
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 73–96. DOI:10.13154/tches.v2020.i3.73-96

A Novel Evaluation Metric for Deep
Learning-Based Side Channel Analysis and Its
Extended Application to Imbalanced Data

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu

Key Laboratory of Electromagnetic Space Information, CAS
University of Science and Technology of China, Hefei, China

{zhang6,ustcnjh}@mail.ustc.edu.cn, {mczheng,hghu2005,ynh}@ustc.edu.cn

Abstract. Since Kocher (CRYPTO’96) proposed timing attack, side channel analysis
(SCA) has shown great potential to break cryptosystems via physical leakage. Recently,
deep learning techniques are widely used in SCA and show equivalent and even better
performance compared to traditional methods. However, it remains unknown why
and when deep learning techniques are effective and efficient for SCA. Masure et al.
(IACR TCHES 2020(1):348–375) illustrated that deep learning paradigm is suitable
for evaluating implementations against SCA from a worst-case scenario point of view,
yet their work is limited to balanced data and a specific loss function. Besides, deep
learning metrics are not consistent with side channel metrics. In most cases, they are
deceptive in foreseeing the feasibility and complexity of mounting a successful attack,
especially for imbalanced data.
To mitigate the gap between deep learning metrics and side channel metrics, we
propose a novel Cross Entropy Ratio (CER) metric to evaluate the performance of
deep learning models for SCA. CER is closely related to traditional side channel
metrics Guessing Entropy (GE) and Success Rate (SR) and fits to deep learning
scenario. Besides, we show that it works stably while deep learning metrics such as
accuracy becomes rather unreliable when the training data tends to be imbalanced.
However, estimating CER can be done as easy as natural metrics in deep learning
algorithms with low computational complexity. Furthermore, we adapt CER metric to
a new kind of loss function, namely CER loss function, designed specifically for deep
learning in side channel scenario. In this way, we link directly the SCA objective to
deep learning optimization. Our experiments on several datasets show that, for SCA
with imbalanced data, CER loss function outperforms Cross Entropy loss function in
various conditions.
Keywords: Side Channel Analysis · Deep Learning · Evaluation Metric · Imbalanced
Data

1 Introduction
1.1 Overview
Side channel analysis has received a significant amount of attention since it was first
proposed in [Koc96]. It exploits weakness of physical implementations instead of the
algorithms, bringing a serious threat to various electronic devices. Frequently used physical
leakages including power consumption and electromagnetic (EM) emanation, can be easily
obtained with high resolution and low cost. There are many kinds of SCA against different
situations to recover the secret keys. Among all of them, profiling attacks are the most
powerful ones, which can even break implementations with side channel countermeasures

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.73-96
mailto:zhang6@mail.ustc.edu.cn, ustcnjh.mail.ustc.edu.cn
mailto:mczheng@ustc.edu.cn,hghu2005@ustc.edu.cn,ynh@ustc.edu.cn
http://creativecommons.org/licenses/by/4.0/

74 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

such as masking [ISW03] or random delay. Template Attack (TA) [CRR02] proposed in
2002 is the first kind of profiling attacks, and since then several works have been done to
investigate the best way to apply it in practice. As an important part, dimension reduction
methods are extensively studied to reduce the computational complexity. Typical tools
such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)
are widely used for preprocessing in TA [APSQ06, SA08, RO04, CK13, CDP15]. There
are two basic assumptions for TA. The first one is the profiling assumption, a fundamental
assumption for profiling attacks, which means the attacker can manipulate a cloned device
of his target arbitrarily to establish a “template” for later attack. The other one is Gaussian
noise assumption, which means the noise of side channel leakage follows the Gaussian
distribution. However, Gaussian noise assumption can be violated in practice sometimes
and thus it will be ineffective or impossible to conduct TA.

As an alternative of TA, deep learning-based SCA makes no assumptions on the noise.
In recent study of deep learning techniques in side channel scenario, it shows equivalent
performance compared to TA and even outperforms it sometimes. However, it remains
questionable why and when deep learning methods are suitable for SCA. Nevertheless deep
learning methods seem promising and are investigated in many side channel researches
[CDP17, PSB+18, KPH+19].

1.2 Related Work
The gap between deep learning and SCA has been noticed in recent years since deep
learning techniques show great potential in SCA but no grounded theory is found. Deep
learning methods work well on SCA in practice by mapping it to a supervised classification
problem, which is thoroughly studied. However, unlike TA, deduced from Gaussian noise
assumption and Bayes’ theorem, it is still not clear whether SCA is equivalent to a
classification problem. Recently Masure et al. [MDP19] found Negative Log Likelihood
(NLL) loss (a.k.a. Cross Entropy loss, a regularly used loss function for classification in
deep learning) is related to Perceived Information [RSV+11, BHM+19], a lower bound
of Mutual Information between the sensitive intermediate and the leakage. The result
indicates training the deep learning model might be sound for side channel scenario and
relate to the lower bound of the number of traces needed to achieve a given SR in a
practical attack. Thus deep learning paradigm is suitable for evaluating implementations
against SCA from a worst-case scenario point of view. However, their work is limited
to NLL loss function and balanced data since they targeted on sensitive intermediates
assumed to be uniformly distributed.

Another gap between deep learning and SCA is deep learning metrics are not consistent
with side channel metrics. In deep learning community, researchers use metrics such
as accuracy and precision to evaluate the performance of a model. However, in side
channel community, most common evaluation metrics are Guess Entropy (GE) and Success
Rate (SR) [SMY09], which are totally different from deep learning ones. Unfortunately,
estimating GE/SR is not an easy work and costs a lot of time since it requires several
independent sets of traces to mount attacks. Besides, deep learning metrics might be
misleading when used in SCA according to [CDP17, PHJ+19], which can be even worse
for imbalanced data. As stated in [PHJ+19], how to design a new metric that reflects the
SCA behavior better with reasonable computational complexity is an open question. To
the best of our knowledge, until now there is no easily computed metric that is appropriate
to evaluate the performance of a deep learning model for SCA.

Deep learning-based SCA also faces the problem of imbalanced data as the original deep
learning algorithms do. Imbalanced training data will greatly influence the performance
of deep learning models. Consider an imbalanced training set which has two classes and
the proportion of the majority class is 90%. The deep learning model trained on this set
will be biased and tends to give predictions towards the majority class. In this case, the

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 75

model has a very high accuracy (normally higher than 90%) on the training set, but it
will show significant performance penalty when applied in practice since it learns little
information about the minority class. Generally, the more the imbalance is, the more
the deep learning model will suffer. To solve the problems of imbalance data, many
methodologies have been developed, like using resampling techniques to make the data
balanced again, or revising the training algorithm to compensate for the minority class
[Mor16, HG09, HG09, SWK09, SKWW07]. Deep learning-based SCA also suffers from
imbalanced data since hamming weight or hamming distance labels are commonly used
while highly imbalanced. Though we can use sensitive intermediates directly as labels
which are balanced, they need more data for training due to too many classes. Recently,
techniques from deep learning community have been introduced in [PHJ+19] to deal with
imbalanced data. Though the results are encouraging, they only focus on the first order
case without masking countermeasures. Thus the imbalanced problems for high order
scenario are still unsolved.

1.3 Our Contributions
In this paper, we propose a novel side channel metric from deep learning’ perspective for
the first time and properly solve the open question in [PHJ+19]. This metric is further
extended to a new kind of loss function for deep learning-based SCA. In detail, our main
contributions in this paper are as follows:

1. We propose a deep learning-based side channel evaluation metric Cross Entropy
Ratio (CER), which can be used to evaluate the performance of deep learning models
for SCA. Since estimating CER does not require to mount piratical attacks like
GE/SR, it can be embedded in deep learning algorithms easily and calculated as
fast as deep learning metrics;

2. CER is closely related to commonly used side channel metrics GE/SR both in theory
and our experiments. Hence it extends the metric family for SCA performance
evaluation and fits to deep learning algorithms. Besides, it works stably with
imbalanced data in different levels;

3. We adapt CER metric to a new kind of loss function for deep neural networks. Using
this new loss function in the training process, we gain significant improvements on
the attacking performance when dealing with imbalanced data. We show that it
works for implementations in software and hardware, with/without random delays
and with/without masks (i.e. both first order and high order cases). Finally we
properly solve the problems of imbalanced data in side channel scenario.

1.4 Organization
The paper is organized as follows: Section 2 introduces the background. In Section 3
we propose a novel side channel evaluation metric CER. Section 4 shows the relation
between CER and GE/SR. We also give an important application of CER, that is, as the
loss function of deep neural networks and show its great advantages when dealing with
imbalanced data in Section 5. Finally, Section 6 concludes this paper.

2 Background
2.1 Notations
Throughout the paper, we use calligraphic letters X to denote sets and upper-case letter
X to denote random variables over X . The cardinality of X is denoted by |X |. We use

76 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

lower case letters x to denote a sample or realization of X. Respectively, we use bold
character X to denote random vectors and x to denote a sample of the random vector X.
X[i] (resp. x[i]) denotes the i-th element of X (resp. x), which is also a random variable
(resp. a sample of the random variable). Since we have random variables, we can define
probability over random variables. Pr[X] denotes the distribution of X and Pr[X = x]
(or Pr[x] without loss of generality) is the probability when X equals x. We use E[X] to
denote the expectation of the random variable X and the condition will be specified under
the expectation symbol or as a subscript, e.g. E

X∼Pr[X]
and EX . Similarly, we use V to

denote variance.
We use G as a cryptographic primitive which computes a sensitive intermediate

V = G(K,P) with a known variable P and a part of unknown secret key K the attacker
aims to recover. The image set of G is denoted by V, where sensitive intermediates take
values. We denote f : V → L the mapping to transform the sensitive intermediate V to a
label L, which will be used in the training of deep neural networks. L denotes the label
space or equivalently image space of f . Then without loss of generality the labels can be
written as l0, l1, l2, . . . l|L|−1. For example, f can be the identity function or the hamming
weight function.

Let Xn be a sequence of random variables and X be another random variable. We
say that Xn converges in probability to X, denoted as Xn

p−→ X for n → ∞ when the
following property holds:

∀ε > 0, lim
n→∞

Pr[|Xn −X| ≥ ε] = 0.

Let X be a random variable with finite expected value and finite non-zero variance.
For any b > 0, Chebyshev’ inequality holds:

Pr[|X − E[X]| ≥ b] ≤ V[X]
b2 .

Through Chebyshev’ inequality we can get the Law of Large Numbers (LLN). Let
X1, X2, . . . , Xn be i.i.d with finite expected value E[X1] = E[X2] = · · · = µ, then the
sample average

X = 1
n

(X1 +X2 + · · ·+Xn)

converges in probability to the expected value, i.e.,

X
p−→ µ for n→∞.

2.2 Deep Neural Network
2.2.1 MLP and CNN

First we simply introduce two widely used deep neural networks Multi-Layer Perceptron
(MLP) and Convolutional Neural Network (CNN) for supervised learning, where training
data is taged with corresponding labels. For a given input, they can give the best possible
prediction with high accuracy or probabilities for all possible classes after a prior training
process.

Inspired by the human nervous system, MLP uses artificial neurons, i.e. perceptrons
(1(a)) as the minimal units to build a full network. For a given input, a perceptron first
performs an affine transformation and then feed the result to an activation function to
get the final output. Denote w, b parameters for the affine transformation and Act the
activation function, and then this process can be written as

Act(w · x + b).

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 77

Perceptrons can be joined together to form a MLP by connecting each layer’s output to
the next layer’s input (1(b)). Each layer also performs an affine transformation followed
by an activation function with multidimensional inputs and outputs. Denote λ the affine
transformation (a.k.a. fully connected layer) and Act the activation function, and then
this process can be written as

Act ◦ λ(x).

So the model of MLP with parameter θ can be expressed as follows:

Mθ(x) = Actn ◦ λn ◦Actn−1 ◦ λn−1 ◦ · · · ◦Act1 ◦ λ1(x).

Act1, . . . ,Actn−1 can be chosen from various activation functions (e.g. ReLU and its
variants) whereas Actn is always a softmax function

softmax(x)[j] = ex[j]∑c
i=1 e

x[i]
,

where c is the number of classes/outputs. This activation function guarantees the output
of the model can be interpreted as probabilities for all possible classes, which is useful for
later classification.

y

x1

b

w
1

w 3

w2x2

x3

(a) Single perceptron

input 1
output 1

output 2
input 2

input 3

input layer output layer
hidden layers

(b) MLP

Figure 1: Single perceptron and MLP.

CNN has a similar hierarchical structure with various types of layers. It usually contains
convolutional layers, pooling layers, batch normalization layers, and fully connected layers
followed by softmax activation function at the end of the network (Figure 2). It is a popular
candidate in side channel domain to deal with traces with random delays or clock jitters
due to its shift invariant property. Nowadays CNN is widely applied in many research
areas and is proved to be powerful classifier for time series data [HCE+17, Kim14, KSH12].
More details about CNN can be found in literature of deep learning [RW17, GBC16].

F
l
a
t
t
e
n

A
conv1input output

pool1

conv2
fully connected

pool2

Figure 2: Convolutional Neural Network.

78 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

2.2.2 Cross Entropy Loss Function

Loss function is the key point in supervised learning since the parameters of the deep neural
network are exactly updated by minimizing the loss function in the back propagation
algorithm. Among all the loss functions for supervised classifications in deep learning,
Cross Entropy loss is frequently used due to its stable performance and high efficiency. In
deep-learning based SCA, many previous works use Cross Entropy loss for their training
[CDP17, PSB+18, KPH+19], some works also use Mean Square Error [Tim19], [WMM19]
or self defined loss function [RQL19].

Given a joint probability distribution of the label L and corresponding leakage X
denoted as Pr[X, Y] and a predicted distribution Mθ(X)[Y] of a deep learning model Mθ

with parameter θ, we define the Cross Entropy (CE) for the two distributions as follows:

H(Pr[X, Y],Mθ(X)[Y])) = E
X,Y
− log2 Mθ(X)[Y]

Let T = {(x1, y1), . . . , (xN , yN)} be the training data with labels and Mθ a deep
learning model with parameter θ. Then the Cross Entropy loss LossCE(T ,Mθ) is defined
as the estimation of Cross Entropy over the training set and the model1, i.e.,

HN (T ,Mθ) = −
N∑
i=1

1
N

log2 Mθ(xi)[yi]. (1)

Apparently Equation 1 is a Monte Carlo estimate of the Cross Entropy for the original
distribution Pr[X, Y] and the predicted distribution Mθ(X)[Y], where the training set is
treated as samples from Pr[X, Y]. That’s why it is called Cross Entropy loss. Actually, the
expectation of Equation 1 is exactly the Cross Entropy between the former distributions
since:

E
x,y∼Pr[X,Y]

HN (T ,Mθ) = E
xi,yi∼Pr[X,Y]

−
N∑
i=1

1
N

log2 Mθ(xi)[yi]

= 1
N

N∑
i=1

E
xi,yi∼Pr[X,Y]

− log2 Mθ(xi)[yi]

= H(Pr[X, Y],Mθ(X)[Y]))

(2)

and by LNN, we also have:

HN (T ,Mθ)
p−→ H(Pr[X, Y],Mθ(X)[Y]) for n→∞. (3)

Equation 1 is also called Negative Log Likelihood (NLL) loss in [MDP19] as minimizing
the CE loss is exactly maximizing the Log Likelihood hence minimizing NLL loss. In the
rest of the paper, we use CE loss for convenience.

2.3 Deep Learning-Based Profiling Attacks
Unlike non-profiling SCA (e.g. DPA [KJJ99], CPA [BCO04]), which can be done using
only one set of traces, profiling attacks need two independent sets of traces. One is the
profiling set, used to train the model aiming at leveraging the information maximally. The
other is the attacking set, used to mount a practical attack. For the profiling set, the
attacker knows all the information needed including corresponding secret key and the

1In practical implementations of deep learning algorithms, Categorical Cross Entropy is used when the
labels are encoded in one-hot form, which is a typical case. However, it is equivalent to Cross Entropy in a
more complex form so we only use Equation 1 for simplicity.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 79

public variable. In other words, the attacker is accessible to a profiling set SP including a
number of (namely NP) traces together with additional information

SP : {(pi, k∗,xi)|1 ≤ i ≤ NP },

where k∗ denotes the secret key from key space K and pi denotes the i-th known public
variable with xi as the corresponding physical leakage (e.g. power or EM traces)2. Note
that x1, . . . ,xNP

are i.i.d. since they are independent observations.
Before the attacker starts the process of profiling, a transformation is usually conducted

to fit the data to deep learning tasks

SP : {(li,xi)|1 ≤ i ≤ NP },

where li = f(vi) denotes the label for xi corresponding to i-th sensitive intermediate
vi = G(k∗, pi). Then the profiling phase can be done by training a model with traces as
inputs and transformed intermediates as labels. The model with its parameters, denoted
by Mθ will be updated during training process. After the training, the final prediction
model Mθ : x→ y will be generated, where y can be viewed as probability for the labels.

After the profiling phase, the attacker can start the attacking phase to mount a practical
attack. For an attacking set SA = {(pi,xi)|1 ≤ i ≤ NA} having more than one trace from
the same but unknown secret key, maximum likelihood method is the optimal way to
mount a successful attack. A log likelihood score will be assigned to every key candidate
k ∈ K for later key discrimination process, i.e.,

dSA
[k] = 1

NA

NA∑
i=1

log2(yi[f ◦G(pi, k)]). (4)

Here we use log likelihood for convenience.
The key candidate with the highest score is assumed to be the right key. Actually,

training a deep learning model with CE loss is exactly maximizing the log likelihood score
for the right key k∗ with the profiling set.

3 A Novel Side Channel Evaluation Metric
In side channel scenario, GE and SR are fair metrics for the comparison between side
channel attacks and countermeasures. They can give information on how the attack is
going, how many traces are needed for a successful attack and to what extent we can
reduce the uncertainty of the right key. GE and SR are qualified for both profiling and
non-profiling attacks, but they are time consuming since they need to be estimated on a set
of experiments. Subsection 3.1 elaborates GE/SR and their estimations. In Subsection 3.2,
we propose a novel deep learning-based side channel evaluation metric CER and also give
its estimation. Subsection 3.3 gives some discussions about CER.

3.1 Guessing Entropy and Success Rate
At the attacking phase of profiling attacks we mentioned in Subsection 2.3, a log likelihood
score dSA

[k] is computed for every key hypothesis. The attacker can next calculate a guess
vector g = [g[1], g[2], . . . , g[|K|]] with the different key candidates sorted in descending

2Here we can assume all the profiling traces are generated with the same secret key without loss of
generality since the secret key k∗ will not be used directly as training labels. Typical public available
datasets also generate profiling traces with same secret key and varying known public varible p. For a
profiling trace generated from a different key k with a training label l = f ◦ G(k, p), it can be viewed as a
trace generated with the same key k∗ and another public variable p′ having the same label l = f ◦G(k∗, p′).

80 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

order according to their scores dSA
[k]: the most likely candidate being g[1]. The secret key

k∗ is successfully recovered when g[1] = k∗ or equivalently dSA
[k∗] > dSA

[k] for any k 6= k∗.

Guessing Entropy For any attacking set SA drawn uniformly from the joint distribution
Pr[X, P] with NA traces under secret key k∗, we define an attacker Age, who will output
the position of the right key candidate k∗ in the guessing vector g as

Age(SA) = i, if g[i] = k∗. (5)

The guessing entropy is defined as the expected value of Age(SA)

GE = E
SA

[Age(SA)]. (6)

Success Rate For any attacking set SA drawn uniformly from the joint distribution
Pr[X, P] with NA traces under secret key k∗, we define an attacker Asr, who will output
the result whether the secret key k∗ is successfully recovered as

Asr(SA) =
{

1 if g[1] = k∗

0 otherwise
. (7)

Then the success rate is defined as the probability of Asr(SA) outputting 1

SR = Pr[Asr(SA) = 1]. (8)

The value of GE can be estimated thanks to LLN. Consider a set of experiments
with N independent attacking set S1

A,S2
A, . . . ,SNA . Then by LLN, the sample average of

Age(SA), denoted by ĜE, converges in probability to GE, i.e.,

ĜE = Age(S1
A) + Age(S2

A) + · · ·+ Age(SNA)
N

p−→ GE for N →∞, (9)

which means ĜE is a suitable estimation of GE. Also, the estimation error can be bounded
by Chebyshev’ inequality.

For success rate SR, the probability can be estimated using the frequency of Asr(SA)
outputting 1 with a set of independent experiments similar to previous one, i.e.,

ŜR =
∑N
i=1 1Asr(Si

A
)=1

N
. (10)

3.2 Cross Entropy Ratio Metric and Its Estimation
GE and SR can not be embedded in deep learning algorithms smoothly due to high
computational complexity and therefore we will propose a novel metric for SCA directly
from deep learning’s perspective.

Recall the fact that training deep learning models using CE loss is exactly maximizing
the log likelihood score for the right key k∗ in Equation 4. Let Pr[X, Lk] be the joint
distribution and the Mθ(X)[Lk] be the predicted distribution under key hypothesis k with
the labels generated by Lk = f ◦G(P, k), and then their Cross Entropy denoted as CE(k)
is as follows:

CE(k) = H(Pr[X, Lk],Mθ(X)[Lk])
= E

X,Lk
[− log2 Mθ(X)[Lk]]

= E
X,P

[− log2 Mθ(X)[f ◦G(P, k)]].
(11)

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 81

During the training process, CE(k∗) is supposed to be minimized if CE loss function is
used. However, the efficiency of the attack will also be influenced by CE(k) for k 6= k∗ and
the attacking result might become misleading when CE(k) for k 6= k∗ increases. Hereafter,
we define a novel metric Cross Entropy Ratio for deep learning model performance
evaluation in side channel scenario as follows:

CER = CE(k∗)
E

k 6=k∗
[CE(k)] . (12)

As accurately calculating CER requires perfect knowledge about the joint distribution
Pr[X, Lk] for all possible k, which is not accessible to the attacker, we need to give it an
appropriate estimation like GE and SR. To estimate CER, we first introduce a lemma.

Lemma 1. Let {An}∞n=1, {Bn}∞n=1 be two sequences of random variables. An converges
to a constant α in probability. Bn ≥ 1 for n ∈ Z+, and Bn converges to a constant β ≥ 1
in probability. Then An/Bn converges to α/β in probability.

Proof. For n ∈ Z+, we have
An
Bn

= α

Bn
+ An − α

Bn
Thus, ∣∣∣∣AnBn − α

β

∣∣∣∣ =
∣∣∣∣ αBn − α

β
+ An − α

Bn

∣∣∣∣
≤
∣∣∣∣ αBn − α

β

∣∣∣∣+
∣∣∣∣An − αBn

∣∣∣∣
≤
∣∣∣∣ αBn − α

β

∣∣∣∣+ |An − α| .

Since |α/Bn| ≤ |α| for n ∈ Z+, α/Bn converges to α/β in probability, and An converges
to α in probability, we have An/Bn converges to α/β in probability.

Remark 1. The case Bn ≥ c > 0 can be treated the same by defining B̃n = Bn/c.
Remark 2. Bn > 1 for n ∈ Z+ can be relaxed to Bn > 1 for n > N, n ∈ Z+ by modifying
the condition in the proof “For n ∈ Z+” to “For n > N, n ∈ Z+”.

Given the training set SP and the deep learning model Mθ, the following property
holds according to Equation 3:

HNP
(SP ,Mθ)

p−→ H(Pr[X, Lk
∗
],Mθ(X)[Lk

∗
])) = CE(k∗) for n→∞ (13)

Also, since G is a cryptographic primitive, the output of G(P, k) can be regarded as
pseudo-random, thus for k 6= k∗, Lk = f ◦G(P, k) = f(U), where U is randomly drawn
from the image set of G, i.e. V. Then for k 6= k∗ and k independent of Mθ, we have:

E
k 6=k∗

[CE(k)] = E
k 6=k∗

E
X,P

[− log2 Mθ(X)[f ◦G(P, k)]]

= E
k 6=k∗

E
X,U

[− log2 Mθ(X)[f(U)]]

= E
X,U

[− log2 Mθ(X)[f(U)]].

(14)

Consequently, we can give an estimation of E
k 6=k∗

[CE(k)].

Let SrP = {(X1, f(U1)), . . . , (XNP
, f(UNP

))} be a randomized training set where
U1, U2, . . . , UNP

are randomly drawn from V, then by applying LLN we have:

1
N

N∑
i=1
− log2 Mθ(Xi)[f(Ui)]

p−→ E
X,U

[− log2 Mθ(X)[f(U)]] = E
k 6=k∗

[CE(k)], (15)

82 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

Equation 15 can be rewritten using the estimation of Cross Entropy as follows:

HNP
(Srp ,Mθ) = 1

NP

N∑
i=1
− log2 Mθ(Xi)[f(Ui)]

p−→ E
k 6=k∗

[CE(k)] (16)

Combing Lemma 1 with Equation 13 and Equation 16, and supposing E
k 6=k∗

[CE(k)] ≥ c > 0

for sufficiently large n, we can give an estimation of CER:

ĈER = HNP
(SP ,Mθ)

HNP
(Srp ,Mθ)

, (17)

with the convergence property holds

ĈER p−→ CER for NP −→∞. (18)

3.3 Discussions
Indeed the CER metric can effectively evaluate the performance of a deep learning model
for profiling attacks since: (1) A small CE(k∗) indicates the model is close to the true
joint distribution of the traces and labels; (2) A big E

k 6=k∗
[CE(k)] indicates the model is

less possible to mix up the right key with the wrong keys. Consequently, a smaller CER
implies the model learns more information with less ambiguity, which means the model
has a good performance for an attack.

By the way, CER metric in Equation 12 can also be defined in another way by
substituting Cross Entropy to Kullback-Leibler (K-L) divergence. However, we don’t do it
because in this way we just add the same constant to both the numerator and denominator
while the metric has equivalent functionality.

CER has great compatibility with deep learning. There is no obstacle estimating it
since most deep learning algorithms provide Application Programming Interface (API)
to compute the estimation of Cross Entropy. Given the profiling set SP and the model
Mθ, HNP

(SP ,Mθ), the numerator of ĈER, can be easily and quickly calculated by calling
corresponding API. To compute HNP

(Srp ,Mθ), a little trick can be used. First, we can
generate SrP by shuffling the labels in SP while keeping the traces unchanged and then
it can be calculated just like the numerator. To improve the accuracy, we can iterate
the process on N shuffled sets Sr1

P ,S
r2
P , . . . ,S

rN

P , and use the mean value of HNP
(Sri
p ,Mθ)

as the estimation of HNP
(Srp ,Mθ). Besides, since estimating CER does not require to

mount practical attacks like GE/SR, it has low computational complexity and can be
easily embedded in deep learning algorithms.

If the estimation of CER suffers from overfitting, it is necessary to separate a validation
set Sv independent of the profiling set to do the estimation. If no overfitting problem
appears, the better choice would be using the profiling set, since it usually contains more
traces and a validation set is not always available. Actually, CER metric suffers less from
overfitting than natural deep learning metrics as it is derived from profiling attacks, whose
purpose is not maximizing the classification accuracy. Thus it is good to estimate CER
using a validation set while still acceptable to use the training set if a validation set is not
available.

4 Relationship Between CER and GE/SR
We will give the theoretic relation between CER and GE/SR with concrete proof and discuss
their underlying connection in Subsection 4.1. And then we validate it in Subsection 4.2
with experiments on a public dataset. Subsection 4.3 gives a comparison between CER
and deep learning metric accuracy for SCA with imbalanced data.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 83

4.1 CER Reflects GE/SR
CER and GE/SR are all good metrics used to evaluate the performance of SCA in
different occasions. CER can be easily estimated in deep learning scenario and does not
require to mount practical attacks, while GE/SR are suitable for any kinds of SCA at
a high computational cost. Actually CER has a close relationship with GE/SR in deep
learning-based profiling attacks, as stated in the following propositions.

Proposition 1 (CER and GE). For any attacking set SA drawn uniformly from the joint
distribution Pr[X, P] under key k∗ with NA traces, and an attacker Age, CER < 1 implies
the following results:

(i) Age(SA) = 1 for NA →∞, and

(ii) GE = 1 for NA →∞.

Proof. According to the definition of CER in Equation 12, CER < 1 is equivalent to
CE(k∗) < E

k 6=k∗
[CE(k)]. Besides, by Equation 11 and Equation 14, if k 6= k∗ we have

E
k 6=k∗

[CE(k)] = CE(k) since:

CE(k) = E
X,P

[− log2 Mθ(X)[f ◦G(P, k)]]

= E
X,U

[− log2 Mθ(X)[f(U)]]

= E
k 6=k∗

[CE(k)],

(19)

where U is randomly drawn from V. Then we have CE(k∗) < CE(k) for k 6= k∗.
Additionally, for the log likelihood score in Equation 4 we have:

E
SA

[−dSA
[k]] = E[− 1

NA

NA∑
i=1

log(yi[f ◦G(pi, k)])]

= 1
NA

NA∑
i=1

E[− log(yi[f ◦G(pi, k)])]

= 1
NA

NA∑
i=1

E
xi,pi∼Pr[X,P]

[− log2 Mθ(xi)[f ◦G(pi, k)]]

= 1
NA

NA∑
i=1

CE(k)

= CE(k),

(20)

which implies the opposite of the log likelihood score i.e., −dSA
[k] converges to CE(k) in

probability for NA → ∞ by LLN. As CE(k∗) < CE(k) for k 6= k∗, we have dSA
[k∗] >

dSA
[k] for k 6= k∗ and NA →∞. Hence the guess vector output by the attacker Age will

be g = [k∗, g[2], . . . , g[|K|]], i.e. Age(SA) = 1 for NA → ∞. Since GE = E
SA

[A(SA)], we

also have GE = 1 for NA →∞.

Proposition 2 (CER and SR). For any attacking set SA drawn uniformly from the joint
distribution Pr[X, P] under key k∗ with NA traces, and an attacker Asr, CER < 1 implies
the following results:

(i) Asr(SA) = 1 for NA →∞, and

84 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

(ii) SR = 1 for NA →∞.
Proof. Similar to Proposition 1, we know CER < 1 implies CE(k∗) < CE(k) for k 6= k∗,
and thus dSA

[k∗] > dSA
[k] for k 6= k∗ and NA → ∞. The guess vector output by the

attacker Asr will be g = [k∗, g[2], . . . , g[|K|]], i.e. Asr(SA) = 1 for NA → ∞. Since
SR = Pr[Asr(SA) = 1], we also have SR = 1 for NA →∞.

Proposition 1 and Proposition 2 states the fact that the attacker will surely disclose
the secret key once CER < 1 if enough traces are available.

From the propositions, we know CE(k) is the expected value of−dSA
[k] and E

k 6=k∗
[CE(k)] =

CE(k). To further explore the relation between CER and GE/SR, we rewrite CER as

CER = CE(k∗)
CE(k)

=
E
SA

[−dSA
[k∗]]

E
SA

[−dSA
[k]] ,

(21)

where k 6= k∗. Let CER = γ, for k 6= k∗ we have

E
SA

[dSA
[k∗]]− E

SA

[dSA
[k]] = E

SA

[−dSA
[k]]− E

SA

[−dSA
[k∗]]

= (1− γ) E
SA

[−dSA
[k]]

(22)

According to Equation 4, E
SA

[−dSA
[k]] ≥ 0. Actually, we can assume E

SA

[−dSA
[k]] > 0 when

k 6= k∗ without loss of generality. Equation 22 indicates that on average sense, the score
of the right key will be greater than the score of the wrong keys when CER < 1 and the
difference of the scores gets bigger when CER becomes smaller. Hopefully with a smaller
CER, the attacker might need less traces to mount a successful attack, or with the same
amount of traces he might get a lower GE and a higher SR. However this haven’t been
proved yet but intuitively it is the case since random variables will be around the expected
value in a small range with high probability according to Chebyshev’ inequality.

Besides, Equation 22 also implies that on average sense the right key and the wrong
keys will be more distinguishable with a big E

SA

[−dSA
[k]], i.e., a big E

k 6=k∗
[CE(k)], which in

turn verifies the definition of CER is reasonable.

4.2 Experimental Validation
To validate the relation between CER and GE/SR, we conduct some experiments on a
public dataset.

4.2.1 ASCAD Dataset

ASCAD dataset is introduced in [PSB+18] by Prouff et al. aiming at providing a standard
dataset specifically for SCA. ASCAD dataset targets a software protected AES implemen-
tation running over an 8-bit AVR architecture, namely ATMega85153. In total, 60000
power traces are provided in which 50000 traces are divided into the profiling set and
the remaining traces are used as the attacking set. Each raw trace contains 100000 time
samples and for convenience, 700 time samples concerning with the operations of the third
masked Sbox in the first round are selected. These traces have no first order leakage unless
the masks are leaked, which is verified in the original paper. Two sets of desynchronized
traces are also provided with the jitter window ranging maximally to 50 and 100 time
samples correspondingly.

3This dataset is publicly available at https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 85

4.2.2 Settings and Results

We use synchronized traces with hamming weight and identity labels as the training data
for the MLP models in the profiling phase. The structures of the MLP models used in
our experiments are similar to the ones proposed in [PSB+18] and we vary the epoch and
batch size to explore whether CER reflects GE/SR under different conditions.

The MLP models are trained using a NVIDIA TITAN Xp graphic card on ubuntu with
driver version 418.39 and CUDA version 10.1. Tensorflow 2.0 [AAB+15] with GPU support
is used to accelerate the training process. To estimate GE and SR after the training, we
iterate the attacking process 300 times and each time 1000 traces are randomly chosen from
the attacking set to mount a maximum likelihood attack. Meanwhile, CER is estimated in
every iteration and the mean value is used to improve accuracy.

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es

sin
g

En
tro

py

batchsize=50,CER=0.966
batchsize=100,CER=0.970
batchsize=200,CER=0.983
batchsize=500,CER=0.991

(a) Guessing Entropy, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

Su
cc

es
s R

at
e

batchsize=50,CER=0.966
batchsize=100,CER=0.970
batchsize=200,CER=0.983
batchsize=500,CER=0.991

(b) Success Rate, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es

sin
g

En
tro

py

batchsize=50,CER=0.955
batchsize=100,CER=0.957
batchsize=200,CER=0.968
batchsize=500,CER=0.974

(c) Guessing Entropy, epoch=200

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.00
0.06
0.12
0.18
0.24
0.30
0.36
0.42
0.48
0.54
0.60

Su
cc

es
s R

at
e

batchsize=50,CER=0.955
batchsize=100,CER=0.957
batchsize=200,CER=0.968
batchsize=500,CER=0.974

(d) Success Rate, epoch=200

Figure 3: Relation between CER and GE/SR for hamming weight labels with different
epochs and batch sizes.

First, for models using hamming weight labels, i.e. for imbalanced labels, the results
are encouraging. As shown in Figure 3, with different epochs and batch sizes, CER is
closely related to GE/SR. A small CER is usually a indication for a small GE and a high
SR. For model using identity labels, corresponding to balanced data, the results are similar.
As Figure 4 shows, CER also reflects GE/SR.

Putting them together, ranking CER in ascending order with different epochs and
batch sizes, as shown in Figure 5, it is clear that CER is consistent with GE/SR. In most
of time, a smaller CER lead to a lower GE and a higher SR, indicating a better attacking
result. Sometimes the consistency might also be violated. For example, in 5(a), GE for
CER = 0.968 is higher than GE for CER = 0.970 with 1000 attacking traces. This slight
inconsistency is inevitable as CER is irrelevant with the number of attacking traces and
thus less accurate than GE/SR. However, it is acceptable since CER generally show good
performance in foreseeing the attacking results and has great potential thanks to its great
compatibility with deep learning algorithms. What’ more, estimating CER does not require
to mount piratical attacks like GE/SR and thus has reasonable computational complexity.

86 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es

sin
g

En
tro

py

batchsize=50,CER=0.992
batchsize=100,CER=0.993
batchsize=200,CER=0.998
batchsize=500,CER=0.999

(a) Guessing Entropy, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Su
cc

es
s R

at
e

batchsize=50,CER=0.992
batchsize=100,CER=0.993
batchsize=200,CER=0.998
batchsize=500,CER=0.999

(b) Success Rate, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

15

30

45

60

75

90

105

120

Gu
es

sin
g

En
tro

py

batchsize=50,CER=0.945
batchsize=100,CER=0.973
batchsize=200,CER=0.992
batchsize=500,CER=0.966

(c) Guessing Entropy, epoch=200

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s R

at
e

batchsize=50,CER=0.945
batchsize=100,CER=0.973
batchsize=200,CER=0.992
batchsize=500,CER=0.966

(d) Success Rate, epoch=200

Figure 4: Relation between CER and GE/SR for identity (Sbox Out) labels with different
epochs and batch sizes.

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CER=0.955,e=200,b=50
CER=0.957,e=200,b=100
CER=0.966,e=100,b=50
CER=0.968,e=200,b=200
CER=0.970,e=100,b=100
CER=0.974,e=200,b=500
CER=0.983,e=100,b=200
CER=0.991,e=100,b=500

(a) Guessing Entropy, HW

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.00
0.06
0.12
0.18
0.24
0.30
0.36
0.42
0.48
0.54
0.60

Su
cc

es
s R

at
e

CER=0.955,e=200,b=50
CER=0.957,e=200,b=100
CER=0.966,e=100,b=50
CER=0.968,e=200,b=200
CER=0.970,e=100,b=100
CER=0.974,e=200,b=500
CER=0.983,e=100,b=200
CER=0.991,e=100,b=500

(b) Success Rate, HW

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CER=0.945,e=200,b=50
CER=0.966,e=200,b=500
CER=0.973,e=200,b=100
CER=0.992,e=100,b=50
CER=0.992,e=200,b=200
CER=0.993,e=100,b=100
CER=0.998,e=100,b=200
CER=0.999,e=100,b=500

(c) Guessing Entropy, Sbox Out

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s R

at
e

CER=0.945,e=200,b=50
CER=0.966,e=200,b=500
CER=0.973,e=200,b=100
CER=0.992,e=100,b=50
CER=0.992,e=200,b=200
CER=0.993,e=100,b=100
CER=0.998,e=100,b=200
CER=0.999,e=100,b=500

(d) Success Rate, Sbox Out

Figure 5: Relation between CER and GE/SR for hamming weight (HW) and identity
(Sbox Out) labels with different epochs and batch sizes.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 87

4.3 CER v.s. Accuracy
To further investigate the effectiveness of CER with imbalanced data and show why deep
learning metrics such as accuracy are not suitable in some occasions, we also conduct
several experiments with different levels of imbalanced training data. For simplicity, we
use the least significant bit of the output of Sbox as our labels (i.e. two classes, label = 1
and label = 0), and vary the proposition of label = 1 from 50% to 90%. The total number
of the training traces is fixed to 24000, selected from original ASCAD dataset according to
the level of imbalance and we use MLP models similar to previous ones.

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es

sin
g
En

tro
py

5:5,Acc=0.6159,CER=0.8653
6:4,Acc=0.6520,CER=0.8621
7:3,Acc=0.7157,CER=0.8730
8:2,Acc=0.8030,CER=0.8767
9:1,Acc=0.9002,CER=0.8859

Figure 6: Accuracy (Acc) and CER with imbalanced data in different levels. The ratio of
label = 1 to label = 0 ranges from 5:5 to 9:1.

The results are shown in Figure 6. When the training data becomes imbalanced,
the training accuracy increases while the attacking result turns out to be worse. To the
contrary, CER stays sound with different levels of imbalanced data and is still a good
indicator for the results of the attack. The deceptive performance of accuracy metric won’t
change even if we separate a validation set since this set is also imbalanced4.

Estimating CER is easy and has similar computational complexity to the calculation
of accuracy. In our experiments, time cost for computing CER and accuracy is close,
7.02ms± 150µs and 6.36ms± 496µs correspondingly, both less than GE/SR which cost
much more time (typically more than half an hour). Here we use only one iteration
to estimate the denominator of CER. Considering more iterations needs more time but
it is still in milliseconds level, which is fast enough in practice. Hence CER metric is
qualified for evaluating the performance of deep learning models with a low computational
complexity and works for both balanced and imbalanced data.

5 Extended Application to Imbalanced Data
In this section, we adapt CER metric to an effective deep learning loss function specifically
for SCA with imbalanced data. Subsection 5.1 gives the definition of CER loss function
and Subsection 5.2 shows some experimental results on several public datasets.

4The validation set can be made balanced but at the cost of large number of traces belonging to the
minority class, which will make the training set even more imbalanced. Normally the validation traces are
randomly selected and separated from the training set and thus they have the same distribution with the
training traces

88 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

5.1 CER Loss Function

Now that CER can be a good metric indicating the attacking performance of deep learning
models and has a low computational complexity, it is possible to adapt it to a loss function
for the training of deep neural networks. Similar to Cross Entropy loss function, CER loss
function can be defined as follows:

LossCER = HNP
(SP ,Mθ)

1
N

∑N
i=1 HNP

(Sri

P ,Mθ)
, (23)

where Sr1
P , . . . ,S

rN

P are shuffled sets generated from SP by shuffling the labels randomly,
where N is a constant defined by user to determine how many shuffled sets are needed.

Actually, Equation 23 is noting but an estimation of CER on the training set. We
already know from Proposition 1 and Proposition 2 that CER < 1 implies the attack will
surely succeed if sufficient traces are available and we validate a smaller CER indicates a
better attacking result with experiments. According to Equation 21, CER loss minimization
is trying to maximize the log likelihood score of the right key and minimize the scores
of wrong keys at the same time, which can make the right key and the wrong keys more
distinguishable.

Unlike loss functions designed to maximize the classification accuracy, CER loss function
is for deep learning in side channel domain. As shown in Subsection 4.3, CER suffers less
than accuracy when training data is imbalanced. Hence, using CER loss for training can
mitigate the problems posed by imbalanced data. Comparing to balancing techniques
introduced in [PHJ+19] to deal with the imbalanced problems, CER loss function has more
potential since it works for implementations with/without masks and does not require to
modify the training data set. CER loss function can also be applied to balanced cases.
However, we focus on imbalanced cases in this paper as we want to solve the imbalanced
problems.

Like traditional loss functions, CER loss function may also be influenced by overfitting.
How to solve this problem under side channel scenario is important and needs to be deeply
explored though beyond this paper. Adding a proper regulation term in the loss function
or using cross validation might help. We leave this part to future work and use CER loss
function directly in our later experiments.

5.2 Experiments with Imbalanced Data

To show the advantages of CER loss for imbalanced data, we conduct some experiments
with hamming weight/distance labels on several public datasets apart from ASCAD. All
the results are encouraging, indicating using CER loss function in deep learning algorithms
is beneficial to the performance of SCA for imbalanced data.

5.2.1 ASCAD Dataset

For ASCAD dataset we use the hamming weights of the outputs of a masked Sbox as the
imbalanced labels. We experiment with the synchronized trace set and two desynchronized
trace sets while we use different deep learning models. For synchronized cases, we still use
MLP models with six layers and for desynchronized cases, CNN models are used since they
can deal with jitters. The structure of the CNN models is VGG-like proposed in [PSB+18]
and we set epoch to 75 and batch size to 200 in our training5.

5All MLP and CNN models used later on have similar structures.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 89

5.2.2 DPA Contest v4 Dataset

DPA Contest v4 dataset provides measurements of a masked AES implementation in
software on an ATMega-163 smart card6. The masked implementation utilizes a lightweight
mask scheme AES-256 RSM which is found to have first order leakage lately [MGH14].
Here we assume the masks are known and thus our attacks fall to first order case. In total,
we retrieved 10000 traces, each containing 1000 features around the first Sbox part of the
algorithm execution. 9000 traces are randomly chosen for the training of MLP models and
the rest of traces are preserved for later attack.

5.2.3 Dataset with Random Delay Countermeasure (AES_RD)

Introduced in [CK09], AES_RD dataset is a collection of power traces from a software
implementation of AES with random delays7. By adding random delays to the normal
operations, the traces captured are misaligned and the Signal to Noise Ratio (SNR) is
quite low. As a result, MLP models are not powerful enough to mount a successful attack
even with large number of traces. Thus we carry out our attacks using CNN models to
deal with random delays. In our experiments on this dataset, 40000 traces are fed to CNN
models for training and 10000 traces are preserved for later attack.

5.2.4 Unprotected AES-128 on FPGA (AES_HD)

Different from datasets collecting traces from software implementations as described above,
AES_HD provides measurements of an unprotected hardware implementation of AES-128
on FPGA8. Totally 100000 EM traces were measured and 1250 features are included in
each trace. We mount our attacks on the last round of AES with MLP models and use
hamming distance leakage of register writing as our imbalanced labels, i.e.,

L = HW (Sbox−1[Ci ⊕ k∗]⊕ Cj)

where HW denote hamming weight function, where Ci and Cj are two cipertext bytes.
Same as [KPH+19], we choose i = 12 resulting in j = 8. In our experiments on this
dataset, 50000 traces are separated for the training of MLP models and 25000 traces are
used to mount our attacks.

5.2.5 Experimental Results

For ASCAD dataset, the attacking results are given in Figure 7, corresponding to the
synchronized cases, and Figure 8, corresponding to the desynchronized cases. As the
figures show, in both cases, CER loss function performs better than CE loss function.
Firstly, in synchronized cases, attacking results for MLP models with CER loss function
show excellent improvements and suffer less when batch size is large. For example, using
MLP models with CER loss function we can attain about 100% SR with 1000 traces when
epoch = 100 and batch size = 200, or epoch = 200 and batch size = 100 or 200, while
we can get no more than 50% SR with CE loss function. In all cases, models using CER
loss function always have better performance on GE/SR. Secondly, for desynchronized
traces using CNN models for the training, the attacking results for CER loss function
also outperform the results for CE loss function. All the experimental results on ASCAD
dataset show CER loss performs better in both MLP and CNN models with synchronized
and desynchronized traces.

For DPA Contest v4 dataset, the secret key can be easily retrieved with about a hundred
traces since the masks are assumed to be known. Apparently, as shown in Figure 9, using

6This dataset is publicly available at dpacontest.org.
7This dataset is publicly available at https://github.com/ikizhvatov/randomdelays-traces.
8This dataset is publicly available at https://github.com/AESHD/AES_HD_Dataset.

https://dpacontest.org
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/AESHD/AES_HD_Dataset

90 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CE,epoch=100,batchsize100
CE,epoch=100,batchsize200
CE,epoch=100,batchsize500
CER,epoch=100,batchsize100
CER,epoch=100,batchsize200
CER,epoch=100,batchsize500

(a) Guessing Entropy, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc
es
s R

at
e

CE,epoch=100,batchsize=100
CE,epoch=100,batchsize=200
CE,epoch=100,batchsize=500
CER,epoch=100,batchsize=100
CER,epoch=100,batchsize=200
CER,epoch=100,batchsize=500

(b) Success Rate, epoch=100

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CE,epoch=200,batchsize100
CE,epoch=200,batchsize200
CE,epoch=200,batchsize500
CER,epoch=200,batchsize100
CER,epoch=200,batchsize200
CER,epoch=200,batchsize500

(c) Guessing Entropy, epoch=200

0 100 200 300 400 500 600 700 800 900 1000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc
es
s R

at
e

CE,epoch=200,batchsize=100
CE,epoch=200,batchsize=200
CE,epoch=200,batchsize=500
CER,epoch=200,batchsize=100
CER,epoch=200,batchsize=200
CER,epoch=200,batchsize=500

(d) Success Rate, epoch=200

Figure 7: ASCAD: attacking results of MLP models for CER and CE loss functions.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of traces

0

10

20

30

40

50

60

70

80

Gu
es

sin
g

En
tro

py

CE
CER

(a) Guessing Entropy, desync=50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s S

at
e

CE
CER

(b) Success Rate, desync=50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of traces

0

10

20

30

40

50

60

70

80

Gu
es

sin
g

En
tro

py

CE
CER

(c) Guessing Entropy, desync=100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s S

at
e

CE
CER

(d) Success Rate, desync=100

Figure 8: ASCAD: attacking results of CNN models for CER and CE loss functions with
desynchronized traces.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 91

0 10 20 30 40 50 60 70 80 90 100
number of traces

0

15

30

45

60

75

90

105

120

Gu
es
sin

g
En
tro

py

CE,epoch=100,batchsize=100
CE,epoch=100,batchsize=200
CE,epoch=100,batchsize=500
Ratio,epoch=100,batchsize=100
Ratio,epoch=100,batchsize=200
Ratio,epoch=100,batchsize=500

(a) Guessing Entropy, epoch=100

0 10 20 30 40 50 60 70 80 90 100
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

su
cc

es
s r

at
e

CE,epoch=100,batchsize=100
CE,epoch=100,batchsize=200
CE,epoch=100,batchsize=500
Ratio,epoch=100,batchsize=100
Ratio,epoch=100,batchsize=200
Ratio,epoch=100,batchsize=500

(b) Success Rate, epoch=100

0 10 20 30 40 50 60 70 80 90 100
number of traces

0

10

20

30

40

50

60

70

80

Gu
es
sin

g
En
tro

py

CE,epoch=200,batchsize=100
CE,epoch=200,batchsize=200
CE,epoch=200,batchsize=500
Ratio,epoch=200,batchsize=100
Ratio,epoch=200,batchsize=200
Ratio,epoch=200,batchsize=500

(c) Guessing Entropy, epoch=200

0 10 20 30 40 50 60 70 80 90 100
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

su
cc

es
s r

at
e CE,epoch=200,batchsize=100

CE,epoch=200,batchsize=200
CE,epoch=200,batchsize=500
Ratio,epoch=200,batchsize=100
Ratio,epoch=200,batchsize=200
Ratio,epoch=200,batchsize=500

(d) Success Rate, epoch=200

Figure 9: DPA Contest v4: attacking results of MLP models for CER and CE loss
functions.

0 50 100 150 200 250 300 350 400 450 500
number of traces

0

10

20

30

40

50

60

70

80

Gu
es

sin
g

En
tro

py

CE
CER

(a) Guessing Entropy, random delay

0 50 100 150 200 250 300 350 400 450 500
number of traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s S

at
e

CE
CER

(b) Success Rate, random delay

Figure 10: AES_RD: attacking results of CNN models for CER and CE loss functions
with random delay countermeasures.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CE,epoch=100,batchsize100
CE,epoch=100,batchsize200
CE,epoch=100,batchsize500
CER,epoch=100,batchsize100
CER,epoch=100,batchsize200
CER,epoch=100,batchsize500

(a) Guessing Entropy, epoch=100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es
sin

g
En
tro

py

CE,epoch=200,batchsize100
CE,epoch=200,batchsize200
CE,epoch=200,batchsize500
CER,epoch=200,batchsize100
CER,epoch=200,batchsize200
CER,epoch=200,batchsize500

(b) Guessing Entrpoy, epoch=200

Figure 11: AES_HD: attacking results of MLP models for CER and CE loss functions.

92 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

CER loss also brings advantages. For example, models using CER loss function give the
best result reaching above 70% SR with 10 traces and 100% with 30 traces, while models
using CE loss function can only reach no more than 30% SR with 10 traces and need more
than 50 traces to get a 100% SR. Besides, CER loss function show better efficiency than
CE loss under the same condition in all experiment settings.

Figure 10 shows the results for AES_RD, which are similar to the cases of ASCAD
dataset with desynchronized traces. CER loss also helps to improve the attacking results
and is again validated to be an effective loss function for CNN models when dealing with
traces with random delays.

For AES_HD dataset, results given in Figure 11 show significant improvements. The
secret key can be recovered almost surely with about 3000 traces for models using CER
loss function, though traditional MLP models with CE loss function are not powerful
enough to mount a successful attack with even 10000 traces. The reason for the huge
improvements might be that the low SNR of hardware implementations brings obstacles
minimizing CE loss in MLP models while minimizing CER loss is kept easy. Consequently,
CER loss function is also suitable and efficient for deep learning-based SCA on hardware
implementations.

To sum up, our experiments show CER loss function is more efficient than CE loss
function with imbalanced data for software/hardware implementations, MLP/CNN models,
synchronized/desynchronized traces, and both first order and high order cases. Hence we
properly solve the problems of imbalanced data in side channel scenario.

6 Conclusions

In this paper, we propose a novel evaluation metric CER for deep learning-based SCA.
CER can be used to evaluate the performance of deep learning models for profiling attacks
and it works stably with imbalanced data. Also CER can be easily embedded in deep
learning algorithms and has a low computational complexity since it does not require
practical attacks like GE/SR. Besides, CER is closely related to GE/SR both in theory
and our experiments. A small CER is generally an indication for a low GE and a high
SR. Thus CER can be a complement of side channel metrics that fits to deep learning
algorithms and we properly solve the open question in [PHJ+19].

Moreover, we explore the possibility of adapting CER metric to an explainable and
efficient loss function for side channel attacks with imbalanced data. We conduct numerical
experiments on several datasets to investigate the effectiveness and efficiency of our proposed
CER loss function. Compared to commonly used CE loss function, our experimental
results show CER loss function exhibits sound effectiveness and better efficiency when
dealing with hamming weight/distance labels. Thus CER loss function can be an effective
alternative of loss functions in deep learning-based SCA for imbalanced data.

Acknowledgments

The authors would like to thank Information Science Laboratory Center of USTC for the
hardware/software services. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was supported by National Natural
Science Foundation of China (Nos. 61972370 and 61632013), Fundamental Research Funds
for Central Universities in China (No. WK3480000007) and Anhui Initiative in Quantum
Information Technologies under Grant AHY150400.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 93

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[APSQ06] Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-
Jacques Quisquater. Template attacks in principal subspaces. In Louis
Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded
Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, Oc-
tober 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2006.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[BHM+19] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes in
Computer Science, pages 713–737. Springer, 2019.

[CDP15] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Enhancing dimension-
ality reduction methods for side-channel attacks. In Naofumi Homma and
Marcel Medwed, editors, Smart Card Research and Advanced Applications -
14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 15–33. Springer, 2015.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures -
profiling attacks without pre-processing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 45–68.
Springer, 2017.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random
delay generation in embedded software. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 156–170.
Springer, 2009.

94 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced
Applications - 12th International Conference, CARDIS 2013, Berlin, Germany,
November 27-29, 2013. Revised Selected Papers, volume 8419 of Lecture Notes
in Computer Science, pages 253–270. Springer, 2013.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016.

[HCE+17] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke,
Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous,
Bryan Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin W. Wilson. CNN
architectures for large-scale audio classification. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New
Orleans, LA, USA, March 5-9, 2017, pages 131–135. IEEE, 2017.

[HG09] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE
Trans. Knowl. Data Eng., 21(9):1263–1284, 2009.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[Kim14] Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):148–179, 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 25: 26th

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu and Nenghai Yu 95

Annual Conference on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 1106–1114, 2012.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):348–375, Nov. 2019.

[MGH14] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden leakages.
In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied
Cryptography and Network Security - 12th International Conference, ACNS
2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, volume 8479 of
Lecture Notes in Computer Science, pages 324–342. Springer, 2014.

[Mor16] Ajinkya More. Survey of resampling techniques for improving classification
performance in unbalanced datasets. CoRR, abs/1608.06048, 2016.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209–237, 2019.

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR Cryptology ePrint Archive, 2018:53,
2018.

[RO04] Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, Information Security Applications,
5th International Workshop, WISA 2004, Jeju Island, Korea, August 23-25,
2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer
Science, pages 440–456. Springer, 2004.

[RQL19] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving CEMA using corre-
lation optimization. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):1–24,
2019.

[RSV+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and
side-channel attacks for nanoscale devices. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2011.

[RW17] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for
image classification: A comprehensive review. Neural Computation, 29(9):2352–
2449, 2017.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic informa-
tion leakages. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 411–425. Springer, 2008.

96 A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis

[SKWW07] Yanmin Sun, Mohamed S. Kamel, Andrew K. C. Wong, and Yang Wang. Cost-
sensitive boosting for classification of imbalanced data. Pattern Recognition,
40(12):3358–3378, 2007.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Antoine Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture
Notes in Computer Science, pages 443–461. Springer, 2009.

[SWK09] Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel. Classification of
imbalanced data: a review. IJPRAI, 23(4):687–719, 2009.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–
131, 2019.

[WMM19] Felix Wegener, Thorben Moos, and Amir Moradi. DL-LA: deep learning
leakage assessment: A modern roadmap for SCA evaluations. IACR Cryptology
ePrint Archive, 2019:505, 2019.

	Introduction
	Overview
	Related Work
	Our Contributions
	Organization

	Background
	Notations
	Deep Neural Network
	Deep Learning-Based Profiling Attacks

	A Novel Side Channel Evaluation Metric
	Guessing Entropy and Success Rate
	Cross Entropy Ratio Metric and Its Estimation
	Discussions

	Relationship Between CER and GE/SR
	CER Reflects GE/SR
	Experimental Validation
	CER v.s. Accuracy

	Extended Application to Imbalanced Data
	CER Loss Function
	Experiments with Imbalanced Data

	Conclusions

