
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 172–195. DOI:10.13154/tches.v2020.i2.172-195

Persistent Fault Attack in Practice

Fan Zhang1,2,4, Yiran Zhang1,3,4, Huilong Jiang5, Xiang Zhu5, Shivam
Bhasin6, Xinjie Zhao7, Zhe Liu2,8(�), Dawu Gu9 and Kui Ren1,4

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, China

3 College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
4 Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China

5 Chinese Academy of Sciences, Beijing, China
6 Nanyang Technological University, Singapore

7 Institute of North Electronic Equipment, Beijing, China
8 Nanjing University of Aeronautics and Astronautics, Nanjing, China

9 Shanghai Jiaotong University, Shanghai, China
fanzhang@zju.edu.cn;zhe.liu@nuaa.edu.cn

Abstract. Persistence fault analysis (PFA) is a novel fault analysis technique proposed
in CHES 2018 and demonstrated with rowhammer-based fault injections. However,
whether such analysis can be applied to traditional fault attack scenario, together
with its difficulty in practice, has not been carefully investigated. For the first
time, a persistent fault attack is conducted on an unprotected AES implemented on
ATmega163L microcontroller in this paper. Several critical challenges are solved with
our new improvements, including (1) how to decide whether the fault is injected in
SBox; (2) how to use the maximum likelihood estimation to pursue the minimum
number of ciphertexts; (3) how to utilize the unknown fault in SBox to extract the
key. Our experiments show that: to break AES with physical laser injections despite
all these challenges, the minimum and average number of required ciphertexts are
926 and 1641, respectively. It is about 38% and 28% reductions of the ciphertexts
required in comparison to 1493 and 2273 in previous work where both fault value and
location have to be known. Furthermore, our analysis is extended to the PRESENT
cipher. By applying the persistent fault analysis to the penultimate round, the full
PRESENT key of 80 bits can be recovered. Eventually, an experimental validation
is performed to confirm the accuracy of our attack with more insights. This paper
solves the challenges in most aspects of practice and also demonstrates the feasibility
and universality of PFA on SPN block ciphers.
Keywords: PFA · Fault Injection · SRAM · MLE · AES · PRESENT

1 Introduction
Fault attack (FA) on cryptographic systems is an active attack with two phases. In Phase
one, the adversary disturbs the operation of the target device, which is known as fault
injection (FI). In Phase two, he analyzes the faulty ciphertexts to recover the key, which is
known as fault analysis.

Fault injection techniques can include changing the power supply voltage, the external
clock, or the temperature, etc, which are low-cost but low-precision. Laser is one of the
most popular methods due to its precision. Laser injection was first developed in the field
of radiation resistance. The specific manifestation of Single Event Effect (SEE) [WM62] is
that the incident high-energy particles can generate a large number of ionization charges
inside the chip and then generate current pulses, which may lead to changes of storage

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.172-195
mailto:fanzhang@zju.edu.cn; zhe.liu@nuaa.edu.cn
http://creativecommons.org/licenses/by/4.0/

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 173

information or errors in logic operation [BSH75]. In 1965, Habing first proposed a method
to simulate the SEE of heavy ions by using pulsed laser [Hab65]. Later, laser has been
used in the field of security evaluation as a fault injection method. The laser fault injection
was first proposed by P. Skorobogatov and J. Anderson in 2002 [SA02], which targets at
the 68 byte Static Random-Access Memory (SRAM) of a microcontroller (µC). In addition
to SRAM, the registers of µC are also vulnerable to the laser [CLMFT14].

After fault analysis was firstly published by Boneh et al. [DDL97] in 1996, a huge
amount of related work about fault analysis has been carried out. Differential fault analysis
(DFA) is one of the most well-studied methods which was proposed by Biham and Shamir in
1997 [BS97]. It is a very powerful analysis method and has been successfully applied to block
ciphers such as DES [BS97], AES [PQ03, DLV03, KQ08, TMA11], PRESENT [WW10] etc.
In CHES 2007, ineffective fault analysis is proposed by Clavier et al. to exploit ineffective
injections. They show that ineffective faults, i.e., faults that have no effect at all, are
informative. Later in 2013, statistical fault analysis (SFA) is proposed to exploit statistics
of faulty ciphertexts [FJLT13]. In CHES 2018, statistical ineffective fault analysis (SIFA)
is proposed to combine IFA and SFA [DEK+18]. They exploit statistics of ciphertexts
when the fault is ineffective to recover the key. Later Dobraunig et al. show that SIFA
can break masked AES with fault countermeasures [DEG+18].

Most of the previous fault analyses are based on transient faults, which means these can
require an adversary to perform several injections ranging from two to millions. In CHES
2018, persistent fault analysis (PFA) was proposed by Zhang et al. to take advantage
of persistent faults [ZLZ+18]. Under the proposed model of persistent faults, a fault
targeting long term constants in memory like Sbox can be exploited with only one injection.
PFA was proposed to break SPN block ciphers, and it can bypass some countermeasures
like module redundancy. In their work [ZLZ+18], the persistent fault is induced through
rowhammer techniques and it persists in the DRAM of general processors. In [PZRB19],
Pan et al. shows that PFA can break higher-order masking countermeasures at any
masking order with only one fault injection. In [MBD+19], Menu et al. demonstrates PFA
by electromagnetic fault injections on data transfers on microcontroller. However, these
attacks are based on the assumption that the adversary knows the location and value of
the persistent fault injected by the attacker.

In this paper, we demonstrate a practical persistent fault attack on an unprotected
AES-128 cipher on ATmega163L microcontroller without the knowledge about the fault
location and fault value. The main contributions of this work include:

• We demonstrate the first practical persistent fault analysis in the traditional laser-based
fault attack setting. The target is a common microcontroller used in many existing
works, showing that PFA is not a difficult practice to achieve.

• We propose methods to verify whether the desired persistent fault was injected in the
SBox or not.

• We propose an improved analysis technique for PFA to handle cases when both fault
value and location within a SBox are unknown.

• We extend PFA on the lightweight block cipher PRESENT, which has a small 4 × 4
SBox that is difficult to target and analyze with persistent fault.

• We investigate the mechanism, distribution, and impacts for bit flips in SRAM.

The rest of the paper organised as follows. Sec.2 gives some background. An overview
of our attack is described in Sec.3. Sec.4 and 5 elaborate our fault injection and analysis
method, respectively. Sec.6 extends our attack to PRESENT cipher. Sec.7 shows a more
thorough investigation on the bit flips in SRAM, and finally we conclude the paper in
Sec.8.

174 Persistent Fault Attack in Practice

2 Background
In this section, we recall general background on target microcontroller, AES cipher and
laser fault injection on microcontrollers.

2.1 ATmega163L Microcontroller
Microcontrollers (µC) are widely used for endpoint encryption in various commodities,
such as commercial IC cards, usb-keys, etc. A typical µC mainly consists of CPU(usually
containing ALUs, controllers and registers), RAMs, ROM/FLASHs and I/O peripherals.
In this paper, an 8-bit commercial microcontroller, ATmega163L from Microchip [Mic03]
is used for demonstration. It is with 1K bytes SRAM, 16K bytes Flash ROM and 4MHz
maximal frequency. The TQFP-44 package version was selected for this work.

2.2 AES-128 and S-Box Implementation
The Advanced Encryption Standard (AES) is a block cipher that published as a standard
for symmetric encryption by NIST in 2001. AES has three versions. In this paper, we
focus on the AES-128 where the block size and key size are all 128 bits, i.e., 16 bytes.

During encryption, the 16-byte plaintext is copied into a 4×4 matrix called state. Then
it goes through 10 rounds, and the final state is copied into ciphertext. Each round consists
of four major operations: (1) SubBytes. It is a simple table lookup to the so-called
SBox. Each byte is substituted by the corresponding byte in SBox. (2) ShiftRows. (3)
MixColumns. (4) AddRoundKey. The state is XORed with round keys which are
generated by KeyExpansion function with the master key. Note that KeyExpansion is an
invertible function, which means getting any of round keys is equivalent to extracting the
master key. Besides, there is an additional AddRoundKey at the beginning of encryption
and the MixColumns operation is skipped in the last round.

Two types of AES implementation are frequently used. The first one is SBox implemen-
tation which uses a compact lookup table of 256 bytes. The InvSbox used in decryption
also has 256 bytes. The other one is called TBox implementation which combines multiple
operations into one substitution. In this paper, we consider the SBox implementation.

2.3 Laser Fault Injection to µC and SRAM
Semiconductors are sensitive to light when photons have sufficient energy to free bound
electrons. A reverse PN junction can be turned on when collecting these additional charges,
which could lead to an upset or other faults. A pulsed and focused laser can be injected
into some micron-scale cells of a chip within nanoseconds and it is possible to create specific
and accurate faults with a desired output.

Laser injection on a large scale integrated circuit may cause different effects, depending
on the energy and injection location of the chip. Some effects as latch-ups (a type of short
circuit which disrupts functionality and even leads to destruction due to overcurrent) are
destructive and may not be proper for fault analysis. Some effects as upsets (a type of
state change that happens in memory or register) are soft-errors, suffering from some data
or instruction errors while the functionality and structure of the chip are maintained. As
laser fault injection implemented in appropriate time and position, various effects including
register or memory modification, key zeroing, and instruction bypass can be achieved.

For user data storage in µC, SRAMs are critical for the validity and integrity of the
data. SRAM is deployed for data storage in µC because it has faster read-write speed
than DRAM due to its cell structure. However, most components of µC such as SRAMs
or registers are sensitive to laser and could be an attack target.

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 175

3 Overview of Persistent Fault Attack on SRAM
A general overview of the proposed attack at a high level is described in this section. The
attack flow is dedicated to SRAM in this paper, showing the feasibility of the so-called
persistent fault attack with existing equipment, technologies and analysis methods. Details
of fault injection and fault analysis will be addressed in Sec.4 and Sec.5, respectively.

3.1 Fault Model
The target of PFA is a serialised software implementation running on the µC of AES-128
with one common SBox for all bytes and rounds. The fault model can be summarized as
follows: (1) Before the injection, the data of SBox is already in SRAM and not updated for
several encryption, ex. loaded during a boot-up sequence; (2) Before the encryption, the
adversary can inject faults into the SRAM region of the micorcontroller; (3) The injected
faults are persistent, i.e., they will not be refreshed during the encryption, and faulty
elements of SBox will be used in the encryption; (4) The injected faults are at byte level.
For a single injection, only one byte is altered; (5) The adversary can control the input
plaintexts and collect output ciphertexts.

3.2 Core idea
The security application together with the AES cipher is compiled and burned into the
Flash of the microcontroller. Once the target µC is powered on, some variables and data
will be either loaded from Flash or pre-configured with initial values directly in SRAM.
The adversary has normal expertise of launching a fault attack, which generally includes
two phases. In Phase one, there is possibly a quite long time window between the power-on
of the device and the start of cipher execution, which gives enough time for the adversary
to setup the laser. Then the laser pulses are repeatedly performed until a laser pulse
inject a so-called persistent fault into SBox. In Phase two, the adversary collects several
ciphertexts for random plaintexts encrypted by AES-128 operation using the faulty SBox.
Persistent fault analysis can be utilized to break the cipher. However, it requires quite
some adjustment in practical attacks.

3.3 Phase One: Online Fault Injection
Stage 1: Decapsulation of µC. Decapsulation of ATmega163L in our experiment

is done by third-party partners. For the plastic package of the chip, the epoxy resin and
other packaging materials on the back need to be removed before the experiment. Fig.1a
shows the card that is the target of the experiments. The PCB board is designed with a
small window to expose the backside of µC which is already decapsulated.

Stage 2: Detection of SRAM. Since the target will be SRAM, it is interesting to
know where the physical SRAM region is located. Fig.1b shows the actual µC layout
information we captured with an infrared camera after the decapsulation from the backside.
In order to visualize the inside much more clearly, an auxiliary picture in Fig.1c is shown in
comparison which is taken after a frontside decapsulation. In Fig.1c, the main components
are labeled. SRAM and Flash storage arrays are well organized and their regions are
relatively easy to distinguish. As shown in the left part of Fig.1c, two flash arrays are
divided into 16 sectors. Comparing with the 16KB flash, the SRAM of µC has only 1024
bytes, its region is relatively smaller and located in the right bottom. In this µC, the
SRAM is divided into two areas which can be recognized by direct observations on Fig.1b.

Stage 3: Injection to SRAM. A high precision laser facility is used to inject byte
level faults. Laser parameters such as the energy must be carefully designed according to
the µC. With proper parameters, the laser has the capability of injecting persistent faults

176 Persistent Fault Attack in Practice

(a) Smartcard

Flash

IO

Logic

SRAM

(b) Back layout

Flash

IO

Logic

SRAM

(c) Front layout

Figure 1: The backside of decapsulated µC with its layouts.

into the SRAM. However, as the adversary has no access to the SRAM, two challenges
must be addressed. The first challenge for the adversary is to detect and verify, if the laser
injection created a fault in the SBox or not. The second challenge is the location and value
of the fault are unknown. Lack of such information makes the analysis difficult.

Stage 4: Encryption without synchronization. In traditional fault attacks, in
order to corrupt the target intermediate value of a cipher, the adversary needs to determine
the precise timing, i.e., in which round and in which operation the laser beam must be shot.
This needs a very tightly-coupled synchronization between the timing of cipher encryption
and fault injection, which needs high expertise to achieve. Thanks to the relaxed time
window, the persistent fault is already injected in Stage 3 and well prepared for subsequent
steps. Then the adversary can feed the plaintext to µC and start the encryption, which is
under a favorable fashion that requires no synchronization with the cipher execution.

3.4 Phase Two: Offline Fault Analysis
Our fault analysis method mainly follows the pioneer work proposed in [ZLZ+18], however,
lots of improvements are required to make it practical. In Persistent Fault Analysis (PFA),
the fault will persist for a relatively long time, but not permanent. The persistent fault
used in this paper is a modification to AES SBox in SRAM. It will last over different
encryptions and will not disappear until a reset of µC. The offline PFA exploits the
statistical distribution of the faulty ciphertexts to reveal key-dependent information.
However, the original PFA in [ZLZ+18] assumes that the adversary knows exactly which
SBox element is corrupted and the corrupted value. In our attack scenario, both of the
assumptions are not satisfied. In this paper, the PFA is improved to recover these unknown
information from the ciphertexts. In addition, Maximum Likelihood Estimation (MLE)
is used to take full information from the ciphertext distribution and reduce the attack
complexity.

4 Fault Injection in Practice
Our fault injection method will be detailed in this part. The experimental setup and
the process for practical injections are described in Sec.4.1, and method for solving the
problems is shown in Sec.4.2.

4.1 Setup and Practical Injection
All experiments are conducted on a pulsed laser facility which is originally used for single
event effect tests. It is customized to fit the fault attack on microcontrollers in this paper.

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 177

CCDCCD

Pulsed Laser

3D Motorized Stage

Microscope

System

Computer

DUT

Synchronization

Control System

Figure 2: Schematic of pulsed laser facility for our persistent fault attack.

Fig.2 presents the schematic of the experimental setup. The facility is composed of
a pulsed laser generator, a microscope system, a three-dimensional motorized stage, a
synchronization control system and a computer. The device under test (DUT) consists in
the ATmega163L µC whose backside is already decapsulated, as shown in Fig.1a. This
DUT is mounted on the 3D motorized stage. The pulsed laser beam is collimated and
focused on the backside of µC by the microscope system. Focused laser spot on this
µC is imaged via the charge-coupled device (CCD). The facility is coordinated by the
synchronization control system which allows synchronization among the movement of the
3D motorized stage, the shot of laser pulse, and the power on/off of µC. The computer
can control the facility by sending commands to the synchronization control system which
also communicates with µC via a serial port. It will return a signal to the computer after
a received command is completed.

The parameters of laser must be carefully chosen. The single photon energy of the
laser is set to 1.17eV in order to make it larger than the band gap of silicon. Then the
energy of each laser pulse needs to be selected. As mentioned in Sec.2.3, there are three
results when laser irradiations are positioned onto SRAM, including no effect, upset and
latch-up. In this work, upset is the state of data corruption which can be recovered by
reset, and latch-up is the state of lock which can only be restored by power off and on.
Usually, the upset threshold is lower than latch-up and the proper energy can be chosen
in the range between them. After repeated experiments, the upset threshold of SRAM is
about 100pJ. The latch-up threshold is 250∼300pJ, so the energy of 200pJ is chosen for
the subsequent experiment. The laser spot size is about 2 µm which is precise enough for
our µC and each laser pulse lasts about 17 ps.

With these setup, the adversary can randomly shoot laser pulses into the coarse area
of the SRAM, hoping one of them can inject a fault into the SBox. After each injection,
the adversary needs to determine if a real SBox fault is injected, which can be termed as
an effective injection. For ineffective ones, the adversary can reset the µC and try to shoot
laser at a different location. For effective ones, the adversary can collect faulty ciphertexts
for the following analysis. The major challenge for the fault injection is how to identify
the effective injections.

4.2 Identification on Effective Injections
For an effective injection, i.e., with a fault inside SBox, the ciphertext will become faulty
if and only if the corrupted element is accessed during the encryption. Due to the
randomized plaintexts, only part of the ciphertexts will become faulty. In other conditions,
the ciphertexts will be either all correct (e.g., no data corruption) or all faulty (e.g., the
round constants are corrupted). Therefore, the adversary can firstly collect a set of correct
ciphertext without activating the laser to have a reference set. Then the same set of

178 Persistent Fault Attack in Practice

plaintext can be used in subsequent runs. The injection will be judged as an effective one
if both correct and faulty ciphertexts exist.

However, if too few ciphertexts are collected, they can be all correct or faulty even
with an SBox fault, and misjudgment will happen. Meanwhile, we want to reduce the
amount of required ciphertexts as little as possible. So the number of ciphertexts must be
carefully evaluated and determined to balance the cost and the misjudgment rate.

For AES-128, the SBox table of 256 bytes is accessed 160 times during the encryption,
and the probability that the faulty SBox is not accessed can be computed as PF =
(1− 1

256)160 ≈ 53.46%. That means about half of the ciphertexts should be correct. With
Nc ciphertexts, the probability that the ciphertexts are all correct or all wrong, i.e., the
misjudgment rate Pmj1, can be computed as Pmj1 = PNcF + (1−PF)Nc . The misjudgment
rate drops exponentially with Nc. With 20 ciphertexts, it can be lowered to 3.86× 10−6

which is negligible. Therefore, 20 ciphertexts will be collected after each injection to decide
whether a fault is injected into the SBox or not.

5 Persistent Fault Analysis on AES in Practice
During the fault injection phase, the persistent fault is already injected and verified. In
this section, we focus on phase two, where the ciphertexts are carefully analyzed in order
to extract the secret key.

The original persistent fault analysis in [ZLZ+18] is a little bit away from practical,
where two important factors are ignored: (1) fault location, i.e., which byte of SBox is
injected with faults; (2) fault value, i.e., the fault difference between the corrupted byte
and its original value. In their work, the fault location is fixed as the first element of SBox.
The fault value is also known to the adversary. For example, the faulty element value is
altered from 0x63 to 0x61 via rowhammering, where 0x61 is assumed to be known through
a profiling process on the entire memory space [ZLZ+18].

However, as mentioned in Sec.4, in the real attacks these two factors are actually
unknown to the adversary. Such information needs to be deduced from the offline crypt-
analysis, which is NOT that straightforward.

5.1 Limitations of the Original PFA
The fault location, i.e. the byte index of fault, is denoted as i. The fault value is denoted
as f . During the fault injection, the ith byte of S-Box S[i] is changed into S′[i], where
S′[i] = S[i]⊕ f . Suppose cj , yj , kj denote the jth byte of the ciphertext, the state before
the last key addition and the last round key, respectively. Thus cj = yj ⊕ kj . 1.

Let Pr(yj) and Pr(cj) denote the probability distribution of yj and cj , respectively.
For normal encryptions without faults, due to the avalanche effect, the probability of each
value of yj and cj should be close to 2−8. But this property would not hold if there is a
fault in SBox. Thus the probability distribution for cj can be calculated as in Eq.(1).

Pr(cj = v) =


0 v = S[i]⊕ kj
2× 2−8 v = S′[i]⊕ kj
2−8 otherwise

(1)

Let cminj denote the value that should never appear in the specific jth byte of final
ciphertexts, and cminj = S[i] ⊕ kj . Let cmaxj denote the ciphertext value that should
appear with doubled frequency where cmaxj = S′[i]⊕ kj . In practice, a statistic analysis on
the collected ciphertexts can be conducted to check whether such a desired probability

1Linear permutations such as ShiftRows in AES are simply ignored for simplification

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 179

Figure 3: Exemplary PFA on AES with known fault location and value.

distribution really appears or not, which can be used to deduce either cminj or cmaxj , and
to extract kj directly.

Let Cj denote the distribution of the jth byte among all ciphertexts. Specifically, Cj
shows different counts of values that appear in Nc ciphertexts. Taking the first byte of all
ciphertexts as an example, Fig.3 shows how the distribution C0 changes with the increasing
number of ciphertexts. The red curve at the bottom corresponds to cmin0 with a zero
probability, and the blue curve on the top corresponds to cmax0 which converges to 2

256
with enough number of ciphertexts. Both curves are apparently getting more and more
distinguishable, while other curves are converged to the probability of 1

256 .

For any j, cminj can be easily recovered with sufficient ciphertexts since it is the only
value that never appears. Then the key can be recovered as kj = S[i]⊕ cminj , which shows
that recovering kj is equivalent to recovering cminj if S[i] is specified.

In [ZLZ+18], a straight-forward method is proposed to recover cminj . Since cminj can
never appear, they can eliminate impossible values of those candidates to reduce the
search space. More specifically , cminj 6= v if Counts(cj = v) 6= 0, where Counts(cj = v)
calculates the number of ciphertexts whose cj = v. However, when pursuing as few number
of ciphertexts as possible (i.e., a smaller Nc is wanted), such fault analysis has two major
drawbacks, which should be overcome in order to improve original PFA.

One drawback is about cminj itself. In [ZLZ+18], the value of cminj will be verified
ONLY when enough number of ciphertexts are collected. With an increasing number of
ciphertexts, more and more impossible values will be identified and then removed from the
candidate set for cminj . When all 255 values are identified, the adversary will be aware
that there is only one possible value that remains in the candidate set, which is confirmed
as the correct cminj with a 100% probability. However, the adversary does not need to wait
until all impossible values are identified.

The other drawback is about the usage of cmaxj . In [ZLZ+18], the fault analysis relies
merely on cminj , which does not take cmaxj into consideration. In the original PFA, cmaxj will
converge to 2

256 and cminj remains a zero probability all the time. As shown in Fig.3, the
differentiation of such convergence for cmaxj requires more ciphertexts when compared to
cminj . That is the reason why cminj is chosen for filtering those impossible values. However,
an analysis on cmaxj can possibly assist that on cminj .

Both drawbacks can be improved with the technique called Maximum Likelihood
Estimation (MLE), which can significantly reduce the number of required ciphertexts.

180 Persistent Fault Attack in Practice

5.2 Improved PFA with Maximum Likelihood Estimation
The core idea of our improved PFA can be sketched as following: Similar to the original
PFA, the impossible values of cminj are firstly eliminated. With sufficient ciphertexts,
only one candidate of cminj will remain, and it must be the correct one. However, with
a limited number of ciphertexts, several candidates may remain in the candidate set for
cminj . In this situation, it is hard to decide which candidate is better to be kept if no
further information is provided. Recall that the original PFA simply increases the number
of ciphertexts until only one candidate remains. However, in an naive case where the fault
value f is known, the corresponding cmaxj for each remaining candidate of cminj can be
computed as in Eq.(2):

cmaxj = S′[i]⊕ kj = (S′[i]⊕ S[i])⊕ (S[i]⊕ kj) = f ⊕ cminj (2)

As cmaxj should appear more frequently, the candidate for cminj with the most frequent
cmaxj will be the correct one with a higher probability. The constraint in such naive case
can be further relaxed in a further discussion, which will be the real case where neither
fault location nor fault value is known.

Let us give an example to facilitate understanding. Considering a set Cj of 1020
ciphertexts:

Cj : Counts(cj = v) =


8 v = 0
4 v = 1, 2, ..., 253
0 v = 254, 255

(3)

Both 254 and 255 are candidates for cminj . Assuming f = 255, if cminj = 254, the
corresponding cmaxj = 254⊕255 = 1; If cminj = 255, the corresponding cmaxj = 255⊕255 = 0.
Since the value 0 appeared eight times in Cj while the value 1 only appeared four times,
255 should be more likely to be the correct cminj .

In fact, our idea is equivalent to estimate cminj with Maximum Likelihood Estima-
tion (MLE). MLE is a method of estimating the parameters of a probability distribution by
maximizing a likelihood function, so that under the assumed statistical model the observed
data is most probable. With the collected ciphertexts Cj , the adversary can enumerate all
possible values (i.e., 0 to 255) for cminj . Suppose each enumeration θ, the corresponding
probability mass function of the ciphertexts is as in Eq.(4):

Pr(cj = v) =


0 v = θ

2× 2−8 v = θ ⊕ f
2−8 otherwise

(4)

The probability of the event that Nc ciphertexts exactly follow the distribution Cj
corresponding to specific θ can be calculated with the probability mass function in Eq.(5).

Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f) = Nc!
255∏
v=0

(nvj !)
· δnθ

j
· (2

256)n
θ⊕f
j · (1

256)N−n
θ
j−n

θ⊕f
j

=Const0 · δnθ
j
· 2n

θ⊕f
j

(5)

In Eq.(5), nθj is an abbreviation of Counts(cj = θ) which is the number of ciphertexts
whose cj = θ. Const0 is a small positive constant. δn is the Kronecker delta function with
the single argument n where δ0 = 1 and δn = 0 for n > 0.

The mathematical proof can be found in Appendix A.
According to Eq.(5), if θ appears in Cj , Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f) will be zero,

which means it will be eliminated. For the rest of θs, the one with maximum cmaxj = θ⊕ f

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 181

Mean: 2272.9

1500 2000 2500 3000 3500 4000 4500

Number of ciphertexts

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

(a) Method in [ZLZ+18]

Mean: 1640.7

1000 1500 2000 2500 3000 3500

Number of ciphertexts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

ba
bi

lit
y

(b) Method in this paper

Figure 4: Distribution of Nc for cmin with 10000 trials.

will have a maximum Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f), thus it will be selected as the
estimation for cminj and denoted as ĉminj . Note that the explanation of Eq.(5) is consistent
to the sketched description aforementioned. ĉminj can be represented as in Eq.(6).

ĉminj = arg max
θ

Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f) (6)

Such estimation on cminj (1 ≤ j ≤ 16) can be applied to all ciphertext bytes in parallel
to form all 16 bytes of cmin. With cmin, the key can be extracted.

To verify our new proposal and compare it with the original PFA, a simulation is
repeated for 10000 times to find how many ciphertexts on average are required to recover
cmin (all 16 bytes of cminj). 5000 ciphertexts are collected for each simulation. The statistic
results of our proposed enhancement and that method in [ZLZ+18] are shown in Fig.4.
On average, only 1641 ciphertexts are required in our method as compared with 2273
ciphertexts in [ZLZ+18]. In addition, the minimum Nc for recovering cmin in [ZLZ+18]
is about 1493. In comparison, the minimum number of ciphertexts required in our MLE
method is about 926, which is only about 62% of the previous method.

5.3 PFA with Unknown Fault Value f
In this section, the constraint on the known fault value f can be further relaxed. That is
to say, the fault analysis can be conducted with unknown fault values, which is the actual
situation we met in practice.

According to Eq.(2), with sufficient ciphertexts, f can be easily recovered by XORing
the most frequently appeared value with the one that never shows in Cj . That is f =
cminj ⊕cmaxj . However, as shown in Fig. 3, in order to recover cmaxj , thousands of ciphertexts
are normally required, which does not satisfy our attack goal of using least number of
ciphertexts. Thus, a more efficient method needs to be proposed.

In fact, f = cminj ⊕ cmaxj can be applied to all 16 bytes rather than only one. Similar
to Sec.5.2, when Nc is not enough, MLE is used to estimate the f from all 16 bytes of
collected ciphertexts as shown in Eq.(7). The proof will be detailed in Appendix B.

f̂ = arg max
θ

Pr(C0C1...C15|f = θ) = arg max
θ

15∏
j=0

(
255∑
l=0

δnl
j
· 2n

l⊕θ
j) (7)

The result is showed in Fig.5a which depicts how the value of likelihood function
Pr(C0C1...C15|f = θ) changes along with Nc. When Nc is increased to 686, the probability
of one possible value of f will approximate to one. To further verify the number of

182 Persistent Fault Attack in Practice

200 400 600 800 1000 1200

Number of ciphertexts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y f = 0x04

(a) P r(C0C1...C15) for different candidates
of f v.s. the number of ciphertexts

Mean: 623.2

0 200 400 600 800 1000 1200

Number of ciphertexts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

ba
bi

lit
y

(b) Distribution of Nc required for
recovering f

Figure 5: Attack results for f .

ciphertexts that are required in our MLE method, 10000 simulations are conducted. The
statistic is shown in Fig.5b. The average of Nc required for recovering f is 623.

In our MLE method, to relax the constraint of the fault value, f has to be determined
before the analysis to be conducted in Sec.5.2. The deduction of f actually requires less
number of ciphertexts that to recover cmin, which is verified by our simulation. This is
because all 16 bytes of distribution of ciphertexts can be used for recovering f while only
one corresponding byte can be used for recovering each cminj . Thus, our attack complexity
will not be affected by whether f is known or not. In short summary, in the situation
that the fault value f is unknown, our MLE method can recover f first and proceed the
subsequent fault analysis, which will still keep the number of required ciphertexts at a
very small level.

5.4 PFA with Unknown Fault Location i
In this part, we leverage our attack to the complicated scenario that both f and i are
unknown. As shown in Sec.5.2 and 5.3, both cmin and f can be recovered in advance, whose
analyses are actually independent to the fault location i. However, since kj = cminj ⊕ S[i],
the recovery of the last round key has to rely on that of i.

Recall that the AES SBox table has 256 elements. A simple solution is to enumerate
all 256 values of i for the possible locations of the injected fault. For each enumerated
value of i, a possible candidate of k10 can be computed, which is the last round key of 16
bytes. Given a correct pair of plaintext and ciphertext, the key candidate can be easily
verified. However, in practice, such pair may not be available to the adversary. Therefore
an alternative solution needs to be proposed.

Our basic idea can be described as following: For each enumerated value of i, the
corresponding k10 can be determined and used to decrypt each ciphertext. With Nc
ciphertexts, the distribution of the output of SubBytes in the penultimate round can be
computed. If the enumerated guess on i is correct, such outputs will have at least one
missing value among all 256 ones, due to the nature of persistent fault which can cross
multiple rounds. Otherwise, the guess on i will be incorrect if the output has 256 different
values. Note that the calculation can be applied to all the 16 bytes in the 9th round, which
can further increase the accuracy of verification and reduce the number of ciphertexts that
are required.

Based on this idea, a guess on i will be judged as correct if its corresponding output of
SubBytes in the penultimate round has at least one missing value. Similar to previous
discussions, the desired goal is to use as few numbers of ciphertexts as possible. When

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 183

Nc is small, the distribution of the output of SubBytes in the penultimate round may
have missing values even if the guess i is wrong. This will cause some misjudgment on the
candidate value of i. However, such misjudgment rate can be proved to be very small in
practice. With Nc ciphertexts, as for a specific guess i, a total of 16Nc bytes of the output
of SubBytes in the penultimate round can be calculated. When the guess on i is wrong,
such outputs will approximately follow the uniform distribution due to the avalanche effect.
The probability that such outputs have at least one missing value, i.e., the misjudgment
rate Pmj2, can be calculated as:

Pmj2 =
256∑
i=0

(−1)i ·
(

256
i

)
· (1− i

256)16Nc (8)

Pmj2 decreases with Nc, the detailed relation between them can be refered to Fig. 13a
in Appendix C. With Nc = 300 ciphertexts, Pmj is already reduced to 1.77× 10−6, which
can be considered as negligible in practice. With more ciphertexts than 300, the possibility
of such misjudgment can be totally ignored. Recall that in Sec.5.2, at least 926 ciphertexts
are required to recover cmin. Such number of ciphertexts is already enough for our method
to find the fault location i with almost 100% probability.

5.5 Summary of Practical PFA on AES
Our proposal of practical and improved PFA on AES can be summarized as these steps:
Step 1 Collect 926 ciphertexts; Step 2 Estimate the fault value f and cmin with Eq.(7)
and Eq.(5); Step 3 Enumerate i. For each guess on i, calculate the corresponding output
of SubBytes in the penultimate round. If the outputs have missing values, the attack is
succeeded. Else, collect an additional ciphertext and repeat from Step 2.

A physical experiment is carried out to test our analysis. The fault injection follows
what we discussed in Sec. 4, and the 98th injection is judged as an effective one. Then
additional ciphertexts are collected continuously. With 1583 ciphertexts collected, a correct
i is found, and the recovered master key is identical to the one used in µC.

6 Extended Application on PRESENT
The previously proposed attack is extented to PRESENT in this section.

6.1 PRESENT Block Cipher
PRESENT is an ultra-lightweight SPN block cipher proposed by Bogdanov et al. at
CHES 2007 [BKL+07]. Its block size is 64 bits. It has two versions: PRESENT-80 and
PRESENT-128. We only focus on PRESENT-80 in this paper whose master key is of
80 bits. It has 31 rounds and each round consists of three steps. (1) sBoxLayer. Each
nibble (i.e. 4 bits) of the state is substituted through a 4-bit SBox lookup. (2) pLayer.
The 64-bit state is bitwise permuted. (3) addRoundKey. A 64-bit round key is XORed
with the current state. The key schedule process uses the 80-bit master key to generate
64-bit round key, which can be denoted as RKj

64 for the jth round (1 ≤ j ≤ 31).

6.2 New Challenges for PRESENT
Theoretically, PFA is a generic attacking method and can be applied to PRESENT directly.
However, in the practice of fault attacks, two new challenges need to be coped with.

Challenge 1: The SBox used in PRESENT is very small. It has only 16 elements
and will be accessed 496 times in the whole encryption, i.e., each of 31 rounds will have

184 Persistent Fault Attack in Practice

16 SBox lookups. Therefore, during the fault injection phase, the method in Sec.4.2 for
identifying effective injections to AES is hard to be adopted to PRESENT. Suppose a fault
is injected to SBox, the probability that a ciphertext remains correct (i.e., the faulty SBox
element is not accessed in all rounds) can be computed as P = (1− 1

16)496 ≈ 1.25× 10−14.
That means nearly all ciphertexts will become faulty. Therefore, the previous method will
no longer work, which only checks whether parts of the ciphertexts are faulty.

Challenge 2: Due to the nature of PFA, only the 64-bit round key that is XORed
with the output of the SBox can be recovered. As the master key has 80 bits, additional
work is required to recover the remained 16 key bits. Note that an exhaustive search can
achieve such goal, however, it is not favored due to two reasons. One is that the exhaustive
search needs a pair of correct plaintext/ciphertext, while our analysis can actually be
conducted in a ciphertext-only scenario. The other is that the exhaustive search can not
be applied to PRESENT-128, since there will be 64 remained key bits whose space is too
large to search.

Challenge 1 and 2 will be overcomed in Sec.6.3 and 6.4, respectively.

6.3 Identification on Effective Injections
As mentioned in Challenge 1, it is difficult to determine whether a fault is injected to
PRESENT SBox by checking the correctness of the ciphertexts (all ciphertexts are actually
faulty). Therefore, a new method is proposed. Our idea is that: whether a persistent fault
is really injected can be determined if at least one value of the output nibble of SBox is
missing. Note that this property holds for all 16 nibbles simultaneously.

In this method, with limited ciphertexts, an effective injection that already placed a
fault into SBox will not be misjudged as ineffective faults, since the corrupted SBox has
only 15 possible values. However, it is possible for an ineffective fault to be misjudged as
effective ones, if the output nibble of SBox has some missing values due to the lack of
enough ciphertexts.

Assuming that Nc ciphertexts are collected and there is no fault injected to SBox
of PRESENT, the probability that at least one value does not appear in one nibble of

ciphertexts is: PN =
16∑
i=0

(−1)i ×
(16
i

)
× (1− i

16)Nc , and the probability that all 16 nibbles

of ciphertexts have at least one missing value for each nibble, i.e., the misjudgment rate

Pmj3, can be computed as: Pmj3 = (
16∑
i=0

(−1)i ×
(16
i

)
× (1− i

16)Nc)16.

When Nc increases, Pmj3 converges to 0 very fast. The detailed relation between
Pmj3 and Nc can be referred to Fig.13b in Appendix C. With about 50 ciphertexts, the
misjudgment rate can be reduced to 1.53× 10−5, which is already negligible in practice.
Thus, after each injection, 50 ciphertexts are collected in order to identify the effective
injections. More ciphertexts will be collected for further analysis if the injection is judged
as an effective one.

6.4 Persistent Fault Analysis on PRESENT
Although the master key cannot be deduced merely from the last round key RK31

64 , it can
be fully recovered if both RK30

64 and RK31
64 are determined. Our general idea for a full

attack consists of two steps. The first step is to recover RK31
64 . The second step is to

decrypt the last round with RK31
64 and get the outputs of the penultimate round. Then

an attack similar to the one on the last round can be carried out to recover RK30
64 . With

both RK31
64 and RK30

64 , the master key can be recovered without the exhaustive search.
In Step 1, all of the fault location i, the fault value f and the round key RK31

64 need to
be recovered first. Similar to Sec.5, we start our analysis with a known fault location i.

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 185

Mean: 25.8

0 10 20 30 40 50 60 70 80 90

Number of ciphertexts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
P

ro
ba

bi
lit

y

(a) Recover f

Mean: 98.2

50 100 150 200 250 300

Number of ciphertexts

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

(b) Recover cmin

Figure 6: Distribution of Nc for PRESENT, 10000 simulations.

6.4.1 Attack on the last round with known i

Similar to the attack on AES, the fault value f and cminj can be recovered with MLE:

f̂ = arg max
θ

Pr(C0C1...C15|f = θ) = arg max
θ

15∏
j=0

(
15∑
l=0

δnl
j
· 2n

l⊕θ
j), 1 ≤ θ ≤ 15 (9)

ĉminj = arg max
θ

Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f) = arg max
θ

δnθ
j
· 2n

θ⊕f
j , 0 ≤ θ ≤ 15 (10)

10000 simulations are carried out to test how many ciphertexts are required for
recovering f and cmin. The results in Fig.6 show that they can be recovered with 26
and 98 ciphertexts on average, respectively. Compared with PFA on AES, the number of
required ciphertexts is dramatically reduced. The reason is that: PRESENT performs on
nibbles rather than bytes, thus ĉminj only has 16 candidates and can be recovered much
faster. In addition, f can still be recovered before cmin, as its analysis can be conducted
among all 16 nibbles to jointly retrieve the result. With a specified fault index i, the 64-bit
last round key RK31

64 can be recovered by XORing cmin with S[i].

6.4.2 Attack on the last round with unknown i

Now we leverage the attack to the real scenario when the fault location i is unknown.
The general idea is similar as that in Sec.5.4. The fault index i is enumerated. For each
guess on i, the ciphertexts will be traced back to calculate the sBoxLayer outputs in the
penultimate (30th) round, and to check if there is any missing value.

Actually, the reverse calculation is not that straightforward for PRESENT. Let SInj
and SOnj denote the jth nibble of the SBox input and output in the nth round, respectively.
Then SIn and SOn denote all 16 nibbles of SInj and SOnj (1 ≤ j ≤ 16). For a specific
guessed i, the last round key can be determined, and SO31 can be calculated. As shown
in Fig.7, in order to get SO30 from SO31, all three operations (sBoxLayer, addRoundKey
and pLayer) need to be reverse calculated. During these reverse calculation, two specific
problems must be coped with.

Problem 1: With a fault inside the SBox, the sBoxLayer becomes irreversible. Thus,
part of SI31 cannot be deduced from SO31. For example, suppose S[0] = 0xc is changed
into S′[0] = 0xd which is equal to S[7]. When the output of SBox is 0xd, its input has
two possibilities 0 and 7. It is hard to decide which one is correct, and we have to skip
using such nibbles for fault analysis. Therefore, the ratio of SI31

j that can be used for
analysis is 16−2

16 = 87.5%. Furthermore, as shown in Fig.7, each SO30
j is associated with

186 Persistent Fault Attack in Practice

SS

SS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

SS

SSS

S

S

S

S

S

S

S S

S

S

S

S

S

S S

S

S

S

S

S

S S

S

S

S

S

S

30

64RK

S

S S S S

S

S S S S

S

S S S S

S

S

S

S

S

S

S S

S

S

S

S

S

S S

S

S

S

S

S

S S

S

S

S

S

S

30

64RK

S

S S S S

S31 S31

S30

S31S31

Figure 7: Part of the last two rounds of PRESENT. The relation between SO30
15 and SI31

are highlighted, and the determined/undetermined bits are colored green/red respectively.

four nibbles of SI31. So the probability that SO30
j can be deduced is (87.5%)4 ≈ 58.62%,

i.e., only about half of the SO30
j can be deduced.

Problem 2: Even if RK31
64 is fully determined, only 48-bit of RK30

64 can be deduced
from RK31

64 , while the other 16 bits remain unknown. This is due to the design of key
scheduling for PRESENT. In Fig.7, the known and unknown key bits are colored green
and red, respectively. Note that each SO30

j is exactly associated with 3 known key-bits and
1 unknown key-bit. Hence, that bit in the output nibble connected to the unknown-key
bit cannot be directly used for analysis.

Recall that the judgment on i relies on whether the impossible value appears in SO30
j or

not. Such impossible value may have two candidates due to the unknown key-bit. However,
the appearance of this impossible value can be confirmed if both of the candidates appear.
If the impossible value appears, the guess on i must be wrong.

The misjudgment could still happen when the guessed i is incorrect and not all of the
two candidates of impossible values appear. When the guessed i is wrong, the calculated
SO30

j will be wrong, and it will basically follow uniform distribution. Due to Problem 1,
about 0.58Nc nibbles can be collected for SO30

j . The misjudgment rate Pmj4, i.e., the
probability that at least one of candidates is missed for all SO30

j (1 ≤ j ≤ 16), is:

Pmj4 =
(

2×
(15

16

)0.58Nc
−
(14

16

)0.58Nc
)16

(11)

Recall Sec.6.4.1, at least 44 ciphertexts are required to recover cmin. With such number
of ciphertexts, the misjudgment rate Pmj4 is lower than 3.76 × 10−7, which means our
method can extract the value of i very accurately.

Thus, the last round key RK31
64 can be recovered with a similar process in Sec.5.5,

where 44 ciphertexts will be collected at first.

6.4.3 Attack on the penultimate round

The attack on the penultimate round is quite similar to that on the last round. However,
there are two major differences. One is that only 58.62% nibbles are remained as discussed.
The other is that f , i and 48 bits of RK30

64 are already recovered in advance when attacking
the last round.

Eq.(10) is used again to estimate cmin for the penultimate round. Note that each
cminj has only two candidates now. The reason is that S[i] and 3 bits of the key nibble
are known, and cminj equals the XOR between S[i] and the jth nibble of RK30

64 . 10000
simulations show that 101 ciphertexts are required to recover cmin on average, which is
very close to the 98 required ciphertexts to recover cmin for the last round. The reason is

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 187

that each cminj has only two candidates in the penultimate round, although only about
half of the ciphertexts can be used.

7 Experimental Results

In this section, we experimentally verify our proposed method and understand how the
address of software program (especially the SBox tables) corresponds to the physical
location of the microcontroller with carefully designed scans. We investigate: (1) Mapping
the logical address of data to the physical location in SRAM and finding out the exact
region of both AES and PRESENT SBox. (2) Identifying effective injections for AES
and PRESENT. (3) Finding distribution of the sensitive region and understanding the
characteristics and mechanisms of faults.

To investigate previous attacks with more insights, full access is considered, allowing
that the data in the entire SRAM can be directly exported before and after the fault
injection. For simplification, both AES and PRESENT are implemented in the same
microcontroller. An automated scan with certain granularity of steps in x-y direction is
conducted.

7.1 Automated Scan

A software program is written to control the laser spot scanning automatically. The scan
strategy is set as shown in Fig.8. At a very beginning, a fixed and visible point needs to be
decided as the reference point to make sure the experiment is accurate and reproducible.
The point is chosen at the lower right corner of the chip, and the motorized stage is
programmed to automatically move towards the reference point first, and then prepare
the automated scan.

For each scan, three parameters need to be defined: (1) the region to be scanned, (2)
the distance of steps dx and dy, in x and y direction respectively. (3) the time interval t
between two consecutive laser injections in one scan. The detailed path for the scan is
shown in the enlarged part in Fig.8. During the scan, the predefined information, such
as ciphertexts and SRAM contents, will be collected from the µC and saved with its
corresponding coordinate after each laser injection, then the µC is reset to prepare for the
next injection.

X

Y Start Point(0,0)

dy

dx

Scan area

300μm

2400μm

X

Y

End Point(1000,2000)

Start Point(0,0)

End Point(1000,2000)

Reference

Point

Figure 8: The laser scan trajectory to cover full area of the SRAM. The lower right corner
of the chip is chosen as the reference point. A total area of 1000µm × 2000µm will be
scanned to cover the SRAM.

188 Persistent Fault Attack in Practice

Figure 9: Scanning results of SRAM.

MSB of 0x1FF MSB of 0x1FE ... MSB of 0x1F8MSB of 0x1FF MSB of 0x1FE ... MSB of 0x1F8 MSB of 0x3F0 MSB of 0x3F1 ... MSB of 0x3F7MSB of 0x3F0 MSB of 0x3F1 ... MSB of 0x3F7

0x060 ~ 0x067
0x068 ~ 0x06F

Block 1

…

2nd bits 3rd bits 7th bits... MSBsLSBs7th bits 6th bits 2nd bits... LSBsMSBs 7th bits 6th bits 2nd bits... LSBsMSBs

Block 2

0x158 ~ 0x15F
0x160 ~ 0x167

…

0x3F8 ~ 0x3FF

0x200 ~ 0x207

0x258 ~ 0x25F

…
…

0x260 ~ 0x267
0x268 ~ 0x26F

0x3F0 ~ 0x3F7
0x1F8 ~ 0x1FF

…

0x270 ~ 0x277

AES InvSBox

AES SBox

PRESENT InvSBox

PRESENT SBox

Others

Figure 10: Address mapping of SRAM. Addresses of SBoxes and InvSBoxes are colored.
One row of each SRAM block is zoomed to detail bit arrangement.

7.2 Coarse Scan for Mapping Address
The automated scan can help mapping the logical address of data to the physical location
in SRAM as well as finding the exact region of the AES SBox.

For each laser pulse during the scan, the SRAM data will be dumped from µC and
compared with the original SRAM data which is read before the first laser pulse. From the
change of SRAM data and the coordinate of the corresponding laser pulse, the relationship
between logical address and physical location of SRAM data can be established. With
the map between logical address and physical location, the exact region of the SBox can
be found since the logical address field of SBox can be easily analyzed from the readback
SRAM data.

As mentioned before, three parameters must be determined: the region of the scan,
the time interval t, and the size of step d. The region of the scan is set to cover the entire
SRAM. Since the computer reads all of the SRAM data from µC after each laser pulse, the
time interval t is set to 250ms to ensure that the communication can be finished. The size
of step d is set to 6µm to balance the precision granularity and the total time duration.
Thus a total of d 2000

6 e × d
1000

6 e = 55778 laser pulses are performed.
A total of 4044 bit flips are found during our scan and they are shown in Fig.9.

The SRAM consists of two square areas, denoted as Block 1 and 2 respectively, which

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 189

2 4 6 8 10 12 14 16 18 20

Number of Ciphertext (N
c
)

0

0.2

0.4

0.6

0.8

1

M
is

ju
dg

m
en

t R
at

e
(P

m
j)

N
c
 10

P
mj

 > 0

P
mj

 = 0

(a) AES

10 20 30 40 50

Number of Ciphertext (N
c
)

0

0.2

0.4

0.6

0.8

1

M
is

ju
dg

m
en

t R
at

e
(P

m
j)

N
c
 < 45

P
mj

 > 0

P
mj

 = 0

(b) PRESENT

Figure 11: The misjudgment rate Pmj v.s. the number of ciphertexts. No misjudgment
will be made with 10 and 45 ciphertexts for AES and PRESENT, respectively.

are consistent with the layout shown in Fig.1. The actual size of each square is about
800µm × 800µm and each bit occupies an area of about 12.5µm × 12.5µm. From the
readback data, it is learned that SBox and InvSBox of AES occupy the address field
0x160∼0x25F and 0x060∼0x15F, respectively. Meanwhile, the PRESENT SBox and
InvSBox occupy 0x160∼0x25F and 0x060∼0x15F, respectively. Note that the PRESENT
elements have only 4 bits and each of them is stored in the lower 4 bits of a byte.

The mapping between logical address and physical location is detailed in Fig.10. Block 1
and 2 hold the address range of 0x060∼0x1FF and 0x200∼0x3FF, respectively. Each row
in the block contains 8 bytes, but it is interesting that these 8 bytes are arranged by bits
rather than bytes. For example, eight MSB bits from different bytes are grouped into one
row, instead of putting eight bits (from MSB to LSB) together.

The region marked with a pink box in Fig.9 is quite different, which is marked as
grey in Fig.10. This area should contain 96 bytes of data according to its size. However,
it can not be readback after the injection, and few faults are with the address range of
0x050∼0x05F. According to the datasheet of ATmega163L [Mic03], the data memory
address is organized as follows: 0x000∼0x01F are for register files, 0x020∼0x05F for IO
registers, and 0x060∼0x45F for 1KB SRAM. Based on the injection results, the marked
area should be associated with the address range 0x000∼0x05F. 2

7.3 Verification of Methods for Identifying Effective Injections
In Sec.4.2 and 6.3, two different methods are proposed to identify effective injection, i.e., to
test whether the injection corrupted the SBox or not. Both of the theoretical misjudgment
rates are calculated and proved to be negligible with small number of ciphertexts. In this
part, these two methods will be verified with physical experiments.

According to the analysis in Sec.4.2 and 6.3, after each injection, 20 and 50 ciphertexts
will be collected for AES and PRESENT respectively for our methods to check the
effectiveness of the injection. In addition, the SRAM will be dumped after each injection
to provide the ground truth by directly comparing the SBox before and after the injection.

Again, a scan is carried out for the verification and three parameters need to be
determined. The region of scan is set to cover the entire 2000× 1000µm SRAM to make
sure both SBox and non-SBox area are covered. The time interval t is set to 2500ms to
ensure that the collection on the ciphertexts and SRAM can be finished. The step size
dx and dy are both set to 20µm to make sure that faults can be injected into the SBoxes.

2It is not clear where those addresses 0x400∼0x45F are physically located and why they are missing.
However, this is not important as we only inject faults to SBoxes whose address never reaches 0x3FF.

190 Persistent Fault Attack in Practice

0 5 10 15 20 25 30 35 40 45 50
X(7m)

0

5

10

15

20

25

30

35

40

45

50

Y
(7

m
)

0 to 1
1 to 0

0x161 : S[1]
7C to 5C

0x162 : S[2]
77 to 57

0x163 : S[3]
7B to 5B

0x164 : S[4]
F2 to D2

0x169 : S[9]
01 to 21

0x16A : S[10]
67 to 47

0x16B : S[11]
2B to 0B

0x170 : S[16]
CA to EA

0x171 : S[17]
82 to A2

0x174 : S[20]
FA to DA

0x172 : S[18]
C9 to E9

0x173 : S[19]
7D to 5D

0x16C : S[12]
FE to DE

Figure 12: Distribution of the sensitive region in 50µm× 50µm area.

Therefore, a total of (2000
20 + 1) × (1000

20 + 1) = 5151 laser pulses are performed, taking
about four hours.

After the scan, the ground truth shows that a total of 112 and 4 faults were injected
into the SBox of AES and PRESENT, respectively. Meanwhile, our identification methods
also find the same amount of faults at the identical location in SRAM, which confirms
that our methods work quite well. Then, how our identification methods correspond to the
number of required ciphertexts is investigated. The results are shown in Fig.11. The orange
and blue curves show the numbers of ciphertexts that with and without misjudgment,
respectively. It can be found that no misjudgment will be made by our methods with more
than 11 ciphertexts for AES and 49 ciphertexts for PRESENT.

7.4 Refined Scan for Finding Sensitive Region
Each bit occupies an area of about 12.5µm×12.5µm. Since the facility can be as precise as
0.1 µm per step, it is quite interesting to know which specific part of that area is sensitive
to bit flips. In order to find the distribution of sensitive regions, a refined scan is carried
out additionally.

A random area of 50µm× 50µm is selected for the refined scan, which should contain
about 4× 4 SRAM cells. It is large enough for us to find out the distribution of sensitive
regions. dx = dy are set to be 0.5µm, which is precise enough for a 12.5µm× 12.5µm cell.
t is still set to be 250ms, which is the same as in the coarse scan.

The scan result is shown in Fig.12. This region contains 17 SRAM cells, each of which
is the 6th bit of some SBox bytes. Those 1 → 0 and 0 → 1 bit flips are represented by
triangles and squares, respectively. These areas actually reflect the location of the NMOS
or PMOS transistors in the SRAM structure. According to the direct observation in Fig.12,
the size of a sensitive region can be measured by about 5µm× 5µm.

In Fig.12, the sensitive regions on the right need further investigation. 7 of 8 sensitive
regions of S[1] ∼ S[4] and S[10] ∼ S[12] are well organized (the pairwise distance is about
5µm vertically), while that of S[9] is very close to S[10]. The distance between them is

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 191

only about 1µm vertically. This is because the sensitive regions for 1→ 0 and 0→ 1 flips
are different, which are determined by the structural characteristics of the SRAM cell.
The current sensitive region for S[9] is a 0→ 1 flip, while the rest seven regions are 1→ 0
flips. If the 6th bit of S[9] is 1, its sensitive region should be in the red circle.

In addition, due to the adjacent sensitive regions shown in Fig.12, it is possible to flip
two bits simultaneously with only one laser pulse. One of the possible region to position
the laser beam is shown as the black box in Fig.12, which will cause both S[18] and S[19]
to change at the same time.

7.5 PFA with Double Faults
It is observed from our practice that S[18] is changed from 0xC9 to 0xE9 and S[19] is from
0x7D to 0x5D. A simple analysis is carried out to deal with the double fault. Now cminj

has two values since two of the SBox elements are corrupted, and they can be denoted as
cminj0 and cminj1 . Both of them can be recovered with MLE.

To get the statistic result of Nc, 10000 simulations are conducted for recovering all 16
bytes of cminj0 and cminj1 . 5000 ciphertexts are collected for each simulation. 2146 ciphertexts
are required on average. In addition, as there are two impossible values, each key byte will
have two candidates. An exhaustive search is required to test which one is correct.

8 Conclusion and Discussion
In this paper, we put the so-called persistent fault attack into practice with a physical
experiment under traditional fault injection scenarios. An AES-Sbox implementation on
ATmega163L is targeted and successfully attacked. First, the fault is injected into SBox
stored in SRAM of the microcontroller with random laser pulses. Then, a persistent fault
analysis is conducted with the single-byte fault injected by laser pulses, showing that PFA
still works while the fault value and location are unknown. The statistic result shows that
1641 ciphertexts are enough for recovering the master key of AES, which is 28% lower
than 2273 ciphertexts in the previous works. Moreover, the proposed attack is extended to
the PRESENT cipher, which has a different structure that is difficult to attack. Finally,
the entire SRAM is fully investigated with revisits in order to help us to understand the
reasons and mechanisms that are hidden behind.

Several types of countermeasures can be used to defend against the proposed attack.
One possible direction of countermeasure design is at the circuit layer, where a few ring
oscillators can be deployed on the top of sensitive regions. Those ROs can send out the
alarm signal once the laser injection is detected. The other possible countermeasure design
is relatively simple. The device can store one pair of plaintext P and ciphertext C which
are encrypted with the secret key. During the encryption, the device can perform an online
health check by comparing the runtime ciphertext with the precomputed C, which might
be difficult for PFA to bypass.

Acknowledgments
This work was supported in part by Open Fund of State Key Laboratory of Cryptology
(Grant No. MMKFKT201805), by Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, by Zhejiang Key R&D Plan (2019C03133), by Major Scientific Research
Project of Zhejiang Lab (2018FD0ZX01), by Young Elite Scientists Sponsorship Program
by CAST (17-JCJQ-QT-045), by National Natural Science Foundation of China (61772236,
61802180), by Natural Science Foundation of Jiangsu Province (BK20180421), by National
Cryptography Development Fund (MMJJ20180105), by Fundamental Research Funds for

192 Persistent Fault Attack in Practice

the Central Universities (NE2018106), by Leading Innovative and Entrepreneur Team
Introduction Program of Zhejiang, and by Research Institute of Cyberspace Governance in
Zhejiang University. The corresponding author is Zhe Liu (Email: zhe.liu@nuaa.edu.cn).

References
[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.

Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight
block cipher. Lecture Notes in Computer Science, 4727:450–466, 2007.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. Lncs, 1294:513–525, 1997.

[BSH75] D. Binder, E. C. Smith, and A. B. Holman. Satellite anomalies from galactic
cosmic rays. Nuclear Science IEEE Transactions on, 22(6):2675–2680, 1975.

[CLMFT14] Franck Courbon, Philippe Loubet-Moundi, Jacques JA Fournier, and Assia
Tria. Adjusting laser injections for fully controlled faults. In International
workshop on constructive side-channel analysis and secure design, pages
229–242. Springer, 2014.

[DDL97] Boneh Dan, Richard A. Demillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults. In International Conference
on Theory and Application of Cryptographic Techniques, pages 37–51, 1997.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked aes with fault countermeasures. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
315–342. Springer, 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 547–572, 2018.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault
analysis on aes. In International Conference on Applied Cryptography and
Network Security, pages 293–306. Springer, 2003.

[FJLT13] Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on aes with faulty ciphertexts only. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 108–118. IEEE, 2013.

[Hab65] Donald H Habing. The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits. IEEE Transactions on Nuclear Science,
12(5):91–100, 1965.

[KQ08] Chong Hee Kim and Jean-Jacques Quisquater. New differential fault analysis
on aes key schedule: Two faults are enough. In International Conference
on Smart Card Research and Advanced Applications, pages 48–60. Springer,
2008.

[MBD+19] Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud,
and Jean-Luc Danger. Precise spatio-temporal electromagnetic fault injections
on data transfers. In 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–8. IEEE, 2019.

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 193

[Mic03] Microchip. ATmega163(L). https://www.riscure.com/security-tools/
inspector-fi/, 2003.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-
nique against spn structures, with application to the aes and khazad. In
International workshop on cryptographic hardware and embedded systems,
pages 77–88. Springer, 2003.

[PZRB19] Jingyu Pan, Fan Zhang, Kui Ren, and Shivam Bhasin. One fault is all it
needs: Breaking higher-order masking with persistent fault analysis. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE, 2019.

[SA02] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks.
In International workshop on cryptographic hardware and embedded systems,
pages 2–12. Springer, 2002.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In IFIP
international workshop on information security theory and practices, pages
224–233. Springer, 2011.

[WM62] J. T. Wallmark and S. M. Marcus. Minimum size and maximum packing
density of nonredundant semiconductor devices. Proceedings of the Ire,
50(3):286–298, 1962.

[WW10] Gaoli Wang and Shaohui Wang. Differential fault analysis on present key
schedule. In 2010 International Conference on Computational Intelligence
and Security, pages 362–366. IEEE, 2010.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
150–172, 2018.

https://www.riscure.com/security-tools/inspector-fi/
https://www.riscure.com/security-tools/inspector-fi/

194 Persistent Fault Attack in Practice

A Proof for Eq.(5)
Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f)

= Nc!
255∏
v=0

(nvj !)
· δnθ

j
· (2

256)n
θ⊕f
j · (1

256)N−n
θ
j−n

θ⊕f
j

=Const0 · δnθ
j
· 2n

θ⊕f
j

(12)

As the probability mass function of ciphertext byte is specified in Eq.(4), the probability
of the event that Nc ciphertexts exactly follow the distribution Cj , i.e., Pr(Cj |cminj =
l ∧ cmaxj = l ⊕ f) follows multinomial distribution:

Pr(Cj |cminj = θ ∧ cmaxj = θ ⊕ f)

= Nc!
255∏
v=0

(nvj !)
·
(1

256

)N−nθj−nθ⊕f
j · 0n

θ
j ·
(2

256

)nθ⊕f
j

= Nc!

256N ·
255∏
v=0

(nvj !)
· 0n

θ
j · 2n

θ⊕f
j

=Const0 · δnθ
j
· 2n

θ⊕f
j ,

(13)

where Const0 = Nc!

256N ·
255∏
v=0

(nv
j

!)
, and 0n

θ
j is actually equivalent δnθ

j
.

B Proof for Eq.(7)

f̂ = arg max
θ

Pr(C0C1...C15|f = θ) = arg max
θ

15∏
j=0

(255∑
l=0

δnl
j
· 2n

l⊕θ
j

)
(14)

Since each byte of the ciphertext is independent of the others, and f = S[i]⊕ S′[i], we
have:

Pr(C0C1...C15|f = θ) =
15∏
j=0

Pr(Cj |S[i]⊕ S′[i] = θ) (15)

The probability of the distribution of jth byte of ciphertext can be calculated by formula
of total probability:

Pr(Cj |S[i]⊕ S′[i] = θ)

=
255∑
l=0

Pr(cminj = l|S[i]⊕ S′[i] = θ) · Pr(Cj |cminj = l ∧ S[i]⊕ S′[i] = θ)

=
255∑
l=0

1
256 · Pr(Cj |c

min
j = l ∧ cmaxj = l ⊕ θ)

(16)

Recalling Eq.(13) we have

Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu(�), Dawu Gu and Kui Ren 195

Pr(Cj |cminj = l ∧ cmaxj = l ⊕ θ) = Const0 · δnl
j
· 2n

l⊕θ
j (17)

With Eq.(14)∼(17), the estimate of fault value f̂ is

f̂ = arg max
θ

Pr(C0C1...C15|f = θ)

= arg max
θ

15∏
j=0

(
255∑
l=0

Const0 · δnl
j
· 2n

l⊕θ
j)

= arg max
θ

Const16
0

15∏
j=0

(
255∑
l=0
·δnl

j
· 2n

l⊕θ
j)

= arg max
θ

15∏
j=0

(
255∑
l=0

δnl
j
· 2n

l⊕θ
j), θ = 1, 2, ..., 255

(18)

where Const16
0 is ignored since it is a positive constant and will not affect the result.

C Figure for Misjudgment Rates.

0 50 100 150 200 250 300

Number of Ciphertext N
c

0

0.2

0.4

0.6

0.8

1

M
is

ju
dg

m
en

t R
at

e
(P

m
j1

) N
c
 = 300

P
mj1

=1.77e-6

(a) Pmj1 for AES

0 20 40 60 80

Number of Ciphertext N
c

0

0.2

0.4

0.6

0.8

1

M
is

ju
dg

m
en

t R
at

e
(P

m
j3

)

N = 50
P

mj3
=1.53e-5

(b) Pmj3 for PRESENT

Figure 13: The relation between the misjudgment rates and Nc. Both of them will be
negligible with proper number of ciphertexts.

	Introduction
	Background
	ATmega163L Microcontroller
	AES-128 and S-Box Implementation
	Laser Fault Injection to C and SRAM

	Overview of Persistent Fault Attack on SRAM
	Fault Model
	Core idea
	Phase One: Online Fault Injection
	Phase Two: Offline Fault Analysis

	Fault Injection in Practice
	Setup and Practical Injection
	Identification on Effective Injections

	Persistent Fault Analysis on AES in Practice
	Limitations of the Original PFA
	Improved PFA with Maximum Likelihood Estimation
	PFA with Unknown Fault Value f
	PFA with Unknown Fault Location i
	Summary of Practical PFA on AES

	Extended Application on PRESENT
	PRESENT Block Cipher
	New Challenges for PRESENT
	Identification on Effective Injections
	Persistent Fault Analysis on PRESENT
	Attack on the last round with known i
	Attack on the last round with unknown i
	Attack on the penultimate round

	Experimental Results
	Automated Scan
	Coarse Scan for Mapping Address
	Verification of Methods for Identifying Effective Injections
	Refined Scan for Finding Sensitive Region
	PFA with Double Faults

	Conclusion and Discussion
	Proof for Eq.(5)
	Proof for Eq.(7)
	Figure for Misjudgment Rates.

