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Abstract. Fault injection attacks are one of the most powerful forms of cryptanalytic
attacks on ciphers. A single, precisely injected fault during the execution of a cipher
like the AES, can completely reveal the key within a few milliseconds. Software
implementations of ciphers, therefore, need to be thoroughly evaluated for such attacks.
In recent years, automated tools have been developed to perform these evaluations.
These tools either work on the cipher algorithm or on their implementations. Tools
that work at the algorithm level can provide a comprehensive assessment of fault
attack vulnerability for different fault attacks and with different fault models. Their
application is, however, restricted because every realization of the cipher has unique
vulnerabilities. On the other hand, tools that work on cipher implementations have a
much wider application but are often restricted by the range of fault attacks and the
number of fault models they can evaluate.
In this paper, we propose a framework, called FEDS, that uses a combination of
compiler techniques and model checking to merge the advantages of both, algorithmic
level tools as well as implementation level tools. Like the algorithmic level tools, FEDS
can provide a comprehensive assessment of fault attack exploitability considering a
wide range of fault attacks and fault models. Like implementation level tools, FEDS
works with implementations, therefore has wide application. We demonstrate the
versatility of FEDS by evaluating seven different implementations of AES (includ-
ing bitsliced implementation) and implementations of CLEFIA and CAMELLIA
for Differential Fault Attacks. The framework automatically identifies exploitable
instructions in all implementations. Further, we present an application of FEDS in a
Fault Attack Aware Compiler, that can automatically identify and protect exploitable
regions of the code. We demonstrate that the compiler can generate significantly
more efficient code than a naïvely protected equivalent, while maintaining the same
level of protection.
Keywords: Fault Attacks, Automatic Fault Attack Evaluation, Security Aware Com-
pilers, Differential Fault Attacks

1 Introduction
Fault attacks are a potent form of physical attacks, where the attacker injects a fault during
the execution of a cipher to determine its secret key. The fault, typically induced by a glitch
in the voltage or clock lines of the device, or by an optical beam, momentarily disturbs
encryption, producing a faulty ciphertext. The attacker analyzes the faulty ciphertext with
the correct version to determine the secret key. Since the pioneering work of Biham and
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Shamir in [BS97], there has been a large body of work on such fault injection attacks.
These works considerably enhanced the power of fault injection attacks by exploiting
cipher properties, such as its differential [BS97] and algebraic characteristics [CN10], key
schedule [TFY07], and diffusion functions [Muk09]. The most powerful fault attacks, for
instance, require a single, precisely timed fault injection to reveal the entire secret key of
ciphers such as the AES, within a few milliseconds [TMA11].

Evaluating the vulnerability of a cipher to fault injection attacks is important to design
efficient countermeasures. A naïve implementation could potentially overuse countermea-
sures resulting in large overheads in design cost, speed, and area. A significant reason for
these design overheads is the fact that developers are unaware of exactly which parts of
the design are vulnerable to fault attacks. Therefore, they tend to apply countermeasures
for the entire design. Identifying the vulnerable regions in the design is non-trivial and
very specific, not only to the cipher algorithm but also to its implementation.

In the past, fault attack vulnerability evaluation was a tedious manual task, with no
formal guarantees of completeness. More recently, automated tools have been proposed
that can quickly and efficiently evaluate fault attack vulnerabilities. Some of these tools
can output results that are both sound and complete. Most of these tools [ZGZ+16,
KRH17,SKMD17,SMD18,SJP+19] take a high-level representation of the cipher as input
and identify the vulnerable operations. We call these tools High-Level Evaluation (HLE)
tools. The high-level representation helps abstract low-level implementation details and
also specify various cipher related properties, such as linear and non-linear functions,
the cipher’s differential and algebraic properties, and diffusion functions. The high-level
specification represents various operations in the cipher as nodes in an information flow
graph. For instance, each operation in AES outputs 16 bytes, thus each operation forms
16 nodes in the information flow graph. The AES information flow graph therefore has
640 (= 16 + (9× 4× 16) + (3× 16)) nodes present.The small number of nodes makes it
feasible to have a comprehensive fault attack evaluation for a variety of complex fault
injection attacks such as differential fault attacks (DFA) [TMA11], impossible differential
fault attacks (IDFA) [DFL11], algebraic fault attacks (AFA) [CN10], etc. The approach
can also cater to many fault models, including random faults and multiple fault scenarios,
data and instruction corruption, and instruction skip. The HLE approach, however, has
limited application because it is restricted to the cipher’s algorithm and cannot assess
implementations. This is a huge limitation because each cipher algorithm can be imple-
mented in many different ways. Each implementation has a unique set of vulnerabilities
and it becomes an onus of the user to bridge the gap between the high-level fault analysis
and the implementation.

An alternate direction of research is to build automatic vulnerability analysis tools that
work directly with the cipher’s implementation rather than its high-level representation. We
call such tools Implementation Level Evaluation (ILE) tools. Tools such as those proposed
by Breier et al. [BHL18] and Hou et al. [HBZL19] analyze assembly code, while tools such
as those proposed by Agosta et al. [ABMP13,ABPS14] work on a compiler generated
intermediate representation. These tools have wide applicability since they can be applied
to every software realization of the block cipher. The tools proposed, build graphs from
the given source code, with nodes representing operations in the implementation and edges
representing the information flow in the code. These graphs can become considerably
large. For instance, the graph for an AES implementation has around 6,000 nodes and
9,000 edges [BHL18,HBZL19]. Such large graphs restrict the amount of processing done
and the information extracted by a tool. Due to these limitations, some of the ILE tools
are restricted to very simple fault attack models, such as bit-flips and cannot evaluate
more practical fault attack situations such as random byte fault or multiple byte fault
situations [ABPS14]. Further, all ILE tools [BHL18,HBZL19,ABMP13,ABPS14] utilize
minimal features in the evaluation of complex cipher properties. Properties such as
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Figure 1: Overview of FEDS Framework to detect exploitability in software implementation.
High-Level Evaluation (HLE) tools outputs Fault Exploitable Map in Algorithms (FEMA)
from the high-level representation of the block cipher. Fault Mapping maps FEMA to FEME
(Fault Exploitable Map in Implementation). Fault Evaluation works on the Intermediate
Representation of the block cipher implementation and determines all fault exploitable
instructions in the program.

differential and algebraic properties of the S-Boxes and reversibility of its key schedule,
that can greatly influence the success of a fault attack, are not considered. This significantly
narrows the scope of the fault vulnerability assessment to very simple attack situations.

Our Contribution. In this paper, we present a fault-attack exploitability detection
framework called FEDS that has the best features of both the HLE and the ILE tools.
Similar to ILE tools, FEDS works at the implementation level and can pinpoint vulnerable
locations in the source code. This makes FEDS widely applicable and usable for different
implementations of a cipher. Similar to the HLE tools, FEDS promises to provide a
comprehensive fault attack vulnerability evaluation and can identify vulnerabilities in
complex fault attack situations. It can consider the cryptographic properties of the cipher,
such as the differential and impossible differential properties of the S-Boxes, reversibility
of the key expansion algorithm, etc. It can cater to both random faults as well as single bit-
flips. FEDS, thus, provides a comprehensive fault attack evaluation for software programs,
having the advantages of both HLE and ILE tools.

At a high-level, FEDS takes as input a high-level representation of the cipher and the
Source code Under Test (SUT) as shown in Figure 1. It first runs an HLE tool, such as
XFC [KRH17] or ExpFault [SKMD17], on the cipher’s high-level representation, to obtain
a list of fault attack exploitable operations present in the cipher. A fault injected in any
of these operations is exploitable. FEDS then maps these exploitable operations onto the
SUT, thus identifying regions in the source code where these exploitable operations are
implemented. For each of these exploitable source code regions, FEDS determines the
cone-of-influence – thereby identifying the precise instructions, which are exploitable. The
output of FEDS is a list of instructions, where a fault if injected, can be exploited.

A high-level overview of FEDS is provided in Figure 1. It consists of three main phases:
(1) HLE, (2) Fault Mapping, and (3) Fault Evaluation. FEDS is agnostic about the HLE
tool used; it simply requires compatibility with the input and the output representation. In
this work, we adopt a Block Cipher Specification Language (BCSL) [RRHB19] to represent
the input and the output to the HLE. This HTML-like language captures operations of
the block cipher and the information flow from plaintext to ciphertext. The output of
FEDS depends on the capabilities of the HLE tool. For example, if the underlying HLE
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tool can evaluate ciphers only for Differential Fault Analysis [TMA11], then the output of
FEDS is a set of instructions that are exploitable by Differential Fault Analysis alone. The
Fault Mapping phase uses a model checker to map the Block Cipher Specification (BCS)
onto the SUT. Every operation present in the BCS is mapped to its equivalent region
of code in the SUT. Thus, the exploitable operations in the block cipher are mapped to
code regions in the SUT. The Fault Evaluation phase identifies all the instructions, that
when disturbed by a fault, can create a state that is exploitable. The output of FEDS is a
list of these instructions. To summarize, the contributions of this paper are as follows:

• We propose the first comprehensive fully automated fault attack evaluation framework
for block cipher source code which can handle complex fault attack situations and
consider cipher properties such as differential and impossible differential properties
of the S-Box.

• We evaluate the scalability, efficacy of the FEDS framework with seven different
implementations of AES-128, and implementations of CLEFIA-128 and CAMELLIA-
128. These implementations vary with respect to the size and number of look-up
tables used and the realization of the operations. We also evaluate a bit-sliced
implementation of AES-128, showing the scalability of FEDS to non-traditional
implementations.

• We incorporate FEDS in the LLVM compiler and demonstrate an application to
automatically insert fault-attack countermeasures during compilation. Thus, we
propose the first Fault-Attack Aware Compiler. The countermeasures are targeted to
specific locations in the source code that are found to be exploitable. We demonstrate
that these countermeasures are far more efficient compared to a naïve approach.

The paper is organized as follows: Section 2 provides the necessary background.
Section 3 includes the recent works for fault vulnerability detection. Section 4 includes
the representations used in FEDS for block cipher algorithms and the implementation.
Section 5 gives the detailed description of the FEDS framework. Section 6 includes the
evaluation of FEDS on different implementations of AES and block ciphers CLEFIA and
CAMELLIA. Section 7 discusses a use case of FEDS, to design a Fault Attack Aware
Compilers framework. Section 8 concludes the paper.

2 Preliminaries
In this section, we provide an overview of fault attacks. The section also introduces the
intermediate representation format used in LLVM compilers [LA04] and a brief description
of Model Checking and Equivalence Mapping tools.

2.1 Fault Attacks
In a fault attack, the attacker corrupts the output of an operation by injecting a fault
during the cipher execution [BDL97]. The fault propagates through the cipher resulting in
a faulty ciphertext. The attacker uses this faulty ciphertext to retrieve bits of the secret
key. Several fault injection techniques have been used in the past, such as injecting glitches
in voltage and clock sources, electromagnetic radiation, and laser beams.

The potency of a fault attack is measured by the number of key bits that a fault can
deliver and the offline attack complexity. In the first fault attack on AES, for example, a
single bit fault injected just before the final AddRoundKeys was used to retrieve one bit of
the secret key [Joh03]. Thus, retrieving the entire secret key of AES-128 would require 128
faults. Over the years researchers have identified better locations in the cipher to inject
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# Program Expressions # IR Instructions # IR Instructions
· · · . . . · · · . . . · · · . . .
1 uint16_t t,x I305 %a0 = get1*%state,i64 0,i64 0 c.false :
2 t1 = state[0]∧ state[1]; I306 %0 = load i8, i8* %a0 I327 %8 = load i8, i8* %t1
3 t2 = state[2]∧ state[3]; ... I328 %shl1 = shl i8 %8, 1
4 t = t1∧ t2; I310 %xor1 = xor i8 %0,%1 I329 br label %c.end
5 x = ((t1)&0x80) I311 store i8 %xor1, i8* %t1 c.end:

? ((t1�1)∧0x1b) I312 %a1 = get1*%state,i64 0,i64 2 ... ...
: ((t1�1)∧1); ... I332 Load i8 %8, i8* %x

6 y = x; I333 store i8%8, i8 %y
7 out[0] = x I317 store i8 %xor2, i8* %t2 I334 %9 = load i8, i8* %x

∧ state[0] ∧ t I318 %4 = load i8, i8* %t1 I335 %a3 = get1*%state,i64 0,i64 0]
∧ *rks++; ... I336 %10 = load i8, i8* %a3

I321 %tobool = icmp ne i8 %and, 0 I337 %xor5 = xor i8 %9, %10
I322 br i1 %bool,label %c.true,label %c.false I338 %11 = load i8, i8* %t

c.true: I339 %xor6 = xor i8 %xor5, %11
I323 %7 = load i8, i8* %t1 ...
I324 %shl = shl i8 %7, 1 I344 %13 = load i8*, i8** %out.addr
I325 %xor4 = xor i8 %shl, 27 I345 %a4 = get1i8, i8* %13, i64 0
I326 br label %c.end I346 %store i8 %xor7, i8* %a4

1 getelementptr inbounds [16 x i8], [16 x i8]

Figure 2: The software implementation for single byte MixColumns operation of AES and
corresponding IR Instructions. Different colors represent the mapping of operations in
software implementation to IR instructions. The IR instructions are numbered I305 to
I346 according to their positions considering the whole AES program.

faults. They also made use of the cipher’s properties such as its differential [Muk09,DFL11]
and algebraic characteristics [CN10], diffusion, and key schedule [TFY07], to maximize the
number of key bits obtained and reduce the offline attack complexity. The most powerful
fault attacks today, can retrieve the entire AES key within a few milliseconds with just a
single fault injection [TMA11].

The potency of the attack mandates that cipher implementations be evaluated for their
vulnerability to fault attacks. Recently, several tools such as [BHL18,HBZL19,ABPS14],
were proposed for evaluating fault attack vulnerabilities in software implementations of
ciphers. However, all these works are restricted to evaluating simple fault attack models.
Complex properties of the cipher such as its differential, algebraic properties, diffusion
and key schedule were not considered. In this paper, we use a combination of model
checking and compiler techniques to evaluate the exploitability of software implementations
considering complex cipher properties.

2.2 Intermediate Representation of a Program
The compiler converts high-level implementations to machine code in different steps. The
transformation pass is one among them, which converts a high-level implementation to
Intermediate Representation (IR) instructions. The IRs used by the LLVM compiler is in
Static Single Assignment (SSA) form, where variables in every assignment are used only
once [RWZ88].

Definition 1. [Static Single Assignment] Static Single Assignment (SSA), is a format
for program representation, where the program variables are assigned exactly once and
every variable is defined before its use.

For example, an assignment x = x + 1 is converted to x1 = x0 + 1. The variable x is
renamed to x0 before x is assigned and the next value of x is replaced with x1.

Definition 2. [IR Instructions] IR is an intermediate representation used by the LLVM
compiler that is generated during the transformation pass. Each IR instruction is in SSA
form, consisting of an opcode, read and write operands. The read operands are defined by
the “used variable” set, U(n) and write operands are defined by the “defined variable” set,
D(n), where n denotes the n-th IR instruction.
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Example 1. The IR instructions for an output byte of the MixColumns operation of AES
are given in Figure 2. The column, Program Expressions show the software implementa-
tion for this operation. The second and third columns show the equivalent IR instructions
generated by the LLVM compiler. The labeling I305, I306, · · · , I346 corresponds to the
first output byte of MixColumns in the first round.

Example 2. Consider the IR instruction (I339) in Figure 2. The opcode is xor that
works on 8 bit integers (i8). The instruction performs %xor6← %xor5⊕%11. Thus,
U(I339) = {%xor5, %11}, while D(I339) = {%xor6}. We refer the reader to the manual1
for more details about the IR formats.

FEDS converts the IR instructions to Control Flow Graph (CFG) with each instruction
in the IR represented as a node in the CFG and edges denote the program flow.

2.3 Model Checking
Model checking [CGP00] is a technique of ensuring the correctness of a system by systematic
exploration through its underlying mathematical models. The given model of the system
is exhaustively and automatically verified with respect to the given specification. The
model checker takes the high-level abstraction of the design and the specification as input.
It leverages satisfiability (SAT) solvers [MMZ+01] to ensure the functional correctness of
the model with respect to the specification. To do that, it generates a set of constraints
and properties from the formal description of the model and the specification which is
then evaluated using the in-built SAT solvers [CKL04].

Equivalence checking is a technique to formally prove whether two representations of
a model at different levels of abstraction have the same behavior. FEDS uses a model
checker to perform equivalence checking between different abstractions of a block cipher;
specifically a high-level abstraction with an implementation-level. The model checker
generates logical formula from the given input descriptions of the model and checks whether
the outputs are equivalent for all possible inputs.

The fundamental intuition behind model checking using SAT solvers is to check for
the satisfiability of a set of constraints derived from the model, say C, with another set of
constraints derived from the negated properties, say ¬P. Mathematically, if (C ∧ ¬P) is
satisfiable, then it indicates that there are some common behaviors in the model which do
not match with the properties – thereby pointing to an error in the model itself. In case of
satisfiability, the SAT solvers are also capable of indicating the satisfying assignments of
the participating variables. On the other hand, if (C ∧ ¬P) remains unsatisfiable, then it
indicates that the model constraints do not overlap with the negated properties and hence
the model may be treated as correct with respect to the properties provided. Note that, in
these cases, we assume that the properties are inherently correct (golden) and hence we
try to find errors in the model for any satisfaction that is obtained by the SAT solvers for
(C ∧ ¬P).

3 Related Work
Automated fault attack evaluation tools are important to gauge the vulnerability of crypto
systems. In the last few years, there have been few works that propose tools for automatic
detection of fault attack vulnerabilities in block ciphers. These works can be classified as
either High Level Evaluation (HLE) tools [KRH17,SKMD17,SJP+19] or Implementation
Level Evaluation (ILE) tools [ABPS14,BHL18,HBZL19]. Table 1 provides a comparison of
these tools.

1https://llvm.org/docs/LangRef.html

https://llvm.org/docs/LangRef.html
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Table 1: Comparison with the state-of-the-art automatic fault attack evaluation tools.
Tool Fault Model Cryptographic

properties Input Type Output Type

HLE
XFC [KRH17] Single Byte Differential Properties

of S-Box
High level representation

of block cipher
Derivable key bits,
Attack complexity

ExpFault [SMD18] Single byte Impossible Differential
Properties of S-Box

High level representation
of block cipher

Exploitable fault locations,
Attack complexity

AFA [ZGZ+16] Single Byte Algebraic Properties
of cipher

High level representation
of block cipher Exploitable locations,

ILE
DATAC [BHL18] Random Byte

Instruction skip N/A Assembly code Vulnerable instructions

TADA [HBZL19] Random Byte N/A Assembly code Attack Details for
last round key

ADFA [ABPS14] Bit flip N/A LLVM IR Vulnerable location
in LLVM IR

Proposed FEDS Similar with HLE Tool Similar with HLE Tool Source Code List of
exploitable instructions

HLE tools work on a high-level specification of the block cipher. The specification
contains cipher operations and critical characteristics like the differential and algebraic
characteristics of the S-Box, branch numbers of diffusion layers, and properties of the
key-expansion algorithm. One of the first works in this direction was by Khanna, Rebeiro,
and Hazra [KRH17], who introduced a framework called XFC to evaluate a block cipher
algorithm for vulnerabilities to Differential Fault Attacks (DFA) using a coloring scheme
for the functions in the cipher. Saha et al. [SMD18, SJP+19], similarly identified DFA
vulnerabilities in block ciphers with the help of data mining and machine learning. Be-
sides DFA, tools could also evaluate cipher algorithms for Impossible Differential Fault
Attacks (IDFA) [DFL11]. Zhang et al. [ZGZ+16] used SAT solvers to evaluate ciphers for
vulnerabilities to Algebraic Fault Attacks. Their framework converts the cipher algorithm
and fault models to algebraic equations, which are solved using the SAT solver.

ILE tools work on implementations of the block ciphers. Agosta et al. [ABPS14] works at
the compiler level using an intermediate representation of the program to determine single
bit-flip vulnerabilities in software code. The framework aims at determining the vulnerable
locations in the cipher but fails to determine the attack complexity. In [BHL18,HBZL19],
the assembly code of the block ciphers are represented as a data flow graph (DFG) to
identify vulnerable nodes. In [BHL18], exploitable instructions are determined by manual
analysis of the vulnerable nodes. Later, Hou et al. [HBZL19] used an SMT solver to solve
the final stage equations generated for the last round key.

While HLE tools can comprehensively evaluate ciphers considering different fault models
and cipher properties, they have restricted application because they can only be used for
algorithm evaluation. ILE tools, can evaluate different realizations of the block cipher
algorithm. However, the large state space makes comprehensive evaluation difficult. Hence,
most ILE tools are limited to simple fault attack scenarios and do not consider cipher
properties that can have a considerable impact on a fault attack. Our approach, named
FEDS, has the advantages of both techniques. It can be used to provide a comprehensive
evaluation of cipher implementations for a variety of complex fault attack conditions
considering various cipher properties. The fundamental idea is to use any existing HLE tool
comprehensively evaluate a block cipher algorithm, and then use a fault mapping technique
which map the result from the HLE tool to the software realization of the algorithms.

4 Block Cipher Algorithms and their Implementations
Block Cipher Algorithms. A block cipher encryption can be defined as a function
Ek = P → C, which maps the plaintext P to ciphertext C based on a secret key k.
Decryption is the reverse operation, mapping from ciphertext to plaintext. Block cipher
encryption and decryption algorithms have a fixed number of rounds. Each round has a
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# Block Cipher Specification # Software Implementation (IMP6)
〈begin〉
〈lookups〉

SBOX = 0×63, 0×7c, 0×77 ... static const uint8_t SBOX[256] = { 0x63, 0x7c, 0x77, ... };
KEY = 0×2b, 0×7e, 0×15 ... static const uint8_t KEY[16] = { 0x2B, 0x7E, 0x15, ... };

〈lookups〉 static unsigned char AES_xtime(uint32_t x){
〈operations〉 return (x&0×80) ? (x�1)ˆ0×1b : x�1;
〈func〉 〈 MUL2 (a)〉 }
〈 h : { a : RS ( a , 7 ) }〉 · · ·
〈 t : { a : LS ( a , 1 ) }〉 uint8_t* encrypt (uint8_t in[16], uint8_t out[16]) {
〈 n : { h : MUL ( h , ’0×1b’) }〉 · · ·
〈 m : { ( n , t ) : XOR ( n , t ) }〉 //Initial key whitening
ret m

〈/func〉 E1 state[0] = in[0] ˆ rks[0][0];
· · · E2 state[1] = in[1] ˆ rks[0][1];

〈operations〉 E3 state[2] = in[2] ˆ rks[0][2];
E4 state[3] = in[3] ˆ rks[0][3];

〈 A0−16 〉 〈 linear 〉 〈 ADDROUNDKEY 〉 〈 · · ·
A1 〈 A1: {P[1]} : XOR(P[1], LKUP(1, KEY0)) } 〉
A2 〈 A2: {P[2]} : XOR(P[2], LKUP(1, KEY0)) } 〉 //SubByte

· · ·
/〉 E17 tstate[15] = SBOX[state[15]];

〈 A17−32 〉 〈 nonlinear 〉 〈 SUBBYTE 〉 〈 E18 tstate[14] = SBOX[state[14]];
A17 〈 A17 : { ( A1 ) : LKUP( A1 , SBOX ) }〉 E19 tstate[13] = SBOX[state[13]];
A18 〈 A18 : { ( A2 ) : LKUP( A2 , SBOX ) }〉 E20 tstate[12] = SBOX[state[12]];

· · · E21 tstate[11] = SBOX[state[12]];
/〉 · · ·

〈 A33−48 〉 〈 linear 〉 〈 SHIFTROW 〉 〈
A33 〈 A33: {A17} 〉 //ShiftRows
A34 〈 A34: {A22} 〉

· · · E33 state[0] = tstate[0];
/〉 E34 state[4] = tstate[4];

〈 A49−64 〉 〈 linear 〉 〈 MIXCOLUMN 〉 〈 E35 state[8] = tstate[8];
A49 〈 A49: {A33,A34,A35,A36} : E36 state[12] = tstate[12];

XOR(XOR(MUL2(A33), MUL3(A34)), XOR(A35,A36))}〉 E37 state[1] = tstate[5];
A50 〈 A50: {A33,A34,A35,A36}: 〉 · · ·

XOR(XOR(MUL2(A34), MUL3(A35)), XOR(A33,A36))}〉 //MixColumns merged with AddRoundkey
· · ·

/〉 E49 t = state[0] ˆ state[1] ˆ state[2] ˆ state[3];
〈 A65−80 〉 〈 linear 〉 〈 ADDROUNDKEY 〉 〈 E50 out[0] = AES_xtime(state[0] ˆ state[1]) ˆ state[0] ˆ t ˆ rks[1][0];

A65 〈 A65: {A49} : XOR(A49, LKUP(1, KEY1)) } 〉 E51 out[1] = AES_xtime(state[1] ˆ state[2]) ˆ state[1] ˆ t ˆ rks[1][1];
A66 〈 A66: {A50} : XOR(A50, LKUP(2, KEY1)) } 〉 E52 out[2] = AES_xtime(state[2] ˆ state[3]) ˆ state[2] ˆ t ˆ rks[1][2];
A67 〈 A67: {A51} : XOR(A51, LKUP(3, KEY1)) } 〉 E53 out[3] = AES_xtime(state[3] ˆ state[0]) ˆ state[3] ˆ t ˆ rks[1][3];

· · · · · ·
/〉
· · · }

〈 end 〉

Figure 3: 1st round representations of AES in BCS and Software implementation.

fixed number of operations (N), some of these operations are non-linear such as substitution
boxes (S-Boxes); others are linear operations such as diffusion or key addition. The entire
encryption can be formalized as follows:

C = (AL ◦ AL−1 ◦ . . . ◦ A3 ◦ A2 ◦ A1)(P ) , (1)

where P is the plaintext, C is the ciphertext and Ai (1 ≤ i ≤ L) are sub-operations in
the cipher. For example, AES-128 [Pub01] has 10 rounds, and each round has 4 different
operations. For the first round, A1 to A16 denotes the initial Key Whitening and A17, A18,
· · · , A32 the SubBytes operation; A33, A34, · · · , A48 the ShiftRows and the remaining
are the MixColumns and KeyAddition operations. For AES, the entire sequence will thus
have 640 (i.e. L = 640 = 16 + (9× 4× 16) + (3× 16) sub-operations, corresponding to
initial key whitening, 9 rounds with 4 operations each having 16 sub-operations and the
10th round with 3 operations with 16 sub-operations.

Each sub-operation Ai (1 ≤ i ≤ L) is either linear or non-linear and can be represented
as

outa ← Ai(in1, in2, · · · ) , (2)
with inputs in1, in2 · · · and output outa. The inputs are either the plaintext or outputs of
previous sub-operations.

In [RRHB19], Roy et al. introduced the Block Cipher Specification Language to provide
a high-level representation of a cipher algorithm. The Block Cipher Specification (BCS)
captures various operations performed by the cipher and the information flow of the
plaintext through the algorithm. The left-hand side of Figure 3 shows a snippet of the first
round of AES represented in the Block Cipher Specification Language. Each sub-operation
is represented in the following format:

〈 sub-operation : {dependent sub-operations} : operation(operand1, operand2, · · · )} 〉 .
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Table 2: Different Implementations of AES (all unrolled).
# Implementation Types Description

IMP1 Simple LookUp Table Implements each AES operation in a different function.
Uses 256 byte lookup table for the SubBytes and ShiftRows follows SubBytes

IMP2 Interchanged Operations Similar to IMP1 except SubBytes follows ShiftRows in a round
IMP3 T-Tables OpenSSL Implementation; Uses 4 T-tables, each of 1KB. The T-table combine

SubBytes, ShiftRows, and MixColumns
The 5-th table is used exclusively for the last round

IMP4 Compressed Table OpenSSL Implementation; Uses 1 T-table of 2KB. The T-table combines
SubBytes, ShiftRows, and MixColumns

IMP5 Merged Operations Similar to IMP1 except ShiftRows done implicitly with SubBytes.
IMP6 Running Example (Figure 3) Similar to IMP1 with order within SubBytes and ShiftRows is random,

MixColumns and AddRoundKeys are merged
IMP7 Bitsliced Implementation Bitwise Operations for all sub-operations with SubByte

MixColumns and AddRoundKeys are merged

For example, the sub-operation A1 (Figure 2), specifies the first round key addition. It
uses a table to look-up the first key byte and XORs it with first plaintext byte P[1].

〈 A1 : {P[1]} : XOR(P[1], LKUP(1, KEY0))} 〉 .

Block Cipher Implementations. Implementations of block ciphers differ considerably
depending on the target application and the underlying platform. For instance, typical
AES implementations on 32-bit platforms use 5 T-tables2, where the operations SubBytes,
ShiftRows, and MixColumns are merged and replaced with look-ups to four 1KByte tables.
A memory conscious implementation, similarly merges the three AES operations using a
single 2KByte table3. On 8-bit memory constrained processors, SubBytes is implemented
using a single 256 byte look-up table, while ShiftRows and MixColumns are combined4.
Thus, given a block cipher algorithm, different programs would implement the algorithm
in different ways. However all the programs would be functionally equivalent. Table 2
shows seven popular implementations of AES.

To formally capture a block cipher implementation, we represent the implementation
as a sequence of program expressions, which realize the block cipher sub-operations A1,
A2, · · · , AL as follows:

C = Ek(P ) = (E1, E2, E3, · · · , EM−2, EM−1, EM ) , (3)

where M is the number of program expressions in the implementation, and each expression
Ei is a combination of arithmetic, logical, or memory operations present in the program.
The output of the expression is oute as shown below:

Ei : oute ← 〈arithmetic/logical/memory expression in implementation〉 . (4)

The expressions and the value of M vary for different implementations of a cipher. The
right-hand side of Figure 3 shows a typical C implementation (IMP6, in Table 2) of the
first round of AES along with the various expressions marked.

Fault Exploitability Maps. We define a fault exploitability map as the set of locations
in the block cipher where a fault injected during the cipher operation can be exploited to
derive bits of the secret key. The term ‘locations’ has a different meaning for algorithms
and implementations. For block cipher algorithms, the fault exploitability map denoted
FEMA, is a set of sub-operations such as

FEMA = {Ai1 , Ai2 , Ai3 , · · · } .

2OpenSSL (version 3.0) implementation with 4 lookup tables, each table occupying 1024 bytes:
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

3OpenSSL (version 3.0) implementation with 1 lookup table occupying 2048 bytes: https://github.
com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c

4Gladman’s implementation of AES for embedded platforms : https://github.com/BrianGladman/
aes/blob/master/aestab.c

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://github.com/BrianGladman/aes/blob/master/aestab.c
https://github.com/BrianGladman/aes/blob/master/aestab.c
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Figure 4: The Fault Mapping of FEDS determines mapping from the FEMA to FEME.
Fault Evaluation maps FEME to corresponding IR Instructions and also determine the
all the exploitable instructions, i.e. instructions that can corrupt the output of program
expressions that are present in FEME.

A fault injected in any of these sub-operations is exploitable. HLE tools such as XFC [KRH17]
and ExpFault [SMD18] can automatically identify these exploitable sub-operations for
DFA and IDFA respectively. As shown in Table 1, the HLE tools consider cryptographic
properties of the cipher to arrive at a comprehensive fault exploitability assessment.

The term ‘locations’ in block cipher implementations refers to a set of program ex-
pressions that are exploitable. The fault exploitability map for implementations denoted
FEME, is a set of exploitable program expressions such as

FEME = {Ej1 , Ej2 , Ej3 , Ej4 , · · · } .

We thus have two sets. Exploitable sub-operations present in FEMA are mapped to
exploitable program expressions in FEME. For example, assume that the sub-operation A65
in the BCS (LHS in Figure 3) is exploitable. The sub-operation A65 is realized through
E50 in the implementation (RHS in Figure 3). During compilation, E50 gets converted
to one or more IR instructions. Figure 2 shows the IR instructions for E50 comprising
of instructions I323, I324, · · · , I346. A fault in any instruction I305 to I346 will manifest
as a faulty output of E50. Figure 4 depicts these relationships. Thus, A65 ∈ FEMA and
E50 ∈ FEME.

Since each block cipher implementation is structurally different, the FEME for each
implementation would be different. ILE tools such as DATAC [BHL18], TADA [HBZL19],
and ADFA [ABPS14] can pinpoint some of these exploitable instructions. However, since
these tools do not consider cryptographic properties of the cipher that may aid the attacker
(refer Table 1), the exploitable instructions provided by these tools is incomplete.

In the next section we propose our framework called FEDS, that can comprehensively
identify exploitable locations in block cipher implementations. Like the ILE tools, it works
on the cipher implementation and therefore can identify exploitable program expressions.
Unlike ILE tools, FEDS also considers cryptographic properties of the cipher and therefore
provides a comprehensive set of exploitable instructions for the implementation.

5 The FEDS Framework
FEDS is designed based on the fundamental observation that, if a sub-operation in the
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SUT

BCS

Equivalence

Mapping Identification

FEMA

FEME

FEME

Figure 5: Fault Mapping module in FEDS, (1) Equivalence Mapping module maps all the
sub-operations in BCS to program expression in the SUT, (2) FEME Identification maps
all the sub-operations in FEMA to exploitable program expression FEME.

block cipher algorithm is exploitable then a fault induced in any of the program expressions
that realize this sub-operation is also exploitable. Proposition 1 formally states this.

Proposition 1. Let Ai (1 ≤ i ≤ L) be a sub-operation in a block cipher and Ej (1 ≤
j ≤M) the realization of Ai in a block cipher implementation. If Ai ∈ FEMA then, the
expressions Ej ∈ FEME.

At a high-level FEDS, uses an HLE tool to identify the fault exploitable map FEMA
for the block cipher. It then uses the Fault Mapping module to map the exploitable
sub-operations in the FEMA to program expressions of the Source code Under Test (SUT).
This gives the fault exploitable map FEME for the implementation.

The output of an exploitable program expression can be corrupted in multiple ways. For
example, the output of expression E50 can be corrupted by inducing a fault in expressions
E50, E49, state variables and instructions in AES_xtime function etc. (refer Figure 3). In
the third phase, FEDS searches for all possible ways by which faults can be induced in
a given exploitable expression as shown in Figure 4. This search is implemented using
the Fault Evaluation present in FEDS (refer Figure 1), which constructs a control flow
graph from the compiler generated IR instructions of the SUT. The output of the module
is a list of IR instructions that can induce a fault for a given sub-operation.

5.1 High-Level Exploitability Tool
FEDS uses the Block Cipher Specification Language (refer Figure 3) [RRHB19] to provide
a high-level representation of the cipher. This specification is the input to the HLE tool,
which identifies all exploitable sub-operations of the cipher. While any HLE tool can be used
with FEDS, in this work, we use tools called XFC [KRH17] and ExpFault [SMD18]. While
XFC uses a coloring scheme to evaluate a block cipher for vulnerabilities to Differential
Fault Attacks, ExpFault can also evaluate a block cipher’s vulnerabilities to Impossible
Differential Fault Analysis (IDFA). The output of both these tools is the set FEMA
comprising of exploitable sub-operations of the cipher.

Fault Models and Fault Attacks Evaluated. FEDS is limited by the fault model and
the fault attacks that the HLE tool supports. For instance, XFC [KRH17] is restricted
to a single random byte fault model and can evaluate block ciphers for differential fault
attacks. If XFC is used in FEDS for the high-level evaluation, then the fault model for
FEDS is also restricted to evaluating single random byte faults and Differential Fault
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Attacks. It may be noted that multiple HLE tools can be used with FEDS to obtain a
stronger evaluation. For example, creating the FEMA from the union of outputs obtained
from tools like XFC [KRH17], ExpFault [SMD18] and [ZGZ+16], would enable FEDS to
evaluate Differential Fault Attacks (supported by XFC), Impossible Differential Fault
Attacks (supported by ExpFault) and Algebraic Fault Attacks (supported by [ZGZ+16]).

5.2 Fault Mapping
This module has two components as shown in Figure 5. The first, called Equivalence
Mapping, maps the block cipher specification to program expressions in the SUT. The
second module called FEME Identification, then uses the set FEMA obtained from the
HLE to construct the set of exploitable program expressions (i.e. the set FEME). This
set can differ from one implementation to another as described in Section 4. Further
complexities arise since programmers may use different strategies to realize the same
functionality. Operations may be merged, shuffled, or interleaved as described in Table 2.
However, we observe that even though programs can look very different, they typically
have the following common underlying properties:

P1. Completeness. Any implementation of a block cipher must realize all the operations
A1 to AL. This is mandatory to ensure that the implementation is complete.

P2. Merge. All operations within a round can be merged. For instance, IMP3 and IMP4 in
Table 2, combine SubBytes, ShiftRows, and MixColumns operations using T-tables.
Similarly, IMP5 combines the SubBytes and ShiftRows.

P3. Interchange. The positions of the functions may be interchanged. For example in
AES, one implementation may perform ShiftRows followed by SubBytes (IMP2 in
Table 2), while another may perform these (appropriately altered) operations in the
reverse order.

We leverage these properties to map the sub-operations (A1, A2, · · · , AL ) from
the block cipher specification to program expressions in the SUT (E1, E2, E3, · · · , EM ).
The mapping is done using a model checking tool that establishes equivalence between
sub-operations and program expressions.

Equivalence Mapping. The Equivalence Mapping module in FEDS takes the Block
Cipher Specification (BCS) and the Source code Under Test (SUT) as input. The only
assumption we make is that loops in the SUT are unrolled. Figure 3 shows the code
for BCS and the first round of a software implementation of AES (IMP6 in Table 2),
where the order of SubBytes and ShiftRows are permuted compared to the BCS, and
MixColumns is merged with AddRoundKey. The objective of Equivalence Mapping is to
map the sub-operations in the Block Cipher Specification (i.e. A1, A2, A3, · · · , AL) to
program expressions (i.e. E1, E2, E3, · · · , EM ). The module outputs a map that contains
all the sub-operations (A) in the BCS and the corresponding expressions (E) in software
code (SUT).

The major challenge in mapping is that the SUT can be implemented in many different
ways as shown in Table 2. Operations can be merged and/or interchanged as presented in
P2 and P3. Thus, for a given pair of BCS and SUT, sub-operations to expressions can
have a one-to-one, one-to-many, many-to-one and many-to-many mapping. For example,
for the BCS and SUT given in Figure 3, the sub-operations A1 to A16 have one-to-one
mapping with E1 to E16, while A49 and A65 have a many-to-many mapping with E49 and
E50. Also A17 has a one-to-many mapping with E17, E18, · · · ,E32, and A50, A66 have a
many-to-one mapping with E51. For the one-to-many and many-to-many mappings, the
algorithm that we present records only the final program expression. The other expressions
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Algorithm 1: Equivalence_Mapper
Input: BCS : A1,A2,A3, · · · ,AL

SUT : E1, E2, E3, · · · , EM

Output: E_Map : List of mapped segments. Each entry comprises of sub-operations in the BCS
that map to program expressions in the SUT.

1 Define: MAXA and MAXE are the maximum number of A and E that need to be considered.
2 Set A1,A2,A3, · · · ,AL as unmapped
3 Set E1, E2, E3, · · · , EM as unmapped
4 E_Map ← NULL
5 begin
6 while true do
7 Let i ≥ 1 be the smallest index such that Ai is unmapped
8 Let j ≥ 1 be the smallest index such that Ej is unmapped
9 Let MA = (Ai, Ai+1, Ai+2, · · · Ai+l ) : 0 ≤ l ≤ MAXA and (i + l) ≤ L

10 Let MI = (Ej , Ej+1, Ej+2, · · · Ej+m ) : 0 ≤ m ≤ MAXE and (j + m) ≤M
11 Find smallest values of l and m such that EquivalenceChecker(MA,MI) returns true (i.e.

map is found)
12 if Map found then
13 if l > 0 then
14 //many-to-one and many-to-many mapping
15 Using the BCS, find the information flow path to Ai+l. Let the path be

represented as (Ai1 , Ai2 , Ai3 , · · · ,Aik
, · · · Ai+l) such that all Aik

are
unmapped and i ≤ ik.

16 //(Ai+l, Ai1 , Ai2 , · · · ,Ak) map to the same program expressions.
17 Insert (Ai1 ,Ai2 ,Ai3 , · · · ,Ai+l) 7→ (Ej+m) into E_map
18 Mark Ai1 , Ai2 , Ai3 , · · · , Ai+l as mapped.
19 Mark Ej+m as mapped.
20 else
21 //one-to-one and one-to-many mapping
22 Insert (Ai, Ai+1, Ai+2, · · · Ai+l 7→ (Ej+m) into E_map
23 Mark Ai, Ai+1, Ai+2, · · · Ai+l as mapped.
24 Mark Ej+m as mapped.

25 else
26 break

27 if there exist some Ai is unmapped then
28 return Failure

29 return E_Map

in these maps are identified by a control flow graph constructed from the program during
the Fault Evaluation. This is discussed in Section 5.3.

The algorithm used for Equivalence Mapping is given in Algorithm 1. At a high-level,
the mapping algorithm iterates over the BCS and the SUT and uses an EquivalenceChecker
to identify segments that are equivalent. The EquivalenceChecker extracts sub-operations
and program expressions from the respective inputs and verifies that the output outa from
sub-operations (Equation 2) is equivalent to oute from program expression (Equation 4)
for all the possible combinations of input. The EquivalenceChecker internally invokes a
model checker that first converts the sub-operations and the program expressions to static
single assignment (SSA) form and then uses a SAT solver to verify for equivalence. More
details about this is presented in Section 6.2.

Algorithm 1 works incrementally starting from the first sub-operation A1 and first
program expression E1. For each iteration of the while loop (Lines 6 to 26), the algorithm
finds the smallest contiguous sequences MA and MI (Line 9-10) comprising of cipher
sub-operations from the BCS and program expressions from the SUT, which have not
been mapped previously and for which the EquivalenceChecker returns true, indicating
that the l sub-operations in MA maps to the m expressions in MI.

Depending on the software implementation, multiple mappings are possible. If the
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Table 3: Iteration wise result of Equivalence_Mapper (Algorithm 1) for the software
implementation (IMP6) given in Figure 3. Column 1 # shows the iterations count.

# MA MI IR # MA MI IR
«AddRoundKey(0)» «ShiftRows»

1 A1 E1 I1 − I12 33 A33 E33 I273 − I274
2 A2 E2 I13 − I24 34 A34 E37 I275 − I276

· · · · · · . . . · · · · · · · · · . . .
15 A15 E15 I167 − I180 47 A47 E42 I301 − I302
16 A16 E16 I181 − I192 48 A48 E45 I303 − I304

«SubByte» «MixColumn+AddRoundKey(1)»
17 A17 E32 I193 − I197 49 A49, A65 E50 I323 − I346
18 A18 E31 I198 − I202 50 A50, A66 E51 I347 − I370

· · · · · · . . . · · · · · · · · · . . .
31 A31 E16 I262 − I267 63 A63, A79 E67 I717 − I740
32 A32 E17 I268 − I272 64 A64, A80 E68 I741 − I764

value of l is zero, it indicates that MA has only one sub-operation present (Ai). Thus a
one-to-one, one-to-many mapping to MI is possible. Lines 20 to 24 handles these situations.
Similarly, if l > 0 multiple sub-operations are present, then a many-to-one or many-to-many
mapping is possible. Lines 13 to 19 handles these situations. After all the sub-operations
are mapped to expressions in the SUT, the algorithm returns E_Map, which comprises
of a list of mapped segments. The Algorithm also takes two additional inputs MAXA
and MAXE , which are respectively the maximum number of sub-operations and program
expressions that the EquivalenceChecker considers. Thus, in any iteration, the algorithm
attempts to match at most MAXA sub-operations in the BCS to at most MAXE program
expressions in the implementation. Failure to find any equivalence will result in a failure of
the algorithm. The values of MAXA and MAXE are found empirically and would depend
on the BCS and SUT.

Table 3 shows the result of Algorithm 1 for the BCS and SUT inputs shown in
Figure 3. MAXA and MAXE are both set to 32 for this example. In the example, the initial
AddRoundKey in BCS has a one-to-one mapping with that of SUT. Hence in the first 16
iterations of the algorithm, the 16 sub-operations in BCS key addition are mapped to the
16 program expression as seen in the table. In each of these 16 iterations, a one-to-one
mapping of sub-operations is found. Thus l = 0 and m = 0 in each of these iterations.

Notice that in the SUT shown in Figure 3, the operations SubBytes and ShiftRows
are interchanged compared to that of BCS. Thus, in the 17-th iteration of Algorithm 1,
the smallest MA and MI segments that are mapped are A17 to (E17, E18, · · · E32). This is a
one-to-many mapping and handled by Lines 20 to 24 in the algorithm. E_Map is appended
with A17 mapping to E32 because the EquivalenceChecker only records the final program
expression in MI, in this case E32. Subsequent iterations, consider the unmapped nodes
from BCS and SUT. For example, in the 18-th iteration the smallest MA and MI segments
that can be mapped are A18 and (E17, E18, · · · , E31), thus A18 mapped to E31 is appended
in E_Map. The algorithm determines all the sub-operations and program expression for
ShiftRows and MixColumns in the same way. Iterations 19 to 48 are also one-to-many
maps and the mappings are found in a similar manner as shown in Table 3.

For the SUT given in Figure 3, the operations of MixColumns and AddRoundKey
are merged. Thus, A49, A65 map to E49 and E50. However, since MA is chosen in a
sequential manner, in the 49th iteration, the algorithm would identify MA and MI to be
(A49,A50, · · · A65) and (E49, E50) respectively. This is a many-to-many mapping, which is
handled by Lines 13 to 19 in the algorithm. The information flow path in MA from the
last sub-operation (i.e. A65) is considered (Line 15). This corresponds to A49, A65. Hence
sub-operations (A49, A65) is mapped to program expression (E50). Iterations 50 to 64 are
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Figure 6: Fault Evaluation in FEDS convert the SUT to CFG, then determine all the
exploitable IR instructions from the given SUT.

also many-to-many maps and the mappings are found in a similar manner, as shown in
iteration 49 to 64 of Table 3. The algorithm terminates either when no equivalence is
found for the given MAXA and MAXE , or all BCS sub-operations have been mapped.

Complexity. Let the number of sub-operations in the BCS be L and the program expression
in the SUT be M . The worst case complexity of the algorithm is L ×M . The worst
case occurs when the order of program expressions is inverted compared to that of the BCS.

FEME Identification. The first input to this module (Figure 5) is E_Map, the output of
Algorithm 1, which holds the mapping from various sub-operations in the BCS to program
expressions in the SUT. The second input is the set of exploitable sub-operations in the
BCS (FEMA), which are obtained from the HLE tool. Given these inputs, Proposition 1
can be used to identify the program expressions that are exploitable. The collection of all
such exploitable program expressions form FEME.

5.3 Fault Evaluation
Given the FEME, this module determines all the IR instructions that are susceptible to a
fault attack. The module uses the LLVM compiler and has a flow as shown in Figure 6.
The input to the module is the given SUT along with FEME obtained from Fault Mapping
(Section 5.2).

Fault Evaluation has the following components: (1) Front-End Pass, converts the
given SUT into IR instructions (for example, refer Figure 2). (2) Customized CFG, converts
the IR instructions to a control flow graph (CFG). (3) Exploitable Node Detection, for each
exploitable program expression in the FEME, identifies all the IR instructions that can
corrupt the output of the program expression. The output is a list of all exploitable IR
instructions from the given SUT.

5.3.1 IR to Control Flow Graph

The IR instructions are represented as a sequence of instructions (I1, I2, · · · , IN ) arranged
in basic blocks. A Basic Block contains an instruction sequence ending with a branch or an
exit instruction. For example, the IR shown in Figure 2, is divided into four basic blocks:
(I305, I306, · · · , I322), (I323, I324, · · · , I326), (I327, I328, I329), and (I330, I331, · · · , I346).

The generated IR is transformed into a CFG G(V ,E). Since we assume that the SUT
is unrolled, the corresponding CFG will not have any cycles. Each instruction in the IR
forms a vertex in the graph. An edge from vertex Ii to Ij is present if there is a control
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Figure 7: Control flow graph G(V ,E) corresponding to the IR instruction for program
expressions E49, E50 given in Figure 3.

flow such that, instruction Ij executes immediately after instruction Ii. The vertex Ij is
called the successor of Ii and Ii is called the predecessor of Ij . It may be noted that a
vertex I may have zero or more successors and zero or more predecessors. We denote the
set of successors and predecessors by S(I) and P(I) respectively.

Example 3. Control Flow Graph G(V ,E) for the IR in Figure 2 is given in Figure 7.
These IR instructions correspond to program expressions E49 and E50. The CFG has 42
vertices (I305, I306, . . . , I346) equal to the number of instructions in the IR. Instruction
I322 is a branch instruction which can move to either true (I323, I324, · · · , I326) or false
(I327, I328, I329), hence vertex I322 has two successors I323 and I327. Similarly, vertex
labelled I330 has 2 predecessors, I326 and I329. Thus, S(I322) = {I323, I327} and P(I330) =
{I326, I329}.

5.3.2 Exploitable Node Detection

A corrupted output of an exploitable program expression can be used by an attacker to
glean bits of the secret key. For a given exploitable expression, this module identifies
all instructions that can corrupt the output of the expression. Said another way, a fault
injected in any of the identified instructions could result in an incorrect output of the
program expression, which in turn can be exploited in a fault attack.

This module starts with the FEME, which comprises of all exploitable program expres-
sions. Algorithm 2 provides details about identifying relevant instructions that can corrupt
the expressions present in FEME. Besides FEME, the algorithm takes as input E_Map (the
output of Algorithm 1) and the CFG (Section 5.3.1). The algorithm outputs a set of
instructions in E_Nodes that can corrupt the output of one or more program expressions
present in FEME.

For each program expression (E) in FEME, the corresponding IR instructions are
identified and added to the set E_Nodes. A program expression may be mapped to multiple
instructions. In such a case it is sufficient to evaluate only the final instruction (Iend),
all other instructions would be handled by the algorithm. Thus, starting at Iend, the
algorithm works its way up to the start of the CFG. During this process (Lines 8 to 19),
all unmapped instructions that can influence the output of expression E are identified
and added to the set E_Nodes. Mapped instructions do not need to be added to E_Nodes
because they are either unexploitable or the corresponding expression would be present in
FEME, therefore handled in a different iteration. To identify, if an instruction can influence
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Algorithm 2: Exploitable_Node_Detection
Input: FEME : Ei1, Ei2, Ei3 · · · Eij

CFG : customized control flow graph G(V ,E)
E_Map : Mapping Set from A to E

Output: E_Nodes : Set of the exploitable instructions in the SUT
1 begin
2 E_Nodes ← ∅
3 for each E ∈ FEME do
4 Let E be mapped to the IR instructions (Ii1, Ii2, · · · , Iin(= Iend))
5 Rc(Iend)← U(Iend)
6 E_Nodes← E_Nodes ∪ {Iend}
7 pred_Nodes ← P (Iend)
8 for each I in pred_Nodes do
9 Compute D(I) and U(I) sets for the node I

10 Rc(I)← ( ∪
m∈S(I)

Rc(Im))

11 Let I be an instruction in program expression Ei

12 Find if Ei present in E_Map
13 if not found or E = Ei then
14 // I is not mapped or mapped to the same E
15 if D(I) ∩ Rc(I) 6= ∅ then
16 Rc(I)← Rc(I) \ D(I)
17 Rc(I)← Rc(I) ∪ U(I)
18 E_Nodes← E_Nodes ∪ {I}

19 pred_Nodes ← Append with all elements of P( I)

20 return E_Nodes

the output of an expression E , we track the data flow using the set Rc. For any instruction
(I), Rc(I) contains all the used variables that can influence the output of E .

Complexity. Let the number of exploitable expression in FEME be M and number of nodes
in the control flow graph be N, then the worst case complexity for running the algorithm is
M × N.

Example 4. Consider expression E50 from Figure 2 which maps to the instructions I334,
I335, · · · , I339. Assume that the instructions E50 is in FEME, I332 and I333 are unmapped
and I331 belongs to another expression which is in E_Map. Algorithm 2 starts execution
from I339 which is Iend. Table 4 traces the algorithm execution through every iteration.
Rc(I339) is the set of used variables in Iend. i.e {%xor5, %11}. A fault in any of these
variables can disturb the output of I339. In the first iteration, we consider the predecessor
nodes of I339, i.e. I338. We see that I338 has %11 defined, which is also present in Rc(I339).
Thus Rc(I338) is a copy of Rc(I339) with %11 replaced with the used variables of Rc(I338),
in this case %t. This is done in Lines 16 to 18 in the algorithm. Note that a fault, in %t
affects %11, which in turn affects the result of I339. In this way, every iteration updates
the corresponding Rc with used variables that can influence the result of I339. In I331,
however, update of Rc is not done because I331 belongs to an expression which is in E_Map.
Thus, this instruction is either not exploitable or would be handled in another iteration of
the algorithm. Thus, E_Nodes contains I334 to I339.

6 Using FEDS to Evaluate Implementations of Block Ci-
phers

To demonstrate the working of FEDS, we choose seven different implementations of
AES-128, which are summarized in Table 2, CLEFIA and CAMELLIA. Some of these
implementations are from standard libraries, for example OpenSSL’s AES implementation
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Table 4: Result of Exploitable_Node_Detection (Algorithm 2) for instructions I331,
I332, · · · , I339 given in Figure 2.

# Instruction (I) D(I) and U(I) Rc(I) E_Nodes

I339 %xor6← %xor5⊕%11 D(I339) ← {%xor6}
U(I339)← {%xor5, %11} Rc(I339)← {%xor5, %11} X

I338 %11← Load %t D(I338)← {%11}
U(I338)← {%t} Rc(I338)← {%xor5, %t} X

I337 %xor5← %9⊕%10 D(I337) ← {%xor5}
U(I337)← {%9, %10} Rc(I337)← {%9, %10, %t} X

I336 %10← Load %a3 D(I336) ← {%10}
U(I336)← {%a3} Rc(I336)← {%9, %a3, %t} X

I335 %a3← Get Element state[0] D(I335) ← {%a3}
U(I335)← {state[0]} Rc(I335)← {%9, state[0], %t} X

I334 %9← Load %x D(I334) ← {%9}
U(I334)← {%x} Rc(I334)← {%x, state[0], %t} X

I333 %y← Store %8 D(I333) ← {%y}
U(I333)← {%8} Rc(I333)← {%x, state[0], %t} 7

I332 %8← Load %x D(I332) ← {%8}
U(I332)← {%x} Rc(I332)← {%x, state[0], %t} 7

I331 %x ← Store %cond D(I331) ← {%x}
U(I331)← {%cond} Rc(I331)← {%x, state[0], %t} 7

with 4 T-tables (IMP3) and compressed tables (IMP4). Other implementations such as
IMP2, IMP5, and IMP6 have been crafted to demonstrate the versatility of FEDS in handling
operations that are swapped and merged. IMP7 is a bitsliced implementation of AES that
performs 64 encryptions in a bit-wise manner. In this section we provide details about the
implementation aspects of FEDS and the results for these implementations.

6.1 High Level Exploitability Tool
FEDS uses HLE tools to determine the fault exploitable sub-operations of the block cipher.
FEDS can use any HLE tool like [KRH17,SMD18,SJP+19,ZGZ+16], provided the input-
output representations are compatible. We demonstrate FEDS using XFC [KRH17] as the
HLE tool. The tools take as input the Block Cipher Specification (refer LHS of Figure 3) and
determines the sub-operations in the cipher that are vulnerable to Differential Fault Attacks.
The output comprises of a list of round keys that can be derived from a single random
fault injected in the specified sub-operation. XFC also provides the offline complexity in
deriving the key bits after the fault is injected. We also use ExpFault [SMD18] as the
HLE tool to determine the sub-operations in AES-128 that are vulnerable to Impossible
Differential Fault Attacks. Table 5 shows the output of XFC and ExpFault for the different
block cipher implementations. Each row represents a sequence of sub-operations and the
vulnerability to a single random fault temporally injected in any of these operations. For
example, if a fault is injected in any sub-operation between A433 and A496, then 128-bit
key bits can be derived with an offline complexity of 28. Note that these HLE results
are dependent on the cipher structure and properties. They are, however, independent
of the cipher implementations. The output of this phase is the set FEMA comprising of
sub-operations that are exploitable. For AES-128, the FEMA comprises of sub-operations
A433 to A560 based on the HLE tool XFC (Refer Table 5). Table 6 shows a summary of
the output of the HLE, the size of FEMA, and the time taken.

6.2 Fault Mapping
The Fault Mapping module described in Section 5.2 uses Equivalence Mapping to map
the fault exploitable sub-operations from FEMA to corresponding program expressions in
the SUT. The Equivalence Mapping module includes three main operations: (1) generate
information flow graph (IFG) from the BCS, (2) extract the clauses for equivalence checking
from the sub-operations and expressions of BCS and SUT respectively, (3) use of a model
checker to check for equivalence between extracted clauses.
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Table 5: Output of HLE Tools. XFC was used to evaluate ciphers for Differential Fault
Attacks, ExpFault was used to evaluate AES for Impossible Differential Fault Attacks.

HLE Tool Cipher Sub-operations #Derived Keys Offline Complexity

XFC [KRH17]

AES
A1 - A432 0 N/A
A433 - A496 128 28

A497 - A560 32 28

A561 - A640 0 N/A

CLEFIA A625 - A673 32 28

A673 - A743 32 24.76

CAMELLIA A956 - A1004 13 or 14 28

A1005 - A1052 5 or 6 28

ExpFault [SMD18] AES A368 - A432 32 232

Table 6: Statistics of outputs from the three different steps of FEDS for 7 AES imple-
mentations given in Table 2, CAMELLIA and CLEFIA. The entire framework was tested
using an Ubuntu 16.04 Linux machine on a quad-core Intel i5-3340 CPU @ 3.10GHz.
#

HLE Tool (XFC) Fault Mapping Fault Evaluation
BCS Size of

FEMA
Time
(ms.)

No. of
Expressions

Size of
E_Map

Time
(mins.)

Nodes
in CFG

% Exploitable
Instructions

Time
(sec.)

IMP1

640
sub-ops 128 < 20

780 640 59.33 7206 6.56 38.2
IMP2 780 640 72.16 7206 6.20 38.7
IMP3 196 84 98 4299 3.71 15.5
IMP4 123 44 97.5 4132 4.98 9.2
IMP5 580 480 40.5 7076 5.97 37.7
IMP6 790 496 79 7318 5.36 36.1
IMP7 2277 336 2560 8256 11.45 215.7

CAMELLIA 2144 128 < 36 400 2144 94.46 1475 23.2 99.3
CLEFIA 1184 256 < 24 1425 1184 205.56 1026 6.54 105.5

While any model checking tool would suffice, we chose to perform Equivalence
Mapping using a model checker called CBMC [CKL04]. We chose this tool due to its
ease-of-use, stability and our prior experience working with it. The model checker generates
constraints C and properties P from the extracted clauses and then invokes the SAT solver
to solve satisfiable equations of the form C ∧ ¬P. If a solution is found, false is returned.
This means that the BCS and SUT clauses are not equivalent. If a solution is not found,
true is returned. This means that the BCS and SUT clauses are equivalent.

The EquivalenceChecker invoked in Line 11 of Algorithm 1, takes two inputs MA
and MI corresponding to a sequence of sub-operations in the BCS and SUT respectively.
To understand how CBMC finds equivalence, we take an example with

MA = A1 : {{P[1]} : XOR (P[1], LKUP(1, KEY0))} ,

MI = E1 : {state[0] = in[0] ∧ rks[0][0]} .

Figure 8 shows the four steps involved in verifying equivalence between MA and MI.

Step 1. The sub-operations in MA are converted to valid C-code for equivalence checking.
This is needed because CBMC is a C-based model checker and requires C-code as
input. No conversion is required for the SUT expressions, which are written in C.
Valid assertions are added to check for equivalence.

Step 2. Valid assert conditions are added to the C code to check for equivalence.

Step 3. The generated conditions are transformed to SSA form (Refer Definition 1).

Step 4. The SSA statements are converted to a set of constraints (C) and set of properties
(P). CBMC then invokes a SAT solver to solve C ∧ ¬P. If a solution is not found,
then sub-operations in MA are functionally equivalent to the program expressions in
MI.

The output of Algorithm 1 is the map E_Map, which includes the mapping set of A to E
(refer: Table 3). Table 6 shows the number of program expression in each implementation,
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Step 1
BCS (MA) C-
ode

A1 : {{P[1]} : XOR(P[1], LKUP(1, KEY0))} A[1] = P[1] ∧ KEY[0]

state[0] = in[0] ∧ rks[0][0]

SUT (MI)

Step 2

p = 1;
A[1] = P[1] ∧ KEY[0];
state[0] = in[0] ∧ rks[0][0];
if(A[1] != state[0]) p = 0;
assert(p==1);

Step 4

C := ( p1 = 1)

∧ (A1[1] = P1[1] ⊕ KEY[0])

∧ (state1[0] = in1[0] ⊕ rks[0][0])

∧ ( p2 = ((A1[1] 6= state1[0]])) ? 0 : p2)

P := ( p2==1)

Step 3

p1 = 1;
A1[1] = P1[1] ∧ KEY[0];
state1[0] = in1[0] ∧ rks[0][0];
if (A1[1] != state1[0]) p2 = 0;
assert( p2==1);

Figure 8: Steps involved for verifying equivalence between MA and MI.
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Figure 9: Equivalence Mapping output for a single round of the AES implementations given
in Table 2. The x-axis denotes the sub-operations in BCS and y-axis is the corresponding
program expression in SUT.

the size of E_Map, and the average time taken to map all the sub-operations in the BCS to
corresponding expressions in the SUT for each block cipher implementation considered.
Finding equivalence for all sub-operations in the BCS to expressions in the SUT also proves
the correctness of the implementation with respect to the given specification.

Figure 9 depicts the mapping from BCS to various SUTs. The x-axis denotes the
sub-operations in the BCS and the y-axis denotes the mapped program expressions for
the first round of AES. Implementations IMP3 and IMP4 use T-tables in which the AES
operations in a round are merged by the T-table accesses. These merged operations result
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Figure 10: Equivalence Mapping output for a single round of the bitsliced AES implemen-
tations (IMP7) given in Table 2. The x-axis denotes the sub-operations in BCS and y-axis
is the corresponding program expression in SUT.

in traces that are parallel to the x-axis. For example A10, A11, A12, and A13 all map to the
program expression E3 therefore these points are parallel to the x-axis. In IMP2 and IMP6,
we notice that the mapping of sub-operations in SubBytes and ShiftRows do not follow
a trend similar to the other implementations. This is because, in these implementations,
SubBytes and ShiftRows are implemented in an order different from the BCS.

Mapping BCS to Bitsliced SUT. For bitsliced implementations such as IMP7 [RSD06],
where all the operations are bit-wise, FEDS needs additional user inputs to determine how
to interpret a byte in the SUT. The Extract function needs to be specified as follows:

MI = {Extract(bj | ... | bk)} ,

where bj · · · bk (j < k) are the bits in the bit-sliced representation, which Extract converts
to a byte. Figure 10 depicts the mapping from the BCS to bitsliced implementation of AES
(IMP7), given in Table 2. Due to the bitsliced representation [RSD06], one sub-operation
in BCS is mapped to 8 expressions in the SUT of the implementation.

Mapping BCS to Other Block Ciphers. To demonstrate the scalability of FEDS,
we have evaluated two of the block ciphers CLEFIA-128 [SSA+07] and CAMELLIA-
128 [AIK+00]. Table 6 includes the size of E_Map, and average time to map sub-operations
to program expression for these implementations.

After the equivalence mapping is obtained, the FEME can be constructed. Essentially,
every program expression that is mapped from an exploitable sub-operation in the FEMA,
is added to the FEME.

6.3 Fault Evaluation
Each component of the Fault Evaluation module is implemented as a transformation pass
in the LLVM Clang compiler5 Version 7.0. Fault Evaluation works by first converting

5https://llvm.org/

https://llvm.org/
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Figure 11: Fault Evaluation output for different implementations of AES given in
Table 2 for fault injected at locations A496 and A420. The fault evaluation for A496 was
done using he HLE tool XFC [KRH17], while the fault evaluation for A420 was done using
the HLE tool ExpFault [SMD18]. Each cell denotes an instruction in the IR. Starting from
the top left corner, instructions are represented column wise from top to bottom. The
last instruction is in the bottom right corner. The colored cells denote the exploitable
instructions based on HLE tool XFC and ExpFault.

from IR to a control flow graph to find the dependencies between instructions (refer
Section 5.3.1). Each node in the CFG is an instruction in the IR. After the CFG is created,
Algorithm 2 uses the program expressions in the FEME to determine all IR instructions
where a fault, if injected, can change the result of the program expression. The total
number of nodes in the CFG for the different block cipher implementations is shown in
Table 6 along with the percentage of exploitable nodes and the execution time of the tool.
A fault in any of these exploitable nodes can be used to mount a fault attack. In the next
part of the section, we take an example of two exploitable AES sub-operations and study
their exploitability over the seven AES implementations.

We consider faults injected in sub-operations A420 and A496. While A420 corresponds
to the 5-th byte ShiftRows operation in the 7-th round, A496 corresponds to the 16-th byte
ShiftRows operation in the 8-th round. A fault in A496 is exploitable by Differential Fault
Attacks and can uncover the entire AES key with an offline complexity of 28 [TMA11].
A fault in A420 is exploitable by Impossible Differential Fault Attacks [DFL11] and can
uncover 32-bits of the AES key with a complexity of 232. While XFC [KRH17] can identify
the vulnerability at A496, it cannot identify that A420 as vulnerable. ExpFault [SMD18]
on the other hand can identify the vulnerability due to IDFA in A420.

For each of the seven AES implementations (Table 2), Figure 11 shows the vulnerable
memory locations for these two faults. Each cell in the memory layout represents an
instruction in the IR. A colored cell indicates that the instruction is exploitable by a fault
in either sub-operation A496 or A420. All cells with the same color are equally exploitable
and result in a fault attack that uncovers the same key bytes with the same complexity.
The figures show some memory locations that are exploitable by both faults. These
especially occur due to functions in the implementations that are invoked multiple times
during the execution of the program. For example, function AES_xtime given in Figure 3,
is invoked in program expressions E50, E51, E52, E53 and is also invoked in other rounds
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of the implementation. Hence, the IR instructions in function AES_xtime can influence
multiple operations of AES. Figure 11 shows that common vulnerable instructions are
present in implementations IMP1, IMP2, IMP4, and IMP5, where the round operations are
implemented as functions. For the T-Table implementations such as IMP3 and IMP4, and
the bitsliced implementation, IMP7, no function invocations are present within a round,
hence these implementations do not have common vulnerable instructions.

From the figure, it is evident that the number of exploitable instructions varies based
on implementation. IMP3 and IMP4 have the least number of exploitable instructions
compared to other implementations. This means that an attacker has lesser options to
inject faults in A496 and A420 compared to the other implementations. Table 6 includes
the results of Fault Evaluation for the various implementations of AES given in Table 2.
It also has the results for other block ciphers, namely, CLEFIA and CAMELLIA. The
percentage of exploitable instructions given in Table 6 is the union of all the exploitable
instructions in each implementation considering all exploitable sub-operations given in
Table 5. The percentage of exploitable instructions varies from 3.71% (IMP3) to 23.2%
(CAMELLIA) of the total instructions are exploitable. For implementation like IMP3, with
4299 number of nodes, 3.71% ( ≈ 160) instructions are exploitable. CAMELLIA, with
1475 nodes in CFG, has 23.2% ≈ 343 instructions are exploitable. Hence the exploitable
instruction also depends on how the block cipher is implemented. We have tested the
results by simulating faults on the exploitable instructions and noted that the output of
the targeted sub-operation in the cipher was corrupted. Deriving the secret key from these
faulty operations is well documented in literature [DFL11,TMA11,CWF07,AM13].

7 Using FEDS to Design a Fault Attack Aware Compiler
As seen in Table 6, a very small percentage of the instructions in the program are exploitable.
To secure against fault attacks requires only these instructions to be protected. Identifying
and protecting these instructions manually requires considerable expertise. Thus, naïve
protection schemes would simply insert countermeasures for the entire program, leading to
considerable overheads.

A Fault Attack Aware Compiler automatically protects only the exploitable instruc-
tions in the code. The FEDS framework can be first invoked to identify exploitable
instructions. To protect these instructions, several countermeasure strategies are avail-
able [KWMK02,MSY06]. Each countermeasure differs in the overheads and fault coverage.
To demonstrate the use of FEDS in a Fault Attack Aware Compiler, we use a simple
redundancy countermeasure that duplicates the exploitable instructions and program
variables and performs the required checks to determine if the fault occurred or not.

Example 5. Assume that the following IR instruction is found to be exploitable. The
instruction store takes the value from location pointed by %67 and stores the result in a
variable state[3][2].

%74 = getelementptr inbounds [4x[4xi8]], [4x[4xi8]]* @state, i64 0, i64 3, i64 2
store i8 %67, i8* %74

Redundancy countermeasure duplicates this exploitable instruction. This requires (1) dupli-
cation of program variables accessed by the instruction. For example, the two-dimensional
array state[4][4] given in the instruction is duplicated in state1[4][4]; (2) the duplicated
instructions are checked for equality with the actual instruction to determine the occurrence
of a fault. These redundant instructions are automatically inserted by the compiler. In the
instruction snippet shown below, the instructions in green are the replicated operations,
while the instructions in blue perform the comparison between the original and replicated
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Figure 12: Comparison of unprotected implementations, naïvely protected implementations
with FEDS based automatic protection. The graph also shows the fault coverage, which is
same for both approaches. Results are taken from a 64-bit Ubuntu 16.04 Linux machine
on a quad-core Intel i5-3340 CPU @ 3.10GHz.

operations. The executable generated would thus be protected against the specific class of
Differential or Impossible Differential Fault Attacks in the specific fault model considered
by the HLE Tools.

%74 = getelementptr inbounds [4x[4xi8]], [4x[4xi8]]* @state, i64 0,i64 3,i64 2
store i8 %67, i8* %74
%75 = getelementptr inbounds [4x[4xi8]], [4x[4xi8]]* @state1,i64 0,i64 3,i64 2
store i8 %67, i8* %75
%76 = getelementptr inbounds [4x[4xi8]], [4x[4xi8]]* @state,i64 0,i64 3,i64 2
%77 = load i8, i8* %76
%78 = zext i8 %77 to i32
%79 = getelementptr inbounds [4x[4xi8]], [4x[4xi8]]* @state1,i64 0,i64 3,i64 2
%80 = load i8, i8* %79
%81 = zext i8 %80 to i32
%82 = icmp ne i32 %78, %81
br i1 %82, label %83, label %87

; <label>:83:
call void @exit(i32 0)
br label %87
; <label>:87:
....

Figure 12 compares a FEDS protected AES implementation with a naïvely protected
equivalent and unprotected implementation. While the FEDS protected implementations
have redundancy countermeasures inserted only for exploitable instructions, the naïvely
protected implementations have countermeasures inserted for all instructions. As seen
from the graphs, performance as well as code-size is considerably improved for the FEDS
implementations. These advantages are achieved without any compromise in the fault
coverage. For evaluating the fault coverage, we have induced faults in all possible vulnerable
locations obtained from FEDS and determined the percentage of faults that can be captured
after adding the required countermeasures.

8 Conclusion
FEDS is the first automated framework that can determine the fault exploitability in
software implementations considering complex cipher properties and fault models. FEDS,
therefore, has the advantages of both, the HLE as well as ILE tools for fault attack
assessment. The evaluation with multiple AES implementations and block cipher CLEFIA
and CAMELLIA for Differential Fault Attacks demonstrates the ability of FEDS to
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uniquely identify exploitable instructions. Our results show that the exploitability of each
implementation differs. The number of exploitable instructions varies between 3.71% to
23.2% depending on the implementation. The OpenSSL T-table based implementation
being the most secure, while the CAMELLIA implementation is the most vulnerable. The
runtime for the entire framework is less than 2565 minutes on a standard Intel i5 desktop
with 16GB RAM.

The FEDS based fault attack aware compiler presented in this paper, can generate
executables that have fault attack countermeasures automatically inserted. The targeted
countermeasure insertion results in executables that are leaner and have less performance
overheads compared to executables where countermeasures were naïvely incorporated.

An inherent limitation of FEDS is that it is restricted by the capabilities of the HLE tools
used. Another limitation of FEDS is that it cannot evaluate implementations that have
fault attack protection already incorporated. The fault attack aware compiler currently
only supports the spatial redundancy countermeasure. While we do not foresee any
implementation that FEDS cannot handle, the scalability of the model checking tool may
prevent certain implementations to be evaluated. In our future work, we plan to address
these limitations.
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