et al. attempted to condense all relevant information into a few
“aligned” samples which are then provided to the fully connected part of the network
through the aggressive use of local pooling. We believe that the methodology provided
by Zaid et al. provides a first step towards a systematic approach. However, we require a
better understanding of different factors, regarding the acquisition framework (operating
frequency, sampling rate and the amount of misalignment) in relation to the network
parameters.

Our study was possible, in no small part, because Zaid et al. provided their implemen-
tations online and data sets were publicly available. In similar fashion, we provide the
reader with a few examples which are easy to run online, without requiring any special
hardware or software installation.4 Additionally, supplementary code is available in a

4https://colab.research.google.com/drive/1S4ixlEoLm9HqtP3Ku0vqZxm0-S9mq-Cw

https://colab.research.google.com/drive/1S4ixlEoLm9HqtP3Ku0vqZxm0-S9mq-Cw


Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 165

Github repository.5
For future research, we suggest considering the work from the time-series classification

community as a solid foundation. Instead of reinventing the wheel, it would be beneficial
to use the techniques or models developed in this research area, and combine those with
the information from our community. Thus, obtaining better models and a better intuitive
understanding of how they work.

As shown by the results in the work by Zaid et al. and in our work, we have outgrown
the datasets which are often used in machine learning based side-channel analysis papers.
Therefore, it would be interesting to evaluate more realistic scenarios. For example, the
raw ASCAD traces of 100k samples are reduced to 700 samples. While this was likely
a good starting point, we feel the reduced dataset (which is arguably the most difficult
one from the set of used datasets) has become easy to attack. Therefore, it would be
interesting to attempt to attack the raw traces or a bigger subset. As noted earlier, it
would be worthwhile to investigate the relation between good network parameters and
acquisition parameters. Additionally, investigating the resilience of machine learning based
methods to other countermeasures (e.g. clock jitter, instruction shuffling, dummy rounds,
etc) could be interesting as these could require a different design methodology.

The networks required to successfully attack these datasets are many orders of magni-
tude smaller than the networks trained in other domains. Therefore, we believe it would
be more interesting to design network architectures work on multiple datasets, similarly to
how new network architectures in the time series classification domain are evaluated on
many datasets [FFW+19, FLF+19, DBK+18].

Acknowledgments
This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. In addition, this work was supported in part by the Research Council KU
Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things
with contract number C16/15/058, in part by the Flemish Government through FWO
Sancus G.0876.14N and in part by the European Commission through the Horizon 2020
research and innovation programme under grant agreement Cathedral ERC Advanced
Grant 695305.

References
[ACÖG18] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards

better understanding of gradient-based attribution methods for deep neural
networks. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE,
10:1–46, 07 2015.

[BLB+17] Anthony J. Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn J.
Keogh. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Min. Knowl. Discov., 31(3):606–
660, 2017.

5https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA


166 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

[CCC+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornelie, François Dassance,
Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff, and Alexandre Venelli.
Deep Learning to Evaluate Secure RSA Implementations. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2019(2):132–161, 2019.

[CEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware Masking,
Revisited. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):123–148,
2018.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random
delay generation in embedded software. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 156–170.
Springer, 2009.

[CK14] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and Secure
Design - 5th International Workshop, COSADE 2014, Paris, France, April 13-
15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes in Computer
Science, pages 179–198. Springer, 2014.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, Portable Template
Attacks. IEEE Trans. Information Forensics and Security, 13(2):490–501,
2018.

[DBK+18] Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael
Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and
Eamonn J. Keogh. The UCR Time Series Archive. CoRR, abs/1810.07758,
2018.

[DKK+18] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing
Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista,
and Hexagon-ML. The UCR Time Series Classification Archive, October 2018.
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[FFW+19] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series classi-
fication: a review. Data Min. Knowl. Discov., 33(4):917–963, 2019.

[FLF+19] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F. Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhassane Idoumghar,
Pierre-Alain Muller, and François Petitjean. Inceptiontime: Finding alexnet
for time series classification. CoRR, abs/1909.04939, 2019.

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network
attribution methods for leakage analysis and symmetric key recovery. In
Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in Cryptog-
raphy - SAC 2019 - 26th International Conference, Waterloo, ON, Canada,
August 12-16, 2019, Revised Selected Papers, volume 11959 of Lecture Notes
in Computer Science, pages 645–666. Springer, 2019.

[LBOM12] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient backprop. In Grégoire Montavon, Genevieve B. Orr, and Klaus-
Robert Müller, editors, Neural Networks: Tricks of the Trade - Second Edition,
volume 7700 of Lecture Notes in Computer Science, pages 9–48. Springer, 2012.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Lennert Wouters, Victor Arribas, Benedikt Gierlichs and Bart Preneel 167

[LP07] Kerstin Lemke-Rust and Christof Paar. Gaussian mixture models for higher-
order side channel analysis. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727
of Lecture Notes in Computer Science, pages 14–27. Springer, 2007.

[LS19] Zachary C. Lipton and Jacob Steinhardt. Troubling trends in machine learning
scholarship. ACM Queue, 17(1):80, 2019.

[MBTL13] David P. Montminy, Rusty O. Baldwin, Michael A. Temple, and Eric D. Laspe.
Improving cross-device attacks using zero-mean unit-variance normalization.
J. Cryptographic Engineering, 3(2):99–110, 2013.

[MDB17] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of
evaluation in neural language models. CoRR, abs/1707.05589, 2017.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for
general characterization in profiling attacks. In COSADE, volume 11421 of
Lecture Notes in Computer Science, pages 145–167. Springer, 2019.

[MLB+17] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,
and Klaus-Robert Müller. Explaining nonlinear classification decisions with
deep taylor decomposition. Pattern Recognit., 65:211–222, 2017.

[MMR20] Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-channel
analysis - an investigation of measurement factors. IEEE Trans. Very Large
Scale Integr. Syst., 28(2):376–389, 2020.

[NSGD12] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM:
A small and fast countermeasure for AES, secure against 1st and 2nd-order
zero-offset SCAs. In Wolfgang Rosenstiel and Lothar Thiele, editors, 2012
Design, Automation & Test in Europe Conference & Exhibition, DATE 2012,
Dresden, Germany, March 12-16, 2012, pages 1173–1178. IEEE, 2012.

[NZ12] Ralph Neuneier and Hans-Georg Zimmermann. How to train neural networks.
In Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller, editors,
Neural Networks: Tricks of the Trade - Second Edition, volume 7700 of Lecture
Notes in Computer Science, pages 369–418. Springer, 2012.

[PEC19] Guilherme Perin, Baris Ege, and Lukasz Chmielewski. Neural network model
assessment for side-channel analysis. IACR Cryptology ePrint Archive, 2019:722,
2019.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209–237, 2019.

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database. IACR Cryptology ePrint Archive, 2018:53,
2018.

[RHMV19] Guillaume Richard, Georges Hébrail, Mathilde Mougeot, and Nicolas Vayatis.
DenseNets for Time Series Classification: towards automation of time series
pre-processing with CNNs. Workshop on Mining and Learning from Time
Series., 2019, 2019.



168 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

[SCD+17] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 618–626, 2017.

[SDBR15] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for simplicity: The all convolutional net. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings, 2015.

[SGK17a] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 3145–3153.
PMLR, 2017.

[SGK17b] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In ICML, volume 70 of
Proceedings of Machine Learning Research, pages 3145–3153. PMLR, 2017.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pages 1–9. IEEE Computer Society, 2015.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In ICML, volume 70 of Proceedings of Machine Learning
Research, pages 3319–3328. PMLR, 2017.

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
In ICLR (Workshop Poster), 2014.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–
131, 2019.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):1–36, 2020.

[ZCAW17] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. Visual-
izing deep neural network decisions: Prediction difference analysis. CoRR,
abs/1702.04595, 2017.

[ZF14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, volume
8689 of Lecture Notes in Computer Science, pages 818–833. Springer, 2014.

[ZT15] Jian Zhou and Olga G. Troyanskaya. Predicting effects of noncoding variants
with deep learning–based sequence model. Nat Methods, 12:931–934, 2015.


	Introduction
	Background
	Datasets
	Preprocessing techniques
	Visualization techniques

	Preprocessing
	Convolutions with filter size one
	Experiments
	Conclusion

	On the correct use of visualization techniques
	Visualization techniques
	Interpretation of the visualization techniques

	Entanglement and Filter size
	Entanglement
	Filter size
	Filter size on desynchronized traces

	Number of Convolutional blocks
	Experiments
	Conclusions

	Discussion and Conclusions

