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Abstract. Code-based masking is a very general type of masking scheme that covers
Boolean masking, inner product masking, direct sum masking, and so on. The merits
of the generalization are twofold. Firstly, the higher algebraic complexity of the
sharing function decreases the information leakage in “low noise conditions” and may
increase the “statistical security order” of an implementation (with linear leakages).
Secondly, the underlying error-correction codes can offer improved fault resistance
for the encoded variables. Nevertheless, this higher algebraic complexity also implies
additional challenges. On the one hand, a generic multiplication algorithm applicable
to any linear code is still unknown. On the other hand, masking schemes with higher
algebraic complexity usually come with implementation overheads, as for example
witnessed by inner-product masking. In this paper, we contribute to these challenges
in two directions. Firstly, we propose a generic algorithm that allows us (to the best
of our knowledge for the first time) to compute on data shared with linear codes.
Secondly, we introduce a new amortization technique that can significantly mitigate
the implementation overheads of code-based masking, and illustrate this claim with
a case study. Precisely, we show that, although performing every single code-based
masked operation is relatively complex, processing multiple secrets in parallel leads to
much better performances. This property enables code-based masked implementations
of the AES to compete with the state-of-the-art in randomness complexity. Since
our masked operations can be instantiated with various linear codes, we hope that
these investigations open new avenues for the study of code-based masking schemes,
by specializing the codes for improved performances, better side-channel security or
improved fault tolerance.
Keywords: Side-channel attacks · Masking · Linear Codes · Code-based Masking

1 Introduction
Masking is one of the most investigated countermeasures against side-channel attacks [Koc96,
KJJ99]. From a high-level overview, the masking approach randomly encodes (via a map-
ping called encoder) each secret-dependent sensitive variable into n shares, such that any d
shares are independent of the sensitive variables, for an integer d < n.1 The cryptographic
implementation is built such that any tuple of d intermediate variables brings no infor-
mation about the secret, typically by implementing each part of the computation with a
so-called masked gadget. Even though all the intermediates variables are leaky, in practice,
the leakages are noisy and the complexity of extracting useful information about the secret
increases exponentially in d [CJRR99, PR13, DDF14].

Code-based masking is a very general type of masking scheme. Beside the Boolean
masking (or additive masking) that is its simplest instance, the other ones with higher

1In many common cases, we have d = n − 1, but it is not always true, e.g., for code-based masking.
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algebraic complexity of the sharing (than Boolean masking) include polynomial mask-
ing [GM11, PR11, GSF13, CMP18], leakage squeezing [MGD11, CDGM14, CDG+14],
Inner Product (IP) masking [BFG15, BFG+17, CCG+19] and (orthogonal) Direct Sum
Masking (DSM) [BCC+14, CG16, PGS+17]. It has been shown in [BFGV12] that IP
masking can be viewed as a generalization of simpler encoders such as used in Boolean,
affine and polynomial maskings. Furthermore, the work in [PGS+17] shows that DSM can
be viewed as a generalization of the encoders of IP masking. Therefore, to the best of our
knowledge, DSM has the most generalized encoder up to now.

The first merit of code-based masking is about security. The higher algebraic complexity
of its encodings can provide an improved concrete security against side-channel attacks. For
instance, it decreases the information leakages observed in “low noise conditions” [BFG15,
BFGV12, FMPR10, GM11, PR11]. Also, it can improve the “statistical security order” (or
security order in the bounded moment leakage model [BDF+17]) in case of linear leakage
functions [CDG+14, GSP13, WSY+16], which is also known as the “order amplification”.
The second merit is about fault resistance. For example, DSM [BCC+14] offers protection
against both side-channel and fault attacks for the encoded variables, by using an encoding
function mixing randomness and sensitive data. Recently, Cheng et al. [CCG+19] also
devised a new inner product masking scheme, which enables fault detection.

However, one important limitation of the code-based masking schemes is that computing
with them is challenging. In particular, it is pointed out in [PGS+17] that an efficient
multiplication algorithm for DSM is still an open challenge, and known IP masking schemes
are not as efficient as Boolean masking schemes.

1.1 Contributions

Our first contribution is to present efficient algorithms that perform masked linear and
nonlinear operations for the generic encoder, which are both proven to satisfy the Strong
Non-Inference (SNI) notion [BBD+16]. The generic encoder is a generalization of the
former code-based masking which relaxes the “direct sum” constraint of DSM.2 The
proposed masked operations are compatible with any choice of linear code that is adopted
in the generic encoder, and thus we believe they have a good potential for improvement by
specializing them to specific linear codes. For example, there is a large room to improve
the (randomness and computational) cost of our scheme by choosing linear codes with
sparse generating matrices or computation-friendly structures.

The second contribution relates to cost amortization, which has a similar spirit as the
work of polynomial masking with packed secret sharing technique [GSF13]. It also shares
some goals with works like [FPS17, IKL+13] which focus on reusing the randomness over
different sub-parts of a masked implementation. Our code-based masking is able to encode
multiple secrets together into one codeword and compute masked operations over these
secrets in parallel, which amortizes both the computational and randomness cost. In order
to analyze this property, we apply the new masking scheme to protect the AES block
cipher, and try to take advantage of the fact that the S-boxes of the AES block cipher
are computed over 16 internal states in parallel. We show that the randomness cost of
implementations of the full AES-128 can be asymptotically smaller than state-of-the-art
solutions [BBP+16, BGR18, CS19], especially when the order of security increases. Besides,
a computational complexity evaluation shows that the computational cost of the new
scheme is comparable to the state-of-the-art [BBP+16].

2The relaxation from the “direct sum” constraint of the DSM allows better fault resistance. We also
show that the probing security of the generic encoder can be larger than the one claimed by DSM.
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1.2 Organization
We begin this paper by presenting the background and preliminaries including private
circuits, security notions and linear codes (see Section 2). We introduce the generic
encoder in Section 3 and, in Sections 4 and 5 propose the corresponding masked operations.
Section 6 illustrates the property of cost amortization and the application to AES. In the
last section, we conclude the paper with several promising future research directions.

2 Preliminaries
2.1 Notations
We denote the finite field of order q as Fq, and we represent field elements by lower-case
letters. ⊕ and 	 denote the addition and subtraction over the finite field. We use

∑
for

the summation over any field and extend these notations to vector spaces defined over
these fields. For a natural number n we denote with [n] the set of integers from 1 to n,
both included.

Let calligraphies (e.g., I) denote sets, and |I| denote the cardinal of the set I. Let bold
capital letters (e.g., A) be matrices over Fr×cq , for row and column counts being r and c
respectively. A[i, ∗] (resp., A[∗, i]) denotes the ith row (resp., column) of A, and A[i :j, ∗]
(resp., A[∗, i :j]) denotes the matrix made up of the ith to jth rows (resp., columns) of A.
Let A−1 and AT denote the (generalized) inverse and transpose of A respectively. For
a r × c matrix A and a set I ⊆ [r] (resp., J ⊆ [c]), A[I, ∗] (resp., A[∗,J ]) denotes the
submatrix of A made up of the rows (resp., columns) indexed by I (resp., J ). For matrices
A and B, we denote their product as A×B, or in short AB in non-ambiguous cases. For
two matrices A and B, [A,B] (resp., [A; B]) is the concatenation of the columns (resp.,
rows) of A and B. Let bold lower cases (e.g., x) be the vectors over F|x|q , where |x| denotes
the length of the vector, x[i] denotes the ith element of x, and x[i :j] denotes the vector
made up of the ith to jth elements of x. Unless otherwise noted, we assume the vectors
are row vectors in this paper, and the column vectors are denoted as xT. We use ei to
denote a canonical vector: its ith element is 1 and all of its other elements are 0s.

2.2 Tensor product
For two matrices X1 and X2 in Fr1×c1

q and Fr2×c2
q respectively, we define their tensor

product as the matrix over Fr1r2×c1c2
q :

X1 ⊗X2 =

X1[1, 1]X2 . . . X1[1, c1]X2
...

. . .
...

X1[r1, 1]X2 . . . X1[r1, c1]X2

 .
Similarly, the tensor product of two vectors x1 and x2 in F`1

q and F`2
q respectively is a

vector in F`1`2
q defined as:

x1 ⊗ x2 =
[
x1[1]x2[1], . . . ,x1[1]x2[`2], . . . ,x1[`1]x2[1], . . . ,x1[`1]x2[`2]

]
.

We are also interested in the tensor product of xT
1 and x2 (sometimes called the outer

product of x1 and x2), which results in a matrix in F`1×`2
q defined as:

xT
1 ⊗ x2 =

 x1[1]x2[1] . . . x1[1]x2[`2]
...

. . .
...

x1[`1]x2[1] . . . x1[`1]x2[`2]

 .
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In the rest of this sub-section, we provide several properties of the tensor product that
will be used in different proofs through the paper.

Proposition 1. Let x1 and x2 be two vectors and let A1 and A2 be two matrices such
that |x1| equals the row count of A1 and |x2| equals the row count of A2, then we have:

(x1 ⊗ x2)(A1 ⊗A2) = (x1A1)⊗ (x2A2).

For a vector v ∈ Fr2

q and an index i such that 1 ≤ i ≤ r, let vi
def= v[1+r(i−1) :ri], and

for a matrix M ∈ Fr2×c
q , let Mi

def= M[1+r(i−1) :ri, ∗].

Proposition 2. Let v ∈ Fr2

q and M ∈ Fr2×c
q , then vM =

∑r
i=0(viMi).

Proposition 3. A matrix X ∈ Fr×cq can be rewritten as
∑c
i=1 (X[∗, i]⊗ ei).

2.3 Equivalence of distributions
Later in this section we will see that our security ibvestigations involve the study of
joint probabilistic distributions of a set of variables over Fq. In contrast, from the error
correcting code perspective it is more convenient to consider the properties of combinations
of codewords’ elements, where each combination gives a single element. The purpose of
the following lemma is to connect these two approaches, proving that considering the
joint distribution of d variables or the distributions of all the linear combinations of these
variables is equivalent. More precisely, it shows that a discrete joint distribution over a
field is characterized by the knowledge of all the linear combinations (with values in the
field) of its marginal distributions.

Lemma 1 (Distributions equivalence). Let Xi for i ∈ [n], be random variables defined on
a probability space where Ω consists in the elements of Fq, the joint distribution is fully
characterized by the set of distributions:{

n∑
i=1

βiXi | β ∈ Fnq

}
·

Thereafter, in different parts of the paper, we use this equivalence to connect the
results from the error-correcting code part to the results from the probing security part.
This lemma is an extension of the XOR-Lemma which takes care of the case q = 2. This
equivalence is sometimes implicitly assumed, however, since we did not find a reference or
a simple proof, we give a non-trivial proof. As the result in itself, and the techniques used
to prove it, are far away from the main contributions of this paper, we defer the additional
definitions required and the detailed proof to Appendix A.

2.4 Circuits and security definitions
We consider a circuit C as a directed acyclic graph whose vertices are gates and edges are
wires. We will assume that the gates are elementary operations over Fq and wires carry
values in Fq. A randomized circuit is a circuit augmented with random gates. A random
gate is a gate that produces a random variable in Fq and sends it along its output wire.
We call variables carried by the wires of a circuit C as intermediate variables of C. For
a circuit C with input a ∈ Fφq , we use C(a) = b to denote that C(a) returns the output
b ∈ Fφ′

q , and for a set P of intermediate variables (usually called probes), CP(a) returns
the values of probes when a is fed as the input of C.

We call a vector of variables (say, x) over Fq to be independent of the other vector of
variables (say, y) if Pr(x = α | y = β) = Pr(x = α) for any value α of x and any value β
of y, where the probability is taken over the random coins used to generate these vectors.
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Definition 1 (Private circuit compiler [ISW03]). A private circuit compiler for a circuit
C with input in Fφq and output in Fφ′

q is defined by a triple (I,T,O) where

• I : Fφq → Fϕq is an input encoder that randomly maps the input in Fφq to the input
sharing in Fϕq .

• T is a circuit transformation whose input is circuit C, and output is a randomized
circuit C′, whose input is the input sharing Fϕq , and the output in Fϕ′

q is called output
sharing.

• O : Fϕ′

q → Fφ′

q is a decoder that maps the output sharing in Fϕ′

q to the output of C in
Fφ′

q .

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit (or d-probing
secure, where d is called the security order) if the following requirements hold:

• Correctness: for any input a ∈ Fφq , Pr O(C′(I(a))) = C(a) = 1.

• Privacy: for any input a ∈ Fφq and any set of probes P such that |P| ≤ d, C′P(I(a))
are independent of the input a.

A usual approach to construct a private circuit compiler is to use subroutines that
can be composed to compile any circuit. We define an encoder that enables to encode
any vector of a fixed length (denoted k) into a vector of a bigger fixed length (denoted
n). Then, the input encoder I consists of several instances of this (fixed-length) encoder.
Analogically, the output decoder O consists of several instances of a fixed-length decoder.
The circuit transformation is handled by showing that some simple circuits (typically gates)
can be transformed into a corresponding gadget, and that any circuit can be expressed
as the composition of these simple circuits. Then, the correctness and the privacy of the
circuit transformation hold if it is compatible with each gadget, and with the combination.

More concretely, a private circuit compiler can be realized by combining a set of
encoders, a set of basic gadgets and a set of decoders, which we defined below.

Definition 2 (Encoder, Codeword, Sharing, Valid Sharing and Share). An encoder
Enc : Fkq → Fnq is a probabilistic algorithm that maps a vector in Fkq to a vector in Fnq . The
latter vector in Fnq is called codeword or valid sharing. A sharing is a vector in Fnq , and
the elements of a codeword or sharing are called shares. Moreover, an encoder is called
d-private encoder if and only if the joint distribution of any d shares are independent of
the input of the encoder, where the probability is over the random coins from the encoder.

Note that the name ‘sharing’ is quite often used in the literature on masking, whereas
the name ‘codeword’ comes from coding theory. To be consistent with both communities,
we herein define codeword and valid sharing as equivalent. A codeword or valid sharing
must be a sharing, but not vice versa.

Definition 3 (Decoder). A decoder for some encoder Enc : Fkq → Fnq is a deterministic
function Dec : Fnq → Fkq ∪ ⊥ such that for any x ∈ Fkq , Dec(Enc(x)) = x with probability 1.

In the rest of the paper, we usually use bold lower cases with hat superscript (e.g., x̂)
to denote sharings, x̂[i] to denote the ith share of a sharing x̂, and i to denote the index
of the share, for any i ∈ [|x̂|].

We illustrate the definition with the example of Boolean masking and k = 1. To encode
a variable x ∈ F2 into a sharing x̂ ∈ Fn2 , n−1 random variables r1, . . . , rn−1 (uniformly
distributed in Fn−1

2 ) are generated for the encoding process: x̂[i+1] = ri for any i ∈ [n−1],
and the first share x̂[1] = x⊕

∑n−1
i=1 ri. Furthermore, we can see that any n− 1 shares in

x̂ are independent of x, and thus the encoder is an (n− 1)-private encoder.
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The circuit transformation T is realized from a set of basic gadgets {G} (gadget is
defined below) and a set of gadget composition rules. The latter one maps circuits C
and {G} to a directed acyclic graph C′ whose vertices are gadgets in {G} and edges carry
sharings. As a basic gadget is a randomized circuit, the output C′ of a gadget composition
function can also be regarded as a circuit whose gates are the gates inside basic gadgets
and wires are either shares of sharings or wires inside basic gadgets.

Definition 4 (Gadget). A gadget is a randomized circuit whose input and output are
sharings.We say that a gadget G ensures correctness for a function f : Flq → Fl′q relatively
to the encoders Enci for i ∈ [l] and decoders Decj for j ∈ [l′], if Pr

[
Deci(ẑi) = zi)

]
= 1, for

i ∈ [l′] where (ẑ1, . . . , ẑl′) = G
(
Enc1(x1), . . . ,Encl(xl)

)
and (z1, . . . , zl′) = f(x1, . . . , xl).

Furthermore, all ẑi must be codewords.

Note that a recursive composition of gadgets is also a gadget. To achieve a d-private
circuit, each gadget should be a d-private circuit, which, however, is not sufficient: the
composition of t-probing secure gadgets is not necessarily t-probing secure.3 Barthe et al.
introduced stronger notions of security that enable composability in [BBD+16], which are
refined by several following works, e.g., [BBP+16, BGR18]. In the rest of the paper, we
separate the probes of a gadget into output probes and internal probes as follows:

• Output probes: output variables.

• Internal probes: intermediate variables except for the output probes.

First of all, we recall the simulatability framework introduced in [BBP+16]. Intuitively,
a set of probes is simulatable from some of the input shares if there exists a simulator that
can generate simulated values of the probes that have the same statistical distribution
as their real values. We additionally define the notion of simulation under valid input
sharings for a gadget, since the original definition was introduced in the case of Boolean
masking, where any sharing is valid.

Definition 5 (Simulatability [BBP+16]). Let P be a set of probes of a circuit (resp.,
gadget) C with input variables X , and let X ′ ⊆ X . A simulator is a randomized function
S: F|X

′|
q → F|P|q . A distinguisher is a randomized function D:

(
F|P|q ,F|X |q

)
→ {0, 1}. The

set of probes P can be simulated (resp., simulated under valid input sharings) with input
X ′ if and only if there exists a simulator S such that for any distinguisher D and any input
x ∈ F|X |q (resp., any valid input sharings), we have:

Pr [D (CP (x) , x) = 1] = Pr [D (S (x|X ′) ,X ) = 1] ,

where the probability is over the random coins in C, S and D and x|X ′ denotes the elements
of x corresponding to the inputs in X ′.

t-Non-Inference (NI) and t-Strong Non-Inference (SNI) are two security notions for
gadgets that are used together to support composition (see Lemma 4), where the former
one is relatively weaker, but allows to build more efficient gadgets. For example, gadgets
for linear operations can be easily and efficiently constructed following NI [ISW03, CS19],
and gadgets for multiplication operations could save around half the amount of randomness
when relaxing the SNI requirement into NI [BBP+16].

Definition 6 (t-Non-Inference (NI) [BBD+16]). We say that a gadget with l input sharings
and 1 output sharing is t-NI (resp., t-NI for valid input sharings), if any tint internal
variables and tout output shares such that tint + tout = t can be simulated (resp., simulated
under valid input sharings) with input shares indexed by I1, . . . , Il for |I1| ≤ t, . . . , |Il| ≤ t.

3In this paper, we use d and t to denote the security order for encoders and gadgets, respectively.
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Definition 7 (t-Strong Non-Inference (SNI) [BBD+16]). We say that a gadget with l
input sharings and 1 output sharing is t-SNI (resp., t-SNI for valid input sharings), if
any tint internal variables and tout output shares such that tint + tout = t can be simulated
(resp., simulated under valid input sharings) with input shares indexed by I1, . . . , Il for
|I1| ≤ tint, . . . , |Il| ≤ tint.

Next, we cover some composition properties of NI and SNI gadgets. Those properties
still hold when NI and SNI are replaced with their valid input sharing counterparts,
assuming all gadgets are correct are compatible (that is, connected inputs and outputs
have compatible associated encoders and decoders).

The work in [BBD+16] links the notions of NI and probing security, which is recalled
and rephrased in Lemma 2.

Lemma 2 (NI and t-private encoders implies probing security). A t-NI for valid input
sharings gadget is a t-private circuit if all of its input sharings come from d-private encoders
for t ≤ d, and are independently encoded.

Proof. For a t-NI gadget G with l input sharings x̂1, . . . , x̂l, by definition of t-NI, any set
of probes, say P, such that |P| ≤ t, can be simulated with the input shares indexed by
I1, . . . , Il, for |I1| ≤ |P|, . . . , |Il| ≤ |P|. By the definition of t-private encoders, x̂i[Ii] is
independent of the secrets for any i ∈ [l], and thanks to the independent encoding of the
input sharings, x̂1[I1], . . . , x̂l[Il] are independent of the secrets as well. At last, by the
definition of the simulatability, the probes P can be regarded as a random function of
x̂1[I1], . . . , x̂l[Il], and thus they are independent of the secrets, which meets the definition
of t-private circuit.

The work of [BBD+16] illustrates the composability of t-NI and t-SNI gadgets, which
requires the t-SNI refresh gadget that is defined as follows:

Definition 8 (t-SNI Refresh gadget). A t-SNI refresh gadget is a t-SNI gadget with one
input sharing and one output sharing that ensures correctness for the identity function.

We recall the composability of t-NI and t-SNI gadgets in Lemma 3, which was introduced
in [BBD+16], and then appears in many studies, e.g., [BBP+16, BGR18].

Lemma 3 (Composability of t-NI and t-SNI gadgets). A composition of gadgets is t-NI if
all gadgets are t-NI or t-SNI, based on the following composition rule: each sharing is used
at most once as input of a gadget other than t-SNI refresh gadget. Moreover, a composition
of gadgets is t-SNI if it is t-NI and the output sharings are from t-SNI gadgets.

We give a simple example in Figure 1 to illustrate the gadgets composition introduced
in Lemma 3. Say that we aim at composing two gadgets G1 and G2, where the former one
has one input and output sharing, the latter one has two inputs and one output sharing,
and there is one probe for each gadget.

• Figure 1-(a) shows an improper composition (that violates the composition rule in
Lemma 3) where the input sharing is directly linked to the input of both G1 and G2.
To simulate the probe in G2, two input shares from G2 are needed, and to simulate
the two shares and the probe in G1, 3 shares from the input of G1 are needed, which
therefore violates the definition of 2-NI.

• Figure 1-(b) follows the composition rule in Lemma 3 by adding a 2-SNI refresh
gadget before one of input sharing of G2, and thus only two shares from the input of
G1 are needed to simulate the two probes, which fits the definition of 2-NI.
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2-NI 2-NI

2-SNI

Refresh 1 probe
1

1

1 probe

2-NI 2-NI

1 probe1

1

1 probe
2

(a) improper composition (b) 2-NI case (c) 2-SNI case

2G1 G2 G1 G23 1
2-NI 2-SNI

2-SNI

Refresh 1 probe

1 probe
1 G1 G2

Figure 1: A simple example to illustrate the composability in Lemma 4 with 3 shares.
Shares required for simulation are drawn in red.

• To give a composition example that results in SNI, Figure 1-(c) further replaces G2
with a 2-SNI gadget. The probe in G2 (1 output probe) can be simulated without
any input share, and thus both G1 and the refresh gadget have no probe that is
propagated from G2. Also, as G1 is 2-NI, only one input share of G1 is needed to
simulate the probe (1 internal probe) in G1, giving that only one input share is
needed to simulated the two probes (1 from internal variables and another 1 from
output shares) in the composed gadget, which fits the definition of 2-SNI.

We further present a specific composability of only t-SNI gadgets in Lemma 4, which
is useful later in Section 6.3 for the application to AES S-boxes.

Lemma 4 (Composability of t-SNI gadgets). Let G1, . . . ,G` be t-SNI gadgets. A com-
position of them is t-SNI if the input sharings of any gadget come from different (other)
gadgets, and there is only one output sharing.

Proof. Let G be a composite gadget. A composition of ` gadgets can be seen as a directed
acyclic graph whose vertices are gadgets and edges transfer sharings. As every directed
acyclic graph has a topological ordering, we can order the gadgets as G1, . . . ,G`, such that
Gi comes before Gj for i < j. Let the number of internal probes of G that belong to Gj be
tj for j ∈ [`], and let the number of output probes of G be tO (which is also the output
probes of G`, since there is only one output sharing).

By recurrence, for j > 1, assuming that the sub-part of G consisting of Gj , . . . ,G`
(denoted as G(j)) is t-SNI, we prove that the sub-part consisting of Gj−1, . . . ,G` (denoted
as G(j−1)) is also t-SNI. The base case G(`) = G` is t-SNI by assumption.

Let the input sharings of G(j) be S(j). Let (S(j)
1 ,S(j)

2 ) be a partition of S(j) such that
the sharings in S(j)

1 are outputs of Gj−1 (|S(j)
1 | ≤ 1 since Gj−1 has one output), which

implies that S(j)
2 ⊂ S(j−1). We next show that a set of t1 internal probes in Gj−1, t2

internal probes in G(j) and tO output probes (such that t1 + t2 + tO ≤ t) can be simulated
using at most t1 + t2 shares of each input sharing in S(j−1). The t2 and tO probes can be
simulated using at most t2 shares of each sharing in S(j) (using the G(j) t-SNI simulator).
The t1 probes, along with at most t2 shares of each sharing in S(j)

1 can be simulated
with at most t1 shares of each sharing in S(j−1) (using the Gj−1 simulator), and since
S(j)

2 ⊂ S(j−1), the t2 shares of each sharing in S(j)
2 can be simulated with t2 shares of each

sharing in S(j−1).

2.5 Code-based encoder / decoder and linear codes
In this part, we give some basic notions of linear codes. We fix notations relatively to
code-based encoders and decoders, and we relate code-based encoders to other encoders of
previous works.

Definition 9 (Code-based encoder). Let k,m and n be three positives integers such
that n ≥ k + m, we define the encoder EncA relatively to the matrix A ∈ F(m+k)×n

q as
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the following algorithm. On input x ∈ Fkq , a vector r is chosen following the uniform
distribution over Fmq . The product [x, r]A is computed, and the resulting sharing is given
as output and denoted x̂. We refer to:

• x as the encoded vector,

• x̂ as the sharing, and as shares for its coefficients,

• k as the number of encoded variables,

• m as the number of random variables,

• n as the length of the sharing.

Definition 10 (Code-based decoder). Let k,m and n be three positives integers such that
n ≥ k + m, we define the decoder DecA relatively to the matrix A ∈ F(k+m)×n

q as the
following deterministic function. On input sharing x̂ ∈ Fnq , DecA outputs the vector x
such that ∃r ∈ Fmq such that [x, r]A = x̂ (and outputs ⊥ if r does not exist). We denote
x = DecA(x̂).

Notation. By extension, we denote x̂ $= EncA(x), when DecA(x̂) = x, and x̂ is uniformly
distributed over {[x, r]A | r ∈ Fmq }.

As code based encoders / decoders rely on linear codes and their properties, we recall
basic definitions and associated vocabulary.

Definition 11 (Linear code). A linear code of length n and rank k is a linear subspace C
with dimension k of the vector space Fnq where Fq is the finite field with q elements.

A linear code is often associated to its parameters: [n, k, d] where:

• n is the length of the sharing, k the dimension of the code,

• d is the minimal distance of the code: d = min
w∈C\{0}

HW(w).

Definition 12 (Generator and parity-check matrices). The entire code C can be represented
as the span of a k × n matrix G, called generator matrix of C. A code with a generating
matrix G can be presented as CG.

The set of words w ∈ Fnq such that Gw = 0 (or equivalently c · w = 0 for all c ∈ C)
forms a linear code called dual code of C and noted C⊥. A matrix H generating C⊥ is
called a parity-check matrix for C.

Property 1 (Dual code parameters). Let C be an [n, k, d] linear code, then C⊥ is a
[n, n− k, d′] code, where d′ is called the dual distance of C.

In the following, we illustrate the connections between some encoders from other works
and code-based encoders. As described in the precedent sub-section, we can describe
Boolean masking as a code-based encoder. More precisely, the matrix A for one secret
binary variable and m random binary variables is depicted in Figure 2. This square matrix
has size 1 +m, the encoded variable is multiplied by the top part and the random part by
the lower part. The matrix corresponding to the additive masking encoder over Fq is very
similar (a negative sign appears for each element of the first column of the lower matrix if
q is not a power of 2). 4

For the inner product masking, the matrix A is obtained by modifying the first column
of the lower part, which is given by the public vector used. We give an example in Figure 2
for the encoding of a secret variable in a characteristic 2 field, relatively to the public

4Additive masking is a generalization of Boolean masking to a finite field Fq .
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Boolean Masking

1 0 · · · 0
1
...
1

1
. . .

1

0
0

IP Masking

1 0 · · · 0
`1
...
`m

1
. . .

1

0
0

(O)DSM

G

H

Figure 2: Matrix of EncA for usual encoders. In each case the upper part has k rows, k
being the number of encoded variables, and the lower part has m rows, the number of
random variables.

vector (`1, · · · , `m). For the code-based encoders DSM [PGS+17], and ODSM [BCC+14]
the square matrix A can be separated in two matrices G (upper part) and H (lower part)
with few properties. The direct sum property means that any element of length n has a
unique decomposition as a combination of rows of G plus a combination of rows of H. For
ODSM the extra condition of having G and H orthogonal is added. The general structure
of these two encoders is depicted in Figure 2.

3 Code-based encoders for generalized masking
In this part, we introduce a new family of code-based encoders called generic encoders,
which are more general than the previous constructions and we study their advantages.
This generalization allows to overstep the upper bound on the probing security proven
in [PGS+17] on DSM: we show that the probing security can be higher than the dual
distance of the code generated by H. For generic encoders, the structure of two matrices
(one for the secret variables, the other for the random variables) is kept but the direct
sum property is not mandatory anymore. It allows us to consider the resistance to fault
injection attacks from the properties of the error correcting code used. The generalization
encompasses various already used encoders such as Boolean masking (additive masking),
inner product masking, ODSM and DSM.

We first define the new encoders, we explain the choices for this generalization of DSM
and why further code generalization seems unlikely to benefit to encoders. Then, we focus
on the d-privacy. More precisely, we exhibit a parameter of the code determining the
d-privacy which is more precise than the dual distance d′ of the code generated by H, and
is always equal or greater than d′. It oversteps the upper bound proven in [PGS+17] and
we show why d and d′ coincide in the special case of DSM. Finally, we study particularly
this new parameter, giving tight lower and upper bounds.

Definition 13 (Generic encoder). Let k,m and n be three positive integers, a generic
encoder is a code-based encoder with the following restriction on A ∈ F(k+m)×n

q :

• G is the k× n upper part of A, which is the part multiplied by the encoded variables.
Rank(G) = k and we refer to CG for the code generated by G.

• H is the m × n lower part of A, which corresponds to the part multiplied by the
randomness. Rank(H) = m and we refer to CH for the code generated by H.

• CG ∩ CH = {0}.

Remark 1 (Generic encoder rationale). The restrictions on the matrices to encode are the
result of the masking prerequisites. First, Rank(G) = k enables to recover the k elements
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of x from x̂. Then, Rank(H) = m, otherwise the same code CA could be obtained with
less than m random variables, sparing some randomness. Finally, CG ∩CH = {0} is needed
to be able to recover exactly x from x̂, it also corresponds to Rank(A) = k +m.

This encoding technique generalizes the approach of ODSM and DSM, by allowing n
to be greater than k +m. When n > k +m, CG and CH are not supplementary anymore,
invalidating the direct sum property, the dimension of CA is not equal to n anymore, but
the decomposition of a codeword as a combination of rows of G plus a combination of rows
of H is still unique. The merit of this technique is to allow some redundancy which can be
used to thwart fault injection attacks. In this respect, we show in Appendix C that our
scheme can provide the fault resistance with higher order (than DSM) when some error
detection codes are adopted. The only remaining constraints on G and H directly come
from the properties wanted for an encoder: the ability of recovering the whole encoded
vector and the rule of minimizing the number of random variables which is why we claim
that further code generalization does not seems relevant.

We next describe a lemma that relates to the decoding of codewords of a generic
encoder EncA, and the generalized inverse of A.

Lemma 5. For a generic encoder EncA with matrix A, for any x ∈ Fkq and x̂ $= EncA,
x = x̂A−1[∗, 1:k] where where A−1 is the generalized inverse of A.

Proof. Let r ∈ Fmq be such that x̂ = [r,x]A, let also x′ = x̂A−1[∗, 1 : k] and r′ =
x̂A−1[∗, k + 1:k +m]. Using the property of the generalized inverse, we get

[x, r]A = [x, r]AA−1A = x̂A−1A = [x′, r′]A.

Therefore, [x, r]× [G; H] = [x′, r′]× [G; H], and thus xG = x′G. Since the rank of G is
k, its rows are linearly independent, giving x′ = x.

With this type of general encoders, and an additional definition, we can quantify the
d-privacy of the encoder based on the properties of G and H. In this case it will not be
given by the dual distance of CH as for DSM but by a new parameter.

Definition 14 (Set of fixed weight codewords). Let C be a linear code of length n, we
denote {C}≤t its set of codewords of Hamming weight less than or equal to t:

{C}t = {w ∈ C |HW(w) ≤ t}.

Proposition 4 (Generic encoders and d-privacy). Let EncA be a generic encoder, let d′
denote d(CH⊥) then EncA is d-private with:

d = max
{
t ∈ {0, . . . , n} : ∀w ∈ {CH⊥}t, GwT = 0T} , (1)

= d′ − 1 + max
{
t ∈ {0, . . . , n− d′ + 1} : ∀w ∈ {CH⊥}d′−1+t, GwT = 0T} . (2)

Proof. Showing that the encoder is d-private consists in proving that any joint distribution
given by at most d shares of a codeword is independent from the encoded vector. Using
Lemma 1, such a joint distribution is fully characterized by the set of all linear combinations
of these d shares. If all these linear combinations are independent from the encoded variable,
so is the joint distribution.

Each codeword x̂ $= EncA can be written as x̂ = xG+rH, therefore a linear combination
of elements of x̂ can be written as

∑k
i=1 aix[i]+

∑m
i=1 bir[i], which is independent of x if all

ai are null or if any bi is non-null (in which case it is uniformly distributed, independently
of x). Furthermore, probing ` positions of the codeword corresponds to multiplying x̂ by a
vector w ∈ Fnq such that HW(w) = ` (more precisely by all vectors covered by w). The
encoder is then d-private if there exists no w such that HW(w) ≤ d and x̂wT =

∑k
i=1 aix[i]

where the ai ∈ Fq are not all null.
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Let’s call d = max
0≤t≤n

{∀w ∈ {CH⊥}t, GwT = 0}, we first show that it is an upper
bound of the d-privacy, and then that it is a lower bound. First, by definition of d, there
exists w′ ∈ {CH⊥}d+1, of Hamming weight d + 1 such that Gw′T 6= 0T. It means that
for all codewords x̂ we have x̂w′T = xGw′T + rHw′T = xGw′T since w′ ∈ CH⊥ . Since
Gw′T 6= 0T, x̂w′T is a non trivial linear combination of x coefficients, consequently the
encoding is not (d+ 1)-private.

Then, let us consider e ≤ d. Any e-probing set corresponds to a vector w such that
w ∈ Fnq ,HW(w) = e, and multiplying an encoding by w two cases arise. First, w 6∈ CH⊥ ,
in this case x̂wT = xGwT +rHwT where HwT 6= 0T then rHwT removes the dependence
on x’s coefficients. In the other case, w ∈ CH⊥ , and since HW(w) ≤ e by definition of d we
have that GwT = 0T, so x̂wT = 0 which does not depend on the coefficients of x. Finally
the encoder is e-private for all e ≤ d, and combining both bounds, the privacy is exactly d.

We proved Equation 1, Equation 2 is obtained by using that {CH⊥}d′−1 = {0} by
definition of the distance d′, and G0T = 0T.

The d-privacy of the generic encoder comes with the following particular property (that
is proven in the proof of Proposition 4).

Corollary 1. Let EncA be a d-private generic encoder, any linear combination of d shares
of a codeword is either uniformly distributed or equal to 0, where the probability is over the
random coins from the encoder.

Remark 2. Particular case of DSM. For DSM encoders, the work in [PGS+17, Proposition
1] gives that the probing security is exactly d(CH⊥)−1. Since CG and CH are supplementary
for the code they consider, only w = 0 ∈ Fnq is such that HwT = 0T and GwT = 0T,
justifying this result. As our generic encoder does not have this constraint, the dual distance
of CH only gives a lower bound. The supplementary property also implies d(CA) = 1,
therefore DSM encodings are 0 fault-resistant. (See Appendix C for more analysis on the
fault resistance.)

The next proposition gives lower and upper bounds on the d-privacy. Both bounds can
be tight, or even collapse, an example of such a situation is explained in Appendix B.

Proposition 5 (d-privacy bounds). Let EncA be a generic encoder, let d′ denote d(CH⊥),
the d-privacy is such that:

d′ − 1 ≤ d ≤ m.

Proof. From Proposition 4, we know that d′ − 1 ≤ d. For the other bound, let us proceed
by contradiction. If d > m, then ∀w ∈ {CH⊥}m+1,GwT = 0T. First, recall that CH⊥ has
length n and dimension n −m, therefore the code is equivalent to one generated by a
matrix H′⊥ made of the horizontal concatenation of the identity matrix of size n−m and
a matrix of size (n−m)×m (it can be obtained by performing the Gaussian elimination
on H⊥).5 All the rows of H′⊥ have Hamming weight at most m + 1, this means that
the code CH′⊥ = CH⊥ is generated by the set {CH⊥}m+1 of its codewords of Hamming
weight at most m+ 1. Therefore, the assumption implies that ∀w ∈ CH⊥ ,GwT = 0, hence
CH⊥ ⊆ CG⊥ , so CG ⊆ CH, which leads to a contradiction as per Definition 13, k > 0 and
CG ∩ CH = {0}.

For the ease of understanding, we provide an example of generic encoder in Example I.
Example I

We give a concrete non-trivial generic encoder over F2 as an example, which also
will be further used to exemplify the new gadgets in the next sections. The matrices

5H′⊥ is also known as the systematic form of the generating matrix.
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G, H and A are:

G =
[
11110000
00001100

]
, H =


11000000
00110001
00011100
00000111

 , A =


11110000
00001100
11000000
00110001
00011100
00000111

 .

We can verify that CG ∩CH = {0}, Rank(G) = 2 and Rank(H) = 4, and thus the
corresponding encoder is a generic encoder. We consider the secret input x = [1, 1]
and assume that the randomness drawn is r = [1, 1, 1, 1]. The codeword is then:

x̂ = [1, 1, 1, 1, 1, 1]×A = [0, 0, 0, 1, 0, 1, 1, 0].

By Equation 1 of Proposition 4, we can calculate the security order d = 2, whereas
the dual distance of CH is d′ = 2. This particular generic encoder has the property
that d > d′ − 1, and thus confirms that the dual distance of CH only gives a lower
bound.

4 Multiplication gadget
In this section, we consider the element-wise multiplication (sometimes called the entrywise
multiplication or the Hadamard multiplication) between two vectors of secret variables.
That is, for x =

(
x[1], . . . ,x[k]

)
and y =

(
y[1], . . . ,y[k]

)
, we consider the computation of

z = x�y def=
(
x[1]y[1], . . . ,x[k]y[k]

)
in the masked domain. The input of the multiplication

gadget is the codewords x̂ $= EncA(x) and ŷ $= EncA(y) of x and y respectively, and the
output should be a codeword of x � y, i.e., Gmul(x̂, ŷ) $= EncA(x � y). We start this
section with the construction, then give the proofs of the correctness and security.

4.1 Construction in a nutshell
As a beginning, for the input codewords x̂ and ŷ and output codeword ẑ, we give an
illustration of our multiplication gadget in Figure 3. The multiplication gadget can be
divided into three steps as follows:

A This part first performs an ISW-like product-then-refresh procedure [ISW03], and
then transforms the result S to additive sharings by multiplying each of its rows with
a pre-computed matrix Mi. That is, the columns of T[∗, 1:k] are additive sharings
of the secret result z:

∑n
i=1 T[i, 1:k] = z = x� y.

B This part (linearly) transforms the additive sharings into codewords, by multiplying
the matrix T with A.

C This part performs a refresh operation followed by a vertical ISW-like compress
procedure to get the final result.

Note that we make the intermediate matrix T explicit in our descriptions for convenience.
On the one hand, is simplifies the understanding of the construction as well as the proofs
of correctness and security in the next subsection. More importantly, it is also useful to
make our multiplication gadget’s results directly applicable to linear gadgets (as will be
discussed in Section 5). In particular, the intuition that T[∗, 1 :k] are additive sharings
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[
x̂[1], . . . , x̂[n]

]
[
ŷ[1], . . . , ŷ[n]

]Outer product

x̂[1]ŷ[1] . . . x̂[1]ŷ[n]

... . . . ...
x̂[n]ŷ[1] . . . x̂[n]ŷ[n]




T[1, 1] . . . T[1, m+k]

... . . . ...
T[n, 1] . . . T[n, m+k]



∑
. . .

∑

ẑ[1] ẑ[n]


S[1, 1] . . . S[1, n]

... . . . ...
S[n, 1] . . . S[n, n]



R̂1⊕

×M1
...
×Mn

⊕


K[1, 1] . . . K[1, n]

... . . . ...
K[n, 1] . . . K[n, n]

R̂2

×A


W[1, 1] . . . W[1, n]

... . . . ...
W[n, 1] . . . W[n, n]



. . .

. . .

Refresh:

Refresh:

Part A

Part B Part C

∑
= z[1]

Figure 3: Illustration of the multiplication gadget.

of the secret result will be handy in this case. From an implementation viewpoint, the
linear parts of this multiplication can be either precomputed (jointly) or take advantage of
special structures that the matrices M and A may have.

We note that, because of the additive sharing of the columns of T, we lose the
order amplification as formalised by [WSY+16, PGS+17]. But since at this stage of the
computation, we may still have more additive shares than d, there are cases where code-
based masking could maintain security order amplification even for the multiplication
(which we leave as a scope for further investigation).

4.2 Construction in details
We build the masked multiplication in Gadget 1 as described in Figure 3 of the last section.
More details on the three-parts:

A The outer product x̂T ⊗ ŷ is computed, and is refreshed by adding a matrix R̂1 of
which every column is a codeword of 0, resulting in a matrix denoted as S. Then,
for any i ∈ [n], the ith row of matrix S is multiplied by a pre-computed matrix Mi

that is related to the generic encoder of the input and will be explained in the next
sub-section, and the results compose a matrix T.

B The product W = TA is computed.
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C The matrix W is refreshed by adding a matrix R̂2 of which every row is a codeword
of 0, resulting in a matrix denoted as K. Then, the final result is computed by
summing all the rows of K.

Afterwards, we illustrate the construction in Example II.

Gadget 1 Multiplication gadget: CodeMul

Input: Codewords x̂ $= EncA(x) and ŷ $= EncA(y) of x ∈ Fkq and y ∈ Fkq respectively
Output: ẑ ∈ Fnq

The gadget ensures that DecA(ẑ) = x� y
Encoder EncA should be a d-private generic encoder
For i ∈ [n], matrix Mi ∈ Fn×(k+m)

q is defined as Mi
def= (Ã[i, ∗] ⊗ Ã)E, where

Ã def=
[
A−1[1 :k, ∗],On×m] and On×m is an n×m zero matrix

Gadget 1 part A
Input: x̂ ∈ Fnq , ŷ ∈ Fnq
Output: T ∈ Fn×(k+m)

q

1: Generate a uniformly distributed matrix R1 ∈ Fn×mq , and compute R̂1 =(
[On×k,R1]A

)T

2: for i = 1; i ≤ n; i++ do
3: for j = 1; j ≤ n; j++ do
4: S[i, j] = x̂[i]ŷ[j]⊕ R̂1[i, j]
5: end for
6: end for
7: for i = 1; i ≤ n; i++ do
8: T[i, ∗] = S[i, ∗]×Mi

9: end for

Gadget 1 part B
Input: T ∈ Fn×(k+m)

q

Output: W ∈ Fn×nq

1: W = TA

Gadget 1 part C
Input: W ∈ Fn×nq

Output: ẑ ∈ Fnq
1: Generate a uniformly distributed matrix R2 ∈ Fn×mq , and compute R̂2 = [On×k,R2]A,

where On×k is an n× k zero matrix
2: K = W⊕ R̂2
3: for j = 1; j ≤ n; j++ do
4: ẑ[j] =

∑n
i=1 K[i, j]

5: end for

Example II

We use the particular generic encoder shown in Example I, and thus k = 2,m =
4, n = 8 and all the variables are in F2. The corresponding pre-computed matrices
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Ã and M1, . . . ,M8 are:

Ã =



010000
010000
110000
010000
010000
000000
100000
100000


, M1 = M2 = M4 = M5 =



010000
010000
010000
010000
010000
000000
000000
000000


,

M3 =



010000
010000
110000
010000
010000
000000
100000
100000


, M6 =



000000
000000
000000
000000
000000
000000
000000
000000


, M7 = M8 =



000000
000000
100000
000000
000000
000000
100000
100000


.

Note that by construction, the entries of both Ã[∗, 3 : 6] and Mi[∗, 3 : 6] for
i ∈ {1, . . . , 8} are all zeros. We consider the secret inputs x = [1, 1] and y = [1, 0].
Without loss of generality, we assume that all the random bits are 1s. The codewords
are:

x̂ = [1, 1, 1, 1, 1, 1]×A = [0, 0, 0, 1, 0, 1, 1, 0], and

ŷ = [1, 0, 1, 1, 1, 1]×A = [0, 0, 0, 1, 1, 0, 1, 0].

Then, all the internal variables are:

R1 = AT ×


00000000
00000000
11111111
11111111
11111111
11111111

 =



11111111
11111111
11111111
00000000
11111111
00000000
11111111
00000000


, R2 =



000111
000111
000111
000111
000111
000111
000111
000111


×A =



11101010
11101010
11101010
11101010
11101010
11101010
11101010
11101010


,

S =



11111111
11111111
11111111
00011010
11111111
00011010
11100101
00000000


, T =



010000
010000
110000
000000
010000
000000
000000
000000


, W =



00001100
00001100
11111100
00000000
00001100
00000000
00000000
00000000


, K =



11100110
11100110
00010110
11101010
11100110
11101010
11101010
11101010


.

Note that every column (resp., row) of R̂1 (resp., R̂2) is a codeword of 0. At last,
Gadget 1 outputs ẑ = [1, 1, 1, 1, 0, 0, 0, 0], which is a codeword of x� y = [1, 0]. We
can see that

∑8
i=1 T[i, 1:2] = [1, 0], which confirms that columns of T[∗, 1:k] are

additive sharings of the secret result (this argument will be formally proved in next
sub-section).
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4.3 Correctness of CodeMul gadget
First of all, we give the formulas and the proof about the relation between M1, . . . ,Mn and
result codeword. Based on the formulas, we then give the correctness proof of Gadget 1.

Proposition 6. Let x̂ ∈ Fnq , ŷ ∈ Fnq . Let E ∈ F(k+m)2×(k+m)
q be the concatenation of

the
(
k + m)2-length eT

i for i ∈ {j(k+m)+j+1 | 0≤ j < k+m}. Let Ã ∈ Fn×(k+m)
q and

Mi
def= (Ã[i, ∗]⊗ Ã)E for i ∈ [n]. Then, the following holds:

n∑
i=1

(
x̂[i]⊗ ŷ

)
Mi = x̂Ã� ŷÃ.

Typically, if for A ∈ F(k+m)×n
q and x,y ∈ Fkq , x̂ $= EncA(x), ŷ $= EncA(y) ∈ Fnq , and

Ã =
[
A−1[∗, 1:k],On×m], then the following holds:

n∑
i=1

(
x̂[i]⊗ ŷ

)
Mi = [x� y,0], where 0 ∈ Fmq .

Proof. We start with proving the first equation. Let i ∈ [n], first using the definition of
Mi, we have (x̂[i]⊗ ŷ)Mi = (x̂[i]⊗ ŷ)(Ã[i, ∗]⊗ Ã)E. Then, we can apply Proposition 1,
giving: (x̂[i]⊗ ŷ)(Ã[i, ∗]⊗ Ã) = (x̂[i]Ã[i, ∗])⊗ (ŷÃ). Thus, we have:

n∑
i=1

(
x̂[i]⊗ ŷ

)
Mi =

n∑
i=1

((
x̂[i]Ã[i, ∗]

)
⊗
(
ŷÃ
))

E

=
(( n∑

i=1
x̂[i]Ã[i, ∗]

)
⊗
(
ŷÃ
))

E

=
(
(x̂Ã)⊗ (ŷÃ)

)
E.

Multiplying a (k+m)2-length vector by the matrix E corresponds to selecting its
elements with indexes j(k+m)+j+1 for j ∈ [k+m−1]. More particularly, for a vector
obtained by the tensor product of two (k+m)-length vectors, multiplying by E gives the
vectors of cross-products with equal indexes. Then, we get:

n∑
i=1

(x̂[i]⊗ ŷ)Mi =
(
(x̂Ã)⊗ (ŷÃ)

)
E

= x̂Ã� ŷÃ.

By Lemma 5, x̂A−1[∗, 1:k] = x, and thus x̂Ã =
[
A−1[∗, 1:k],On×m] = [x,0] (similarly,

ŷÃ = [y,0]), giving that x̂Ã = [x,0] and ŷÃ = [y,0].

In the following, we prove the correctness of Gadget 1.

Theorem 1. Let x,y ∈ Fkq , EncA be a generic encoder such that A ∈ F(k+m)×n
q . Then,

Gadget 1 with inputs x̂ $= EncA(x), ŷ $= EncA(y) and output ẑ ensures that
DecA(ẑ) = x� y.

Moreover, Gadget 1 also ensures that

DecA(ẑ) = x� y =
n∑
i=1

T[i, 1:k],

where T is the output of the part A.
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Proof. We aim at proving that for any x̂ $= EncA(x) and ŷ $= EncA(y), the gadget produces
ẑ such that DecA(ẑ) = x�y. We begin by rewriting ẑ in terms depending on x̂, ŷ, Mi and
the random values, going from its final expression and successively climbing the instructions
of parts C, B, and A.

Following the instructions of part C:

ẑ =
(

n∑
i=1

K[i, 1], . . . ,
n∑
i=1

K[i, n]
)
,

=
(

n∑
i=1

(
W[i, 1]⊕ R̂2[i, 1]

)
, . . . ,

n∑
i=1

(
W[i, n]⊕ R̂2[i, n]

))
,

=
n∑
i=1

W[i, ∗]⊕
n∑
i=1

R̂2[i, ∗].

The part B gives:

ẑ =
n∑
i=1

(T[i, ∗]×A)⊕
n∑
i=1

R̂2[i, ∗].

By the linearity of the code, we have:

DecA(ẑ) = DecA

(
n∑
i=1

(T[i, ∗]×A)
)
⊕ DecA

(
n∑
i=1

R̂2[i, ∗]
)
.

We first consider the second part of the right-hand side of the equation. By construction,
R̂2[i, ∗] $= EncA(0) for i ∈ [n], then they decode to 0 with DecA, and the sum decodes to
0 due to the linearity of the code. Then, we consider the first part of the right-hand side.
By the definition of DecA, for any a ∈ Fm+k

q , we have DecA(a ×A) = a[1 :k], then:

DecA

(
n∑
i=1

(T[i, ∗]×A)
)

=
n∑
i=1

(DecA(T[i, ∗]×A)) =
n∑
i=1

(T[i, 1:k]) .

Therefore, we obtain:

DecA(ẑ) =
n∑
i=1

T[i, 1:k]. (3)

Considering the part A of the gadget:

n∑
i=1

T[i, 1:k] =
n∑
i=1

(S[i, ∗]×Mi) [1 :k],

=
n∑
i=1

((
(x̂[i]⊗ ŷ)⊕ R̂1[i, ∗]

)
Mi

)
[1 :k],

=
n∑
i=1

((x̂[i]⊗ ŷ)×Mi) [1 :k]⊕
n∑
i=1

(
R̂1[i, ∗]×Mi

)
[1 :k]. (4)

We first show that the second part of the right-hand side of Equation 4 is equal to the
zero vector. As R̂1 is a matrix over Fn×nq , applying Proposition 3, R̂1 can be rewritten as:

R̂1 =
n∑
j=1

(R̂1[∗, j]⊗ ej).



146 Efficient and Private Computations with Code-Based Masking

Then:

R̂1[i, ∗] =

 n∑
j=1

(R̂1[∗, j]⊗ ej)

 [i, ∗] =
n∑
j=1

(R̂1[∗, j]⊗ ej)[i, ∗] =
n∑
j=1

(R̂1[i, j]⊗ ej).

Consequently, using the Proposition 2 the second part can be written as:

n∑
i=1

(
R̂1[i, ∗]×Mi[∗, 1:k]

)
=

n∑
i=1

 n∑
j=1

(R̂1[i, j]⊗ ej)

Mi[∗, 1:k]

 ,

=
n∑
j=1

n∑
i=1

(R̂1[i, j]⊗ ej)Mi[∗, 1:k],

Applying Proposition 6 (the first equation):
∑n
i=1(R̂1[i, j]⊗ ej)Mi[∗, 1 :k] = 0 ∈ Fk+m

q ,
Therefore,

n∑
i=1

(
R̂1[i, ∗]×Mi[∗, 1:k]

)
= 0.

Now Equation 4 can be rewritten as:

n∑
i=1

T[i, 1:k] =
(

n∑
i=1

((
x̂T ⊗ ŷ

)
[i, ∗]×Mi

))
[1 :k].

By applying Proposition 6 (the second equation) we get
∑n
i=1 ((x̂[i]⊗ ŷ)×Mi) =

(x�y,0), where 0 ∈ Fmq . Accordingly, the first term of Equation 4 is only x�y. It allows
us to conclude:

DecA(ẑ) =
n∑
i=1

T[i, 1:k] = x� y.

4.4 Security of CodeMul gadget
In the following part, we prove the security of Gadget 1. First, Proposition 7 shows some
properties about linear combinations of a limited number of entries from the intermediate
matrices S and K used in Gadget 1. Then, we give three lemmas, one for each part A, B
and C of Gadget 1 to show how internal probes can be simulated with the input of each
part. Finally, Theorem 2 combines the three lemmas to prove that Gadget 1 instantiated
with a d-private generic encoder is t-SNI (with 0 ≤ t ≤ d).

Proposition 7. Let EncA be a d-private generic encoder. When it is fed with codewords
x̂ and ŷ (resp. with any x̂, ŷ ∈ Fnq ), Gadget 1 ensures that any linear combination of the
entries from S[I, ∗] (resp., K[∗,J ]) is either uniformly distributed over Fq or equal to 0,
for any I ⊆ [n], |I| ≤ d (resp. J ⊆ [n], |J | ≤ d).

Proof. We first give the proof regarding rows of S. By instructions of the Gadget 1, for
j ∈ [n], we have S[∗, j] = x̂Tŷ[j]⊕ R̂1[∗, j], where x̂ $= EncA(x), and R̂1[∗, j] $= EncA(0)T.
Since EncA is a linear code, and a fresh codeword of 0 masks the secret data:

S[∗, j] $= EncA(x)Tŷ[j]⊕ EncA(0)T $= EncA(xŷ[j])T.
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Using that EncA is a d-private generic encoder, applying Corollary 1 gives that any linear
combination of at most d entries from each column of S is either uniformly distributed
over Fq or equal to 0. A linear combination of entries from at most d rows of S can be
rewritten as: h(S) =

∑
j∈[n] ajhj(S[I, j]), where |I| ≤ d, aj ∈ Fq and hj(S[I, j]) is a linear

combination of entries in S[I, j]. We have following results:

• If hj(S[I, j]) = 0 for every j ∈ [n], then h(S) = 0.

• If hj(S[I, j]) 6= 0 for at least one j ∈ [n], then hj(S[I, j]) is uniformly distributed,
and thus we have:

– If aj = 0 for every j such that hj(S[I, j]) 6= 0, then h(S) = 0.
– If not, there exists j ∈ [n] such that ajhj(S[I, j]) is uniformly distributed, whose

random coins are from R̂1[I, j]. As different columns of R̂1 are independent,
h(S) =

∑
j∈[n] ajhj(S[I, j]) is uniformly distributed.

We then give the proof regarding columns of K. By instruction of the Gadget 1, for
i ∈ [n], we have T[i, ∗] = S[i, ∗]×Mi. By the definition of Mi:

T[i, ∗] = S[i, ∗]×
(
(Ã⊗ Ã)E

)
[1+(i−1)n : in, ∗].

As Ã = [A−1[∗, k],On×m], we have T[i, k+1:m+k] = 0. Finally, the ith row of K can be
rewritten as:

K[i, ∗] = W[i, ∗]⊕ R̂2[i, ∗] = T[i, ∗]×A⊕ R̂2[i, ∗].

Since R̂2[i, ∗] $= EncA(0) and EncA is a d-private generic encoder, we have:

EncA(T[i, 1:k])⊕ R̂2[i, ∗] $= EncA(T[i, 1:k]).

Thus, K[i, ∗] $= EncA(T[i, 1:k]). Then, by Corollary 1, any d entries from each row of K
is either uniformly distributed over Fq or equal to 0. A linear combination of entries of
at most d columns of K can be rewritten as h(K) =

∑
i∈[n] aihi(K[i,J ]), where |J | ≤ d,

ai ∈ Fq and hj(K[i,J ]) is a linear combination of entries in K[i,J ]. We have following
results:

• If hi(K[i,J ]) = 0 for every i ∈ [n], then h(K) = 0.

• If hi(K[i,J ]) 6= 0 for at least one i ∈ [n], then hi(K[i,J ]) is uniformly distributed
for any i ∈ [n], and thus we have:

– If ai = 0 for every i such that hi(K[i,J ]) 6= 0, then h(K) = 0.
– If not, then there exists i ∈ [n] such that aihi(K[i,J ]) is uniformly distributed,

whose random coins are from R̂2[i,J ]. As different rows of R̂2 are independent,
h(K) =

∑
i∈[n] aihi(K[i,J ]) is uniformly distributed.

Theorem 2 can be deducted by the security of three parts of Gadget 1, which we give
in Lemmas 6, 7 and 8 respectively.

Lemma 6. Let EncA be a d-private generic encoder. For Gadget 1 part A, any tint
internal probes and all outputs in T[O, ∗] such that tint + |O| = t ≤ d, can be simulated
under valid input sharings with inputs shares x̂[I] and ŷ[J ] for |I| ≤ t, |J | ≤ t.
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Proof. Let P denote the set of probes. We aim at proving that for all output probes
T[O, ∗] (|O|(m + k) output probes) and internal probes Pint such that |Pint|+ |O| ≤ t,
there exists sets I ⊆ [n] and J ⊆ [n] such that |I| ≤ t and |J | ≤ t, and a simulator S such
that:

Pr [D (GP (x̂, ŷ) , x̂, ŷ) = 1] = Pr [D (S (x̂[I], ŷ[J ]) , x̂, ŷ) = 1] , for any distinguisher D.

In the following proof, we start with showing how to build the sets I and J , and then
investigate simulator.

Building the sets I and J . First we divide all the possible probes on Gadget 1 part
A into different subsets based on the types:

• The probes to the input shares: Pinput.

• The probes to the random variables: Prand, which include the entries in R̂1, variables
in the computation of

(
[On×k,R1]A

)T, and entries in R1. In the second case, each
row of [On×k,R1] is linearly transformed to a distinct column of R̂1. Thus, for each
probe p in Prand, there exists a function of linear combination f : Fmq → Fq and an
index j ∈ [n], such that p = f(RT

1 [∗, j]).

• The probes of x̂[i]ŷ[j] for any i, j ∈ [n]: Pxy.

• The probes to the computation from S to T: PS→T, where S[i, ∗] is multiplied by
Mi to T[i, ∗]. Thus, for each probe p in PS→T, there exists a linear combination
g : Fnq → Fq and an index i ∈ [n], such that p = g(S[i, ∗]). Note that is also
encompasses the probes on one S[i, j].

• The probes to the shares of output codewords T: Pout, whose corresponding row
indices are in a set O.

Note that the internal probes are Pint = Pinput∪Prand∪Pxy∪PS→T and the output probes
are PO ⊆ T[O, ∗], and then we have Pint + |O| ≤ t, |Pint| ≤ tint and |PO| ≤ |O|(m+ k).

To build the sets I and J , note that except for the subset Prand, each other internal
probes, or all entries of each row of T depend on at most one index i which relates to the
input codeword x̂. Then I is built as the union of these indexes, and since |Pint|+ |O| ≤ t,
it ensures |I| ≤ t. The set J is built as follow, for each probe in Pinput on the codeword ŷ:
ŷ[j], j is added to J . As seen above, any probe in Prand can be written as p = f(RT

1 [∗, j]),
then this index is added to J . For each probe in set Pxy, i.e., x̂[i]ŷ[j], we add j into into
J . Since |Pinput|+ |Prand|+ |Pxy| ≤ tint, we get |J | ≤ t. Note also that, by construction,
for each probe there is at least one index in I or in J (or in both for Pxy).

Simulation. We define the simulator S which runs Gadget 1 part A by feeding the
values of x̂[I] and ŷ[J ] and attributing random values to the other input shares, and
outputs the probes. We show that the distribution of the probes provided by the simulator
is identical to the distribution the adversary would obtain in a real attack. To achieve it,
we use the equivalence of Lemma 1, and show that any linear combinations of the probes
given by the simulator is identically distributed as the same linear combination of the
probes obtained by the adversary. For each possible combination, we prove that it relates
only to the input shares {x̂[I], ŷ[J ]} and the random coins in the generation of R1.

First, notice that each linear combination of probes h is a combinations of the following
terms only: x̂[i], ŷ[j], x̂[i]ŷ[j], RT

1 [∗, j], S[i, j] and S[i, j′], where i ∈ I, j ∈ J , and j′ ∈ J̄ .
Let us call h1 the part of the combination with the terms S[i, j′] and h2 the remaining
part, any linear combination h can be written as a1h1 ⊕ a2h2 with a1 ∈ Fq, a2 ∈ Fq.
The distributions of h1 and h2 are independent as they are relative to different columns
of RT

1 , which are generated from independent random coins. Then, since h1 is a linear
combination of terms S[i, j′] for i ∈ I, j′ /∈ J and |I| ≤ t ≤ d, applying Proposition 7, we
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get that h1 is either uniformly distributed or equal to 0. Consequently, in both cases a1h1
can be simulated without knowledge on input variables. Finally, the terms in a2h2 only
relate to x̂[I] and ŷ[J ] and random coins in the generation of R1, which can be simulated
with x̂[I] and ŷ[J ] only. Thus, the whole linear combination h can be simulated with the
input shares {x̂[I], ŷ[J ]}.

To summarize, for any output probes Pout whose indexes are in O and internal probes
Pint such that |Pint| + |O| ≤ t, we can build the sets I and J such that |I| ≤ |P| and
|J | ≤ |P|, and there exists a simulator S such that for any distinguisher D:

Pr [D (GP (x̂, ŷ) , x̂, ŷ) = 1] = Pr [D (S (x̂[I], ŷ[J ]) , x̂, ŷ) = 1] .

Lemma 7. For Gadget 1 part B, any tint internal probes and all outputs in W[O, ∗] such
that tint + |O| = t can be simulated with all input variables of T[I, ∗] for |I| ≤ t.

Proof. We prove that for any output probes in W[O, 1], . . . ,W[O, n] and internal probes
Pint such that |O|+ |Pint| ≤ t, there exists a set I such that |I| ≤ |Pint|+ |O| ≤ t, and a
simulator S such that for any distinguisher D:

Pr [D (GP (T[∗, ∗]) ,T[∗, ∗]) = 1] = Pr [D (S (T[I, ∗]) ,T[∗, ∗]) = 1] ,

where P is the set of all the probes.
Since Gadget 1-B performs a linear operation on shares with same index (each row of

T is multiplied by a public matrix), each probe only relates to the input shares with one
index. Thus, the set I can be built by taking the corresponding indexes of all the probes,
and we have |I| ≤ |P| ≤ t. The simulator S runs the Gadget 1 part B by feeding the values
of the input shares indexed by I and attributing random values to the other input shares,
and outputs the probes. Therefore, the probes only relate to T[I, ∗], finishing the proof.

Lemma 8. Let EncA be a d-private generic encoder. Gadget 1 part C, any tint internal
variables and tout output variables such that tint + tout = t ≤ d, can be simulated with all
input variables of W[I, ∗] where I ⊆ [n], |I| ≤ tint.

Proof. The proof is similar to the one of Lemma 6. Let P denote the set of probes, we
prove that for any tout output probes and tint internal probes such that tint + tout ≤ t,
there exists a set I ⊆ [n] such that |I| ≤ tint, and a simulator S such that:

Pr [D (GP (W[∗, ∗]) ,W[∗, ∗]) = 1]
= Pr [D (S (W[I, ∗]) ,W[∗, ∗]) = 1] , for any distinguisher D.

In the following proof, we start with showing how to build the set I, and then investigate
simulator.

Building the set I. First we divide all the possible probes on Gadget 1 part C into
different subsets based on the types:

• The probes to the input shares: Pinput.

• The probes to the random variables: Prand. The probes include entries in R2,
variables in the computation of [On×k,R2]A, and entries in R̂2. In the second case,
each row of [On×k,R2] is linearly transformed to a distinct row of R̂2. Thus, for
each probe p in Prand, there exists linear combination f : Fmq → Fq and an index
i ∈ [n], such that p = f(R2[i, ∗]).
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• The probes to the calculation of
∑n
i=1 K[i, ∗]: Psum. For each probe p in Psum,

there exists a linear combination g : Fnq → Fq and an index j ∈ [n], such that the
probe p = g(K[∗, j]).

• The probes to the output: PO.

Note that the internal probes are Pint = Pinput ∪Prand ∪Psum and the output probes are
PO, giving that |Pint|+ |PO| ≤ t and |Pint| ≤ tint.

The set I is built as follow, for each probe in Pinput: W[i, j], i is added to I. As seen
above, any probe in Prand can be written as p = f(R2[i, ∗]), then i is added to I. Since
|Pinput|+ |Prand| ≤ tint, we get |I| ≤ tint. The set J is built from Psum: for each probe
p = g(K[∗, j]) the index j is added to J . As each of these probes relates to at most one
value of j, we have |J | ≤ t.

Simulation. We define the simulator S which runs Gadget 1 part C by feeding the
values of W[I, ∗] and attributing random values to the other input shares, and outputs the
probes. We show that the distribution of the probes provided by the simulator is identical
to the distribution the adversary would obtain in a real attack. To achieve it, we use the
equivalence of Lemma 1, and we show that any linear combination of the probes given
by the simulator is identically distributed as the same linear combination of the probes
obtained by the adversary. For each possible combination, we prove that it relates only to
the input shares W[I, ∗] and the random coins in the generation of R2.

First, notice that (by construction of the sets) each linear combination of probes h is
a combinations of the following terms only: W[i, j], K[i, j], R2[i, j] and K[i′, j′], where
i ∈ I, j ∈ [n], i′ ∈ Ī, and j′ ∈ J . Let us call h1 the part of the combination with the terms
K[i′, j′] and h2 the remaining part, any linear combination h can be written as a1h1⊕a2h2
with a1 ∈ Fq, a2 ∈ Fq. The distributions of h1 and h2 are independent as they are relative
to different rows of R2, which are generated from independent random coins. Then, since
h1 is a linear combination of terms K[i′, j′] for i′ /∈ I, j′ ∈ J and |J | ≤ |P| ≤ d, applying
Proposition 7, we get that h1 is either uniformly distributed or equal to 0. Consequently,
in both cases a1h1 can be simulated without knowledge on input variables. Finally, the
terms in a2h2 only relate to W[I, ∗] and random coins in the generation of R2, which can
be simulated with W[I, ∗] only. Thus, the whole linear combination h can be simulated
with the input shares W[I, ∗].

To summarize, for any tout output probes and tint internal probes Pint such that
tint + tout ≤ t, we can build the sets I such that |I| ≤ tint, and there exists a simulator S
such that for any distinguisher D:

Pr [D (GP (W[∗, ∗]) ,W[∗, ∗]) = 1] = Pr [D (S (W[I, ∗]) ,W[∗, ∗]) = 1] .

Finally, Theorem 2 assesses the security of Gadget 1, using the results of Lemmas 6, 7
and 8:

Theorem 2. Let EncA be a d-private generic encoder. Then, Gadget 1 is t-SNI for valid
input sharings for any positive integer t such that t ≤ d.

Proof. We prove that any tout output probes and internal probes Pint such that |Pint|+
tout ≤ t, can be simulated with x̂[I], ŷ[J ] for |I| ≤ |Pint| and |J | ≤ |Pint|. To do so, we
begin by dividing the probes into different subsets depending on which part of the gadget
they are. Then, we successively use Lemmas 8, 7 and 6 to obtain the final result.

The probes are divided into different subsets:

• The probes to the variables in part A, denoted as PA.

• The probes to the variables in part B, denoted as PB .
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• The probes to the internal variables in part C, denoted as PC,int.

• The probes to the output variables in part C, denoted as PC,out.

Since EncA is a d-private generic encoder and PC,int + PC,out ≤ t ≤ d we can apply
Lemma 8: It gives that the PC,int and PC,out probes can be simulated by all the variables
of W[IC , ∗] where IC ⊆ [n] is such that |IC | ≤ |PC,int|. Then, since |PB | + |IC | ≤ t,
we can apply Lemma 7: W[IC , ∗] can be simulated from the variables of T[IB , ∗] where
IB ⊆ [n] is such that |IB | ≤ |IC |+ |PB |, and therefore |IB | ≤ |PB |+ |PC,int|. Moreover,
since |PA| + |IB | ≤ |Pint| ≤ t ≤ d, Lemma 6 applies: It implies that the probes in
PA and the variables of T[IB , ∗] can be simulated with input shares x̂[I] and ŷ[J ] for
|I| ≤ |Pint|, |J | ≤ |Pint|. In summary, PA, PB, PC,int and PC,out can be simulated with
x̂[I], ŷ[J ] for |I| ≤ |Pint| and |J | ≤ |Pint|, finalizing the proof.

5 Addition gadget and more
In this section, we begin by giving the gadget for the addition of two elements of Fkq : it
can be simply implemented by independently adding the shares with the same index.

Next, we consider a more general class of functions: for some l, l′ ∈ N \ {0}, L ∈ Ll,l′ if
and only if L : Flq → Fl′q and if there exists a constant c ∈ Fl′q such that for any x,y ∈ Flq,
L(x⊕ y) = L(x)⊕ L(y)⊕ c, Examples of such functions are

• affine transformations: L(x) = xL⊕ c where L ∈ Fl×l′q and c ∈ Fl′q .

• coordinate-wise ph power: L(x) = (x[1]ph

, . . . ,x[l]ph) where p is the characteristic of
Fq and h is an integer greater than 0. By Lucas’ Theorem (all binomial coefficients(
ph

i

)
for i ∈ [ph − 1] are multiples of p):

L(x⊕ y) =
(
(x[1]⊕ y[1])p

h

, . . . , (x[k]⊕ y[k])p
h)
,

= (x[1]p
h

⊕ y[1]p
h

, . . . ,x[1]p
h

⊕ y[1]p
h

),
= L(x)⊕ L(y).

• selections: L(x) = (x[s1], . . . ,x[sl]), where all si belong to [l].

In the second part of this Section, we design the CodeL family of gadgets that implement
Lk,k functions, re-using ideas from the CodeMul gadget.

Any Lkl,kl′ function can be evaluated in code-based masking by using a composition of
CodeL and addition gadgets. That is, any L ∈ Llk,l′k can be represented as L(x1, . . . ,xl) =
L(1)(x1) ⊕ . . . ⊕ L(l)(xl) ⊕ (l − 1)c,6 where L(i) ∈ Lk,kl′ can be viewed as a vector of l′
Lk,k functions, and the addition can be implemented by the addition gadget.

This composition is not quite efficient, hence we give a more dedicated design in the
third part of the Section: the CodeLs (standing for “multiple CodeL”) family of gadgets
that directly implement any Lkl,kl′ function. Compared to the previous construction, this
more dedicated design can reduce the cost and ease the implementation (e.g., the masked
AES round in Figure 5b of Section 6.3).

5.1 Addition gadget

The addition of two codewords x̂ $= EncA(x) and ŷ $= EncA(y) can be trivially implemented
in the same way as in the case of additive masking: performing a coordinate-wise addition.
Gadget 2 gives the masked addition.

6With L(i) def= L(0, . . . , 0, xi, 0, . . . , 0).
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Gadget 2 Addition gadget: CodeAdd

Input: Codewords x̂ $= EncA(x) and ŷ $= EncA(y) of x ∈ Fkq and y ∈ Fkq
Output: ẑ

Encoder EncA is a d-private generic encoder. The gadget ensures that DecA(ẑ) = x⊕y.
1: for i := 1; i ≤ n; i++ do
2: ẑ[i] = x̂[i]⊕ ŷ[i]
3: end for

We give the correctness and security proof of Gadget 2 in Theorem 3.

Theorem 3. Let x,y ∈ Fkq , EncA be a d-private generic encoder such that A ∈ F(k+m)×n
q .

Then, Gadget 2 with inputs x̂ $= EncA(x), ŷ $= EncA(y) and output ẑ ensures that
DecA(ẑ) = x⊕ y, and Gadget 2 is t-NI for any positive integer t such that t ≤ n.

Proof. We address the correctness first. Following the instructions of Gadget 2, we have
DecA(ẑ) = DecA(x̂ ⊕ ŷ) = DecA

(
[x, r]A ⊕ [y, s]A

)
, where r ∈ Fmq and s ∈ Fmq . Finally,

DecA(ẑ) = DecA(x⊕ y, r⊕ s)A = x⊕ y.
We follow by proving the NI property. Since the operations are performed share-wisely,

any probe (internal and output) in Gadget 2 has one of the following three forms: x̂[i], ŷ[i]
or x̂[i]⊕ ŷ[i] where i ∈ [n]. Let I be the indexes appearing in the t probes, by construction
|I| ≤ t, and x̂[I] and ŷ[I] are sufficient to simulate all the probes. Therefore, for any set
P of t ≤ n probes we can build a simulator S such that:

Pr
[
D (GP (x̂, ŷ) , x̂, ŷ) = 1

]
= Pr

[
D (S (x̂[I], ŷ[I]) , x̂, ŷ) = 1

]
, for any distinguisher D.

Combining the multiplication Gadget 1 of Section 4 and the addition Gadget 2 allows
us to compute any function of the form:

(x,y) 7→
(
f(x[1],y[1]), . . . , f(x[k],y[k])

)
,

where x ∈ Fkq , y ∈ Fkq , and f a function from Fq×Fq to Fq. Note that a gadget implementing
a selection function (as defined on page 151) combined with the multiplication and addition
gadgets is sufficient to compute any functions from Fklq to Fkl′q . The selection function can
be implemented by the CodeL gadget defined next.

5.2 CodeL gadget

In this sub-section, we give a gadget to evaluate any Lk,k function on a codeword x̂ $=
EncA(x). First, let us observe that in additive masking, any Lk,k function can be evaluated
by applying it independently on all the shares with the same index (to produce each share
of the outputs), and adding the constant c as needed on the output share with index 1.
This is an application of the reduction of L functions to Lk,k functions and additions,
since in additive masking, essentially k = 1 and a L1,1 function can be implemented
share-by-share. However, code-based masking cannot exploit such a simple implementation
(since k 6= 1 in the general case). In order to obtain secure masked Lk,k functions, we
modify the construction of the multiplication gadget (Gadget 1). Although our secure
construction is more complex than the trivial implementation of additive masking schemes,
it is SNI (rather than NI for the trivial implementation of additive masking), and thus can
save refresh gadgets in the composition (see the example of masked AES in Section 6.3).
We describe the gadget for L functions in Gadget 3, in three parts as Gadget 1, and explain
the reused parts and the difference from the multiplication gadget. A running example of
Gadget 3 can be found in Example III.
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Gadget 3 CodeL gadget

Input: Codeword x̂ $= EncA(x) of x ∈ Fkq .
Output: ẑ ∈ Fnq

The gadget ensures that DecA(ẑ) = f(x) for f ∈ Lk,k
Encoder EncA should be a d-private generic encoder. For i ∈ [n], matrix Mi ∈
Fn×(k+m)
q is defined as Mi

def= (Ã[i, ∗] ⊗ Ã)E. Codeword 1̂ ∈ Fnq is defined as 1̂ def=
(1,0)A.

Gadget 3 part A
Input: x̂ ∈ Fnq
Output: T ∈ Fn×(k+m)

q

This part reuses the Gadget 1 part A but setting ŷ = 1̂ and R̂1 to be a zero matrix.
1: for i = 1; i ≤ n; i++ do
2: for j = 1; j ≤ n; j++ do
3: S[i, j] = x̂[i]1̂[j]
4: end for
5: end for
6: for i = 1; i ≤ n; i++ do
7: T[i, ∗] = S[i, ∗]×Mi

8: end for

Gadget 3 part B
Input: T ∈ Fn×(k+m)

q

Output: W ∈ Fn×nq .
This part reuses the Gadget 1 part B but adding lines 1-4 to evaluate the f .

1: for i = 2; i ≤ n; i++ do
2: V[i, ∗] =

[
f(T[i, 1:k]),0

]
3: end for
4: V[1, ∗] =

[
f(T[1, 1:k]),0

]
⊕
[
(n− 1)c,0

]
. c is a constant in Fkq associated to f , and (n− 1)c =

∑n−1
i=1 c

5: W = VA

Gadget 3 part C
Input: W ∈ Fn×nq .
Output: ẑ ∈ Fnq .

This part fully reuses the Gadget 1 part C.
1: Call Gadget 1 part C with inputs W.
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Example III

We use the particular generic encoder shown in Example I, and thus k = 2,m =
4, n = 8 and all the variables are in F2. The corresponding pre-computed matrices
Ã and M1, . . . ,M8 can be found in Example II. We consider the secret inputs
x = [1, 1] and the function:

f(a) = aL, for any a ∈ F2
2, where L =

[
11
10

]
.

Without loss of generality, we assume that all the random bits are 1s. The input
codeword is x̂ = [1, 1, 1, 1, 1, 1] ×A = [0, 0, 0, 1, 0, 1, 1, 0], and the constant input
codeword is 1̂ = [0, 0, 1, 1, 1, 1] ×A = [0, 0, 0, 1, 0, 1, 1, 0]. Then, all the internal
variables are:

R2 =



000111
000111
000111
000111
000111
000111
000111
000111


×A =



11101010
11101010
11101010
11101010
11101010
11101010
11101010
11101010


, S =



00000000
00000000
00000000
11111100
00000000
11111100
11111100
00000000


,

T =



000000
000000
000000
010000
000000
000000
100000
000000


, V =



000000
000000
000000
100000
000000
000000
110000
000000


, W =



00000000
00000000
00000000
11110000
00000000
00000000
11111100
00000000


, K =



11101010
11101010
11101010
00011010
11101010
11101010
00010110
11101010


.

At last, Gadget 3 outputs ẑ = [0, 0, 0, 0, 1, 1, 0, 0], which is a codeword of xL = [0, 1].

We explain the principle of Gadget 3 in the following. From the construction of the
multiplication gadget, at one stage the computation handles an additive sharing of the
result which is

∑n
i=1 T[i, 1:k] = x� y (the formal proof is given with Theorem 1). First

note that we can replace y by 1 ∈ Fkq to obtain n share of which the sum gives x. Then,
we can apply the Lk,k function f on each share independently, and add the constant term
accordingly. We show that these modifications still guarantee the correctness based on the
proof related to the correctness of Gadget 1. Note that in this case, part A does not require
any randomness, because ŷ = 1 is public. We also prove that adding extra computations
for the Lk,k function in part B does not impact the security.

In the next sub-sections, we prove the correctness of Gadget 3, and finally its SNI
property, using the results of Section 4.

5.2.1 Correctness of the CodeL gadget

In the following, we prove the correctness of Gadget 3.

Theorem 4. Let x ∈ Fkq , and EncA be a generic encoder such that A ∈ F(k+m)×n
q . Then,

Gadget 3 with input x̂ $= EncA(x) and output ẑ ensures that DecA(ẑ) = f(x) for f ∈ Lk,k.
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Proof. The goal is to prove that for any x̂ $= EncA(x) the gadget produces ẑ such that
DecA(ẑ) = f(x). Since the part C of the gadget is identical to the one of Gadget 1, we can
use the same arguments as in the beginning of the proof of Theorem 1, giving an equation
similar to Equation 3:

DecA(ẑ) =
n∑
i=1

V[i, 1:k].

Following the instructions of the part B it gives:

DecA(ẑ) =
n∑
i=1

f(T[i, 1:k])⊕ (n− 1)c = f

(
n∑
i=1

T[i, 1:k]
)
,

where the last equality comes from the Lk,k functions property.
Then, Gadget 3 part A corresponds to the particular case of Gadget 1 part A where

ŷ is the codeword of 1 with randomness 0 and the matrix R1 is null. Therefore the
arguments in the last part of Theorem 1 apply on this sub-case. Accordingly we can
rewrite Equation 4 in this case:

n∑
i=1

T[i, 1:k] =
n∑
i=1

((
x̂T ⊗ 1̂

)
[i, ∗]×Mi

)
[1 :k]⊕

n∑
i=1

(0×Mi) [1 :k].

By Proposition 6, we have
((

x̂T ⊗ 1̂
)

[i, ∗]×Mi

)
[1 : k] = x and

n∑
i=1

(0×Mi) [1 : k] = 0.

Thus, we have
n∑
i=1

T[i, 1:k] = x. At last, we can conclude:

DecA(ẑ) = f

(
n∑
i=1

T[i, 1:k]
)

= f(x).

5.2.2 Security of the CodeL gadget

In the following part, we prove the security of Gadget 3, showing that instantiated with a
d-private generic encoder it is t-SNI for valid input sharings (with 0 ≤ t ≤ d). To do so,
we begin by giving a lemma about simulation properties of the part A and B of the gadget.
Then, Theorem 5 addresses the SNI property of Gadget 3. The proofs largely follow the
ones of Section 4.4.

Lemma 9. For Gadget 3 parts A and B, any tint internal probes and any output in
W[O, ∗] such that tint+ |O| = t can be simulated with input shares indexed by I for |I| ≤ t.

Proof. We show that any (internal or output) probe depend on only on index i corre-
sponding to one share of x̂. Therefore, the set I ⊆ [n] defined as the union of the indexes
appearing in the internal probes and in W[O, ∗] is such that |I| ≤ t, and x̂[I] is sufficient
to simulate all the probes.

First, we list all the probes depending on their type:

• The probes to the input shares: Pinput.

• The probes of x̂[i]1̂[j] for any i, j ∈ [n]: Px.

• The probes to the computation from S to T: PS→T, where S[i, ∗] is multiplied by
Mi to T[i, ∗]. Thus, for each probe p in PS→T, there exists a linear combination
f : Fnq → Fq and an index i ∈ [n], such that p = f(S[i, ∗]).
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• The probes to the computation from T to V: PT→V, where f is applied to T[i, ∗]
to obtain V[i, ∗], or a constant vector is added to V[1, ∗]. Each of these probes are
related to a single index i ∈ [n].

• The probes to the computation from V to W: PV→W, where V[i, ∗] is multiplied
by A to W[i, ∗]. Thus, for each probe p in PV→W, there exists a linear combination
g : Fnq → Fq and an index i ∈ [n], such that p = g(V[i, ∗]).

• The probes to the shares of output codewords W: Pout, whose corresponding row
indexes are in a set O.

To build the set I, note that each internal probes, or all entries of each row of W
depend on at most one index i which relates to the input codeword x̂. Then I is built as
the union of these indexes, by construction Pint = Pinput +Px +PS→T +PT→V +PV→W
and Pout ∈ W[O, ∗] ensuring |Pint| + |O| ≤ t, therefore |I| ≤ t. Consequently we can
define a simulator S which runs Gadget 3 parts A and B by feeding the values of x̂[I] and
attributing random values to the other input shares, and outputs the probes. The probes
only relate to x̂[I], enabling to conclude:

Pr [D (GP (x̂) , x̂) = 1] = Pr [D (S (x̂[I]) , x̂) = 1] , for any distinguisher D.

Theorem 5. Let EncA be a d-private generic encoder. Then, Gadget 3 is t-SNI for valid
input sharings for any positive integer t such that t ≤ d.

Proof. Similarly to Theorem 2 we prove that any tout output probes and internal probes
Pint such that |Pint|+ tout ≤ t, can be simulated with x̂[I] for I ⊆ [n], |I| ≤ |Pint|. To do
so, we begin by dividing the probes into different subsets depending on which part of the
gadget they are. Then, we successively use Lemmas 8, and 9 to obtain the final result.

The probes are divided into different subsets:

• The probes to the variables in part A and B, denoted as PAB .

• The probes to the internal variables in part C, denoted as PC,int.

• The probes to the output variables in part C, denoted as PC,out.

Since EncA is a d-private generic encoder and PC,int + PC,out ≤ t ≤ d we can apply
Lemma 8: It gives that the PC,int and PC,out probes can be simulated by all the variables
of W[IC , ∗] where IC ⊆ [n] is such that |IC | ≤ |PC,int|. Then, since |PAB | + |IC | ≤
|Pint| ≤ t ≤ d, Lemma 9 applies: It implies that the probes in PAB and the variables
of T[IC , ∗] can be simulated with input shares x̂[I] for |I| ≤ |Pint|. In summary, PAB,
PC,int and PC,out can be simulated with x̂[I] for |I| ≤ |Pint|, finalizing the proof.

5.3 A generalized version: CodeLs gadget
The CodeLs gadget implements any L function (provided that the input and output size are
multiples of k). Therefore, it operates on sensitive variables of multiple codewords. That
is, the input of the gadget is x̂1, . . . , x̂l and output is ẑ1, . . . , ẑl′ such that (z1, . . . , zl′) =
f(x1, . . . ,xl) for any f ∈ Lkl,kl′ , addition gadgets and CodeL gadgets. That is, f : Flkq →
Fl′kq can be represented as f(x1, . . . ,xl) = f (1)(x1)⊕ . . .⊕ f (l)(xl), where f (i) : Fkq → Fkl′q

is a composition of l′ Lk,k functions, and the addition can be implemented by the addition
gadget. But, obviously this composition is not quite efficient. In the following, we give a
more efficient construction.



Weijia Wang, Pierrick Méaux, Gaëtan Cassiers and François-Xavier Standaert 157

Recall that the CodeL gadget first transforms the codeword of the generic encoder into
an additive sharing (in Gadget 3, part A), then apply the Lk,k function (in Gadget 3, part
B), and transform the result back to the codeword of generic encoder (in Gadget 3, part
C). Similarly, in the case of L2 gadget with multiple input codewords, we can first call
Gadget 3, part A l times to transform x̂1, . . . , x̂l into the corresponding additive sharing,
and then apply the Lkl,kl′ function in the same way as Gadget 3, part B. Finally, we
call Gadget 3, part C l′ times to transform the result into codewords ẑ1, . . . , ẑl′ . This L2

gadget is presented in Gadget 4. We can see that Gadget 4 requires l′nm random variables
for l′ times calls of Gadget 3, part C.

Gadget 4 CodeLs gadget

Input: Codewords x̂1, . . . , x̂l
$= EncA(x1), . . . ,EncA(xl) of x1, . . . ,xl ∈ Fkq .

Output: ẑ1, . . . , ẑl′ ∈ Fnq
The gadget ensures that DecA(ẑ1), . . . ,DecA(ẑl′) = f(x1, . . . ,xl′) for f ∈ Lkl,kl′

Encoder EncA should be a d-private generic encoder.
1: Call Gadget 3 part A l times for each inputs x̂1, . . . , x̂l, resulting in T1, . . . ,Tl

2: T = [T1, . . . ,Tl]
3: Call Gadget 3 part B with input T, resulting in W
4: W1, . . . ,Wl′ ←W . W = [W1, . . . ,Wl′ ]
5: Call Gadget 3 part C l′ times for each inputs W1, . . . ,Wl′ , resulting in ẑ1, . . . , ẑl′

Gadget 4 is t-SNI for t ≤ d. The proof is quite similar to the one of Gadget 3. We
give a sketch in the following. By Lemma 8 (since Gadget 3, part C is also Gadget 1,
part C), we can see that any tint internal variables and tout output variables such that
tint + tout = t ≤ d can be simulated with all input variables of W[I, ∗] where I ⊆ [n],
|I| ≤ tint. Then, by Lemma 9, any tint internal probes and any output in W[O, ∗] such
that tint + |O| = t can be simulated with inputs shares indexed by I for |I| ≤ t. Therefore,
any tint internal variables and tout output variables of Gadget 4 can be simulated with
tint inputs shares of each of x̂1, . . . , x̂l, giving that Gadget 4 is t-SNI for t ≤ d.

6 Cost amortization and application to AES
At a first glance, the masked operations introduced in the last two sections have a high
randomness and computational complexity. It is the case if we consider that only one
sensitive variable is encoded into a codeword, and typically, we show in Appendix B
that with a single sensitive variable Boolean masking is optimal in term of randomness.
Nevertheless, when we take into account that cryptographic algorithms usually apply the
function that is computed over multiple variables in parallel (e.g., the 16 S-boxes of the
AES block cipher), our scheme can lead to decent performance by packing multiple (e.g., 16
for the AES) secret variables in a single codeword, a technique we call amortization. Then,
a single application of one of our gadget can perform the same operation in parallel for all
the secret variables. In this section, we first give an example of code that can be used for
amortization while being d-probing secure. Then, we compare the cost of this amortized
masking scheme with the state-of-the-art for two relevant cases: the multiplication (which
is typically the most expensive part in masking schemes) and a full AES.
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6.1 A generic encoder for amortization
We choose the matrices G = [I,O] and H to be a generator matrix of the Reed-Solomon
codes [RS60], where I is an identity matrix in Fk×k28 and O is a zero matrix in Fk×m28 . A
typical construction of H is the transpose of a Vandermonde matrix over F28 :

H =


1 1 . . . 1
a1 a2 . . . an
a2

1 a2
2 . . . a2

n
...

...
. . .

...
am−1

1 am−1
2 . . . am−1

n

 ,

where a1 . . . an are distinct values in F28 (therefore our construction is limited to n ≤ 28)
and n = k + m. Since H is the generating matrix of a Reed-Solomon code of length
n = k + m and dimension m, and by the property of Reed-Solomon code [RS60], CH is
an MDS (maximum distance separable) code, and thus its minimal distance d(CH) =
n −m + 1 = m + k −m + 1 = k + 1. Hence, any non null element of this code has a
Hamming weight of at least k + 1 whereas all the non null elements of the code generated
be G have a Hamming weight of at most k. It proves that CG ∩ CH = {0}, while both G
and H are full-rank. Therefore, A = [G; H] corresponds to a generic encoder.

As CH is an MDS code, its dual code CH⊥ is an MDS code as well. Thus, the dual
distance d(CH⊥) = n− (n−m) + 1 = m+ 1. By Proposition 5, we have that this generic
encoder is a d-probing secure encoder, where m+ 1− 1 ≤ d ≤ m, giving d = m.

6.2 Cost of amortized multiplication
Cost metrics. We evaluate the cost of masked algorithms using two metrics: the amount
of randomness needed and the number of bilinear multiplication (i.e., multiplications of
two non-constant values), since those are typically the most expensive part of masked
computations [BBP+16]. We note that this provides only estimates of performance, and
since the actual cost largely depends on the platform, the actual benchmarks should
compare real-world optimized implementations, which we leave to future works.

We compare the cost of one CodeMul execution, that computes k masked multiplica-
tions7, to the cost of k (non-amortized) ISWMul [ISW03] masked multiplications.

The CodeMul gadget requires 2mn = 2d(d+k) random bytes and n2 = (d+k)2 bilinear
multiplications. In constrast, k ISWMul gadgets require kd(d+ 1)/2 random bytes and
k(d + 1)2 bilinear multiplications. Those costs are shown in Figure 4 for small values
of d and k. With the increase of k, both the randomness and computational costs of
CodeMul become smaller. More importantly, when k ≥ 8 (k ≥ 2, resp.), the randomness
(computational, resp.) cost of CodeMul is smaller than that of ISWMul for sufficiently
large d (and the gap increase with increasing d).

6.3 Our new construction of the masked AES
In the rest of this section, we assume k|16, and show an application of our masking to
the AES block cipher. The AES-128 algorithm is performed on 16 variables in F28e.
In every round, four types of transformations are performed: AddRoundKey, SubBytes,
ShiftRows and MixColumns (see [DR02] for more details). ShiftRows and MixColumns
are linear operations over F16

28 , and a round key is XORed to the state in AddRoundKey.
It becomes more complex for the SubBytes transformation, where a nonlinear function

7To avoid any confusion, we only consider the case that the masked multiplication is over F28 in this
section.
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Figure 4: Estimated costs of 16 multiplications in parallel.

F28 → F28 called S-box is computed over each of the 16 variables of the state. The S-box
is a composition of an inverse in F28 and an affine transformation in F8

2.

We firstly focus on the inverse. In [RP10], Rivain et al. propose to represent the inverse
by a power function x → x254, which can be further decomposed into a quite efficient
chain of several multiplications and squaring functions, and then can be performed by
applying the multiplication gadget and L gadget. That is, the k variables are encoded into
a codeword using the generic encoder, and then the k S-boxes are performed by applying
Gadgets 1 and 3 (CodeMul and CodeL).

The squaring (as well as (·)4 and (·)16) is a typical instance of L function. The affine
transformation Aff is also a L function: let us denote by M : F28 → F8

2 the AES change of
representation from byte to bits. The affine transformation is then a map Aff : F28 → F28 ,
Aff(x) = M−1(M(x)×A⊕ b) for some constant A ∈ F8×8

2 and b ∈ F8
2. The map M is

linear, therefore Aff(x⊕ y) = Aff(x)⊕Aff(y)⊕Aff(0) and Aff is a L function and it can
be implemented by using Gadget 3 (CodeL).

Figure 5a shows the masked S-boxes, where the input (resp., output) is a codeword
of k input (resp., output) variables. Note that by Theorems 2 and 5, all the gadgets in
Figure 5a are t-SNI for t ≤ d. We can confirm from the figure that input codewords of
each gadget comes from different gadgets, and thus by Lemma 4 the composed gadget is
also t-SNI for t ≤ d. Note also that the affine transformation, AddRoundKey, ShiftRows
and MixColumns can be implemented together by instantiating Gadget 4 (CodeLs). Thus,
in Figure 5b, we expand Figure 5a to a round function of AES consisting of SubBytes (16
S-boxes), ShiftRows MixColumns and AddRoundKey, and the full AES-128 can be built
by considering 10 instances of the round function.8

It should be noted that our masked implementation of the AES does not require any
refresh gadget. This is because the ingredients (i.e., CodeMul, CodeL and CodeLs) for
the construction are all t-SNI. On the other hand, for the Boolean masking, building an
SNI masked linear transformation usually requires refresh gadgets. In this respect, the
relatively higher complexity of the “L function” of our scheme can somehow be mitigated
by its stronger composability guarantees.

8The only concerns are the first round that start with an additional AddRoundKey, and the last round
that does not contain MixColumns. For simplicity we estimate the cost of a full AES-128 by considering
10 instances of the round function.
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Figure 5: Masked AES S-boxes and round function by applying our masking scheme.

6.4 Estimated cost and comparison for masked AES
In the rest of this section, we estimate the cost of the masked AES and compare with
benchmarks.

6.4.1 The benchmarks for comparison

For the benchmarks, we consider the constructions given in [BBP+16, Figure 6] and the
bitsliced implementations in [BGR18]. The work in [BGR18] applies the ISW scheme to
the bitslice technique and proposes a very efficient (software) implementation of masked
AES that we call tight private circuits. The work in [BBP+16] reduces the random cost
of masked multiplications from O(d2/2) to O(d2/4) (more precisely, from d(d+ 1)/2 to⌊
d2/4

⌋
+ d) and then proposed a masked AES where half the ISW multiplications can be

replaced by randomness-reduced ones, while preserving the whole SNI security.

6.4.2 Randomness cost and comparison

Figure 5b contains 4(16/k) instances of CodeMul, 3(16/k) instances of CodeL and 1
instances of CodeLs. From Sections 4.2, 5.2 and 5.3, we know that:

• Each instance of CodeMul requires 2mn = 2d(d+ k) random variables, consisting of
mn = d(d+ k) random variables in the generation of R1 and another m = d(d+ k)n
random variables over Fq in the generation of R2.

• Each instance of CodeL requires nm = d(d+ k) random variables for the generation
of R2.

• Each instance of CodeLs requires lnm = ld(d+k) random variables for the generation
of l R2 matrices in l calls of CodeL. In our case, l = 16/k.
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Figure 6: Randomness cost comparison with state-of-the-art based on masked AES-128.

In total, this implementation of a masked AES round function requires 4(16/k)2nm +
3(16/k)nm+ 16nm/k = 192nm/k random bytes. Considering d = m, our masked AES
requires 10(192nm/k) = 1920d(d + k)/k random bytes. In order to illustrate the cost
amortization of our scheme, we consider k = 1, 2, 4, 16 for no cost amortization and
encodings of 2, 4 and 16 variables (into one codeword) respectively in the comparison.

The tight private circuits require 32d(d+ 1) random bytes for 16 S-boxes in each round,
giving a requirement of 320d(d+ 1) random bytes for a full AES-128. The reduced random
cost of a masked multiplication in the work of [BBP+16] is

⌊
d2/4

⌋
+d, and the construction

of one AES S-box they proposed in [BBP+16, Figure 6] contains the following parts:

1. Two randomness reduced multiplications with reduced randomness cost, and each of
them requires at least

⌊
d2/4

⌋
+ d random bytes.

2. Two refresh gadgets. For a conservative comparison, we assume each refresh gadget
requires at least d random bytes (it is even smaller than that in [BBD+18, Table 4]).

3. Two ISW multiplications, each of which requires at least d(d+ 1)/2 random bytes.

In Figure 6, we show the random costs of the above state-of-the-art implementations, and
compare them with our new scheme for different values of k. We can see that, with the
increase of k, the randomness cost becomes smaller. When k = 16, the randomness cost of
our scheme is smaller than the state-of-the-art (when d ≥ 10), and the gains increase with
the security order. This gains can also be explained by comparing 1920d(d+ k)/k (our
scheme) and 320d(d+ 1) (tight private circuits): 1920d(d+ k)/k < 320d(d+ 1) for large
enough k and d.

6.4.3 Computational cost and comparison

We finally compare our scheme with the one in [BBP+16] which shares a similar construction
with ours (both of them are based on the decomposition of the inverse in F28). As CodeL and
CodeLs contain no bilinear multiplications, we only consider the masked multiplications.
Both our implementation and the one in [BBP+16] contain 4 masked multiplications.
However, the former one encodes the inputs of k AES S-boxes all together into a codeword,
and performs k AES S-boxes only with 4 masked multiplications (i.e., CodeMul). CodeMul
contains n2 bilinear multiplications for the calculation of S, which gives that there are
in total 64n2/k bilinear multiplications for one masked round function. Meanwhile, the
S-boxes are implemented separately in [BBP+16], and thus each S-box contains 4 masked
multiplications, giving in total 64(d+ 1)2 bilinear multiplications (the use of either ISW



162 Efficient and Private Computations with Code-Based Masking

Table 1: Estimated computational cost1 of AES implementations
k multiplications in parallel Full AES-128

Our scheme

k=1 (d+ 1)2 640(d+ 1)2

k=2 (d+ 2)2 320(d+ 2)2

k=4 (d+ 4)2 160(d+ 4)2

k=16 (d+ 16)2 40(d+ 16)2

[BBP+16] k(d+ 1)2 640(d+ 1)2

1 Metric: the number of bilinear multiplications.

scheme or the NI multiplication does not impact the number of bilinear multiplications) for
one round function. Thus, by n = 16 +m = 16 + d, the number of bilinear multiplication
of our AES implementation (i.e., 640(d+ k)2/k) is smaller than that of [BBP+16] (i.e.,
640(d+ 1)2) if k > 1. We summarize the computational comparisons in Table 1.

We emphasize that, from the comparison above, we only claim that the computational
cost of our scheme is asymptotically comparable to state-of-the-art, and leave the estimation
based on real-world implementations as a future work.

7 Conclusion and future works
In this paper, we tackle the computational issue of code-based masking. We propose a
more generalized masking encoder that covers all the well-known code-based masking
encoders, based on which efficient masked operations are given. We show that our masked
operations can lead to decent performance thanks to amortization. We provide an efficient
masked AES implementation based on the new scheme with a limited complexity: in
comparison with the state-of-the-art [BBP+16, BGR18, CS19], our implementation uses
less randomness, and the computational complexity is comparable (for high security levels).
Our scheme not only gives the first solution for the open challenge pointed in [PGS+17]
(i.e., finding an efficient multiplication algorithms for DSM), but it also provides new
directions for future works as listed next.

Analyzing the fault resistance. The encoders of code-based masking can offer the
property of fault resistance. We have shown in Appendix C that the fault resistance of
DSM codewords can be increased with the generic encoder. But Gadgets 1 and 3 cannot
prevent the fault propagation issue [IPSW06, AMR+18]. It is an important problem to
study how the computations/multiplications can resist to faults. In this respect, we foresee
the value of the recent composable secure notions on both side-channel and fault attacks
proposed in [DN19], and refer to improvement of the schemes for stronger fault resistance
as a prospective further work.
Performance improvements with more specific codes. A dedicated choice of matrix A
of the generic encoder can improve the computational complexity of Gadget 1, but also
offers the possibility to decrease the randomness cost. For example, by Proposition 7,
Gadget 1 ensures that any linear combination of the entries from S[i, ∗] gives no information
about the secret, for any i ∈ [n], and from the proof of it, this property comes from the
similar property of matrix R̂1: any linear combination of the entries from R̂1[i, ∗] is
either uniformly distributed or null. This is usually too conservative, since one variable
in computation of S[i, ∗] ×Mi may only contain limited entries from S[i, ∗], which is
determined by the matrix Mi

def= (Ã[i, ∗] ⊗ Ã)E. We can see that a sparse choice of Ã
gives a sparse matrix Mi, which leads to the fact that a variable in the computation of
S[i, ∗]×Mi only contains limited entries from R̂1[i, ∗]. In this case, the requirement of
R̂1 can be relaxed, saving a certain amount of randomness.
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A Equivalent distributions
In this part we give a proof of Lemma 1, dealing with joint distributions of probabilities
and linear combinations of marginal distributions. The main motivation comes from the
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use of different representation of the same distributions. On one side, probing security is
usually considered in terms of joint distribution given by probes. On the other side, for
linear codes considering linear combinations of codewords’ coefficients is more appropriate,
and it enables then to study linear combinations of marginal distributions. The joint
distribution enables to derive any combination of the marginal distributions. However, the
marginal distributions only are not sufficient to fully characterize the joint distribution. A
well-chosen set of combinations of these distributions (rather than all) can be sufficient,
but we focus on a simpler result implying all combinations since it fits better to the code
notions.

The high-level idea of the proof is similar to the one given in [Gol95] Section 1
for example. The distance between probability distributions is studied by considering
probability distributions as functions from Fn2 to R, and more particularly using their
expression in different orthogonal bases of this vector space. In our case, we show that
from the linear combinations of the marginal distributions we can build a basis of the
function from Fnq to R, which is therefore sufficient to determine all the equations given
by the joint distribution. For sake of clarity, we articulate the proof in the following way.
First, we recall how the joint distribution is connected to the canonical, or Kronecker basis
of this vector space. Second, we recall results from Fourier analysis to give a basis of the
function from K to the complex C for any finite Abelian group K. Then, we show how to
give a basis of Fnq to R using character’s theory. Finally, we prove that the set of all linear
combinations is connected to the set of all characters and is sufficient to give a basis.

First, let consider the functions δβ | β ∈ Fnq from Fnq to R defined as:

δβ(x) =
{

1 if x = β,
0 otherwise.

These qn functions form a basis (often called canonical, or Kronecker basis) of the
vector space of the functions from Fnq to R. The function δβ corresponds to the probability:

Pr [X1 = β1, and · · · , and Xn = βn] ,

defining the joint distribution of the random variables Xi. Another basis of the same vector
space can be used to study the joint probability distribution, for example the Fourier basis.

In the following we recall some results presented in works on Boolean Fourier analysis
e.g., [O’D14], and characters of finite Abelian groups, to give bases of the functions from
K to C (The field structure of Fq is not required for these results, the Abelian group one
is sufficient). We begin by giving definitions and basic properties needed for the result,
for more details and proofs of the properties we refer to textbooks of number theory such
as [IR90].

Definition 15 (Group characters). Let K be an Abelian group, a function f : K → C \ 0
is called a character of K if it is a group homomorphism to (C,×).

Property 2 (Properties of characters of finite Abelian groups). Let K be a finite Abelian
group, K has |K| different characters, and the characters are either real-valued, or complex-
valued conjugates 2 by 2.

Proposition 8 (Characters and basis, e.g., [O’D14] Proposition 8.55). Let K be a finite
Abelian group, the set of all characters constitutes a basis of the functions from K to C.

We show that we can deduce a similar basis only R−valued.

Proposition 9 (Characters and real basis). Let K be a finite Abelian group, let χR be
the set of the real-valued characters of K, and χC the set of the other characters of K.
The set excluding repetitions Sχ = χR ∪

⋃
χ∈χC{χ+ χ̄,−iχ+ iχ̄} is a basis of the functions

from K to R.
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Proof. Using Proposition 8 the characters of K constitute a basis of the function from
K to C. For any pair of conjugates characters in χC, χ and χ̄ can be written as χ(x) =
φ(x) + iψ(x), and χ(x) = φ(x)− iψ(x), where i denotes the complex root of −1, φ and ψ
are real-valued functions. The matrix [1, 1;−i, i] ∈ C2×2 is invertible, so the vector spaces
generated by {χ, χ̄} and {χ+ χ̄,−iχ+ iχ̄} are the same. The latter set is equal to {2φ, 2ψ}
which are real-valued functions. Then, the vector space generated by Sχ is the same as the
one generated by the set of the characters. As the |K| vectors are C-linearly independent,
they are R linearly independent, therefore giving a basis of the functions from K to R.

Finally, we show that the linear combinations in Fnq fully characterize the joint distri-
bution by exhibiting the characters from these combinations. We first recall the definition
of the trace of a field extension and some properties. Then we show how to build a basis
relatively to Fq and finally Fnq .

Definition 16 (Field Trace). Let L be a field and M a finite extension, M can be viewed
as a vector space over L. The multiplication by β an element of M , mβ : M →M given
by mβ(x) = βx is a L−linear transformation of this vector space into itself. The trace,
TrM/L(β) (or Tr(β) when M and L are already identified) is the sum of the elements on
the main diagonal of a matrix representing this linear transformation.

Property 3 (Properties of finite field traces). Let L be a field and M a finite extension,
the trace TrM/L is linear, for any β ∈ M,Tr(β) ∈ L, and the |M | functions defined as
mβ(x) = Tr(βx) are all different.

The trace of Fq seen as Fpk where p is prime allows to exhibit the characters of Fq
(seen as additive group):

Proposition 10 (Trace and characters of Fq). Let Fq be the finite field of q = pk elements
where p is prime, the set {fβ | fβ(x) = ωTr(βx) , for β ∈ Fq}, where ω is a q-th primitive
root of the unity and the result of the trace is considered in Z 9, is the set of the characters
of Fq.

Proof. First, we prove that this functions are characters. Based on Definition 15 it consists
in showing that each fβ is a group homomorphism to (C,×). Using Property 3, the trace
always lies in L which is Fp in this case, which can be considered in Z (as the set [p]).
For any ` ∈ Z, ω` is a root of the unity so for all β and x in Fq, fβ(x) ∈ C \ 0. Now we
show the group homomorphism, let x, y ∈ Fq, fβ(x+ y) = ωTr(β(x+y)). By Property 3 the
linearity of the trace gives:

fβ(x+ y) = ωTr(βx)+Tr(βy) = ωTr(βx)ωTr(βy) = fβ(x) · fβ(y).

The q functions fβ are the characters, and using Property 3 as the mβ functions are all
different, the fβ are all different, giving exactly the set of characters.

The basis for Fnq is easy to obtain from the one of Fq, for example using the fact that
the n−fold product of a Fourier basis will give a Fourier basis (e.g., [O’D14], Section 8).

Proposition 11 (Trace and characters of Fnq ). Let n be a positive non-zero integer,
Fq be the finite field of q = pk elements where p is prime, the set {fβ | fβ(x) =
ω
∑n

i=1
Tr(βixi) , for β ∈ Fnq }, where ω is a q-th primitive root of the unity and the result

of the trace is considered in Z, is the set of the characters of Fnq .
9the elements of Fp are identified to the elements between 0 and p − 1.
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Proof. For each β ∈ Fnq we get fβ(x) =
∏n
i=1 fβi

(xi) using the notations of Proposition 10.
Using this expression and the result of Proposition 10 is sufficient to conclude that the fβ

are characters of Fnq . Then, we show that all these functions are different. For any β and β′

there is at least one index i such that βi 6= β′i. Let consider the set Si of the inputs where
all coefficients with index different from i are zero, (i.e., of the shape (0, · · · , 0, x, 0, · · · , 0)
with x ∈ Fq). For x ∈ Si, fβ(x) = fβ(x), and fβ′(x) = f ′β(x). As this two functions are
different from Proposition 10’s proof, fβ 6= fβ′ , then we can conclude that this set of qn
functions is the set of characters.

To conclude, we rewrite here Lemma 1 and put the results of this section together to
give the proof.

Lemma 1 (Distributions equivalence). Let Xi, i ∈ [n], be random variables defined on
a probability space where Ω consists in the elements of Fq, the joint distribution is fully
characterized by the set of distributions:{

n∑
i=1

βiXi | β ∈ Fnq

}
.

Proof. The set of distributions are the linear combinations of Fnq , from which, using the
field trace linearity, we obtain the characters of Fnq as shown in Proposition 11. Using
Properties 2, the characters of Fnq constitute a basis of the functions from Fnq to C, that
we can turn in a basis of the functions from Fnq to R using Proposition 9. This basis
is equivalent to the Kronecker basis, which corresponds to the expression of the joint
distribution.

B Randomness optimality of Boolean masking and addi-
tive masking with single sensitive variable

Proposition 12. Let A (resp. B) be the matrix corresponding to the Boolean masking
(resp. additive masking) with m+ 1 shares, then the d-privacy of EncA (resp. EncB ) is
optimal, equal to m.

Proof. The Boolean masking encodes x ∈ F1
2, and r ∈ Fm2 uniformly random to:(

x⊕
m∑
i=1

r[i], r[1], . . . , r[m]
)
.

With the definition of encoding described below, A corresponds to the first matrix of
Figure 2. The matrix G is the first row (1,0m) and the matrix H is the matrix (1mT|Im).
CH⊥ is generated by (1,1m), it is a code of parameters [m+ 1, 1,m+ 1] which corresponds
to the trivial code 1m+1 the unique maximum distance separable code of length m + 1
in this characteristic. Using Proposition 5 it gives d(CH⊥)− 1 = m+ 1− 1 ≤ d′ ≤ m, so
d′ = m, which is optimal.

The additive masking encodes x ∈ F1
q, and r ∈ Fmq uniformly random to:(

x−
m∑
i=1

r[i], r[1], . . . , r[m]
)
.

With the definition of encoding described below, B corresponds to the following matrix:
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B =

1 0 · · · 0
−1 1 . . . 0
...

...
. . .

...
−1 0 · · · 1

.

The matrix G is the first row (1,0m) and the matrix H is the matrix (−1mT|Im). CH⊥

is generated by (1,1m), it is a code of parameters [m+ 1, 1,m+ 1] as for Boolean masking.
Using Proposition 5 it gives d(CH⊥)− 1 = m+ 1− 1 ≤ d′ ≤ m, so d′ = m, which is optimal.

C Fault attacks: discussions and codeword resistance
Note that the set of possible values of a codeword can be a proper subset of Fnq . This
property of the generic encoder provides redundancy as well as error detection for the
codeword. To ease the analysis, the following two assumptions are required.

• The fault can only be injected to the input and output of each gadget (intermediates
inside gadgets are tamper resistant). We require this assumption because a fault
inside a gadget may impact several shares in the output codewords, masking the
error undetectable. This issue is called the fault propagation [IPSW06, AMR+18],
and tackling it needs other techniques (e.g., the “forced independence” in [AMR+18])
that are independent of the contributions of this paper.

• The circuit is always able to detect whether the current codeword is in the space of the
code of the generic encoder. This can be realized by inserting checkpoints [IPSW06,
AMR+18] into the private circuit.

With those assumptions, we can focus on showing fault resistance property of the
generic encoder by quantifying the number of detectable faulted shares in a codeword.
This property comes from the error detection/correction of the linear code and is given by
the minimum distance of the code.

Proposition 13 (Encoding resistance to fault injection attacks). Let EncA be a generic
encoder, and let d denote d(CA) then the associated encoding has fault resistance d− 1.

Proof. Each encoding x̂ is an element of Fnq such that there exists x ∈ Fkq and r ∈ Fmq
such that x̂ = (x, r)A, then x̂ ∈ CA. As CA has distance d, it enables to detect up to d− 1
faults and correct bd−1

2 c errors.

In comparison with the DSM masking [BCC+14, CG16, PGS+17], we can show that
generic encoder permits to increase the fault resistance, keeping the same number of
random elements m and probing security. It comes from the following proposition.

Proposition 14 (Increasing fault resistance). Let EncA be a generic encoder, with d-
privacy dA and fault resistance fA. Let j ∈ [n], the encoding relatively to the matrix
A′ = [A,A[∗, j]] where A[∗, j] is the jth column of A, EncA′ has d-privacy dA′ = dA and
fault resistance fA′ ≥ fA.

Proof. First, we argue that A′ defines a generic encoder. Denoting G′ the upper part of k
rows and H′ the lower part of m rows, as A′ = [A,A[∗, j]] we get Rank(A′) = Rank(A).
It gives Rank(G′) = k, Rank(H′) = m and CG′ ∩ CH′ = {0}, defining a well-formed
encoder.
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Then, the fault resistance increase comes from Proposition 13 and the property that
adding a column to a generator matrix can only increase the distance, fA′ = d(CA′) ≥
d(CA) = fA.

Finally, we have to prove that the d-privacy is the same relatively to A and A′.
dA′ ≤ dA as for any element w ∈ CH⊥ such that GwT 6= 0T we have (w, 0) ∈ CH′⊥

and G′(w, 0)T = GwT 6= 00T, with HW(w, 0) = HW(w). We show that dA′ ≥ dA by
contradiction. Assume that d′A < dA, then using Proposition 4 it implies that there exists
w′ ∈ {CH′⊥}dA such that G′w′T 6= 0T. As A′ = [A,A[∗, j]] we have A′w′T = Aw̃T where
w̃ ∈ Fnq is defined as:

w̃[i] =
{

w′[i] if i ∈ [n]\{j},
w′[i] + 1 if i = j.

As w′ ∈ {CH′⊥}dA , H′w′T = 0T = Hw̃T, so w̃ ∈ CH⊥ , and by construction HW(w̃) ≤
dA, it gives w̃ ∈ {CH⊥}dA . Therefore, Gw̃T = 0T = G′w′T which leads to a contradiction.
It enables to conclude that dA′ ≥ dA, and finally dA′ = dA, finishing the proof.
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