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Abstract. Since the introduction of the ring-learning with errors problem, the num-
ber theoretic transform (NTT) based polynomial multiplication algorithm has been
studied extensively. Due to its faster quasilinear time complexity, it has been the
preferred choice of cryptographers to realize ring-learning with errors cryptographic
schemes. Compared to NTT, Toom-Cook or Karatsuba based polynomial multiplica-
tion algorithms, though being known for a long time, still have a fledgling presence
in the context of post-quantum cryptography.
In this work, we observe that the pre- and post-processing steps in Toom-Cook based
multiplications can be expressed as linear transformations. Based on this observation
we propose two novel techniques that can increase the efficiency of Toom-Cook based
polynomial multiplications. Evaluation is reduced by a factor of 2, and we call this
method precomputation, and interpolation is reduced from quadratic to linear, and
we call this method lazy interpolation.
As a practical application, we applied our algorithms to the Saber post-quantum
key-encapsulation mechanism. We discuss in detail the various implementation
aspects of applying our algorithms to Saber. We show that our algorithm can
improve the efficiency of the computationally costly matrix-vector multiplication by
12 − 37% compared to previous methods on their respective platforms. Secondly, we
propose different methods to reduce the memory footprint of Saber for Cortex-M4
microcontrollers. Our implementation shows between 2.6 and 5.7 KB reduction in
the memory usage with respect to the smallest implementation in the literature.
Keywords: Toom-Cook multiplication · key encapsulation mechanism · post-quantum
cryptography · lattice-based cryptography · efficient software · Saber

Introduction
Using number theoretic transform (NTT) based polynomial multiplications in schemes
based on ring learning with errors (RLWE) is almost ubiquitous due to their fast quasilinear
(O(n · logn)) time complexity although the use of the NTT influences the modulus of the
ring. Before the NIST’s post-quantum standardization procedure [26], we hardly saw any
RLWE based cryptographic scheme using Toom-Cook or Karatsuba based polynomial mul-
tiplication mostly due to their asymptotically slower (O(n1+ε), 0 < ε < 1) time complexity.
Currently, only NTRU-HRSS-KEM [8, 19, 18], NTRU-Prime [5, 4], Saber [12, 11] and
ThreeBears [17] use Toom-Cook [31, 9] and Karatusba [23] based polynomial multiplications
among all the schemes that have advanced to the second round of the NIST’s post-quantum
standardization procedure. This is mostly due to the inherent design constraints that
render these schemes unable to use NTT based polynomial multiplication. However, with
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a careful choice of parameters, optimal memory management and a cheaper modular
reduction, schemes using Toom-Cook and Karatsuba based polynomial multiplication
fare well against their NTT based counterparts. NTT based multiplication has many
advantages. In addition to the asymptotically faster complexity, in many scenarios it is
not required to do all the stages of an NTT multiplication. For example, an NTT based
multiplication of C(x) = A(x)×B(x) can be done by C(x) = NTT−1(NTT (Ā)∗NTT (B̄)

)
assuming A(x), B(x) satisfy all the constraints imposed by the NTT and Ā, B̄ are two
vectors consisting of the coefficients of A(x) and B(x). However, if A(x) is a random
polynomial generated by the user then there is no need to perform the forward NTT
transform of A(x), i.e., NTT (Ā), since the NTT transformation of a random vector is also
a random vector. Hence, in this case, the user can assume that the vector of coefficients is
generated already in the NTT domain, thus eliminating the need for the forward NTT
transformation of A(x). Moreover, the NTT preserves the length and bit length of all
individual elements of a vector. In a scenario where one multiplicand is the same across
multiple operations, the NTT is calculated once and stored for its use in all multiplications.
This saves the computational cost of multiple forward NTT transformations without any
extra requirement of storage. Lastly, NTT is additively homomorphic, i.e., to calculate
Cτ =

∑τ
i=1 Ai(x)×Bi(x) we can keep adding the multiplied vectors Āi ∗ B̄i in the NTT

domain and defer applying the inverse NTT till the last vector multiplication has been com-
pleted as Cτ (x) = NTT−1∑τ

i=1
(
NTT (Āi)∗NTT (B̄i)

)
. Such type of scenarios arise often

in lattice based post-quantum cryptography. NTT based schemes such as NewHope [2]
and Kyber [7] use these advantages of the NTT to improve their efficiency.

In Toom-Cook [31, 9] and Karatsuba [23] multiplications the actual multiplication
is done by schoolbook multiplications between polynomials with smaller degrees than
the original multiplicands after the recursion stops. This is achieved by processing the
multiplicand polynomials before the schoolbook multiplications and combining their results
afterwards. This overhead for pre- and post-processing can be quite high. For example, in
the implementations on Cortex-M4 of [24] and [21] this overhead accounts for 44% of the
total cost of a single polynomial multiplication. Note that in both works the percentage
of time spent in pre- and post-processing is the same. Although the latter work reports
approximately 42% faster polynomial multiplication than the former one, this largely
comes from optimizing the schoolbook multiplication. If we look closely, there are many
similarities between NTT and Toom-Cook based polynomial multiplications considering
that both improve the time complexity of the schoolbook multiplication utilizing point-
value representation based polynomial multiplication. Our effort in this work is to improve
the efficiency of Toom-Cook based polynomial multiplication by removing the overhead of
pre- and post-processing as much as possible.

Our contributions in this work can be summarized as below:
1. We formally establish that the evaluation and interpolation stages of Toom-Cook [31,

9] and Karatsuba [23] multiplications are linear transformations that are the inverse
of each other. We introduce a technique namely lazy interpolation which along
with precomputation can reduce the overhead of evaluation and interpolation. We
discuss different scenarios where these methods are more suitable. We show that
in those scenarios the cost of the overhead can be reduced to a small fraction of
its previous cost. Toom-Cook and Karatsuba based polynomial multiplications
are known for long time and have been used in efficient implementations of RSA,
ElGamal, Diffie-Hellman [30], improving efficiency of McEliece cryptosystem based
on QC-LDPC Codes [29] and big number arithmetic [16], etc. To the best of our
knowledge, we are the first to use these techniques to improve Toom-Cook and
Karatsuba multiplications.

2. The advantage of our techniques can be ideally demonstrated in two scenarios.
First, to calculate the sum of two or more polynomial multiplications. Second,
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when multiple polynomial multiplications have to be calculated and one operand
stays the same. Due to the structure of their public matrix and secret vectors,
module lattice-based cryptographic protocols provide both of these scenarios. Among
the key-encapsulation mechanism schemes submitted to the NIST’s post-quantum
standardization procedure, Saber [11] and ThreeBears [17] are the only two schemes
that are based on module lattices and use Toom-Cook or Karatsuba based polynomial
multiplication. Among these two schemes we choose Saber because there are more
optimized implementations available in the literature for comparison. Currently, there
are three different implementations of Saber targeting three different platforms, i.e., C
implementation on general purpose Intel processors, vectorized implementation using
Intel’s advanced vector extension instructions (AVX2) and Cortex-M4, with their
platform specific optimizations. We show the advantages of applying our techniques
to Saber both theoretically and experimentally. Further we discuss specific details of
applying our techniques on each platform.

3. Additionally, we also provide memory optimization techniques to reduce the memory
footprint of Saber. Since the memory is not crucial in high end platforms as much
as in smaller platforms like microcontrollers, we limit our discussion of memory
optimization techniques to the Cortex-M4 platform only.

4. We also show that the secret key of Saber can be stored using much less memory
without harming the security or performance of the scheme. Following the trail of
previous work [24] we provide time-memory results for different implementations
combining different memory and speed optimization techniques.

Finally, similarly to the previous implementations [24, 21, 12], none of our implementa-
tions uses secret dependent branching or secret dependent memory accesses, and all run
in constant time. Though we have used Saber to demonstrate our techniques we firmly
believe that our techniques can be applied to other schemes [5, 8, 17] using Toom-Cook or
Karatsuba based polynomial multiplications to improve their efficiency.

Organization of this paper: Sec. 1 describes the mathematical notations used in
this work along with the most commonly used polynomial multiplication algorithms in
post-quantum cryptography. We also provide a short description of the post-quantum key-
encapsulation mechanism Saber. In Sec. 2, we describe how the evaluation and interpolation
steps of Toom-Cook multiplication can be expressed as linear transformations. We also
describe our two techniques to increase the efficiency of Toom-Cook multiplications. We
apply our strategies to Saber in Sec. 3 and discuss the implications on different platforms.
Sec. 4 describes our memory optimization techniques for reducing the memory footprint
of Saber on small microcontrollers. We compare our optimized implementations of Saber
with previous works in Sec. 5. Finally, we draw conclusions in Sec 6.

1 Preliminaries
We denote Toom-Cook-k-way multiplication as TCk. If v1 = [v1

0 , v
1
1 , · · · , v1

n−1] and v2 =
[v2

0 , v
2
1 , · · · , v2

n−1] are two vectors then we use ∗ to denote elementwise multiplication of v1
and v2, i.e., v1 ∗ v2 = [v1

0 · v2
0 , v

1
1 · v2

1 , · · · , v1
n−1 · v2

n−1]. We use × to denote multiplication
of polynomials. In the context of this work, it is convenient to denote the degree of
the polynomial A(x) = an−1x

n−1 + an−2x
n−2 + · · ·+ a0 as n where n− 1 is the largest

integer such that an−1 6= 0. In this notation the degree of polynomial becomes equal
to the number of coefficients if ai 6= 0, i ∈ [0, n − 1]. The polynomial ring of degree k
and real coefficients is denoted as Rk(x). The quotient polynomial ring Rq(x) is defined
by Rq(x) = Zq(x)/(xn + 1). Zq denotes the quotient ring Z/qZ. We denote a centered
binomial distribution with parameter µ as βµ, uniform random distribution as U and
sampling randomly from a distribution as ←$.
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1.1 Polynomial multiplication
The most simple and naïve way to multiply two degree n polynomials is the schoolbook
multiplication. This method multiplies each coefficient of one polynomial with all coef-
ficients of the other polynomial. This results in an O(n2) time complexity polynomial
multiplication routine. There are several methods which improve this basic method for
faster multiplication of two polynomials. We briefly discuss them in this section.

1.1.1 NTT multiplication

The number-theoretic transform (NTT) is a special case of the fast Fourier transform
(FFT) for prime fields Zq. For degree n polynomials the NTT is feasible when n is a power
of two (if n is not a power of two the polynomials are padded with zeroes) and q is a
prime such that q = 1 (mod 2n). In most Ring-LWE and Mod-LWE based schemes n is
usually chosen a power-of-two, so only the modulus q should be chosen to meet the latter
criteria. Let, Ā = (A[0], A[1], · · · , A[n − 1]) denote the n coefficients of the polynomial
A(x) and ω a primitive n-th root of unity contained in Zq. The forward NTT transform
Ã = NTT (Ā) is defined as Ã[i] =

∑n−1
j=0 Ā[j]ωij (mod q) for i = 0, 1, · · · , n − 1. The

inverse NTT transform A′ = INTT (Ã) is defined as A′[i] = n−1 ·
∑n−1
j=0 Ã[j]ω−ij (mod q)

for i = 0, 1, · · · , n− 1 and it holds the relation Ā = INTT (NTT (Ā)).

1.1.2 Karatsuba & Toom-Cook multiplication

As we have seen before, NTT based polynomial multiplication can only be applied in prime
fields satisfying certain criteria. However, neither the Karatsuba algorithm nor the Toom-
Cook algorithm put any restriction on the underlying field. As these two multiplication
algorithms can be applied for any type of polynomial multiplication, we will also call them
universal multiplication.

Karatsuba multiplication [23] : The Karatsuba multiplication is a divide-and-
conquer approach that improves upon the naïve quadratic complexity of the schoolbook
multiplication. It works as follows, for a degree n polynomial A(x), it splits the polynomial
into two degree n/2 polynomials ah(x) and al(x) such that A(x) = ah(x) · xn/2 + al(x),
where

ah(x) = an−1x
n/2−1 + · · ·+ an/2+1x+ an/2

al(x) = an/2−1x
n/2−1 + · · ·+ a1x+ a0

Similarly, b(x) is split into two polynomials bh(x) and bl(x). Note that, using the naïve
strategy, C(x) = A(x) × B(x) can be calculated from ah(x), al(x) and bh(x), bl(x) by
4 n/2-degree polynomial multiplications. Using Karatsuba multiplication this can be
achieved by 3 n/2-degree polynomial multiplication and some additional additions and
subtractions in the following way,

C(x) = ah(x)× bh(x)xn

+
((
ah(x) + al(x)

)
×
(
bh(x) + bl(x)

)
−
(
ah(x) · bh(x) + al(x) · bl(x)

))
xn/2

+ al(x)× bl(x)

ah(x), bh(x), al(x), bl(x) can be further split into n/4-degree polynomials, each of which
can be split into n/8 degree polynomials and so on until the polynomials are small
enough that multiplying them by schoolbook multiplication is easy, i.e., takes less time
than recursing further. If T(n) is the time complexity to multiply A(x) and B(x) then
T(n) = 3 · T(n/2) + c · n. By the master theorem of computational complexity [10],
T(n) = Θ(nlog2 3) ≈ Θ(n1.58)
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Toom-Cook multiplication [31, 9] : Toom-Cook or more specifically the Toom-
Cook-k-way multiplication algorithm is a generalization of the Karatsuba multiplication
algorithm. Similar to the Karatsuba multiplication, this is also a divide-and-conquer
strategy but instead of splitting each polynomial in 2 equal parts at each stage of recursion,
Toom-Cook-k-way multiplication splits them in k equal parts. If T(n) is the complexity to
multiply A(x) and B(x) using Toom-Cook-k-way then T(n) = (2k−1)·T(n/k)+c·n, which
solves to T(n) = O(ne), e = logk(2k − 1). For example, if k = 3, T(n) = O(nlog3 5) =
O(n1.46) which is a slight improvement over Karatsuba multiplication. In practice, the k
and recursion cut-off should be carefully chosen such that the linear cost in recursion does
not exceed the time for actual multiplication in each recursion stage. Each stage of Toom-
Cook-k-way multiplication can be divided in 3 parts which are evaluation, multiplication,
and interpolation. We discuss them in detail in Sec. 2.2.

1.2 Saber key-encapsulation mechanism
Saber is one of the post-quantum key-encapsulation mechanism (KEM) [11, 12] candidates
considered in the second round of the ongoing NIST’s post-quantum standardization
procedure [26]. The hardness of Saber is assured by the hardness of the learning with
rounding (LWR) problem introduced by Banerjee et al. [3]. It asks to recover the secret
s ←$ βM×1

µ , given a public matrix A ←$ UM×N, two moduli p, q and the samples
(A, b) = (A, dpqAsc). In contrast, the well known learning with errors (LWE) problem
asks to recover the secret s ←$ β

N×1
µ , given a public matrix A ←$ UM×N, secret noise

e←$ β
M×1
µ and the samples (A, b) = (A,As+ e).

Furthermore, Saber uses module lattices instead of the more usual ideal lattices [25]
or standard lattices [28], i.e., the random public matrix of Saber is a matrix of rank l in
Rl×lq and the secret vector is in Rl×1

q and sampled from a centered binomial distribution.
Here, the rank of the matrix l is a parameter that determines the security of Saber.
The current specification document specifies three values of l = 2, 3, and 4. The key
generation, encryption, and decryption of Saber public-key encryption (PKE) is shown in
Alg. 1-3. This public-key encryption scheme is converted to key-encapsulation mechanism
(SABER.KEM.KeyGen, SABER.KEM.Encaps, SABER.KEM.Decaps) using the Fujisaki-
Okamoto transform [14, 15, 20].

Algorithm 1: Saber.PKE.KeyGen [11]
input : l
output : pk=(seedA, b),sk=(s)

1 seedA ←$ {0, 1}256;
2 r ←$ {0, 1}256;
3 A←$ Gen(XOF (seedA)) ∈ Rl×lq ;
4 s←$ βµ(XOF (r)) ∈ Rl×1

q ;
5 b = (A · s+ h) >> (εq − εp) ∈ Rl×1

p ;// rounding
6 return pk = (seedA, b), sk = (s);

In Alg. 1 and 2, XOF stands for extended output function which has been implemented
using SHAKE-128. t = 2, 3, 5 for l = 2, 3, 4 respectively and εp, εq, εt are log2 p, log2 q, log2 t
respectively. h, h1, and h2 are constant polynomials of degree 256 to help the rounding
operation. We will use Alg. 1-3 to demonstrate our techniques in this work as they are
the most relevant. From the implementation point of view, Saber KEM and Saber PKE
are very close, for example the primitives of Saber KEM, i.e., Saber.KEM.KeyGen and
Saber.KEM.Encaps uses Saber.PKE.KeyGen and Saber.PKE.Enc respectively along with
some symmetric cryptographic primitives. The Saber.KEM.Decaps uses Saber.PKE.Dec
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Algorithm 2: Saber.PKE.Enc [11]
input : pk=(seedA, b), m ∈M, optional r′
output : ct = (c, b′)

1 A←$ Gen(XOF (seedA)) ∈ Rl×lq ;
2 if r′ not specified then
3 r′ ←$ {0, 1}256;
4 s′ ←$ βµ(XOF (r′)) ∈ Rl×1

q ;
5 b′ = (AT · s′ + h) >> (εq − εp) ∈ Rl×1

p ;// rounding
6 v′ = bT (s′ mod p) ∈ Rp;
7 c = (v′ + h1 − 2εp−1m) >> (εp − εt − 1) ∈ R2t;
8 return ct = (c, b′);

Algorithm 3: Saber.PKE.Dec [11]
input : sk=(s), ct = (c, b′)
output :m ∈M

1 v = b′T (s mod p) ∈ Rp;
2 m = ((v − 2εp−εt−1c+ h2)) >> (εp − 1) ∈ R2;
3 return m;

and Saber.PKE.Enc both along with some symmetric cryptographic primitives to ensure
protection against chosen ciphertext attacks.

As we can see, the noise in LWR or Saber is generated inherently by the rounding (dpq ·c)
operation. However if p - q, generating noise in this way also introduces bias in the generated
keys which is harmful to the overall security of the scheme. Saber designers avoided this
by choosing p and q both as a power-of-two numbers 210 and 213 respectively. Due to
the moduli used in Saber it is not possible to use NTT based polynomial multiplication
and hence a hybrid multiplication combining Toom-Cook, Karatsuba, and schoolbook
multiplication is used. Since its first use in the NewHope key-exchange scheme [2], almost
all lattice-based KEMs use a centered binomial distribution instead of a discrete Gaussian
distribution. The main reason behind this is that sampling from the former distribution
is much faster and easy to protect against side-channel attacks than the latter. This
essentially makes the polynomial multiplication one of the most computationally costly
functions in Saber. The other costly operation is generating pseudorandom numbers using
SHAKE-128 which accounts for almost 50% − 60% [21] of the overall running time. We
describe the hybrid polynomial multiplication algorithm in the next section.

1.3 Polynomial multiplication in Saber
In Saber, all polynomials are of degree 256. Due to the inability of using NTT based
multiplications, a hybrid method combining Toom-Cook, Karatsuba, and schoolbook
multiplication is adopted to perform a 256× 256 polynomial multiplication.

For a 256 × 256 polynomial multiplication C(x) = A(x) × B(x), first a Toom-Cook
4-way split is applied on each A(x) and B(x). This reduces the multiplication of two
polynomials of degree 256 to 7 multiplications of polynomials of degree 64. The polynomials
of degree 64 are further split using 2-levels of Karatsuba multiplication to 9 polynomial
multiplications with degree 16. At this level, the polynomials generated from A(x) are
multiplied with their respective polynomials generated from B(x) using the schoolbook
multiplication. The result of these multiplications are combined using Karatsuba and
Toom-Cook-4-way interpolation to obtain the final result C(x). This is shown in Fig. 1.
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Figure 1: The Toom-Cook-4-way and Karatsuba multiplication used in Saber.

Wrapping up, to multiply two polynomials A(x) and B(x) with degree n = 256 we
have to perform 7× 9 = 63 polynomial multiplications of degree 16 using a combination of
Toom-Cook-4, Karatsuba, and schoolbook multiplication. The pseudo-code for combined
Toom-Cook-4, Karatsuba, and schoolbook multiplication used in Saber is shown in Alg. 4.

Algorithm 4: Pseudocode for Toom-Cook-4-way + Karatsuba + schoolbook
multiplication [12]
Input: Two polynomials A(x) and B(x) of degree n = 256
Output: C(x) = A(x) ∗ b(x)

1 [A0(x), · · ·A6(x)]← Toom-Cook-4-way Evaluation of A(x)
2 [B0(x), · · ·B6(x)]← Toom-Cook-4-way Evaluation of B(x)
3 for i = 0 to 6 step by 1 do
4 [Ai0(x), · · ·Ai8(x)]← 2-levels of Karatsuba evaluation of Ai(x)
5 [Bi0(x), · · ·Bi8(x)]← 2-levels of Karatsuba evaluation of Bi(x)
6 for j = 0 to 8 step by 1 do
7 resij(x) = Aij(x)×Bij(x)
8 resi(x)← 2-levels of Karatsuba interpolation on [resi0(x), · · · resi8(x)]
9 C(x)← Toom-Cook 4-way interpolation on [res0(x), · · · res6(x)]

10 return C(x)

1.3.1 AVX2 optimized polynomial multiplication

We briefly describe the optimized polynomial multiplication used in Saber [12] using
advanced vector instructions (AVX2) [33]. First, note that, in Alg. 4, the 2-level Karatsuba
multiplication method receives polynomials Ai(x) and Bi(x) with 64 coefficients as input,
each of which further splits into 9 polynomials Ai0(x), · · ·Ai8(x) with 16 coefficients. As
both Aij(x) and Bij(x) consist of 16-coefficients of 13-bits at most, each of them can fit
into one AVX2 vector whose size is 256 bits. These polynomials are kept in two buckets,
bucket_A and bucket_B, each of which holds 16 AVX2 vectors.

Second, note in line number 7 of Alg. 4 that, as soon as the polynomials Aij(x) and
Bij(x) are generated, they are multiplied using schoolbook multiplication to generate
resij(x) = Aij(x) × Bij(x). These are used by the Karatsuba interpolation to generate
resi(x). Here we take a lazy approach, i.e., we do not multiply Aij(x) and Bij(x) as soon
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Figure 2: AVX2 polynomial multiplication in Saber. aij indicates j-th coefficient of i-th
polynomial.

as they are generated, instead we put them in their respective buckets until they are full.
Third, once these buckets are full they can be viewed as 16× 16 matrix of 13-bits or

10-bits numbers depending on whether they are in Zq or Zp. This matrix is transposed
using the well known bit-matrix transpose algorithm [32] as shown in Fig 2. This arranges
the coefficients of the polynomials such that the i-th AVX2 vector in a bucket contains the
i-th coefficients of all polynomials in the bucket.

In the next stage, a 16× 16 schoolbook multiplication between the AVX2 vectors of
bucket_A and bucket_B are performed. Specifically, the instruction vpmullw ymm1 ymm2
ymm3 is used, which multiplies the k-th 16-bit word of ymm1 with the corresponding k-th
16-bit word in ymm2 and places the last 16-bits of the result in the k-th 16-bit word of ymm3.
The schoolbook multiplication produces 31 AVX2 vectors which are placed in another
bucket bucket_C. Note that to perform a 256× 256 polynomial multiplication in Saber,
63, 16× 16 schoolbook multiplication need to be performed. As the vectorized schoolbook
multiplication method can perform 16 schoolbook multiplications at a time we need only 4
vectorized schoolbook multiplication for each 256× 256 polynomial multiplication.

Finally, bucket_C is transposed again to get the results resij(x). These results are
processed further as shown in Alg. 4 to get the final result. One can note that this
multiplication method requires significant effort towards bookkeeping but with careful
implementation this cost can be kept low.

2 Faster Toom-Cook multiplication
In this section, we analyze the Toom-Cook multiplication in general and describe our
observation on how the evaluation and interpolation of Toom-Cook multiplication can be
viewed as linear maps. Based on this observation, we propose two methods for improving
the efficiency of Toom-Cook multiplications. The first method is applicable in scenarios
where the results of multiple multiplications are added together. The second method is
applicable when one of the multiplicands remains constant for different multiplications.
Both scenarios are common in module-lattice based cryptography: the former corresponds
to the row-column product that we find in matrix-vector multiplication while the latter is
more general since it matches encryption and decryption operations where the key is fixed.

2.1 Toom-Cook multiplication and linear maps
As mentioned in Sec. 1.1.2, the first stage in Toom-Cook multiplication is evaluation. Let’s
assume that the two multiplicand polynomials are A(x) = an−1x

n−1 + an−2x
n−2 · · ·+ a0

and B(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b0. We can write them as,
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A(x) = ak−1 · x(n/k)·(k−1) + ak−2 · x(n/k)·(k−2) + · · ·+ a0

B(x) = bk−1 · x(n/k)·(k−1) + bk−2 · x(n/k)·(k−2) + · · ·+ b0

Where ak−1 = an−1 ·xn/k−1 + · · ·+an−n/k, ak−2 = an−n/k−1 ·xn/k−1 + · · ·+an−2n/k and
so on. bk−1,bk−2, · · · ,b0 are defined similarly. Assuming, xn/k = y the above polynomials
can be written as polynomials of y as,

A(y) = ak−1(x)yk−1 + ak−2(x)yk−2 + · · ·+ a0

B(y) = bk−1(x)yk−1 + bk−2(x)yk−2 + · · ·+ b0
(1)

This is often referred as splitting step. The polynomials in Eq. 1 are at 2k− 1 different
points of y. This is shown as a matrix transformation in Eq. 2

A(p0)
A(p1)

...
A(p2k−2)

 =


(p0)0 (p0)1 . . . (p0)k−1

(p1)0 (p1)1 . . . (p1)k−1

...
...

. . .
...

(p2k−2)0 (p2k−2)1 . . . (p2k−2)k−1

 ·


a0
a1
...

ak−1

 (2)

Similarly, B(p0), B(p1), · · · , B(p2k−2) are calculated. Once, the vectors [A(p0), A(p1), · · · ,
A(p2k−2)]T and [B(p0), B(p1), · · · , B(p2k−2)]T are found they are multiplied pointwise, i.e.,
A(pi) ∗B(pi) for all i ∈ [0, 2k − 2]. This yields the vector [C(p0), C(p1), · · · , C(p2k−2)]T .
This step is known as multiplication step. The final stage, known as interpolation, the
unknown values c2k−2,c2k−3, · · ·c0 are calculated from [C(p0), C(p1), · · · , C(p2k−2)]T .
This is shown in Eq. 3.


C(p0)
C(p1)

...
C(p2k−2)

 =


(p0)0 (p0)1 . . . (p0)2k−2

(p1)0 (p1)1 . . . (p1)2k−2

...
...

. . .
...

(p2k−2)0 (p2k−2)1 . . . (p2k−2)2k−2

 ·


c0
c1
...

c2k−2


or

c0
c1
...

c2k−2

 =


(p0)0 (p0)1 . . . (p0)2k−2

(p1)0 (p1)1 . . . (p1)2k−2

...
...

. . .
...

(p2k−2)0 (p2k−2)1 . . . (p2k−2)2k−2


−1

·


C(p0)
C(p1)

...
C(p2k−2)


(3)

Once the values of c2k−2,c2k−3, · · ·c0 are known the product polynomial C(x) is
reconstructed as, C(x) = c2k−2(xn/k)2k−2 + c2k−3(xn/k)2k−3 + · · · + c0. This is often
referred to as the recombination step. For a Toom-Cook multiplication there are no fixed
values for the distinct evaluation points pi’s, it is under user’s prerogative to choose them.
Ideally, the points are chosen small so that the evaluation and interpolation becomes easy.

If we consider the columns of matrices in Eq. 2 and Eq. 3 as vectors, then it is
easy to show that if pi 6= pj for all pairs of (pi, pj), then these vectors are independent
which is the case for Toom-Cook multiplication. Hence, Toom-Cook multiplication and
interpolation are fundamentally linear maps of the form f : Rk

n/k−1(x)→R2k−1
n/k−1(x) and

f : R2k−1
2·n/k−2(x)→ R2k−1

2·n/k−2(x). We represent these linear transformations as TCk and
TCk

−1 respectively.
In practice, for the pointwise multiplication A(pi) ∗ B(pi), both A(pi) and B(pi)

are further split using subsequent multiple levels of Toom-Cook multiplications be-
fore actually multiplying them. This creates a long chain of linear transformations as
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TCkη (TCkη−1(· · · (TCk1(A(x))))) or TC(A(x)) by replacing the chain of linear transfor-
mations with TC. The result C(x) = A(x)×B(x) is obtained by applying the long chain of
inverse linear transformations in the reverse order as C(x) = TC−1

k1
(TC−1

k2
· · · (TC−1

kη (C)))
or TC−1(C), where C is TC(A(x)) ∗TC(B(x)).

It should be noted that before a forward transformation TCki can be applied on a
vector of polynomials each polynomial should be split in ki segments before the next
forward transformation can be applied. Similarly, after each reverse transformation TC−1

ki
the resulting 2ki − 1 polynomials should be recombined to a single polynomial before the
next reverse transformation can be applied.

2.2 Lazy interpolation
Now consider that we have to multiply τ pairs of polynomials of degree n using Toom-Cook
multiplication and add them together as Cτ (x) =

∑τ
i=1 Ai(x)×Bi(x). Also, consider that

the degree of the polynomials after the final Toom-Cook forward transformation TCη is nsb.
The standard method as used in [24, 21] requires 2 forward Toom-Cook transformations
(TC), one for each multiplicand, and one Toom-Cook reverse transformation (TC−1)
each to obtain the result Ai(x)×Bi(x) for all i ∈ [1, τ ], these results are then added to
obtain Cτ (x). Therefore, it requires 2τ forward TC transformation and τ reverse TC
transformation to obtain Cτ .

However, using the observation described in the beginning of this section we can
reduce the number of Toom-Cook transformations required to find Cτ . We first apply
the forward Toom-Cook transformations as before on multiplicand polynomials Ai(x) and
Bi(x), i ∈ [1, τ ]. Note that this produces vectors Ai = TC(Ai(x)) and Bi = TC(Bi(x))
of size κ =

∏η
i=1(2ki − 1) containing polynomials of degree nsb. Next, these vectors are

multiplied pointwise to get Ci = Ai ∗Bi. This result is not sent through the reverse
Toom-Cook transformations (TC−1) as in the standard method. Instead, this result is
stored in an intermediate C of size κ elements which in this case is κ polynomials of size
2nsb − 1 coefficients each. For the next multiplication, we follow the same steps as above
and accumulate the result in the C. This procedure goes on until the result of the last
multiplication Cτ has been accumulated in the C. At this point we apply the reverse Toom-
Cook transformation (TC−1) on the C to get the final result Cτ (x). We call this method
lazy interpolation and is shown in Fig. 3. In this method, we need 2τ forward Toom-Cook
transformations as before but only one instead of τ reverse Toom-Cook transformations.
One overhead of this method is the accumulation of Ci in C which requires (2nsb − 1)κ
addition operations, but as we will show in Sec. 3, with implementation tricks this overhead
can be kept small. We show our method in Alg. 5.

To understand why Alg. 5 produces correct the result Cτ =
∑τ
i=1 Ai(x) × Bi(x),

consider that we can write
∑τ
i=1 Ai(x)×Bi(x) =

∑τ
i=1 TC

−1
i

(
TCi(Ai(x)) ∗TCi(Bi(x))

)
.

Here, TCi = TCi
kηj

(TCi
kηj−1

(· · · (TCi
k1

))), similar for TC−1
i . In Alg. 5 we assume

that for all τ multiplications and an arbitrary j ∈ [1, η] we choose the same 2kj − 1
evaluation points for Toom-Cook transformations then TC1

kj = TC2
kj = · · · = TCτ

kj

this implies TC1 = TC2 = · · · = TCτ . Similarly, TC−1
1 = TC−1

2 = · · · = TC−1
τ .

Hence, Cτ =
∑τ
i=1 TC

−1(TC(Ai(x)) ∗TC(Bi(x))
)
. Using the distributive law of matrix

multiplication we can write Cτ = TC−1(∑τ
i=1 TC(Ai(x)) ∗ TC(Bi(x))

)
. Effectively,

line 2-10 in Alg. 5 does the pointwise multiplication and accumulation while line 12-13 does
the final interpolation. It should be mentioned that Karatsuba multiplication is essentially
a Toom-Cook-2-way multiplication with evaluation points 0, 1,∞.

The memory overhead introduced by this method can be quantified in terms of the
parameters. The extra memory for storing the C of size (2nsb − 1)κ must always be
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Figure 3: Calculating Cτ =
∑τ
i=1 Ai(x)×Bi(x) using lazy interpolation.

Algorithm 5: Pseudocode for Toom-Cook multiplication with lazy interpolation
Input: τ pairs of polynomials Ai(x), Bi(x) of degree n
Output: Cτ (x) =

∑τ
i=1 Ai(x)× bi(x)

1 for j = 1 to τ step by 1 do
2 Aj ← Aj(x);
3 Bj ← Bj(x);
4 for i = 1 to η step by 1 do
5 Atemp ← Split each element of Aj into 2ki − 1 elements;
6 Btemp ← Split each element of Bj into 2ki − 1 elements;
7 Aj ← TCki(Atemp);
8 Bj ← TCki(Btemp);
9 Cj ← Aj ∗Bj ; // pointwise multiplication

10 C ← C + Cj ; // accumulation

11 for i = η down to 1 step by 1 do
12 Ctemp ← TC−1

ki
(C);

13 C ← Recombine each (2ki − 1) elements of Ctemp into a single element;
14 return Cτ (x) = C

maintained, while the extra memory to store the vectors Ai and Bi can be reduced by
generating the polynomials of these vectors sequentially and reusing memory. Hence, the
total memory overhead is (2nsb − 1)κ and independent of τ .

2.3 Precomputation
Consider a scenario where one of the multiplicand polynomials remains constant for
different multiplications, i.e., A1(x) × B(x), · · · , A′τ (x) × B(x). In this case, instead
of applying forward Toom-Cook transformation τ ′ times to polynomial B(x), we can
calculate B = TC(B(x)) once (red lines in Fig. 3) and store the result for reusing it in
all τ ′ multiplications. Similar to the previous lazy interpolation method this is also a
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time-memory trade-off for Toom-Cook multiplication. Here, we save the time to calculate
(τ ′ − 1) forward Toom-Cook transformations by using an extra κ · nsb memory.

In the case of Saber, 3 levels of Toom-Cook transformations are used. Hence, η = 3
with k1 = 4, k2 = 2, and k3 = 2. The next section describes how these methods can be
applied to accelerate the Saber KEM and discusses the way in which they offer different
trade-offs depending on the underlying platform.

3 Application to Saber
As we can see in Alg. 1-3, different Saber primitives need to perform matrix-vector
multiplications and vector dot products for correct functioning. Each element of each
matrix and each vector is a polynomial in Rq or Rp. Broadly, to see how the methods
described above can help to speed up Saber, consider the matrix-vector multiplication in
Fig. 4.

a00 a01 a02
a10 a11 a12
a20 a21 a22

 ·
s0
s1
s2

 =

a00 · s0 + a01 · s1 + a02 · s2
a10 · s0 + a11 · s1 + a12 · s2
a20 · s0 + a21 · s1 + a22 · s2

 =

b0
b1
b2


Figure 4: Matrix-vector multiplication A · s = b in Saber as shown in Alg. 1 and Alg. 2
for l = 3. The addition of constant h is omitted for ease of reading.

Each element of b is essentially the accumulation of l (i.e., τ = l) polynomial multipli-
cation results. Hence, we can use lazy interpolation to reduce the number of interpolations
by l − 1 for each bi. Also, the elements of vector s are fixed and used repeatedly in
different multiplications. Therefore we can precompute TC(si) once and use it for different
multiplications. For vector dot products we can similarly use the lazy interpolation but as
there is no repetition of multiplicand we cannot use the precomputation except during
the encryption in Alg.2 where the secret vector s′ is used twice in line numbers 5 and
6. Regarding the memory consumption, as discussed in Sec. 2.2, lazy interpolation

Table 1: Comparing number of evaluations and interpolations for different Saber primitives
with and without lazy interpolation and evaluation. The number of 16× 16 polynomial
multiplications remain the same for both cases.

Primitives Polynomial
multiplications

Without lazy interpolation
and precomputation

With lazy interpolation
and precomputation

Evaluation Interpolation Evaluation Interpolation
KeyGen l2 2l2 l2 l2 + l l
Encryption l2 + l 2(l2 + l) l2 + l l2 + 2l l + 1
Decryption l 2l l 2l 1

consumes (2nsb − 1)κ = 1953 double bytes or 3906 bytes of memory which is independent
of l. Whereas the precomputation consumes κ×nsb× l = 1008× l double bytes or 2016× l
bytes of memory and its overhead is higher for larger values of l.

At present, there are three different implementations of Saber, a C implementation
on general purpose Intel processors [12], a vectorized AVX2 implementation [12], and an
implementation on Cortex-M processors [24, 21]. It turns out that, in addition to the high
level generic speed up shown in Table 1, the application of these methods on Saber has
different ramifications on different platforms. We discuss them in this section.
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3.1 C implementation
Currently, the polynomial multiplication routine of Saber is implemented using the same
algorithm across all platforms [12, 24, 21], i.e., using η = 3 levels of Toom-Cook multiplica-
tions with k1 = 4, k2 = 2, and k3 = 2. This choice leads to 63 16×16 schoolbook polynomial
multiplications in the multiplication stage. In this work, we explore another combination
of Toom-Cook multiplication with η = 2 and k1, k2 = 4, i.e., Toom-Cook-4 multiplication
followed by another Toom-Cook-4 multiplication instead of 2 levels of Karatsuba. In this
setting, only 49 16 × 16 polynomial multiplications are performed. Furthermore, this
combination has less evaluation and interpolation stages than the previous combination. As
we can see in Sec. 2 and also in Table 1, combining lazy interpolation and precomputation
can reduce the cost of interpolation to a fraction 1/τ of the initial cost, and the cost of
evaluation to almost half of its previous costs. Hence, for optimized C implementations
on general purpose processors, Toom-Cook multiplication with lazy interpolation and
precomputation is faster when η = 2 and k1 = 4, k2 = 4. This is shown in Table 2.

It should be noted that this choice of η, k1, and k2 does not necessarily lead to optimum
performance for implementations on other platforms, such as Cortex-M4 and AVX2 enabled
processors. The reason is that Saber operates in fields of power-of-two numbers. In this
field, a division by a number f = a · 2θ with gcd(a, 2) = 1 is performed by first multiplying
the number with a−1 mod p or a−1 mod q followed by right shifting θ bits. During
reverse Toom-Cook transformation TC−1

k=4 we have to perform some divisions where the θ
can grow up to a maximum of 3. Hence, for a correct result mod 213 (line 4 in Alg. 1 and
line 5 in Alg. 2) the word size of the processor should be at least 19 bits if η = 2 and k1 = 4,
k2 = 4 or 16 bits if η = 3 and k1 = 4, k2 = 2, k3 = 2. Limiting word size requirement to 16
bits has benefits in processors like Cortex-M4 for faster 16× 16 polynomial multiplications
as shown in [24] or in vector processors as it leads to better packing efficiency and therefore
faster polynomial multiplications. Since the 16× 16 polynomial multiplications are done
using the schoolbook multiplication, which has a quadratic complexity, a small speed up
in the polynomial multiplications exceeds the benefit of fewer polynomial multiplications,
forward and reverse Toom-Cook transformations. In the C implementation on Intel
processors, the cost of multiplying two 32 bit words has the same cost as multiplying two
16 bit words. Hence, using 16 bit data types instead of 32 bit data types during polynomial
multiplication offers no extra benefit [13].

Table 2: Comparing clockcycles for matrix-vector multiplication in general purpose Intel
processors. All measurements are done on an Intel i7-7700@3.60GHz processor with
turbo-boost and multithreading turned off.

Old method [12, 11]
(x1000 clockcycles) This work (x1000 clockcycles)

TC4 + 2TC2 TC4 + TC4 TC4 + 2TC2 TC4 + TC4
l = 2 166 107 116 83
l = 3 370 285 232 183
l = 4 656 434 404 313

3.2 Cortex-M4
The critical operation for accelerating polynomial multiplication across different platforms
is the small schoolbook multiplication since it is performed many times for a single 256×256
polynomial multiplication. The optimal choice for an implementation on ARM Cortex-M4
is a 16× 16 polynomial multiplication where coefficients fit in 16-bit words [21]. Thus, two
coefficients can be packed into a single register and we can exploit the DSP instructions
operating on halfwords that are available on Cortex-M4 processors. If η = 2 and k1 = 4,
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k2 = 4 were to be used as for the C implementation, the 3 extra bits of precision required
for each Toom-Cook step with k = 4 would not allow to fit the result operands mod 213

in halfwords. Therefore, the optimal choice for an assembly optimized implementation
on Cortex-M4 platforms is η = 3 and k1 = 4, k2 = 2, k3 = 2. Algorithmically, this is the
same combination as in the literature [24] [21].

However, those works interleave the evaluation, point multiplication and interpolation
operations at each of the levels to improve the efficiency of the implementation, while
now these operations must be completely split since interpolation is computed only once
for each row-column product (lazy interpolation) and evaluation for the fix operand is
computed only when generating the secrets (precomputation). On the other hand, the
schoolbook is optimized to overwrite the memory region on which the result will be stored
to avoid setting it to zero, but lazy interpolation requires this only the first time within a
row-column product since afterwards the result is accumulated.

The minimum overhead attainable to solve this issue corresponds to including only
extra load operations for the previous result, and then exploiting DSP instructions to
add these values to the final result without extra instructions. We achieve this minimum
overhead with the following proposed modification of the state of the art schoolbook
multiplication.

Original schoolbook [21]

1. ldr r6, [r1, #0]
2. ldr.w ip, [r1, #4]
3. ldr.w r3, [r1, #8]
4. ldr.w sl, [r1, #12]
5. ldr.w r7, [r2, #0]
6. ldr.w r8, [r2, #4]
7. ldr.w r4, [r2, #8]
8. ldr.w lr, [r2, #12]
9. smulbb r9, r7, r6
10. smuadx fp, r7, r6
11. pkhbt r9, r9, fp, lsl #16
12. str.w r9, [r0]
13. smuadx fp, r7, ip
14. smulbb r5, r7, ip
15. pkhbt r9, r8, r7
16. smladx fp, r8, r6, fp
17. smlad r5, r9, r6, r5
18. pkhbt fp, r5, fp, lsl #16
19. str.w fp, [r0, #4]

Proposed modification [This work]

1. ldr.w r6, [r1, #0]
2. ldr.w ip, [r1, #4]
3. ldr.w r3, [r1, #8]
4. ldr.w sl, [r1, #12]
5. ldrh.w r9, [r2]
6. ldrh.w fp, [r2, #2]
7. ldr.w r7, [r0, #0]
8. ldr.w r8, [r0, #4]
9. ldr.w r4, [r0, #8]
10. ldr.w lr, [r0, #12]
11. smlabb r9, r7, r6, r9
12. smladx fp, r7, r6, fp
13. pkhbt r9, r9, fp, lsl #16
14. ldrh.w fp, [r2, #6]
15. ldrh.w r5, [r2, #4]
16. str.w r9, [r2]
17. smladx fp, r7, ip, fp
18. smlabb r5, r7, ip, r5
19. pkhbt r9, r8, r7
20. smladx fp, r8, r6, fp
21. smlad r5, r9, r6, r5
22. pkhbt fp, r5, fp, lsl #16
23. str.w fp, [r2, #4]

The assembly code proposed shows the first two iterations of the schoolbook multipli-
cation in its original version in the left column and our proposed modified version in the
right column. In the original version, the first two coefficients of the result are computed
into registers r9 and fp, packed into a single word and stored into memory, overwriting
any previous content of that address (see lines 9-12). In our code, these two registers have
been previously initialized with the accumulated result (lines 5-6) and smlaXX instructions
are used instead of smuXXX to multiply and accumulate the result (lines 11-12). The rest of
the execution continues as in the original version. The schoolbook is optimized to exploit
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temporal and spatial locality reducing the number of memory accesses. Therefore, there
are less load operations with which halfword loads can be grouped. Instead load halfword
instructions are reordered to avoid stall cycles due to data dependencies as in lines 14-17.
The only overhead introduced by our method corresponds to the load halfword instructions,
which is a total of 31 extra instructions and, therefore, 31 extra clock cycles are required
for each 16× 16 polynomial multiplication.

A small variation in the performance of a single schoolbook has a major impact in
the overall performance of polynomial multiplication as demonstrated in [24]. Therefore,
for a fair evaluation of our lazy interpolation and precomputation techniques we need to
compare the full matrix-vector multiplication instead of a single polynomial multiplication.
Table 3 shows a comparison of the matrix-vector multiplication using the old method
and our method for different values of l. Despite a loss of 8.6% in the performance of a
single 16× 16 schoolbook multiplication, the new method is equally fast already for l = 2
and it speeds up the matrix-vector multiplication by 12% and 18% for l = 3 and l = 4
respectively. Our method is more effective for the higher security levels.

Table 3: Comparing clock cycles for performing a matrix-vector multiplication with the old
method vs. using the new method. Measurements are taken on an STM32F4DISCOVERY
board.

Old method [21] This work Speedup
l = 2 162 kcycles 159 kcycles 1.9%
l = 3 361 kcycles 317 kcycles 12.2%
l = 4 646 kcycles 528 kcycles 18.3%

3.3 AVX2

Consider the AVX2 optimized polynomial multiplication strategy in Sec. 1.3. It is evident
that the methods described in Sec. 2 can be applied to the AVX2 implementation [12] but
we can do even better. Recall from Sec. 1.3 that the 63 vectors vectors of A = TC(A(x))
are put into bucket_A in a batch of 16 vectors at a time, transposed and then multiplied
with vectors in bucket_B using schoolbook multiplication. The result of this multiplication
is stored in bucket_C, transformed and then the reverse transformation TC−1 is applied.
That is, a 256× 256 polynomial multiplication in [12] needs 16 transpose operations, which
accounts for almost 30% of the total time of a 256× 256 multiplication.

To reduce the number of transposes, we extend our lazy interpolation strategy one
step further. To perform Cτ =

∑τ
i=1 Ai(x) × Bi(x), we keep a buffer CAVX2 with 4

bucket_C as each Ai(x) × Bi(x) needs 4 bucket_C to store the intermediate results of
the multiplication of bucket_A and bucket_B. Now, instead of transposing the bucket_Cs
in the CAVX2 as before we keep accumulating in CAVX2 the results by using the AVX2
instruction vpaddw, till we perform the final schoolbook multiplication corresponding to
Aτ (x)×Bτ (x) and accumulate the result in CAVX2. At this moment, we transpose the
bucket_Cs in CAVX2 and apply the reverse Toom-Cook transformation TC−1 to get the
final result Cτ . It is easy to see why this works. Similarly, for the precomputation, we
keep 4 bucket_B instead of a single bucket_B to perform Cτ =

∑τ
i=1 Ai(x)×B(x). We

fill up these buckets by using the vectors TC(B(x)) and transposing each of them. This is
shown in Fig. 5.

In this way, instead of 16τ transposing operations we have to perform only 4τ + 12
transposes. Table 4 compares matrix-vector multiplication using the old method [11, 12]
with the the new method for different values of l.
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Figure 5: AVX2 optimized multiplication in Saber with lazy interpolation. aij refers to i
th coefficient of j th polynomial.

Table 4: Comparing clock cycles for performing a matrix-vector multiplication with the
old method vs. using the new method. Measurements are done on an Intel i7-7700@3.60
GHz processor with turbo-boost and multi-threading turned off.

Old method [11, 12] This work Speedup
l = 2 10199 7214 29.3%
l = 3 21356 13574 36.4%
l = 4 39039 24767 36.6%

4 Memory optimizations
Since we have chosen Saber to demonstrate our efficiency improvements, we also take
this opportunity to propose some memory optimization techniques for Saber. Reducing
memory footprint is key for devices with limited resources, so the techniques described
in this section target the implementation for Cortex-M microcontrollers. The methods
described in this section exploit the fact that the samples used in Saber are drawn from a
small centered binomial distribution. We first show how to reduce the size of the secret
key in Saber. Later, we provide different implementations of Saber with small footprint
offering a range of time-memory trade-offs.

4.1 Small storage for secrets
Saber uses centered binomial distribution βµ with µ = 3, 4, 5 to generate the secrets for
LightSaber, Saber, and FireSaber, respectively. Unlike the discrete Gaussian distribution
whose samples can have larger values due to long tail, samples generated from a centered
binomial distribution lie in the relatively smaller range [−µ, µ]. In the Saber KEM scheme,
the modulus is q = 213 so these values are treated as 13 bit integers in the original
implementation.

Storing the secret key using as many bits as the modulus per coefficient is a common
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practice as most schemes choose parameters that enable the use of the NTT and, hence, the
secrets can be stored already in the NTT domain. For instance, in the case of Kyber this
offers an increased performance as well as a security advantage [7]. While the coefficients
follow a small binomial distribution, they are random in Zq in their NTT transformation.
In attacks like cold-boot [27, 1], where the attacker can recover the whole key except a few
bits, this randomness indeed makes the recovery of the full secret key very difficult [1].

Since Saber does not use the NTT none of these security advantages are applicable
to Saber. Therefore, if we look closely only 4 bits are enough to encode the secret values
because any attacker who can learn any bit from the 4th to 13th bit (starting from the
LSB) can automatically recover all the bits in that range. Any attacker who wants to
recover the secret key of Saber can limit the search space to 4 bits only instead of 13
bits. Therefore, we propose considering the coefficients of secret polynomials as 4-bit
integers. This format does not offer any less security than storing the keys using 13 bits
per coefficient but significantly decreases the size of the secrets by almost a third of its
previous size. Moreover, packing functions are much simplified since two coefficients fit
into a byte easily.

4.2 Reducing memory utilization
Besides reducing the size of the secrets, additional implementation techniques can be applied
to squeeze the RAM requirements of the implementation. Firstly, we focus on handling
the secrets. Although secrets are stored as 4-bit signed integers, the arithmetic must be
performed on their sign extended 13-bit correspondents. State-of-the-art implementations
unpack the secrets at the start of each operation of the scheme, but if the goal is to reduce
the RAM requirement for constraint environments [24] there are better approaches to
achieve a low memory footprint. We describe the two most cost-effective methods.

Unpacking the coefficients from the bit string every time can be costly. Instead, the
bit string is decoded to an array of bytes that allows easy access to the data. Then, sign
extending from a byte can be done efficiently before performing arithmetic operations
with the coefficients, and it requires a single clock cycles using the instruction sxtb. This
technique halves the stack required to handle secrets when performing matrix-vector
multiplication and vector dot multiplication.

However, doing arithmetic on 8-bit coefficients is incompatible with the optimal algo-
rithmic choice consisting on Toom-Cook multiplication algorithm followed by two recursive
applications of Karatsuba multiplication algorithm. The reason is that a coefficient for the
16× 16 polynomial multiplication might overflow 8 bits after running all the evaluation
stages for the worst case. The value of a sample s0 = 5 (3 bits) for FireSaber with µ = 5
could grow up to 75 (7 bits) after the evaluation of Toom-Cook 4-way, 150 (8 bits) after
the evaluation of the first iteration of Karatsuba and finally 300 (9 bits) after the second
iteration of Karatsuba, which would overflow the maximum value in 8 bits. To avoid this
scenario, and also since the goal is to reduce the memory footprint, we apply 4 levels
of Karatsuba consecutively. Moreover, we implement the memory efficient Karatsuba
algorithm which was used in [24] for implementing Saber on Cortex-M0 processors. This
solution scales for all Saber variants and avoids custom code for each parameter set as it
is one of the objectives of module lattice-based cryptography. The memory requirement
handling the secrets as uint16 arrays is 1024, 1536 and 2048 bytes for LightSaber, Saber
and FireSaber, respectively, and it decreases down to 512, 768 and 1024 bytes utilizing
this technique, in addition to the more memory compact multiplication algorithm.

In order to further reduce the stack usage, on-the-fly unpacking can also be used at the
cost of a higher cycle count. Since the number of bits of each coefficient of the secrets is a
divisor of the processor word size, the coefficients within the packed bit string are accessed
with constant offsets. Thus, the sbfx instruction can be used to unpack a coefficient per
clock cycle. After unpacking two consecutive coefficients they can be repacked to halfwords
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using pkhXX to keep on exploiting DSP instructions for the arithmetic. This technique
allows a stack usage for handling secrets as low as 256, 384 and 512 bytes for LightSaber,
Saber and FireSaber, respectively.

In addition to these techniques, we also implement state-of-the-art memory optimiza-
tions such as book-keeping for the hashing, just-in-time generation of the polynomials in the
public matrix and in-place verification of the decryption. Furthermore, these optimizations
do not introduce an overhead in the execution time, or even improve it to some extent
as shown in Table 5, so they can be applied systematically to all implementations. We
refer to Section 5 for a full discussion of performance and memory results for different
configurations proposed in this work. Such variants offer an alternative for scenarios where
the main constraint is RAM or time.

Table 5: Impact of randomness bookkeeping, just-in-time matrix generation and in-place
ciphertext verification in the memory requirements of the implementation.

l = 3 This work This work with
memory opts.

KeyGen 853 kcycles 846 kcycles
19 824 bytes 19 776 bytes

Encaps 1 103 kcycles 1 063 kcycles
22 088 bytes 14 728 bytes

Decaps 1 127 kcycles 1 073 kcycles
23 184 bytes 14 736 bytes

5 Results
We discuss the effect of our Toom-Cook multiplication algorithm on the overall performance
of Saber. As mentioned earlier, memory is not a constraint in desktop computers so we
report memory optimization results for Cortex-M4 microcontrollers only. We discuss
results of AVX2 and C implementations in the first subsection of this section. The later
subsection describes results pertaining to Cortex-M4 microcontroller.

5.1 AVX2 and C implementation

We incorporated our efficient Toom-Cook algorithm in different primitives of Saber key-
encapsulation mechanism for all the proposed security levels. As standard practice, we turn
off turboboost and hyperthreading while taking measurements. The codes are collected
from the second round submission of Saber to the NIST’s post-quantum standardization
procedure. All the compiler optimization flags have been kept the same as in the original
implementation. However, we added the -fno-tree-vectorize flag to the C implemen-
tations to disable the auto-vectorize option of GCC. This has been done to ensure fair
comparison between different implementations.

As we can see in Table 6, due to the reasons described in Sec. 3.1, the C implementation
gains up to 48% in performance when using 2-levels of TC4 multiplication, which is
higher than the gain obtained by using TC4 multiplication with two levels of Karatsuba
multiplications. However, in the AVX2 implementation the efficiency increases only 6−11%
when our techniques are applied. The reason is that the designers of Saber chose to use a
serialized Keccak routine to generate pseudorandom numbers instead of a faster parallel
Keccak routine as used in Kyber [7]. This routine constitutes the majority of the run time
while a mere 20− 25% of the whole run time is spent on polynomial multiplications.
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Table 6: Comparing performance of Saber using the old Toom-Cook multiplication with
the new Toom-Cook multiplication proposed in this work for different levels of security.
Figures in the parentheses denotes the percentage of gain from their respective old methods.
All the results are measured on Intel i7-7700@3.60GHz.

C(x1000 clockcycles) AVX2(x1000 clockcycles)
Old method TC4 + 2 · TC2 TC4 + TC4 Old method This work

KeyGen 228 212 (6%) 159 (30%) 60 56 (6%)
l=2 Encaps 330 246 (25%) 224 (32%) 71 65 (8.5%)

Decaps 412 303 (26%) 284 (31%) 67 60 (10%)
KeyGen 460 355 (23%) 360 (22%) 101 92 (8%)

l=3 Encaps 678 442 (35%) 368 (45%) 119 107 (9%)
Decaps 703 596 (15%) 434 (38%) 114 101 (11%)
KeyGen 795 690 (13%) 485 (39%) 155 139 (10%)

l=4 Encaps 959 698 (27%) 707 (26%) 176 159 (9.5%)
Decaps 1266 805 (36%) 661 (48%) 173 153 (11%)

5.2 ARM Cortex-M4 implementation
Unlike for C and AVX2 implementations where memory is never a constraint, both
performance and memory must be considered in the evaluation of optimizations for ARM
Cortex-M4 processors. Section 3.2 and Section 4.2 already presented the impact of
the speed and memory optimizations, respectively, in certain operations of the scheme.
In this section, we discuss the overall impact of these proposed optimizations. For a
fair evaluation, we compare performance results to the state-of-the-art implementation
optimized for speed available in [22] and memory results to the implementation optimized
for low memory footprint available in [24]. All performance and memory measurements
of our implementations were obtained using an STM32F4DISCOVERY board and the
easy-to-use framework for benchmarking of KEMs and signature schemes provided in [22],
which runs the board at 24 MHz to avoid wait states during memory accesses.

Table 7: Comparison of execution time and memory utilization on ARM Cortex-M4
processors for different Saber parameters. [24] reports results only for Saber.

Old method
for speed [22]

This work
(speed opt.)

Old method
for memory [24]

This work
(memory opt.)

l = 2

KeyGen 460 k 466 k - 612 k cycles
9 656 14 208 - 3 564 bytes

Encaps 651 k 653 k - 880 k cycles
11 392 15 928 - 3 148 bytes

Decaps 679 k 678 k - 976 k cycles
12 136 16 672 - 3 164 bytes

l = 3

KeyGen 896 k 853 k 1 165 k 1 230 k cycles
13 256 19 824 6 931 4 348 bytes

Encaps 1 162 k 1 103 k 1 530 k 1 616 k cycles
15 544 22 088 7 019 3 412 bytes

Decaps 1 205 k 1 127 k 1 635 k 1 759 k cycles
16 640 23 184 8 115 3 420 bytes

l = 4

KeyGen 1 449 k 1 340 k - 2 046 k cycles
20 144 26 448 - 5 116 bytes

Encaps 1 787 k 1 642 k - 2 538 k cycles
23 008 29 228 - 3 668 bytes

Decaps 1 853 k 1 679 k - 2 740 k cycles
24 592 30 768 - 3 684 bytes
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First, we analyze performance optimizations. As anticipated in Table 3, the impact
of our lazy interpolation and pre-computation techniques in the speedup scales with the
dimension of the matrix. Comparing the first two columns in Table 7, we observe that our
method does not offer any advantage for l = 2 while for l = 3 and l = 4 the overall speed
ups vary between 4.8− 6.6% and 7.5− 9.9%, respectively.

Secondly, third and fourth columns in Table 7 show that our memory optimizations
reduced the RAM requirements of the smallest implementation for Cortex-M4 of Saber
between 2.6 and 5.7 KB depending on the operation. This equals savings between 37.7%
and 70.4% in memory and allows encapsulation and decapsulation to execute utilizing less
than 3.5 KB of RAM overall.

Finally, Table 8 summarizes the changes in the minimum sizes to store the secret keys
for the different parameters of Saber. We have achieved a compression of the secret key
sizes between 36.7% and 38.2% with respect to the Saber specifications.

Table 8: Comparing sizes of the secret when encoded as 13 bits vs. encoded as 4 bits.
Old [11] This work Compression

l = 2 1568 992 36.7%
l = 3 2304 1440 37.5%
l = 4 3040 1888 38.2%

6 Conclusion
To summarize our work, we describe a time-memory trade-off for Toom-Cook based
polynomial multiplications which can be of independent interest outside post-quantum
cryptography. We also show that there is a striking similarity between Toom-Cook
and NTT based multiplication. For large systems where throughput is more important
than the memory usage, the speed optimization techniques scale well with the security
parameters. Furthermore, to compensate for the increased memory usage, we describe
memory optimization techniques suitable for resource constrained microcontrollers. As
the memory optimization techniques have very little overhead and work independently of
multiplication algorithms they can be combined seamlessly according to the need of users.
The reduction in size of the secret key places Saber among the lattice-based schemes with
lowest secret key sizes. Please note that Round5 [6] and ThreeBears [17] have very small
secret keys as they do not store the secret polynomial, instead generate them on the fly.

Toom-Cook based polynomial multiplications have regained attention recently and
many new optimizations have been proposed in the short duration since the start of the
NIST’s post-quantum standardization procedure. We believe that our work will add more
impetus to this effort. Finally, as Toom-Cook based polynomial multiplication is more
generic and much less restrictive, we hope that this improvement in the Toom-Cook based
polynomial multiplications will grant more freedom to future cryptographers to create
more innovative designs.
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