TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 245-271. DOI:10.13154 /tches.v2020.i2.245-271

A Compact and Scalable Hardware/Software
Co-design of SIKE

Pedro Maat C. Massolino!, Patrick Longa?, Joost Renes! and Lejla Batina'

! Radboud University, Nijmegen, The Netherlands
{p.massolino, j.renes,lejla}@cs.ru.nl
2 Microsoft Research, USA
plonga@microsoft.com

Abstract. We present efficient and compact hardware/software co-design imple-
mentations of the Supersingular Isogeny Key Encapsulation (SIKE) protocol on
field-programmable gate arrays (FPGAs). In order to be better equipped for different
post-quantum scenarios, our architectures were designed to feature high-flexibility
by covering all the currently available parameter sets and with support for primes
up to 1016 bits. In particular, any of the current SIKE parameters equivalent to
the post-quantum security of AES-128/192/256 and SHA3-256 can be selected and
run on-the-fly. This security scalability property, together with the small footprint
and efficiency of our architectures, makes them ideal for embedded applications in
a post-quantum world. In addition, the proposed implementations exhibit regular,
constant-time execution, which provides protection against timing and simple side-
channel attacks. Our results demonstrate that supersingular isogeny-based primitives
such as SIDH and SIKE can indeed be deployed for embedded applications featuring
competitive performance. For example, our smallest architecture based on a 128-bit
MAC unit takes only 3415 slices, 21 BRAMs and 57 DSPs on a Virtex 7 690T and
can perform key generation, encapsulation and decapsulation in 14.4, 24.4 and 26.0
milliseconds for SIKEp434 and in 52.3, 86.4 and 93.2 milliseconds for SIKEp751,
respectively.

Keywords: Post-quantum cryptography - supersingular isogenies - SIDH - SIKE -
hardware/software co-design - FPGA - constant-time - embedded applications

1 Introduction

In 2011, Jao and De Feo introduced a novel key exchange protocol based on the difficulty
of computing isogenies between supersingular elliptic curves [JF11]. This key exchange
protocol—best known as Supersingular Isogeny Diffie-Hellman (SIDH)—has caught the
attention of the cryptographic community, thanks in part to featuring one of the smallest
keys of any algorithm known in the literature that is conjectured to be quantum resistant.
Just in the last few years, there has been a surge of works that look at various aspects of
SIDH, including efforts that have focused on the implementation and optimization of this
primitive on various platforms [AFJ14, CLN16, KJAT16, KAMK16, SLLH18, SJTA19], the
introduction of compression techniques that aim at reducing the size of SIDH public keys
even further [AJKT16, CJL*17, ZSJPT18, NR19], and the design of other primitives based
on SIDH, such as digital signature schemes [JS14, GPS17, YAJT17] and authenticated
key exchange protocols [Gall8, Lonl18]. At the same time, the security of this young
cryptographic primitive has been analyzed in [BJS14, DG16, GPST16, Pet17].

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.245-271
mailto:{p.massolino,j.renes,lejla}@cs.ru.nl
mailto:plonga@microsoft.com
http://creativecommons.org/licenses/by/4.0/

246 A Compact and Scalable Hardware/Software Co-design of SIKE

Recently, the National Institute of Standards and Technology (NIST) launched a
multi-year project called “Post-Quantum Cryptography Standardization” [Nat18a] that is
aimed at the analysis, selection and standardization of the next-generation of cryptographic
algorithms that are believed to be secure against classical and quantum computer attacks.
Among the 69 final submitters [Nat18b], the so-called Supersingular Isogeny Key Encapsu-
lation (SIKE) protocol [ACCT17] stands out as the candidate with the smallest keys and
as the only algorithm that is based on isogeny-based cryptography and, hence, partially
relies on traditional Elliptic Curve Cryptography (ECC) arithmetic. SIKE—designed
by Costello, De Feo, Jao, Longa, Naehrig and Renes—is an IND-CCA secure key encap-
sulation mechanism (KEM) based on SIDH which overcomes the inherent vulnerability
of the original protocol to the adaptive active attacks by Galbraith, Petit, Shani and
Ti [GPST16]. As a consequence, while in the case of SIDH public/secret key pairs should
be treated as ephemeral, i.e., they must be discarded after use, SIKE key pairs can be
freely reused.

The state-of-the-art instantiation of SIDH is based on the work by Costello, Longa and
Naehrig in [CLN16], which in turn builds upon the work by De Feo, Jao and Plit [FJP14].
In [ACCT17], this instantiation was used as basis to define the three parameter sets
SIKEp503, SIKEp751 and SIKEp964, which were named so because of the bit-length of
the underlying prime field characteristic. For Round 2 of the NIST process and following
recent studies of the classical and quantum security of SIDH and SIKE [ACC*19a, JS19,
CLN™19], the parameter set SIKEp964 was eliminated and two new parameter sets,
proposed in [ACCT19a] and called SIKEp434 and SIKEp610, were added [ACCT19b]. One
important research effort involves the implementation and optimization of these different
parameter sets to evaluate their viability on software and hardware platforms. In this
work, we focus on the case of FPGAs as a hardware platform, but presenting our SIKE
implementation as hardware/software co-design giving special attention to embedded
applications.

1.1 Related work

There exist several hardware implementations of SIDHp503 and SIDHp751 [KAMKIG6,
KAMK18, RM19], and of SIKEp503 and SIKEp751 [ACCT17, KAK"19]. All those im-
plementations have primarily targeted raw speed as their main goal. This approach
typically sacrifices area and, hence, chip cost for performance. However, in embedded
applications aiming at low power and energy budgets, area is arguably a more relevant
metric. Moreover, the architectures presented in [KAMK16, KAMK18, RM19, KAK*19]
can be configured to target only one security level at a time. That is, if the parameter set
used in a certain device needs to be changed, the device needs to be reprogrammed, which
can be an expensive process that is even unfeasible in certain settings.

1.2 Our contribution and paper organization

In this work we present the first hardware/software co-design supporting the SIKE protocol,
with the primary goal of being compact and scalable. As a result of this approach, the
architecture works for all of the four parameter sets defined in [ACCT19b]. This level of
scalability allows a device to run any of the supported parameter sets without the need of
reprogramming it. Hence, given the risk of potential future attacks against post-quantum
cryptosystems, the proposed architecture offers an easy and inexpensive solution to upgrade
the security of implementations on-the-fly. Yet another consequence of this flexibility
is that our architecture also represents the first hardware implementation of the new
parameter sets included in Round 2 of the NIST process, namely, STKEp434 and SIKEp610.

We present two instances, depending on the bit-size of the multiplier accumulator
(MAC) unit that we refer to as Carmela. The first and smaller version uses a 128-bit MAC

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 247

Table 1: Timing results for all SIKE parameter sets of our architecture based on
Carmelal28 and Carmela256 on the Virtex 7 690T and Artix 7 100T platforms, measured
in milliseconds (ms).

Carmelal28 Carmela256

Param. Key gen. Encaps. Decaps. Key gen. Encaps. Decaps.

SIKEp434 14.4 24.4 26.0 6.9 11.8 12.5
SIKEp503 17.1 28.8 30.7 8.2 13.9 14.8
SIKEp610 28.6 53.2 54.0 13.8 25.7 26.1
SIKEp751 92.3 86.4 93.2 17.7 29.3 31.5

(a) Results on the Virtex 7 690T.

Carmelal28 Carmela256

Param. Key gen. Encaps. Decaps. Key gen. Encaps. Decaps.

SIKEp434 15.3 26.0 27.6 9.1 15.4 16.4
SIKEp503 18.2 30.7 32.7 10.7 18.1 19.3
SIKEp610 30.4 56.7 57.4 18.0 33.6 34.0
SIKEp751 55.7 92.0 99.2 23.1 38.2 41.1

(b) Results on the Artix 7 100T.

unit (Carmela128), while the second relies on a 256-bit unit (Carmela256). Both are fully
scalable for primes up to 1016 bits and support all SIKE parameter sets, as mentioned
above. The main difference between the two is that the instance based on Carmelal28
is aimed at highly-constrained applications, providing a more extreme trade-off between
compactness and speed than the one based on Carmela256.

The compactness and efficiency of our implementation is illustrated with results on
two different FPGA devices, namely the Virtex 7 690T and the Artix 7 100T. On the
Virtex 7 690T the Carmelal28-based architecture takes 3415 slices, 21 BRAMs and 57
DSPs with maximum clock period of 6.57 ns, while the Carmela256-based architecture
requires 7408 slices, 38 BRAMs and 162 DSPs with maximum clock period of 7.034 ns.
The corresponding timings of the operations are summarized in Table 1(a). Similarly, on
the Artix 7 100T the Carmelal128-based architecture takes 3512 slices, 21 BRAMSs and 57
DSPs with maximum clock period of 6.993 ns, while the Carmela256-based architecture
takes 7491 slices, 37 BRAMs and 162 DSPs with maximum clock period of 9.181 ns. The
corresponding results are summarized in Table 1(b). For a full comparison to existing
literature we refer to Section 4.

To summarize, to the best of our knowledge the hardware implementations of SIKE
in the literature target speed and do not offer other attractive features such as on-the-
fly security scalability and compactness. This work aims at filling this gap, targeting
embedded applications where one might want to update the parameters without the need
to change much of the implementation. We envision this being a likely scenario for such
a post-quantum primitive. Our results demonstrate that supersingular isogeny-based
primitives such as SIDH and SIKE can indeed be deployed for embedded applications
featuring competitive performance.

Finally, not only do we describe our architecture and results but, as an additional
contribution, we also release the entire project as open source at:

https://github.com/pmassolino/hw-sike.

The paper is organized as follows. Section 2 gives necessary mathematical details on
SIKE and some background information on the protocol. Section 3 describes our hardware

https://github.com/pmassolino/hw-sike

248 A Compact and Scalable Hardware/Software Co-design of SIKE

oY,

EO (E£a¢l(Pm)?¢€(Qm))

on | |
(ETM qu(Pg), (bm(Q@)) (bf Em,@ = Ef,m

Figure 1: Supersingular isogeny Diffie-Hellman key exchange (SIDH).

architecture, its inner workings and the choices involved in the design. Section 4 gives the
results and performance figures for the architecture including a comparison with previous
works. We conclude the paper and give some directions for future work in Section 5.

2 Preliminaries

For completeness we first recall the details of SIDH and SIKE. Throughout this document
we follow the notation from [ACCT19b].

2.1 SIDH

Let eq, e3 be positive integers such that p = 2°23%¢ —1 is prime. Let Ey/F, : y* = 234622 +x
be an elliptic curve, which is supersingular [Sil09, Theorem V.3.1(a)] as p = 3 mod 4. Then
one can show that #Eq(F,2) = (p+1)?, and in particular Eo(F,2)[2%?] = (Z/2%2Z)? and
Bo(F2)[3%] = (Z/34Z)°.

Let Alice choose m € {2,3} and fix basis points P, Q. € FEo(F,2) such that
Eo(Fp2)[m®m] = (P, Qm). As a result, any sk, € Z/m*"Z defines a unique subgroup
(P + [skm]Qm) C Eo(Fp2)[m®m] of order m®=. In turn, this determines (up to isomor-
phism) an elliptic curve E,,, = Eo/{Pp, + [$kn]|Qm) and an mem-isogeny ¢, : Eg — E,,.
We then define Alice’s secret key to be sk,, while her public key is chosen to be
Pk = (Em, &m(Pr), dm(Qr)), where P, Qy € Ey(F,2) are Bob’s basis points. Bob
proceeds analogously with ¢ € {2,3} such that £ # m. We define Bob’s secret key to be
ske while his public key is chosen to be pky = (Eg, ¢¢(Prm), $e(Qm))-

In order to compute a shared secret Alice and Bob then proceed according to Figure 1,
where

ker (b,m, = (Ge(Pr) + [skm]0e(Qm)) , ker ¢2 = (Pm(Pr) + [skelom (Qe)) -

Correctness follows from the fact that Ey ,, and E,, , are both the co-domain of the isogeny
from Eq with kernel (P, + [skm|Qm, Pe + [sk¢]Q¢), which is unique up to post-composition
with an isomorphism [Sil09, Exercise I11.3.13(e)]. Therefore K = j(E;) = j(Em) can
be used as the shared secret.

The resulting shared key K is indistinguishable from random under a chosen plaintext
attack (IND-CPA) assuming the SSDDH problem [FJP14, Problem 5.4] is hard. However,
there is no active security as demonstrated by the adaptive attacks by Galbraith et
al. [GPST16] that allow to recover the secret key. As a result, one can only securely
exchange keys with ephemeral public keys.

2.2 SIKE

To obtain active security one can apply a standard transformation to transform the
scheme into an IND-CCA secure key encapsulation mechanism (KEM) referred to as
SIKE [ACCT19b]. This is achieved in two steps; first, one transforms the IND-CPA
secure key exchange into an IND-CPA secure public-key encryption (PKE) using hashed

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 249

SIKE

SIDH
Software
Elliptic curve

point and
isogeny operation

Fyinv Fy inv SHAKE
[F,2 add, sub, mult. 256

[F, add, sub, mult. Keccak-f Hardware

Figure 2: The high-level procedural hierarchy of the SIKE processor.

ElGamal [ACCT19b, Proposition 1], after which one applies a transformation a la Fujisaki—
Okamoto [FO13, HHK17] to obtain a secure KEM indistinguishable under chosen ciphertext
attacks (IND-CCA). These transformations do not significantly affect the efficiency of the
protocol, and we refer to the SIKE specification [ACCT19b] for more details.

For the purpose of this work we have implemented the parameter sets SIKEp434,
SIKEp503, SIKEp610 and SIKEp751 defined in [ACCT19b], and we precisely follow their
design decisions. This includes the use of Montgomery representation [CH17, Renl§]
and performing all arithmetic on the Kummer line [CLN16]. Again, for details we refer
to [ACCT19b, §1.3]. The (optional) methods related to public-key compression are
considered out of scope for this work.

3 Proposed Scalable Architecture

The SIKE key encapsulation protocol is a complex algorithm that involves many different
operations. Therefore, we opted for hardware/software co-design, instead of an approach
solely consisting of a control unit plus combinational circuitry. In this way, we split the
computational aspects of the protocol into hardware and software logic, as shown in Figure 2.
By running the software on top of the fast hardware instructions, we gain flexibility and
facilitate maintenance and debugging, while keeping an optimized hardware execution.
Our approach for the finite field arithmetic is standard for this sort of complex public-key
implementation task. Basically, all the low-level F,, operations (i.e., multiplication, squaring
and addition/subtraction) are implemented directly in hardware, while the inversion in F,
is done in software. All the other operations that are built on top of the F, arithmetic
(i.e., the Fp2 computations, the elliptic-curve point and isogeny algorithms and the SIDH
algorithm itself) are implemented in software. Finally, SIKE can be obtained by applying
the same methodology where, additionally, KECCAK is implemented in hardware and the
necessary SHAKE calls are done in software.

Our architecture, depicted in Figure 3, is split into two big parts. The first part
is the multiplier accumulator (MAC) unit, called Carmela, and its respective memory
(MAC RAM). It is responsible for the instructions related to the IF,, operations, such as
multiplication and addition/subtraction. This unit does not have an internal memory for
the input and output operands and, therefore, needs the MAC RAM to work. The MAC
RAM is composed of two true dual port RAMs, which together can perform two reads and
one write, or two writes, in one cycle. As this unit only performs the arithmetic operations,
all the control flow instructions are handled by the main unit and its base ALU and base
RAM. Thus, Carmela behaves like a coprocessor of the main unit.

The second part (i.e., the main unit) includes the base ALU, the base RAM, the RD
registers, address resolution, the local bus, the status registers and the program counter.
It is a 16-bit signed/unsigned integer processor that can perform direct and conditional
jumps, stack push and pop, copy values through the local bus, load values directly into

250 A Compact and Scalable Hardware/Software Co-design of SIKE

local bus external loading
16
A16
status next resolve current
registers < > prom ™ instruction "l address | instruction
A AAAA
program next ins
l "1 counter " | address
external < >
. . - -
communication
Co-Processor
|
< mac |e—> mac <
B Carmela < X X <
ram |« > instruction
Keccak -f ?
1600 A - stack
counter base alu
11
_ | base
ram |« »| RD
registers
>
\

Figure 3: The high-level architecture of the SIKE processor.

the memories, call/return program functions, and execute arithmetic operations such as
addition/subtraction and multiplication, and logical operations such as and, not, or, xor.
The instruction set was crafted to provide the necessary operations for the SIDH functions,
but should also work with other programs or procedures. Future work could involve the
change of the instruction set to a well-known and widely adopted ISA, such as RISC-V.

The RD registers unit works as a cache of the first 32 values of the base RAM. This
was done because those registers can be read asynchronously, while the base RAM values
have 1 cycle of delay. These values are mainly used as memory pointers for the MAC
or the main processor operations. Therefore, it is possible to access an operand that is
located on the base RAM or the MAC RAM pointed to by the first 32 positions of the
base RAM itself. The first RD register has a special purpose (see Figure 4): bit 0 or 15
can be used in conjunction with another pointer register in order to point to a position
that is dependent on one of these bits. For example, if there are two pointers stored in
position 4 and 5, respectively, the indirect memory access can take the pointer stored in
position (10S)2, where S is bit 15 or 0 of the RD register.

The base ALU is the FPGA DSP that can perform addition, subtraction and multipli-
cation. Comparisons are accomplished via the DSP subtraction operation. Finally, the
shifts and rotations are done through the mux-based data-reversal barrel shift as showed

indirect address [5:1]

indirect . direct
scalar[0] ddressTE RD registers address 12
0—~»{ RD registers
5 16 Dﬁdirect address [0]
scalar[15]

scalar_msb_Isb
inv_scalar_bit

Figure 4: Description of how RD register 0 is used to make an indirect address from one
bit and one extra word.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 251

in Pillmeier et al. [PSW02].

The PROM unit holds all the instructions to be run by the main unit and the MAC unit.
An instruction first has its address resolved and is then executed by the main or MAC unit,
respectively. In case it is a MAC instruction, the main unit serially loads 8 instructions
(in case of multiplications or instructions that use the multiplier) or 4 instructions (for
additions/subtractions). The PROM unit can be accessed through an external loading bus,
which is the same as the small bus for external communication. In order to distinguish
between loading and reading the small bus and the PROM memory, an extra external
signal is used alongside the address position. This can be seen as the memory system
having a 17-bit address space, instead of 16 bits.

For the KECCAK core, we use Bertoni et al’s VHDL implementation, specifically their
middle-area coprocessor option [BDPVA12]. We made some adaptations and added an
interface for our small bus, in which we can absorb and squeeze data and perform all 24
Keccak rounds. To obtain SHAKE-256 [Nat15] output we use the main unit to prepare
the data and only use the KECCAK core for the permutation itself.

3.1 Multiplier-accumulator unit: Carmela

We have targeted two distinct architectures; the first relies on a 128-bit MAC (called
Carmelal28), while the second is built upon a 256-bit MAC unit (called Carmela256).
The design principles are essentially identical, the only difference being the relative size
of the units. For that reason, we shall mostly only provide detailed descriptions of the
architecture based on Carmela256 and expect that an understanding of the Carmela128-
based architecture can be easily inferred, though we highlight the differences wherever
necessary. We emphasize that both MAC units were designed with compactness and
scalability in mind, but Carmela128 of course does so more aggressively.

Carmela256. The 256-bit MAC unit features an 8-stage pipeline architecture with 6
stages for the 257-bit signed multiplier and an optimized 546-bit adder. Although the
multiplier is constructed with 257 signed bits, it is used as a 256-bit multiplier for both the
signed and unsigned cases. Therefore, one of the bits is not fully used in the signed case in
exchange for a single bus of 256 bits and a single 256-bit memory word. Indicating whether
the input value is signed or not is done by the state machine controlling Carmela256 directly.
The adder, on the other hand, is 546-bit since it is 257 x 24 32. These extra 32 bits for the
accumulator are necessary to perform successive accumulation of several multiplications.
While 32 bits are more than strictly necessary to fit the biggest multiplication algorithm
of 1024 bits, it would also be enough for potential different but similar algorithms (as the
arithmetic operations of SIKE could still be developed further, possibly requiring more
additions).

The 257-bit signed multiplier is constructed from small multipliers with the non-
standard tiling technique from Roy et al. [RMIT14]. The tiling technique exploits the
rectangular shape of the multipliers on more modern FPGA models, which are 25 x 18-bit
signed multipliers. This is done by visualizing the multiplication as a big square, or even a
rectangle, and then trying to fill the shape with the minimum amount of rectangles, and
being allowed to rotate the rectangles by 90 degrees. In our case we need a 257-bit signed
multiplier, which can be done by extending the 256-bit unsigned multiplier of Roy et al.,
with an additional one bit multiplier to solve the sign. This results in the tiling shown
in Figure 5, which has the two extra 1 bit multipliers (though it can be difficult to notice,
since the figure has the proportional size).

After multiplication and generation of all partial products, it is necessary to sum and
compress into a single value. For this task we employ a 30:5 compressor, followed by a 5:3
compressor, then a 3:2 compressor, and finished with an adder. The entire compression tree
of 30:1 has intermediate registers plus 2 extra registers at the end, as shown in Figure 6.

252 A Compact and Scalable Hardware/Software Co-design of SIKE

0 256

256
Figure 5: The 257-bit signed multiplier, based on the 256-bit multiplier from [RMIT14].

Those last registers are believed to be rebalanced by the FPGA synthesis tool, since this is
not the bottleneck of the maximum period of the circuit.

The final adder in the multiplication was done with a special adder, instead of the
carry propagation adder inferred by the synthesis tool. This special adder architecture is
given in Figure 7 and the architecture was originally proposed by Nguyen et al. [NPP11].
The adder is a carry-select architecture, where both options for the carry are computed,
after which the carry is solved like in a carry lookahead architecture. At the end, with
the final carry for each bit the sum output is then generated. This architecture has the
lowest latency in Nguyen et al. [NPP11] and the results are very close to those from other
architectures as reviewed by Preufier and Krause [PK16].

We show the final architecture with the 257-bit signed multiplier and 546-bit accumu-
lator in Figure 8. The “optimized adder” can add the multiplier output, the multiplication
output multiplied by 2 (just a left shift by 1) or the compressor output. The output
can then be fed back into the accumulator without change or shifted to the right by the
multiplier word size, which is needed for multi-word multiplication. The compressor is
combined with the “optimized adder” in order to create addition/subtraction operation
with 3 operands, out = acc+ (s-b) £ a or out = acc — (s - b) + a. The register “s” is used
as a mask for register “b” and to create operations that may or may not add the value of
register “b”. Finally, the “optimized adder” uses the same AAM architecture discussed
before in Figure 7.

The pipeline while doing additions/subtraction operates with 4 stages, because it does
not need to wait for the multiplication stages to finish. This 4-stage mode is achieved by
the multiplexer added onto the compressor output and the final addition. The register “s”
is also only used during addition/subtraction, and therefore only needs 4 register stages to

=

=

= 514
2250 Tied multipler 5| 3| 305 53 Y 32 wm
b2ﬁ57(_> 257 x 257 _3’ compressor % compressor compressor

=

=

=

Figure 6: The 257-bit signed multiplier with compressor.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 253

remain synchronized with the pipeline unit.

Carmelal28. The biggest difference between the two MACs is the construction of the
multiplier itself. Carmela128 features an 8-stage pipeline architecture with 6 stages for
the 129-bit signed multiplier and a 290-bit optimized adder. Similar to Carmela256, the
multiplier uses 128 bits for both the signed and unsigned cases, while words consist of
16 bits. In contrast to the more complex hand-optimized 257-bit multiplier, the 129-bit
signed multiplier with six pipeline stages was constructed by the FPGA synthesis tool.
Although we expect this will need more DSPs than what we could achieve by hand, this
architecture can easily be deployed in older FPGAs (which do not have rectangular DSPs)
like the Xilinx Spartan 6 family. Because it has the same architecture as Carmela256,
Figure 3 can also be used for Carmela128, only changing the sizes of the components.

3.1.1 From a MAC to a finite field unit for up to 1016-bit primes

In this section we focus on Carmela256 as everything follows completely analogously
for Carmela128. With the exception of multiplications with/without accumulations and
additions/subtractions of 256-bit signed/unsigned values, the MAC cannot perform F,
operations directly. To construct the operations on top of Carmela there are two options:
create a state machine to control the hardware pipeline and provide F, arithmetic at a
higher level, or provide a pipeline in a higher level of Carmela and implement the operations
in F, in software. While both options seem very similar, they can in fact lead to very
different constructions. In the case of a software approach, it is necessary for the software
to be synchronized with the pipeline or to have a memory that can load/store the 546-bit
accumulator values. However, this high bandwidth memory will require a lot of resources
in the design so, as a result, we opted for the state machine.

The state machine can use the internal pipeline accumulator registers to synchronize
the instructions, while offering the I, arithmetic. However, in this case the software
cannot be optimized in terms of 257-bit multiplications, but only in terms of IF,, operations.
Moreover, to synchronize the operations with the pipeline, the state machine has to offer
the same number of operations as the pipeline size, as seen in Figure 9. Therefore, 8 IF),
multiplications have to be performed in parallel, since Carmela operates in a mode with
an 8-stage pipeline. On the other hand, F, addition/subtractions occur as 4 operations in
parallel, because Carmela operates in 4 pipeline stages. It is of course possible in both
cases to perform fewer operations, but the time it will take is the same as if they were 8/4

Xicr Yier Xep Yier XeaYeo Xe2Yios X3 Y3 X3 Y3 X2 Y, X2 Y, X1 Yp X1 Y Yo Xo
g T A A S L A A S S T L i L ’ibWE{Lﬂ
Le] e L] [+] eeel L+] [«] [+] [+1 [+]L[+
b b b §b L3l b cOs[¢b cly {§b co| b clyf ¢b <o b
S, S0, S1y., SGk_z..‘ S1; S03 S1, S0, s1, S0, b
COy.,
cly, I

Figure 7: The optimized wide adder architecture Add-Add-Multiplex (AAM) from Nguyen
et al. [NPP11]. In our implementation b = 2.

254 A Compact and Scalable Hardware/Software Co-design of SIKE

257
asign G A
2256, |57 Multiplier
514 56
b

5 stages

2
) 0 o ([v IVl
b sign B o L_] L_]
,256, %7 5 2
b

addition
reg_o
sign

Figure 8: The 8-stage pipeline multiplier accumulator Carmela256.

operations, since all parallel operations happen, but only the ones needed have the output
enabled.

To keep track of the operands and their addresses, an address resolution unit was
added together with the state machine and the Carmela pipeline in Figure 10. The address
resolution works by receiving an external base address that will be joined by the state
machine address to find the final address. The MAC RAM consists of 1024 words of 256
bits (2048 words of 128 bits for Carmela128), but for Carmela it is subdivided logically
as 256 operands of 1024 bits. Thus, it is cheaper to resolve the final address by just
appending two (three) bits into the least significant part of the base address. The base
address generator also has to behave as a 8/4-stage pipeline, since the base address has to
change together with their respective operands.

The state machine implements the operations addition/subtraction without reduction,
multiplication without reduction, iterative modular reduction, Montgomery multiplication
for any prime p up to 1016 bits, Montgomery multiplication for so-called “Montgomery-
friendly” primes p for which p’ = —p~! mod R is 1, and an optimized squaring variant
for each of the multiplications. The addition/subtraction with no reduction instruction
is straightforward. The iterative modular reduction is used whenever a public value is
between [—2p, 2p], in which case the procedure corrects to a value in the interval [0,p — 1].
This procedure is only applied to correct data in the very last processing stage.

The multiplication without reduction applies the product scanning method. In this
method, the multiplication is done by scanning the product output instead of the operands.
This is usually more expensive in terms of loop control logic, but in our case the loops are
unrolled. In the case of the Montgomery multiplication for Montgomery-friendly primes,
we apply the optimization technique presented in Costello et al. [CLN16], which exploits

L 256
7

256
7

Memory

[7

Figure 9: Pipeline with feedback to achieve F, operations.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 255

mem_one_din 256,
mem__two_din 256 ', |
= r <
mem_one_dout 256
external 7
) memory mem_two_dout 256 , Carmela pipeline
interface 7
numeber of addr_mem_one_din_dout 10’,
operations . 4
addr_mem_two_din_dout 10 ,
A2 < 7
10 10
base address a
addrs. a 58! base address Y \ , sm address a
¢ gen. a 8 7 >
a_sign —| sign gen. a addition sign a
—>
8
addrs. b ¢ base address (base address b
gen. b 8\ » _,sm address b
o> >&
>/ %

addr. prime ' -
8 prime
addr. prime+1 3 - 8
addr. prime_line prime'
8 > 8

C
base address o out sm enable_output
enable_out&> 8
& ——— base address S ® o~
gen. o enable output 2 sm address o
addrs. 08+>

_|control address |Sm control

gen.

Figure 10: Carmela256 with address resolution and memory interfaces.

the special form of SIDH/SIKE primes and save several multiplications by computing the
radix-2% Montgomery computation (a + (ap’ mod 2%) - p)/2* as (a + (a mod 2%) - p)/2",
when p’ = —p~! mod 2% =1 for a given word-size w, where a is the input and p = 2°23°3.
In our implementations, we include the optimization as a separate procedure in the state
machine, and only apply it to the SIDH/SIKE primes for which p’ = —p~! mod 2% = 1.
Concretely, we apply it to all the cases with exception of p434 and p503 on Carmela256
(i.e., when using w = 256). For both cases of the Montgomery multiplication, i.e., with
and without exploiting the special prime form, we apply a product-scanning method called
Finely Integrated Product Scanning (FIPS) by Kog et al. [KAKJ96].

In addition, the multiplication method that we apply is for signed numbers; not for
unsigned numbers, as usually seen in the literature. Montgomery multiplication with
signed numbers has been applied before in order to accelerate the multiplication process
for Radix-4 multipliers [HW00, TT03]. However, in our case by choosing signed numbers
instead of unsigned numbers, it is possible to avoid adding multiples of the prime during
the subtractions [Scol7]. Therefore, just as it is possible to use additions with no reduction,
the same happens with subtraction. In our case it was opted to apply the Montgomery
algorithm with more than 8 extra bits for all 4 primes, but in case it is necessary this value
can be increased.

The squaring operations are similar to the respective multiplication operations, except
that they are optimized for the same operand input. This optimization makes squares faster
than multiplications, yet this operation did not end up being used in the F,> operations.
This has to do with how the squaring in F,> works, which will be explained in Section 3.1.2
in more detail.

Because the state machine has many states (more than 300) we opted to design the
state machine as well, and not to use the tool’s generator. Figure 11 shows the state

256 A Compact and Scalable Hardware/Software Co-design of SIKE

program
) counter

start
address

control
> logic
Y 47
fin >

Figure 11: Optimized state machine to operate Carmela256.

machine as a ROM which stores all the instructions and a simple control mechanism. The
control mechanism is an adder that adds one to go for the next instruction, or adds a bigger
value in case a jump might be chosen. The jumps are usually when the algorithm takes a
different path, which in our case only happens because of the operand size. The algorithms
for operand sizes of 1, 2, 3 and 4 words share some parts, so instead of implementing the 4
algorithms separately we opted to optimize the number of states by trying to share some
instructions. The “fin” signal indicates when the last instruction has been executed, and
the state machine is ready for the next I, operation.

The 129-bit multiplier for Carmela128 has the same state machine strategy, it just
operates with operands of size up to 8, thus it has a lot more states than the 257-bit
multiplier. Because our strategy compacts the states into a ROM, the increase of resources
is negligible.

3.1.2 Extension field operations

As p = 3 mod 4, we have an isomorphism F,2 2 F, (i) where i* = —1. Fixing the basis
{1,i} of Fp2 as a 2-dimensional vector space over F,, we can represent any element
a = ag+ ay -i € Fp2 by the corresponding vector (agp,ai). In that case, for elements
a = (ag,a1) and b = (by, b1) in Fp2, the field operations are given by

a+b= a0+b0,a1+b1),

a—b= aobe;alibl)v

a® = ((ag+a1)-(ag—a1),2-ap-ay),

(

(
a-b=(ap-bo—ai-bi,a0-by+ai-by),

(

(a0~ (a2 + @), —ay - (a3 + @),

a~l=
where the operations on the right-hand side are in F,. We compute the operations in
F,2 directly using the equations above. That is, writing m, s, a and i for the cost of a
multiplication, squaring, addition/subtraction and inversion in FF,, respectively, and M, S,
A and I for the cost of a multiplication, squaring, addition/subtraction and inversion in
IFp2, respectively, we have M = 4m +2a, S = 2m + 3a, A = 2a and I = 2m + 2s + 2a + i.
Inversions in), are computed via Fermat’s Little Theorem using that t~t =t?=2 for any
(non-zero) t € F),. Note that we use projective coordinates for all elliptic-curve operations,
making the efficiency of the inversion operation of limited interest. We therefore favor
Fermat inversion over more complex methods such as the constant-time ged-based modular
inversion of Bernstein and Yang [BY19].

Typically, since multiplications are the most expensive operation in IF,,, implementations
perform multiplication in [F,2 at a cost of 3m + 5a by using the Karatsuba method [KO62].
However, this trade-off comes at the expense of more dependent operations (see Figure 12).
As depicted in Figure 12, the schoolbook method can be performed with a latency of
1m + la, while the Karatsuba method has a latency of 1m + 3a. Although the extra

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 257

a0 b0 a1l bl a0 al bo bl

Figure 12: F,>-multiplication — schoolbook (left), Karatsuba (right).

additions/subtractions do not contribute significantly to the total time of the multiplication,
the overhead is not negligible either. More importantly, the multiplier unit Carmela is
designed to perform 8 I, multiplications in parallel, fitting exactly 2 F,> operations if the
schoolbook method is adopted.

The square operation in I, is also not performed with the Karatsuba optimization,
nor schoolbook, but simply as a F,> multiplication. This is because the I, squaring
needs to perform at least one regular multiplication (i.e., ag - a1). Because the multiplier
always performs 8 F, multiplications in parallel, the cost of squaring by using the square
operation will be higher than using the regular multiplication directly. For this reason, we
do not use the optimized IF,» squaring in this case.

In terms of improvements, there are several possibilities and trade-offs. One possibility
is to implement a pipeline aimed for the Karatsuba method. In this case, one would need
6 stages if aiming at two [F2 operations in parallel, or even 3 stages for one operation at a
time. It is also possible to reduce the pipeline to 4 stages and limit it to one operation
at a time using the schoolbook algorithm. Note that reducing the number of stages
would increase the time each cycle takes, with the control instructions having a bigger
contribution in the total time. Another potential modification in our architecture is not
to have the multiplier output the multiplication with one value, but instead the carry
save notation, and then having only one large adder that is used in conjunction with the
accumulator. Other ideas involve the design of a basic 64-bit MAC instead of relatively
large 128- and 256-bit MACs, and the direct implementation of the [, arithmetic in the
state machine.

3.2 Instruction set and memory arrangement

The template for the instructions of the main processor is depicted in Figure 13. The
main processor instructions should have the two most significant bits (63 and 62) be zero,
otherwise it is a coprocessor instruction. The 61st bit is reserved and should be 0, while
the next 6 bits (60 to 55) are used to infer the instruction type. The input operands are
identified between bits 0 to 18 and 19 to 37 for “a” and “b”, respectively. The output
operand “0” is determined by bits 38 to 54. For each input operand there is the “Cx” flag
on bits 16 and 35 respectively, which distinguishes the value “mem(a,b)” as a constant or a
memory address. The bit “Dir” indicates when the operand value is a memory address that
contains the value applied in the operation or if the operand value is a memory address
that points to the memory address that has the real value. Finally, the bit “Sign” shows
if the operand values are signed or unsigned. Not all bits are active in all instructions,
since the SIKE protocol does not need all possible combinations. By not implementing all
possible options we reduce the amount of resources in the decoding unit.

Some of the main instructions have different variations according to which operand is
going to be used. For example, the push instruction has variants “pushf” and “’pushm”.
The appended “f” and “m” indicate instructions for 256-bit data (or 128-bit data for
Carmela128) and operands up to 1024 bits, respectively. The regular push instruction will

258 A Compact and Scalable Hardware/Software Co-design of SIKE

take a 16 bits value and push into memory. The “f” variant is meant to be applied to the
MAC RAM values, that can be addressed in 1024 words of 256 bits (or 2048 words of 128
bits for Carmelal128). However, most of the time we are not working on the bare 256 or
128-bit words, but on the IF,, operands which can be any 256-bit or 128-bit multiple (up to
1024 bits). For those cases, the preferred instruction is the one that ends with an “m”, as
it will work directly with operand values. For the full set of instructions of the main unit
we refer to Figure 17 in the Appendix.

The instruction template for the coprocessor Carmela is shown in Figure 14. The
Carmela coprocessor instruction is identified as “01” in bits 63 to 62. Because Carmela
has fewer instructions, only 4 bits are used to identify the type with 2 inputs and 1 output.
Just as in the main instruction template, the bit “Dir” is used to distinguish values that
hold memory addresses or values that hold a memory address that points to the effective
memory address. The “Dir” bit is also used to show if the output is disabled or not
by setting it as 1 and “mo” as 0. The bit “Sign” in this case is not used to identify an
operation as signed or unsigned, but to distinguish addition and subtraction during the
addition/subtraction instruction (mo = mb + ma). Since addition/subtraction instructions
only need 4 operations in parallel, the instruction in this case only uses the first 4 operands
(0 to 3). The instruction operand not used for addition/subtraction could be optimized to
not have the “Sign” bit, but it was added to the instruction for consistency. The “’Dir” bit
can also work with the “RD register 0” least significant bit (LSB) or most significant bit
(MSB). In this mode, the “RD register 0” bit replaces the LSB in the instruction memory
value. This makes it possible to change which pointer will be used depending of the “RD
register 0” bit.

In order to be able to perform all 8/4 operations in parallel Carmela instructions must
be loaded serially. Therefore, all 8/4 operations are loaded one after another. In case one
wants to perform fewer operations, it is still necessary to load all 8/4 operations, but the
ones not used should have the output disabled.

The internal small bus can access all SIKE components through a 16-bit address region,
which is detailed in Figure 15. The first positions belong to the MAC RAM, which includes
some reserved space in case it is necessary to increase its size. The program part holds
the SIKE processor instructions. The ALU RAM is the area used for control and to
perform the isogeny tree algorithm of SIDH. The KECCAK core memory positions are to
send/receive data and commands to the core. The status register only shows if the SIKE
processor is free or not. Operands size is for the size of the operands primes (0 = up to 256,
1 = up to 512, 2 = up to 768, 3 = up to 1024, and in the case of Carmela128 the values
go from 0 to 7 up to 1024). The flag is another register that is used to help debug the
processor, which can be also seen as the external communication output of the processor.

The program counter register has two purposes. The first is to keep track of the current
instruction address, and the second purpose is to start any procedure inside the SIKE
processor. For example, if the desired function to run is in position 3 of the program
memory, we just write in the program counter register the value 3 and it will start the
execution. The execution continues until a last instruction called “fin” is executed, then
the processor stops and waits until a new value is written on the program counter. For the
full set of instructions of the coprocessor we refer to Figure 18 in the Appendix.

main append main
flag PP internal operand o operand b operand a
63 62 61 60...55 | 54 | 53... 38 37 |36 |35 |34...19 18 |17 |16 | 15...0
00 0 type Dir memo Sign | Dir | Cx memb Sign | Dir [Cx | mema

Figure 13: Main instruction template for the SIKE processor.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 259

carmela append carmela
flag pp internal operand o operand b operand a
63 62 | 61... 59 58...55 [54 | 53..38 |37 |36 |35 |34..19 18 |17 |16 | 15...0
01 000 type Dir Mo 0 | Dir | En Mb Sign | Dir | En Ma

Figure 14: Instruction template for the coprocessor Carmela.

3.3 Software elliptic curve and isogeny computations

As discussed in Section 3, elliptic curve and isogeny computations, including the three-point
differential ladder and large-degree isogeny computation, are done in software; see Figure 2.
Our software implementation is very similar to the C implementation of SIKE in the
SIDH library [CLN18], since we use the same structure of function calls to implement key
generation, encapsulation and decapsulation. The only difference is that we optimize the
isogeny computation, three-point differential ladder and field inversion to perform two F,2
operations in parallel whenever possible. Only in very few instances do we have to perform
one [F,2 operation at a time.

Because the entire underlying arithmetic described in Section 3.1 executes in a constant
amount of clock cycles, and the software uses constant-time routines exactly like in the C
implementation of the SIDH library, our implementation is also constant-time. The only
source of timing variability is the parameter size, since the arithmetic unit operates in
multiples of 256 for Carmela256 and 128 for Carmelal28. However, these sizes are public
and do not leak sensitive information. For the three-point differential ladder (the only
function that directly handles the secret key), we always assume the maximum number of
bits for the expected secret. Some timing variable components like caches are not present,
and memory accesses take the same amount of time irregardless of the position. Finally,
the main CPU itself is also constant time, since all instructions take the same amount of
time and every instruction waits for the previous one to finish before starting.

Although the design is constant-time, it is not safe against differential side-channel
attacks like DPA. In those cases it is necessary to apply countermeasures such as scalar
and projective coordinate randomization to the ladder steps. These countermeasures
can be implemented in software together with a random number generator in the archi-
tecture. It is worthy to mention that some previous works already implemented such
countermeasures [KAK'19].

16

0x0000

MAC RAM
OXTFFF
0x8000

Reserved

ALU RAM

OxBFFF
0xC000

OxC3FF
0xC400

OXCFFF
0xD000

Reserved

Keccak
0xD007
0xD008

Reserved
OxDFFF

oxeooo | Program counter
o001 | Status

oxeoo2 | Operands size
0xe003 | Prime' =1

oxe004 | Prime address
0005 | Prime+1 address
0006 | Prime' address
oxe007 | Stack init address
oxkoos | Flag address
0009 | Scalar init address

OxEQ0A

Reserved
OxFFFF

Figure 15: Memory arrangement of the SIKE processor.

260 A Compact and Scalable Hardware/Software Co-design of SIKE

VHDL
Optimized C

code
code \ High level | |Hardware close
Sage code Sage code
Specification / FPGA

Figure 16: How the testing and coding was done for VHDL.

4 Results and Analysis

The entire hardware architecture was described and tested on VHDL. To test the imple-
mentations we used the procedure depicted in Figure 16. The SIKE protocol was first
implemented in Python with the Sage environment [Thel7] for testing purposes. Then a
second Sage code that mimics the procedures used by the hardware, like the Montgomery
multiplication, was done and then tested against the higher level Sage code. Finally, the
same tests applied to test the second Sage code itself were used to test the VHDL code.
When the VHDL was simulated, the code was synthesized in the Zynq platform and then
the same tests used for the VHDL were applied. All tests were done in parts, testing each
function separately. This approach eased the debugging process of the architecture.

The post-place and route results that we obtained for our architectures with Xilinx
ISE 14.7 (Virtex 7 and Artix 7) and Vivado 2019.1 (Zynq 7020) are displayed in Table 2.
For our tests on the Zynq platform, we used a Zedboard development kit [Avn19]. For
Artix 7, which is the platform recommended by NIST in the ongoing PQC standardization
process [Mool9], we used an Arty A7 development kit [Digl9] that contains the Artix
7 FPGA model XC7A100TCSG324-3. For Virtex 7, we targeted the FPGA model
XC7V690T, which was chosen to ease comparisons with previous work by Koziel et
al. [KAMK16, KAMK18, KAK*19] and Roy and Mukhopadhyay [RM19].

Table 2 nicely illustrates the effect of using each of our two Carmela options. As
expected, the 128-bit architecture consumes significantly fewer slices and DSPs, reflecting
the fact that the Carmela unit needs less logic, multipliers and registers. It also requires
fewer BRAMSs, due to the reduced bandwidth: to retrieve one 128-bit word we need 4
BRAMs of 32 bits, while for 256 bits we need twice that number. In the case of the
operating frequency, the Carmelal28-based architecture only achieves a slightly higher
frequency, given that the entire control mechanism remains expensive even though the
Carmela unit is smaller.

Table 2: Resources required for the Carmelal128 and Carmela256-based architectures on
several platforms. The max period is measured in nanoseconds (ns).

Mul. FPGA Slices LUTs FFs BRAMs DSPs Max period
128 Virtex 7 690T 3415 10937 7132 21 57 6.570
Artix 7 100T 3512 10976 7115 21 57 6.993
956 Virtex 7 690T 7408 21210 13657 38 162 7.034
Artix 7 100T 7491 22595 11558 37 162 9.181

Timing results for F,, operations. We begin by presenting the intermediate cycle counts
for the F, operations performed by Carmelal28 and Carmela256 (i.e., multiplication,
squaring and addition/subtraction, see Table 3). Since we aimed at always performing 2
IF 2 operations in parallel, the multiplication and squaring operations execute 8 F, multi-
plications resp. squarings in parallel, while addition/subtraction and iterative reduction
perform 4 operations in parallel. We refer to Section 3.1.2 for more details.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 261

Table 3: Cycle counts of F,, operations for the Carmela128 and Carmela256-based archi-
tectures. The top column shows the maximum bit size of the operands. The operations that
use the multiplier: multiplication (Mult.) and squaring (Square) with/without modular
reduction (red.) perform 8 operations in parallel. The cycles are measured after all 8
outputs have been written to memory. The addition/subtraction (Add/Sub) and iterative
reduction only operate on 4 inputs.

Mul. Operation 126 254 382 510 638 766 894 1022
Mult. no red. 18 42 82 138 210 298 402 522
Mult. with red. 42 90 178 298 450 634 850 1098
Mult. with red. p’ =1 - 58 130 234 330 490 626 842
128 Square no red. 18 34 58 90 130 178 234 298
Square with red. 42 82 154 250 370 514 682 874
Square with red. p’ =1 — 50 106 186 250 370 458 618
Add/Sub no red. 10 14 18 22 26 30 34 38
Iterative red. 22 34 46 58 70 82 94 106
Mult. no red. 18 18 42 42 82 82 138 138
Mult. with red. 42 42 90 90 178 178 298 298
Mult. with red. p’ =1 — - 58 58 130 130 234 234
956 Square no red. 18 18 34 34 58 58 90 90
Square with red. 42 42 82 82 154 154 250 250
Square with red. p’ =1 - - 50 50 106 106 186 186
Add/Sub no red. 10 10 14 14 18 18 22 22
Iterative red. 22 22 34 34 46 46 58 58

As Carmelal28 and Carmela256 support arbitrary primes (i.e., not only SIKE primes),
we can compare the results of the multiplication routine with existing ECC literature.
For example, Jarvinen et al. [JMAL16] construct a 127-bit solution consisting of a 64-bit
pipelined multiplier accumulator that has 7 stages, for support of the FourQ [CL15] curve
defined over a quadratic extension of Fo127_1. As such, it supports up to 7 multiplications in
parallel and achieves a latency of 20 cycles per multiplication with 16 DSPs. For comparison,
Carmelal28 requires 42 cycles for 8 multiplications (5.25 cycles per multiplication) with
57 DSPs. We achieve similar speed/area, where we lean more towards area to be able to
support larger primes at low latency as well. The 256-bit version Carmela256 also takes
42 for cycles for 8 multiplications with 162 DSPs, though it is clearly too large for the
intended prime size.

Similarly, Sasdrich and Giineysu [SG17] aim for a specific 448-bit prime to support
Curve448 [LHT16]. They achieve 36 cycles per multiplication with 33 DSPs. In our case,
Carmelal28 takes 298 cycles for 8 multiplications (37.25 cycles per multiplication) at a
cost of 57 DSPs, while Carmela256 requires 90 cycles for 8 multiplications (11.25 cycles
per multiplication) at the cost of 162 DSPs. As was the case for the work of Jarvinen et
al. [JMAL16], we note that the modular reductions from Sasdrich and Giineysu significantly
benefit from the simple prime structure, which we do not exploit so as to be able to support
all primes up to 1022 bits.

Comparison with other SIDH/SIKE implementations. We compare our SIKE results
with other results in the literature in Table 4. We focus on the Virtex 7 690T platform
because, to our knowledge, it has been the only target of previous SIDH and SIKE
implementations. As advertised, existing works [KAMK16, KAMK18, ACCT19b, RM19,
KAK™19] achieve high-speed at the expense of a much higher amount of resources. For
example, in comparison with our 256-bit architecture, the most recent SIKE implementation

262 A Compact and Scalable Hardware/Software Co-design of SIKE

Table 4: Comparison of SIKE implementations on the Xilinx Virtex 7 690T. The frequency
(“Freq.”) is measured in Megahertz (MHz) and the total time (Encaps + Decaps for
SIKE, a full ephemeral key exchange for SIDH) in milliseconds (ms). The ST resp. DT
column displays the number of slices and DSPs respectively times the time divided by 1000,
rounded to the nearest multiple of 1000 resp. 100. Our architecture works directly for any
parameter set pXXX for XXX € {434,503,610, 751} and does not need to be reprogrammed.
Works emphasized with a symbol only implement SIDH, while the others do SIKE.

Reference Par. Slices DSP BRAM Freq. Time ST DT

e D503 8918 192 40.0 1814 209 186 4.0
[KAMKIOIT oy 11801 282 470 1773 463 546 13.1
feqslt PS03 7491 192 435 2021 165 124 3.2
[KAMKIS[T oy 11977 288 60.5 2049 364 410 105
[RM19]f p7561 18711 294 225 2257 31.6 591 9.3
[ACCT19b] p751 16756 376 56.5 198.0 334 560 12.6
N p503 9514 264 34.0 1712 136 129 3.6
[KAKTIL D7t 17530 512 435 1674 269 472 13.8

504 172 2.9 (p434)

59.5 203 3.4 (p503)

Ours (128) pXXx 3415 57 20152200 366 61 (3610)

179.6 613 10.2 (p751)

24.3 180 3.9 (p434)

28.7 212 4.6 (p503)

Ours (256) pXXX 7408 162 B0 122 e sl g (3610)

60.8 450 9.8 (p751)

by [KAKT19] is 53% and 56% faster for SIKEp503 and SIKEp751, respectively. However, for
the largest parameter set (i.e., SIKEp751) our architecture requires up to 58% fewer slices,
13% fewer BRAMs and 68% fewer DSPs. We remark that DSPs are significantly expensive
hardware resources. Moreover, our architecture supports all four different SIKE parameters
sets (and any other primes if necessary), while that of [KAK™19] only supports SIKEp751
unless the device is reprogrammed. For our 128-bit architecture, the implementation
of [KAK™19] is 77% and 85% faster for SIKEp503 and SIKEp751 respectively, but we need
81% fewer slices, 52% fewer BRAMSs and 89% fewer DSPs to support SIKEp751 (and other
parameter sets).

Since we present a speed/area trade-off, we also include a proper metric to compare
against existing literature. As previous work used the product of slices and time (ST) as a
measure, we include this as well. In this metric, Carmela256 has fairly similar performance
to Carmelal28, but scales much better to larger primes, as can be seen from the results
for SIKEp751. In comparison to the best recent work on SIKE [KAK™19] we do worse for
SIKEp503, but can see that Carmela256 achieves a more favorable trade-off than [KAK™19)
for SIKEp751. However, we note that this metric excludes the expensive DSP resources.
For that purpose, we also include the product of DSPs and time (DT) as a metric. In
that case Carmelal28 performs better than Carmela256 for the smaller SIKE primes,
while Carmela256 is superior for SIKEp751. We also observe that Carmelal28 achieves
better results than the work of Koziel et al. [KAK™'19], while Carmela256 outperforms it
for SIKEp751. The work of Roy and Muhopadhyay [RM19] has even better results than
Carmela256 for SIKEp751, though it is worse in the ST metric. We emphasize that neither
of the metrics provides a complete picture; the relevant trade-off depends on the context

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 263

Table 5: Comparison of PQC implementations on the Xilinx Artix 7 100T. The frequency
(“Freq.”) is measured in Megahertz (MHz), the total time (Encaps + Decaps for BIKE,
FrodoKEM and SIKE, a full ephemeral key exchange for NewHope) in milliseconds (ms).
Our architecture works directly for any parameter set pXXX for XXX € {434,503, 610, 751}
and does not need to be regenerated.

Reference Algorithm Slices DSPs BRAMs Freq. Time
NewHope-Simple 1708 2 4 125.0
[0G19] (Server/Client) 1483 2 4 117.0 29
[ABB*19] BIKE 1559 - 13 161.3 10.2
FrodoKEM-640 1855 1 11 167.0
[HOKG13] (Encaps/Decaps) 1992 1 16 162.0 10.0
53.6 (p434)
63.4 (p503)
Ours (128) SIKE 3512 57 21 143.0 114.1 (p610)
191.2 (p751)
31.7 (p434)
37.4 (p503)
Ours (256) SIKE 7491 162 37 108.9 67.6 (p610)
79.3 (p751)

in which the architecture is used and the relative cost of the different components.

A similar trade-off can be observed against works only implementing the SIDH protocol,
such as [KAMKI18] and [RM19]. In this case, however, one needs to take into account some
additional costs to support SIKE, including the use of the KECCAK core to implement
SHAKE-256.

We note that [KAKT19] includes two countermeasures against differential power analy-
sis, namely, scalar randomization and projective coordinate randomization. These tech-
niques, which are applied during key generation and decapsulation, exhibit a very small over-
head and are easy to implement in the proposed architectures using our hardware/software
co-design. As stated before, unlike previous results our architectures can work on all four
currently available primes (and any other future prime as long as it is smaller than 1016
bits) without having to be re-synthesized. For any new prime, only the relevant constants
and public parameters need to be uploaded.

Comparison with other PQC implementations. We compare our SIKE results with
other representative post-quantum key-exchange algorithms in the literature in Table 5.
We focus on the Artix 7 100T platform, which is widely used and has been recommended
by NIST in the ongoing PQC standardization process.

As can be seen, SIKE demands more resources and is computationally more expensive
than competing alternatives. However, it should be noted that the proposed architectures
advance the state-of-the-art and reduce that gap significantly, arguably demonstrating that
SIKE, which features the smallest public keys in the NIST PQC process, can be efficiently
implemented for embedded applications.

5 Conclusions and Future Work

We presented the first hardware/software co-design for the SIKE scheme, and the first
hardware implementation of the new round 2 parameters SIKEp434 and SIKEp610 (in

264 A Compact and Scalable Hardware/Software Co-design of SIKE

addition to SIKEp503 and SIKEp751). In contrast to earlier works, we focus on compactness
and scalability instead of raw speed. We believe this presents interesting new trade-offs;
the 128-bit architecture is roughly 80% smaller and slower, while the 256-bit design is
about 55% smaller and slower compared to existing implementations. Besides being
more compact, the co-design approach leads to attractive scalability properties. For any
prime p of at most 1016 bits we support F,, and F,> arithmetic, and any SIDH and SIKE
implementation built on top of it. Therefore, instead of regenerating the circuit to change
parameter sets we can simply upload the respective SIKE constants and public parameters.
In particular, this makes it very easy to update the parameters sets defined in Round 2 of
SIKE’s NIST submission if they are modified for Round 3.

Moreover, the proposed coprocessor can also be used for performing the prime field
arithmetic used in classical elliptic-curve cryptography. For example, adding a single
additional routine in software can very cheaply lead to support of discrete-log-based
protocols via the Montgomery curve “BigMont” proposed in [CLN16] or any of the classical
prime-field curves standardized by NIST [Nat13]. Combining this with SIKE gives rise to
a hybrid protocol that may be of serious interest while post-quantum protocols are still
being analyzed and standardized. Though out of scope for this work, we consider this an
interesting research direction.

Another interesting line of research would be to include more extensive side-channel
countermeasures. Although our implementation is constant-time and, as such, protected
against simple side-channel and timing attacks, more sophisticated countermeasures would
include those that protect against more advanced attacks. We also consider these to be out
of scope for this work, but believe the hardware/software co-design makes some obvious
candidates (e.g., projective coordinate and scalar randomization) straightforward to adopt.

Finally, the instruction set was designed to provide the operations needed for the
SIDH/SIKE functions, but should also work with other programs or procedures. Future
work could involve the change of the instruction set to a well-known and widely adopted
ISA, such as RISC-V.

Acknowledgments

We would like to thank the TCHES reviewers for their useful comments and feedback. We
also thank Xilinx for the University license used during the synthesis and simulation of our
architecture. Lejla Batina, Pedro Maat C. Massolino and Joost Renes were supported by the
Technology Foundation STW (project 13499 - TYPHOON), from the Dutch government.

References

[ABBT19] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Giineysu, C. A. Melchor, R. Mis-
oczki, E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, , and G. Zé-
mor. Bit Flipping Key Encapsulation — Submission to Round 2 of NIST’s
Post-Quantum Cryptography Standardization Process, 2019. Available at
https://bikesuite.org.

[ACC*T17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular Isogeny Key Encapsulation — Submis-
sion to the NIST’s Post-Quantum Cryptography Standardization Process,
2017. Available at https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/SIKE. zip.

https://bikesuite.org
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 265

[ACC*19a]

[ACC*19b)

[AFJ14]

[AJK*16]

[Avn19]

[BDPVA12]

[BJS14]

[BY19]

[CH17]

[CIL*17]

[CL15]

Gora Adj, Daniel Cervantes-Vazquez, Jestus-Javier Chi-Dominguez, Alfred
Menezes, and Francisco Rodriguez-Henriquez. On the Cost of Computing
Isogenies Between Supersingular Elliptic Curves. In Carlos Cid and Michael
J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018, volume
11349 of Lecture Notes in Computer Science, pages 322—-343. Springer, 2019.

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil
Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular Isogeny Key Encapsulation — Submission to
Round 2 of NIST’s Post-Quantum Cryptography Standardization Process,
2019. Available at https://sike.org.

Reza Azarderakhsh, Dieter Fishbein, and David Jao. Efficient Implementations
of A Quantum-Resistant Key-Exchange Protocol on Embedded systems. Tech-
nical report, Center for Applied Cryptographic Research (CACR) — University
of Waterloo, 2014. Available at http://cacr.uwaterloo.ca/techreports/
2014/cacr2014-20.pdf.

Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher
Leonardi. Key Compression for Isogeny-Based Cryptosystems. In Keita Emura,
Goichiro Hanaoka, and Rui Zhang, editors, ACM International Workshop on
ASIA Public-Key Cryptography (AsiaPKC 2016), pages 1-10. ACM, 2016.

Avnet. Zedboard, 2019. http://zedboard.org/product/zedboard.

Guido Bertoni, Joan Daemen, Michagl Peeters, and Gilles Van Assche. Keccak
in VHDL, 2012. https://keccak.team/hardware.html.

Jean-Francois Biasse, David Jao, and Anirudh Sankar. A Quantum Algorithm
for Computing Isogenies between Supersingular Elliptic Curves. In Willi Meier
and Debdeep Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT
2014, volume 8885 of Lecture Notes in Computer Science, pages 428-442.
Springer, 2014.

Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. TACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340-398, May 2019.

Craig Costello and Hiiseyin Hisil. A Simple and Compact Algorithm for SIDH
with Arbitrary Degree Isogenies. In Advances in Cryptology - ASITACRYPT
2017, volume 10625 of Lecture Notes in Computer Science, pages 303—-329.
Springer, 2017. https://ia.cr/2017/504.

Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. Efficient Compression of SIDH Public Keys. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- FUROCRYPT 2017, volume 10210 of Lecture Notes in Computer Science,
pages 679-706. Springer, 2017.

Craig Costello and Patrick Longa. FourQ: Four-Dimensional Decompositions
on a Q-curve over the Mersenne Prime. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology — ASTACRYPT 2015, pages 214-235, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

https://sike.org
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
http://zedboard.org/product/zedboard
https://keccak.team/hardware.html
https://ia.cr/2017/504

266

A Compact and Scalable Hardware/Software Co-design of SIKE

[CLN16]

[CLN18]

[CLN*19]

[DG16]

[Dig19]

[FJP14]

[FO13]

[Gall8]

[GPS17]

[GPST16]

[HHK17]

[HOKG18]

[HWOO]

Craig Costello, Patrick Longa, and Michael Nachrig. Efficient Algorithms for
Supersingular Isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016, volume 9814 of
Lecture Notes in Computer Science, pages 572—601. Springer, 2016.

Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library. https:
//github.com/Microsoft/PQCrypto-SIDH, 2016-2018.

Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando
Virdia. Improved Classical Cryptanalysis of the Computational Supersingular
Isogeny Problem, 2019. Available at https://eprint.iacr.org/2019/298.
pdf.

Christina Delfs and Steven D. Galbraith. Computing isogenies between
supersingular elliptic curves over F,,. Des. Codes Cryptography, 78(2):425-440,
2016.

Digilent. Arty A7: Artix-7 FPGA Development Board for Makers and Hob-
byists, 2019. https://store.digilentinc.com/arty-a7-artix-7-fpga-
development-board-for-makers-and-hobbyists/.

Luca De Feo, David Jao, and Jérome Plit. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. J. Mathematical
Cryptology, 8(3):209-247, 2014.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric
and Symmetric Encryption Schemes. J. Cryptology, 26(1):80-101, 2013.

Steven D. Galbraith. Authenticated key exchange for SIDH, 2018. Available
at https://eprint.iacr.org/2018/266.pdf.

Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification Pro-
tocols and Signature Schemes Based on Supersingular Isogeny Problems. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASI-
ACRYPT 2017, volume 10624 of Lecture Notes in Computer Science, pages
3-33. Springer, 2017.

Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On
the Security of Supersingular Isogeny Cryptosystems. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASTACRYPT 2016,
volume 10031 of Lecture Notes in Computer Science, pages 63-91, 2016.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A Modular Analysis
of the Fujisaki-Okamoto Transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography (TCC 2017), volume 10677 of Lecture Notes
in Computer Science, pages 341-371. Springer, 2017.

James Howe, Tobias Oder, Markus Krausz, and Tim Gilineysu. Standard
lattice-based key encapsulation on embedded devices. TACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):372-393, 2018.

Jin-Hua Hong and Cheng-Wen Wu. Radix-4 modular multiplication and ex-
ponentiation algorithms for the RSA public-key cryptosystem. In Proceedings
2000. Design Automation Conference. (IEEE Cat. No.00CH37106), pages
565-570, June 2000.

https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://eprint.iacr.org/2019/298.pdf
https://eprint.iacr.org/2019/298.pdf
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://eprint.iacr.org/2018/266.pdf

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 267

[JF11]

[JMAL16]

[JS14]

[JS19]

[KAK*19]

[KAKJ96]

[KAMK16]

[KAMK18]

[KJA*16]

[KOG2]

[LHT16]

[Lon18]

David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography (PQCrypto 2011), volume 7071 of Lecture Notes in
Computer Science, pages 19-34. Springer, 2011.

Kimmo Jéarvinen, Andrea Miele, Reza Azarderakhsh, and Patrick Longa.
FourQ on FPGA: New Hardware Speed Records for Elliptic Curve Cryptogra-
phy over Large Prime Characteristic Fields. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems — CHES
2016, pages 517-537, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

David Jao and Vladimir Soukharev. Isogeny-Based Quantum-Resistant Un-
deniable Signatures. In Michele Mosca, editor, Post-Quantum Cryptography
(PQCrypto 2014), volume 8772 of Lecture Notes in Computer Science, pages
160-179. Springer, 2014.

Samuel Jaques and John M. Schanck. Quantum Cryptanalysis in the RAM
Model: Claw-Finding Attacks on SIKE. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019, volume 11692
of Lecture Notes in Computer Science, pages 32-61. Springer, 2019.

Brian Koziel, A.-Bon Ackie, Rami El Khatib, Reza Azarderakhsh, and
Mehran Mozaffari Kermani. SIKE’d up: Fast and secure hardware archi-
tectures for supersingular isogeny key encapsulation, 2019. Available at
https://eprint.iacr.org/2019/711.pdf.

Cetin K. Kog, Tolga Acar, and Burton S. Kaliski Jr. Analyzing and comparing
Montgomery multiplication algorithms. Micro, IEEE, 16(3):26-33, Jun 1996.

Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Fast Hard-
ware Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange on
FPGA. In Orr Dunkelman and Somitra Kumar Sanadhya, editors, Progress in
Cryptology - INDOCRYPT 2016, volume 10095 of Lecture Notes in Computer
Science, pages 191-206. Springer, 2016.

Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. A
High-Performance and Scalable Hardware Architecture for Isogeny-Based
Cryptography. IEEE Transactions on Computers, pages 1594-1609, 2018.
https://doi.org/10.1109/TC.2018.2815605.

Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran
Mozaffari-Kermani. NEON-SIDH: Efficient Implementation of Supersingular
Isogeny Diffie-Hellman Key Exchange Protocol on ARM. In Sara Foresti and
Giuseppe Persiano, editors, Cryptology and Network Security (CANS 2016),
volume 10052 of Lecture Notes in Computer Science, pages 88-103. Springer,
2016.

A. Karatsuba and Yu. Ofman. Multiplication of Many-Digital Numbers by
Automatic Computers. In Proceedings of the USSR Academy of Sciences,
pages 293-294, 1962.

Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for Security.
RFC 7748, RFC Editor, 2016.

Patrick Longa. A note on post-quantum authenticated key exchange from
supersingular isogenies, 2018. Available at https://eprint.iacr.org/2018/
267 . pdf.

https://eprint.iacr.org/2019/711.pdf
https://doi.org/10.1109/TC.2018.2815605
https://eprint.iacr.org/2018/267.pdf
https://eprint.iacr.org/2018/267.pdf

268

A Compact and Scalable Hardware/Software Co-design of SIKE

[Moo19]

[Nat13]

[Nat15)

[Nat18a]

[Nat18b)

[NPP11]

[NR19]

[0G19]

[Pet17]

[PK16]

[PSW02]

[Renl8]

Dustin Moody. Round 2 of the NIST PQC “Competition” -
What was NIST thinking?, 2019. Presentation PQCrypto 2019,
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-
the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-
may2019-moody . pdf.

National Institute for Standards and Technology. Federal Information Pro-
cessing Standards Publication 186-4. Digital signature standard. Technical
report, NIST, 2013.

National Institute for Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Technical report,
NIST, 2015.

National Institute of Standards and Technology (NIST). Post-Quantum
Cryptography Standardization, 2017-2018. https://csrc.nist.gov/
projects/post-quantum-cryptography/post-quantum-cryptography-
standardization.

National Institute of Standards and Technology (NIST). Post-Quantum Cryp-
tography Standardization — Round 1 Submissions, 2018. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

H. D. Nguyen, B. Pasca, and T. B. Preufler. FPGA-Specific Arithmetic
Optimizations of Short-Latency Adders. In 2011 21st International Conference
on Field Programmable Logic and Applications, pages 232237, Sept 2011.
http://dx.doi.org/10.1109/FPL.2011.49.

Michael Naehrig and Joost Renes. Dual Isogenies and Their Application
to Public-key Compression for Isogeny-based Cryptography. In Advances
in Cryptology - ASTACRYPT 2019 (to appear), 2019. Available at https:
//eprint.iacr.org/2019/499.pdf.

Tobias Oder and Tim Giineysu. Implementing the NewHope-Simple key
exchange on low-cost FPGAs. In Tanja Lange and Orr Dunkelman, editors,
Progress in Cryptology - LATINCRYPT 2017, volume 11368 of Lecture Notes
in Computer Science, pages 128-142. Springer, 2019.

Christophe Petit. Faster Algorithms for Isogeny Problems Using Torsion
Point Images. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology - ASIACRYPT 2017, volume 10625 of Lecture Notes in Computer
Science, pages 330-353. Springer, 2017.

Thomas B. Preufler and Markus Krause. Survey on and re-evaluation of wide
adder architectures on FPGAs. In International Conference on ReConFig-
urable Computing and FPGAs, ReConFig 2016, Cancun, Mexico, November
30 - Dec. 2, 2016, pages 1-6, 2016. https://doi.org/10.1109/ReConFig.
2016.7857189.

Matthew R. Pillmeier, Michael J. Schulte, and E. George Walters. Design
alternatives for barrel shifters. Proceedings of SPIE - The International
Society for Optical Engineering, 4791:436-447, 12 2002. https://doi.org/
10.1117/12.452034.

Joost Renes. Computing Isogenies Between Montgomery Curves Using the
Action of (0,0). In PQCrypto, volume 10786 of Lecture Notes in Computer
Science, pages 229-247. Springer, 2018. https://ia.cr/2017/1198.

https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.1109/FPL.2011.49
https://eprint.iacr.org/2019/499.pdf
https://eprint.iacr.org/2019/499.pdf
https://doi.org/10.1109/ReConFig.2016.7857189
https://doi.org/10.1109/ReConFig.2016.7857189
https://doi.org/10.1117/12.452034
https://doi.org/10.1117/12.452034
https://ia.cr/2017/1198

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 269

[RM19]

[RMIT14]

[ScolT]

[SG17]

[Si109]

[STA19]

[SLLH18]

[Thel7]

[TTO03]

[YAJ+17]

[ZSJP+18]

Debapriya Basu Roy and Debdeep Mukhopadhyay. Post Quantum ECC
on FPGA Platform. Cryptology ePrint Archive, Report 2019/568, 2019.
https://eprint.iacr.org/2019/568.

D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi. Tile before multi-
plication: An efficient strategy to optimize DSP multiplier for accelerating
prime field ECC for NIST curves. In 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1-6, June 2014.

Michael Scott. Slothful reduction. Cryptology ePrint Archive, Report
2017/437, 2017. https://eprint.iacr.org/2017/437.

P. Sasdrich and T. Giineysu. Cryptography for next generation TLS: Imple-
menting the RFC 7748 elliptic Curved48 cryptosystem in hardware. In 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6,
June 2017.

Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics. Springer-Verlag New York, 2009.

Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. SIKE Round 2 Speed
Record on ARM Cortex-M4, 2019. Available at https://eprint.iacr.org/
2019/535. pdf.

Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. SIDH on ARM: Faster
Modular Multiplications for Faster Post-Quantum Supersingular Isogeny Key
Exchange. TACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2018(3):1-20, 2018. https://ia.cr/2018/700.

The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.1), 2017. http://www.sagemath.org.

A. F. Tenca and L. A. Tawalbeh. An efficient and scalable radix-4 modular
multiplier design using recoding techniques. In The Thrity-Seventh Asilomar
Conference on Signals, Systems Computers, 2003, volume 2, pages 1445-1450
Vol.2, Nov 2003.

Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A Post-quantum Digital Signature Scheme Based on Supersingular
Isogenies. In Aggelos Kiayias, editor, Financial Cryptography and Data
Security (FC 2017), volume 10322 of Lecture Notes in Computer Science,
pages 163-181. Springer, 2017.

Gustavo H. M. Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira,
Javad Doliskani, and Paulo S. L. M. Barreto. Faster Isogeny-Based Compressed
Key Agreement. In Tanja Lange and Rainer Steinwandt, editors, Post-
Quantum Cryptography, pages 248-268, Cham, 2018. Springer International
Publishing. https://doi.org/10.1007/978-3-319-79063-3_12.

https://eprint.iacr.org/2019/568
https://eprint.iacr.org/2017/437
https://eprint.iacr.org/2019/535.pdf
https://eprint.iacr.org/2019/535.pdf
https://ia.cr/2018/700
https://doi.org/10.1007/978-3-319-79063-3_12

270 A Compact and Scalable Hardware/Software Co-design of SIKE

Appendix

main main main
flag append| internal operand o operand b operand a

name 63 62 61 60 ... 55 54 | 53..38 37 136 [35 |34...19 18 (17 |16 [15..0

00 0 type Dir memo Sign | Dir | Cx memb Sign | Dir [Cx | mema
nop 00 0 000000 0 0 0 0 0 0 0 0 0 0
jump 00 0 000001 0 memo 0 0 0 0 0 0 0 0
jumpeq 00 0 000001 0 memo 0 0| Cx memb 0 0 | Cx | mema
jumpl 00 0 000010 0 memo 0 0| Cx memb 0 0 | Cx | mema
jumpls 00 0 000010 0 memo 1 0| Cx memb 1 0 | Cx | mema
jumpeql 00 0 000011 0 memo 0 0| Cx memb 0 0 | Cx | mema
jumpeqls 00 0 000011 0 memo 1 0| Cx memb 1 0 | Cx | mema
push 00 0 000100 0 0 0 0 0 0 0 Dir | Cx | mema
pop 00 0 000101 Dir | memo 0 0 0 0 0 0 0 0
pushf 00 0 000110 0 0 0 0 0 0 0 Dir | 1 | mema
popf 00 0 000111 Dir memo 0 0 0 0 0 0 0 0
pushm 00 0 001000 0 0 0 0 0 0 0 Dir 1 | mema
popm 00 0 001001 Dir memo 0 0 0 0 0 0 0 0
copy 00 0 001010 Dir memo 0 0 0 0 0 Dir | Cx | mema
copyf 00 0 001011 Dir memo 0 0 0 0 0 Dir 1 | mema
copym 00 0 001100 Dir memo 0 0 0 0 0 Dir 1 | mema
Iconstf 00 0 001101 Dir memo 0 0 0 0 Sign 0 0 | value
Iconstm 00 0 001110 Dir memo 0 0 0 0 Sign 0 0 | value
call 00 0 001111 0 memo 0 0 0 0 0 0 1 pc
ret 00 0 010000 0 0 0 0 0 0 0 0 1 0
keccak_init 00 0 010010 0 0 0 0 0 0 0 0 0 0
keccak_go 00 0 010011 0 0 0 0 0 0 0 0 0 0
copya (inc) 00 0 |0110|Cd [Cs| Dir [memo 0 0 0 size 0 Dir | 1 | mema
copya (dec) 00 0 |0111|Cd [Cs| Dir [memo 0 0 0 size 0 Dir | 1 | mema
badd 00 0 100000 0 memo 0 0| Cx memb 0 0 | Cx | mema
bsub 00 0 100001 0 memo 0 0| Cx memb 0 0 | Cx | mema
bsmul 00 0 100010 0 memo 0 0| Cx memb 0 0 | Cx | mema
bsmuls 00 0 100010 0 memo 1 0| Cx memb 1 0 | Cx | mema
bshiftr 00 0 100100 0 memo 0 0| Cx memb 0 0 | Cx | mema
brotr 00 0 100101 0 memo 0 0| & memb 0 0 | Cx | mema
bshiftl 00 0 100110 0 memo 0 0| Cx memb 0 0 | Cx | mema
brotl 00 0 100111 0 memo 0 0| Cx memb 0 0 | Cx | mema
bland 00 0 101000 0 memo 0 0| Cx memb 0 0 | Cx | mema
blor 00 0 101001 0 memo 0 0| Cx memb 0 0 | Cx | mema
blxor 00 0 101010 0 memo 0 0| Cx memb 0 0 | Cx | mema
blnot 00 0 101010 0 memo 0 0| Cx memb 0 0 of1 ..1
fin 00 0 111111 0 0 0 0 0 0 0 0 0 0

Figure 17: The main instructions for the SIKE processor.

Pedro Maat C. Massolino, Patrick Longa, Joost Renes and Lejla Batina 271
carmela | carmela carmela

flag append internal output o input b input a
name 63 62 | 61..59 | 58..55 | 54 | 53..38 |37 [36 |35 [34..19 18 |17 |16 | 15..0
01 000 type Dir Mo 0 | Dir | En Mb Sign | Dir | En Ma
mmuld 01 000 0000 Dir Mo 0 | Dir | En Mb 0 Dir | En Ma
msqud 01 000 0001 Dir Mo 0 | Dir | En Ma 0 Dir | En Ma
mmulm 01 000 0010 Dir Mo 0 | Dir | En Mb 0 Dir | En Ma
msqum 01 000 0011 Dir Mo 0 | Dir | En Ma 0 Dir | En Ma
madd_subd 01 000 0100 Dir Mo 0 | Dir | En Mb Sign | Dir | En Ma
mitred 01 000 0101 Dir Mo 0 0 0 0 0 Dir | En Ma

Figure 18: The Carmela coprocessor instructions for the SIKE processor.

	Introduction
	Related work
	Our contribution and paper organization

	Preliminaries
	SIDH
	SIKE

	Proposed Scalable Architecture
	Multiplier-accumulator unit: Carmela
	Instruction set and memory arrangement
	Software elliptic curve and isogeny computations

	Results and Analysis
	Conclusions and Future Work

