
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 99–127. DOI:10.13154/tches.v2020.i2.99-127

Dismantling DST80-based Immobiliser Systems
Lennert Wouters1, Jan Van den Herrewegen2, Flavio D. Garcia2, David

Oswald2, Benedikt Gierlichs1 and Bart Preneel1

1 imec-COSIC, KU Leuven Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
firstname.lastname@esat.kuleuven.be

2 School of Computer Science, University of Birmingham, UK,
{jxv572,f.garcia,d.f.oswald}@cs.bham.ac.uk

Abstract. Car manufacturers deploy vehicle immobiliser systems in order to prevent
car theft. However, in many cases the underlying cryptographic primitives used to
authenticate a transponder are proprietary in nature and thus not open to public
scrutiny. In this paper we publish the proprietary Texas Instruments DST80 cipher
used in immobilisers of several manufacturers. Additionally, we expose serious flaws
in immobiliser systems of major car manufacturers such as Toyota, Kia, Hyundai
and Tesla. Specifically, by voltage glitching the firmware protection mechanisms of
the microcontroller, we extracted the firmware from several immobiliser ECUs and
reverse engineered the key diversification schemes employed within. We discovered
that Kia and Hyundai immobiliser keys have only three bytes of entropy and that
Toyota only relies on publicly readable information such as the transponder serial
number and three constants to generate cryptographic keys. Furthermore, we present
several practical attacks which can lead to recovering the full 80-bit cryptographic
key in a matter of seconds or permanently disabling the transponder. Finally, even
without key management or configuration issues, we demonstrate how an attacker
can recover the cryptographic key using a profiled side-channel attack. We target the
key loading procedure and investigate the practical applicability in the context of
portability. Our work once again highlights the issues automotive vendors face in
implementing cryptography securely.
Keywords: Vehicle immobilisers, Digital Signature Transponder, DST80, key diversi-
fication, side-channel attacks

1 Introduction
A vehicle immobiliser system is an imperative anti-theft device in any modern car. By
requiring cryptographic authentication from a Radio Frequency IDentification (RFID)
transponder embedded within the key fob, the immobiliser prevents an attacker from
hot-wiring a car. The car typically authenticates the low-frequency transponder through a
challenge-response protocol based on symmetric key cryptographic primitives. However,
the use of proprietary cryptography in several widespread immobiliser systems has rendered
these practically ineffective [BGS+05, VGB12, VGE15, WMA+19, HGO18]. In order to
safeguard the security of the immobiliser, it is crucial that the community can publicly
scrutinise the underlying cryptographic primitives.

Texas Instruments (TI) produced their first cryptographically enabled transponder
in 1995, named Digital Signal Transponder 40 (DST40) [Kai08]. Bono et al. reverse
engineered the DST40 cipher using a black-box approach in 2005 and showed that an
attacker could exhaustively search the key space using an FPGA cluster [BGS+05]. As a
consequence, TI released DST80 as a successor to the insecure DST40 in 2008 in order
to prevent exhaustive search attacks. DST80 transponders use an 80-bit cryptographic

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.99-127
mailto:firstname.lastname@esat.kuleuven.be
mailto:{jxv572,f.garcia,d.f.oswald}@cs.bham.ac.uk
http://creativecommons.org/licenses/by/4.0/

100 Dismantling DST80-based Immobiliser Systems

key to encrypt a 40-bit challenge generated by the reader. To this date, DST80 remains
confidential and the immobiliser systems relying on it (shown in Table 1) have not been
publicly scrutinised.

Table 1: Non-exhaustive list of vehicles affected by the research in this paper. The
indicated production period is based on the information available in [traa, trab]. The
models in bold point out the specific vehicles we inspected.

Make Period Model Make Period Model

Toyota

2009-2013 Auris (2011)

Kia

2012+ Ceed (2016)
2010-2013 Camry 2014 Carens (2014)
2010-2014 Corolla 2011-2017 Rio
2011-2016 FJ Cruiser 2013+ Soul
2009-2015 Fortuner 2013-2015 Optima
2010+ Hiace 2011+ Picanto
2008-2013 Highlander

Hyundai

2008+ I10
2009-2015 Hilux (2014) 2009+ I20
2009-2015 Land Cruiser 2009+ I20
2011-2012 RAV4 2010+ Veloster
2010-2014 Urban Cruiser 2016 IX20 (2016)
2011-2013 Yaris 2013 I40 (2013)

Tesla 06/2018-07/20191 Model S (2018)

The immobiliser is a mandatory anti-theft device in any motorised vehicle sold in the
European Union since 1995 [Com95]. Its primary purpose is to prevent unauthorised
use of the vehicle, which it achieves by requiring an RFID transponder to authenticate
before starting the vehicle. Figure 1 depicts the general layout of such an immobiliser
system, comprising an ignition coil, the immobiliser ECU, the Engine Control Unit and a
transponder embedded in a key fob. The immobiliser identifies the transponder, which
it powers through the ignition coil, through a Transponder Base-Station IC such as the
TMS3705 [Tex12b]. Subsequently, it challenges the transponder chip, which authenticates
by generating a cryptographic response. Only when this response is correct, the immobiliser
authenticates to the Engine Control Unit in similar fashion to [Bok17] and enables it to
start the engine. The security of the link between the immobiliser and engine ECU is
beyond the scope of this paper.

Figure 1: A typical immobiliser system

1.1 Contributions
The contributions of this paper can be summarised as follows:

• Recovering and reverse engineering immobiliser firmware. We present a
novel fault attack to recover the firmware of the Renesas 78K0 microcontroller, reduc-
ing the complexity of the so far most efficient known attack introduced in [BFP19]
from 15,000 to two successful power glitches. We reverse engineered the proprietary

1Tesla resolved the issue using an OTA update allowing affected customers to self-service their key fob.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 101

DST80 cipher from this immobiliser firmware, and we publicly document this cipher
for the first time in full detail. Additionally, we recovered the key diversification
schemes from three major manufacturers.

• Security analysis of key diversification schemes. We analyse the security of
the key diversification schemes used in Toyota, Kia and Hyundai immobiliser systems.
We reduce the complexity for recovering the cryptographic key from 280 to 224 off-line
encryptions for Kia and Hyundai. For Toyota immobiliser systems, we show how the
key is based on publicly readable information such as the transponder serial number,
therefore losing all of its entropy.

• Practical attacks on DST80 transponders. We show how a downgrade attack
can reduce the key space from 280 to 241. Depending on the exact configuration,
this can lead to recovery of the DST80 key using two lookup tables and only four
challenge response pairs. This attack affects the second version of the Tesla Model S
key fob. Moreover, we describe Denial-Of-Service attacks, which can render the key
fob unusable.

• A portable profiled side-channel attack on the key loading procedure. We
propose a profiled side-channel attack to recover the cryptographic key from a
properly configured transponder. Specifically, we target the key loading procedure
performed before each invocation of the cipher. Attacking static data loads using a
profiled attack is considered one of the most difficult side-channel targets [ZOB18].
In this paper, we document how this can be done in practice and take portability
issues into account. Previous work proposes correcting for DC offset and using
normalization techniques to overcome portability issues. These techniques do not
solve the issues encountered in this scenario, instead we create a model for the family
of devices and attack a previously unseen device to evaluate the model. Using this
technique, we can reduce the key space from 280 to approximately 240 using only 10
traces.

1.2 Related work
Immobiliser and Keyless Entry systems

Because of their security critical function, immobilisers have been a hot topic of research
ever since they became an integral part of the car’s internal network. As early as 2005,
Bono et al. published and cracked the DST40 cipher used in immobiliser systems of
many vehicles by exhaustively searching the keyspace with an FPGA cluster [BGS+05].
More recently, Wouters et al. uncovered the use of the same DST40 cipher in immobiliser
systems of several high-end contemporary supercars, including certain Tesla and McLaren
models [WMA+19]. In contrast, in this work we analyse the security of multiple real world
immobiliser systems using the DST80 cipher and demonstrate multiple practical attacks.
In 2012, Verdult et al. found several flaws in the Hitag2 cipher, allowing an attacker to
bypass the electronic protection within minutes [VGB12]. One year later, researchers
proposed several attacks on the Megamos Crypto transponder, another cipher widely
used in car immobilisers [VGE15]. Finally, Hicks et al. disclosed several vulnerabilities in
AUT64, a 64-bit feistel network block cipher used in immobiliser systems of Mazda, Ford
and Proton cars [HGO18].

The immobiliser, Passive Keyless Entry (PKE), and Remote Keyless Entry (RKE)
systems are often intertwined in modern vehicles. When combined, they are referred to
as a Passive Keyless Entry and Start (PKES) system, which allows the vehicle to unlock
and start automatically when the legitimate user is near-by the vehicle. Francillon et al.
showed that several models with PKES systems are vulnerable to relay attacks in [FDC11].

102 Dismantling DST80-based Immobiliser Systems

In [GOKP16], Garcia et al. presented a novel correlation-based attack on the Hitag2
cipher in order to bypass the RKE system in vehicles of several manufacturers. They also
revealed the lack of key diversification in the VW Group RKE systems. Furthermore, it has
been demonstrated that the Keeloq cipher, used in both immobiliser and RKE, is vulnerable
to a plethora of physical and cryptanalytical attacks [KKMP09, Bog07, IKD+08, CBW08].

Side-Channel Analysis

With respect to the physical security of transponder chips, Side-Channel Analysis (SCA) is
a well established field of research in which side-channel emanations of a target device are
captured and analysed to extract secret information. In contrast to an exhaustive search
or a cryptanalytic attack the goal of SCA is to recover (part of) the cryptographic key by
observing one or more side-channels such as power consumption, electromagnetic radiation,
time, temperature and photonic emissions. The attacks discussed in this paper use power
side-channel measurements to recover the cryptographic key from DST80 transponders.

Side-channel attacks are generally divided into non-profiled and profiled attacks. Non-
profiled attacks such as Differential Power Analysis (DPA) do not assume any prior
knowledge about the device being attacked [KJJ99]. In contrast, a profiled side-channel
attack consists of two phases commonly referred to as the profiling and the attack phase.
During the profiling phase an adversary is assumed to have access to one or multiple
unlocked devices which they can use to acquire side-channel measurements. These profiling
measurements are used to create a model for the device. During the attack phase the
attacker will acquire measurements from a Device Under Test (DUT) for which he cannot
modify the key. The model created during the profiling phase is now used to recover the
key from the DUT. Multivariate Gaussian templates and stochastic models are the most
common types of profiled attacks [CRR02, SLP05].

Recently machine learning techniques such as Multi-Layer Perceptron (MLP) models
and Convolutional Neural Networks (CNNs) have been shown to perform well in the profiled
attack scenario, in some cases outperforming classical profiled attacks. For example, the
translation invariability of CNNs is an advantage when measurements suffer from misalign-
ment [PSB+18, CDP17]. Carbone et al. showed that machine learning can be an effective
tool when evaluating cryptographic implementations with countermeasures [CCC+19].

The practical applicability of profiled attacks is often overestimated by using the same
device, and measurements from the same acquisition campaign during both the profiling
and attack phases. In this setting the inter-device variability and environmental factors such
as changes in the measurement setup or ambient temperature are neglected. Montminy et
al. demonstrated that using the zero mean, unit variance normalization technique on both
the training and attack dataset significantly improved the effectiveness of their template
attack on the AES AddRoundKey operation [MBTL13]. Choudary and Kuhn have shown
that template attacks can be made portable in certain situations by using dimensionality
reduction techniques and manipulating the DC content of the eigenvectors [CK18]. In an
artificial scenario they were able to recover the exact value of an 8-bit data load across
multiple devices with a success rate of 85% using 1000 attack traces. In their experiments
the main difference between devices and acquisition campaigns were due to DC offset,
their results show that compensating for this DC offset and using multiple devices in the
profiling step greatly improves the template efficiency [CK14].

Recent work by Golder et al. has shown that using Principal Component Analysis in
combination with Dynamic Time Warping (DTW) and a Multi-Layer Perceptron (MLP)
model trained on traces from multiple devices can achieve an accuracy up to 99.43% on
unseen devices [GDD+19]. Similarly to the work by Choudary et al. they targeted the
Atmel 8-bit XMEGA family of microcontrollers but instead of focusing on a single byte
load their target was the AES block cipher. In contrast, in this work, we target multiple
subsequent byte loads in a real-world scenario in which we do not know the implementation

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 103

and have no control over it.

1.3 Notation
Unless stated otherwise, we will use the following notation. Si denotes bit i of a variable
S, with S0 being the least significant (rightmost) bit. Likewise, S[i] stands for byte i of S,
with S[0] the least significant (rightmost) byte. We depict a rotation of S by i bits to the
left by S ≪ i. Si...j characterises a range from bit i to bit j of variable S. Similarly, a
shift of S by i bits to the left is denoted by S � i. Finally, (b | c) indicates a concatenation
of bytes b and c, with c the least significant byte.

2 DST80
In this Section, we present the full details of DST80. Unlike the black-box approach taken
to recover DST40 in [BGS+05], we reverse engineered the DST80 cipher from immobiliser
firmware. Additionally, we give an an overview of the DST80 transponder chips, and
describe how to recover this immobiliser firmware.

2.1 DST80 transponders
The Texas Instruments DST transponders are available in different package types; the classi-
cal wedge type transponder (TMS37145 [Tex12a]), a TSSOP package (TMS37126 [Tex12c])
and a TSSOP package containing both the TMS37126 and an MSP430 microcontroller
(TMS37F128 [Tex12d]). All of these incorporate an 80-bit authentication key, which is
internally stored in two 40-bit chunks, keyL and keyR. The transponders can be configured
either for fast authentication (the reader is not authenticated) or mutual authentica-
tion. DST80 transponders are uniquely identified by a 32-bit serial number stored in
EEPROM consisting of a 3-byte unique identifier and a 1-byte manufacturer code. Ac-
cording to the datasheet, pages 1, 2 and 3 are always publicly readable. Additionally, the
transponder incorporates several pages of EEPROM user memory, all of which can be
write-locked. Table 2 gives an overview of several significant EEPROM pages of a DST80
transponder [Tex12a].

Table 2: DST80 transponder memory layout
Page Size (bytes) Description
1 1 Selective addressing2

2 1 User data3

3 4 Transponder ID
4 10 Encryption key
30 5 Configuration page

Authentication protocol. DST80 transponders follow the same challenge-response proto-
col as DST40, described in [BGS+05]. Specifically, the reader generates a 5-byte challenge
and transmits it to the transponder. The transponder in turn calculates and sends the
5-byte response based on the shared key, consisting of a 16-bit Block Check Character
(BCC) and a 24-bit signature, as can be seen in Figure 2.

2Page 1 is also referred to as the password page. For example, in transponders used with Toyota
immobilisers, it indicates whether the key is a master key or valet key.

3According to [Tex12a], this page contains the key number in the application. In Toyota transponders,
it is called the identity page.

104 Dismantling DST80-based Immobiliser Systems

Figure 2: The DST80 authentication protocol

2.2 Reading out immobiliser firmware
We found the same immobiliser ECU in both Kia and Hyundai cars. An 8-bit microcon-
troller (the STM8AF6266 [STM]) controls the ignition coil and enables or disables the
Engine Control Unit over a serial connection depending on whether the authentication
was successful. This particular microcontroller is part of the STM8AF series and has
8kB of flash and an internal EEPROM of 384 bytes. It also features memory read-out
protection, however, in this case, the protection was not enabled. Thus, we could recover
the firmware and internal EEPROM by connecting to the SWIM interface and issuing a
Read-On-The-Fly (ROTF) command, which allows to read any byte in the 24-bit address
space. If the read-out protection was enabled, an attacker could potentially recover the
firmware by adapting existing physical attacks as described in [BFP19, OT17].

On the other hand, in Toyota cars, a dedicated ECU produced by Tokai Rika handles
the immobilisation process. It contains an external ST96320 EEPROM chip connected to
a main MCU with only a Tokai Rika part number on it, making it hard to identify the
chip. In order to read out the firmware of this MCU, we had to determine its model and
debug interfaces. By looking at the locations of standard pins, such as Vcc and Vss, we
narrowed down the search to the Renesas 78K0 series [Renb]. By taking the location of
the oscillator pins (X1 and X2) into account, the 78K0/Kx2 resulted as the most likely
candidate. The 78K0 microcontrollers contain an on-chip bootloader, which is accessible
through the Renesas Flash Programming Interface [Rena]. By setting the FLMD0 pin
high on reset, an external programmer can access this serial interface to write, erase, and
verify the internal flash. However, the 78K0 series does not provide a command to read
the memory. We used a Raspberry Pi 3 to communicate with the chip using a combination
of GPIO pins (for RESET and FLMD0 signals) and the UART pins. After issuing the
signature command, we recovered the exact model of the MCU, namely the µPD78F0515A,
a 64kB A-grade 78K0/KC2 MCU [Renb].

Bozzato et al. show several ways to read out the internal flash of such MCUs through
voltage glitching attacks in [BFP19]. One attack is based on overwriting an empty flash
section of the MCU with a custom piece of code that outputs the memory over a serial
interface, and finally overwriting the reset vector to boot from this section. We improved
on this attack by targeting the Security Set command. The 78K0/Kx2 series provides
several levels of security: block erase, chip erase, write and boot sector overwrite protection,
which cannot be reversed once enabled. The Security Set command sends a byte containing
each security bit individually, after which the Renesas bootloader checks that none of
the given bits reverse the current security settings. By voltage glitching this command,
we disabled all security bits on the MCU, giving us the ability to erase and overwrite
the boot section with our custom program to dump the firmware over a serial interface.
This attack only requires a single successful glitch. To read the boot section as well, we
repeated the attack with a second, identical immobiliser ECU, however now overwriting a
different, reachable section with our own program. Once the microcontroller executes this

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 105

Figure 3: Our setup for the voltage glitching attack

section, the boot section is dumped and we have recovered the whole firmware. Because
we need to perform the attack twice in this case, we require a total of two successful
glitches, improving significantly on the so far most efficient known attack in [BFP19],
which required a total of 15,000 successful glitches.

Hardware setup and glitch parameters. For glitching the firmware protection of the 78K0
immobiliser MCU, we used the Generic Implementation ANalysis Toolkit (GIAnT) [Osw16],
an open-source FPGA-based board used for glitching and hardware analysis. We used a
Raspberry Pi 3 running Raspbian to interface with the microcontroller’s bootloader of
the immobiliser ECUs and to control the glitching hardware. In order to read out the
immobiliser ECU firmware, we implemented large parts of the Renesas Flash Programming
Interface in Python. We acquired a 2011 Toyota Auris and a 2014 Toyota Hilux immobiliser
ECU. We desoldered the chips from the ECUs, placed each of them on a breakout board,
and connected a 16 MHz resonator to the oscillator pins X1 and X2. As shown in Figure 3,
we connect the voltage output from the GIAnT to the REGC pin in order to bypass the
internal regulatory capacitor of the 78K0. Next. we confirmed that both chips contain the
same firmware by comparing the values obtained by the checksum command.

With a glitch voltage of 0 V and a normal operating voltage of 2.7 V, we triggered on
the first transmitted bit of the Security Set message from the Raspberry Pi, resulting in a
successful glitch of 100 ns width at an offset of 596.78 µs on the first and 818.05 µs on
the second chip. We attribute the significant difference in glitch offsets to the initial value
of the security byte: in the Hilux MCU, the write protection for non-boot sectors was
already disabled, while in the chip desoldered from the Auris immobiliser, all protection
bits were initially set.

2.3 Reverse engineering the cipher

Due to most of the DST80 transponders being backwards compatible with DST40, our
first assumption was that large parts of the cipher would be quite similar. Therefore, we
statically analysed the firmware searching for the well known DST40 Feistel network. We
located the equivalent of the f-boxes, g-boxes and h-box as used in DST40 in the firmware,
and from there we could start reverse engineering the internals of the cipher. Due to
the atypical number of rounds (200), we managed to locate the round function and more
importantly, the round key schedule.

106 Dismantling DST80-based Immobiliser Systems

2.4 Cipher details

The DST80 cipher is, like DST40, an unbalanced Feistel network which runs for 200 rounds
to calculate the response. It uses an 80-bit cryptographic key, split over two independent
Key State Registers. The 40-bit internal state is initialised with the 40-bit challenge
generated by the reader and updated with 2 bits each round.

Definition 1. Let b7 . . . b0 be the bit representation of byte b. Then the permutation
P1(b) : F8

2 → F8
2 is defined as follows.

P1(b7 . . . b0) =
(
b7 b6 b5 b4 b3 b2 b1 b0
b7 b3 b5 b1 b6 b2 b4 b0

)

Definition 2. Let (Sn−1, Sn−2 . . . S1, S0) be the byte representation of S. Given Permu-
tation P1 as defined in Definition 1, then we define the operation P2(S) as follows.

P2(S)← (P1(Sn−1), P1(Sn−2), . . . , P1(S1), P1(S0))

At the start of each round as depicted in Algorithm 2, the function DST80_Merge(l,
r) combines the two 40-bit key state registers into one 40-bit round key as shown in
Algorithm 1. It permutes the bytes of both keys according to P1, after which it inverts
each register depending on the value of its most significant bit. Finally, it returns a 40-bit
round key which serves along with the internal state as input to the Feistel function F .
This Feistel function is identical to its DST40 equivalent, resulting in a pair of bits which
is fed back into the challenge register. For reference, we included the specification of the
Feistel function in Appendix C. Unlike DST40 (where the key state register is shifted
every three rounds) the LFSRs containing the two 40-bit keys are shifted each round, with
tapped bits on positions 0, 2, 19 and 21.

Algorithm 1 Generation of the DST80 round key
1: function DST80_Merge(keyL, keyR)
2: keyL← P2(keyL)
3: keyR← P2(keyR)
4: if keyL39 == 1 then
5: keyL← keyL⊕ 0x7FFFFFFFFF
6: end if
7: if keyR39 == 1 then
8: keyR← keyR⊕ 0x7FFFFFFFFF
9: end if
10: return (keyL39...20 | keyR39...20)
11: end function

Algorithm 2 The DST80 round function
1: function DST80_Round(keyL, keyR, s) . With s = internal state
2: k ← DST80_Merge(keyL, keyR)
3: s← (s� 2) | ((F (k, s)⊕ s1...0)� 38)
4: keyR← (keyR� 1) | ((keyR0 ⊕ keyR2 ⊕ keyR19 ⊕ keyR21)� 39)
5: keyL← (keyL� 1) | ((keyL0 ⊕ keyL2 ⊕ keyL19 ⊕ keyL21)� 39)
6: end function

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 107

3 Practical attacks on DST80 systems
This section describes several practical attacks on real-world DST80 systems. Through
reverse engineering the immobiliser firmware, we present and analyse the security of two
key diversification schemes used by three major car manufacturers. Furthermore, we
illustrate how configuration issues of a transponder can lead to Denial-of-Service and
downgrade attacks.

3.1 Uncovering key diversification schemes from immobiliser firmware
The security of the DST80 cipher relies on 80 bits of entropy in the cryptographic key, split
up in two 40-bit chunks: keyL and keyR. Ideally, either the car manufacturer or Original
Equipment Manufacturer (OEM) generates a random and unique 80-bit secret key for
each paired transponder. However, in practice we have discovered that the key generation
process is not random at all. We recovered the secret keys from the immobiliser ECUs
of three different manufacturers and find recurring patterns among keys of each of them.
In this Section, we bring to light the key diversification schemes we have recovered from
studying the immobiliser firmware. With knowledge of this key generation scheme hidden
in the immobiliser firmware an attacker can recover cryptographic keys from a DST80
transponder with only a single challenge response pair.

Attacker model. For the attacks described in this Section, we assume that the adversary
can communicate with the DST80 transponder, either wirelessly or over a serial interface.

3.1.1 Kia and Hyundai low-entropy keys

While the microcontroller’s flash memory is typically quite large and thus used for program
code, the EEPROM usually contains small amounts data, specific to the car or even
ECU. After having located serial numbers of the paired transponders in the EEPROM, we
deemed it very likely that the corresponding DST80 keys would be stored there as well.
Since the internal EEPROM of the microcontroller on the immobiliser is only 384 bytes,
it is plausible to recover the DST80 key by doing an exhaustive search on the EEPROM
data. First, we generate a challenge and acquire the corresponding signature from the
transponder. Assuming the keyL and keyR are adjacent in memory, we set each sequence
of 10 bytes as the cryptographic key and check whether they produce the same response.
In order to eliminate any problems caused by endianness, we compute a signature with
every key byte at every position in the 10-byte key. Note that for larger EEPROMs we can
perform an entropy analysis to identify the areas most likely to contain a cryptographic
key. Furthermore, if the preceding procedure does not produce a candidate key, we can
enhance it by searching the binary in blocks of five bytes, or in the worst case we can
search by byte. This can however result in state explosion and becomes infeasible for larger
EEPROM sizes.

Using these techniques, we recovered the ten key bytes displayed in Table 3 from
the internal EEPROM. A first observation is that even though two different physical
transponders are paired to the immobiliser, they share the same cryptographic key. We
can confirm this without knowledge of the DST80 key by sending the same challenge to
both transponders, which generate identical responses.

Furthermore, Table 3 suggests that two bytes of both the keyL and the keyR are
identical in all four of the DST80 keys, leaving six unknown bytes. Algorithm 3 clarifies the
key generation scheme used by Kia and Hyundai, leaving only three bytes of entropy. Thus,
provided they have brief access to a legitimate key fob, an attacker can immediately recover
a valid DST80 key from a Kia/Hyundai transponder with only one challenge-response pair.

108 Dismantling DST80-based Immobiliser Systems

Table 3: Kia and Hyundai immobilisers and their respective DST80 keys. The two 2-byte
constants X and Y have been redacted on the manufacturers request.

Make Year & Model keyL keyR

Kia 2014 Carens 955A3E|| X Y || C1A56A
2016 Ceed 724560|| X Y || 9FBA8D

Hyundai 2013 I40 756F1E|| X Y || E1908A
2016 IX20 357B13|| X Y || EC84CA

Algorithm 3 Recovering DST80 keys for transponders configured for Hyundai and Kia
vehicles. The two 2-byte constants X and Y have been redacted on the manufacturers
request.
1: function Search_Key(C, S) . With C - Challenge; S - Signature
2: for i in {0 . . . 224} do
3: keyL[4], keyL[3], keyL[2]← i[0], i[1], i[2]
4: keyL[1], keyL[0]← X
5: keyR[4], keyR[3]← Y
6: keyR[2]← ¬keyL[2]
7: keyR[1]← ¬keyL[3]
8: keyR[0]← ¬keyL[4]
9: crc, sig ← DST80(C, keyL, keyR)
10: if sig == S then return keyL, keyR
11: end if
12: end for
13: end function

Attack complexity. This attack only requires one challenge-response pair. We reduced
the computational complexity to recover a cryptographic key from a Kia/Hyundai DST80
transponder from 280 to 224 encryptions.

3.1.2 Toyota key diversification scheme

We reverse engineered the Toyota immobiliser firmware to recover and analyse the security
critical procedures contained within. Listing 4 depicts one of these procedures we reverse
engineered from the firmware, namely the key derivation scheme for the DST80 crypto-
graphic keys. Every time a transponder is presented, the immobiliser derives the DST80
key from its serial number (stored on page 3) and the 1-byte values stored on pages 1
and 2. Since the least significant byte of the DST80 transponder ID is the manufacturer
code, this byte does not affect the key generation. Besides these three always readable
transponder pages, the key derivation scheme relies on three security constants stored
in the internal flash memory of the immobiliser. From our experiments, these security
constants are identical across all Toyota DST80 immobilisers analysed. The fact that
they are located in flash memory strengthens this hypothesis, since flash memory is less
commonly used to store unique secrets.

Attack complexity. This attack only requires reading out three public transponder pages.
Therefore, using the uncovered key derivation scheme, the security of this system is
effectively reduced from 280 to a few operations.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 109

Algorithm 4 The Toyota key generation algorithm reverse engineered from immobiliser
firmware. The three 5-byte constants X0 . . . X2 have been redacted on the manufacturers
request.
1: X ← [X0, X1, X2]
2: function gen_key(page 1, page 2, id)
3: keyL ← (id� 16) | (page1� 8) | page2
4: keyR ← keyL
5: for i in {0 . . . 7} do
6: S1 ← keyR
7: S2 ← keyR ⊕X[i mod 3]
8: S3[0]← ((S2[0] + S2[2] + S2[3]) & ff) ≪ 1
9: S3[1]← ((S2[2] + S2[3] + S2[4]) & ff) ≪ 3
10: S3[2]← ((S2[0] + S2[1] + S2[3]) & ff) ≪ 1
11: S3[3]← ((S2[0] + S2[1] + S2[4]) & ff) ≪ 3
12: S3[4]← ((S2[1] + S2[2] + S2[4]) & ff) ≪ 1
13: keyR = S3 ⊕ keyL
14: keyL = S1
15: end for

return keyL, keyR
16: end function

3.2 Transponder configuration issues
In Section 2.1 we outlined the different DST transponders available. The main difference in
these transponders lies in the available interfaces. The wedge type transponder has a Low
Frequency (LF) interface whereas the TMS37126 has both a Serial Peripheral Interface
(SPI) and an LF interface. The TMS37F128 has both interfaces but the SPI is bonded
internally to the MSP430 making it more difficult to access for an adversary.

These interfaces can be used to configure the transponder, to read and write values
from and to the EEPROM storage and to request a cryptographic response to a provided
challenge. All accesses to these interfaces are in fact accesses to an EEPROM page, each
of which is five bytes in size and can be locked to prevent modification. For example, a
cryptographic key can be set by writing to page 4 of the transponder. Afterwards, this page
can be locked to prevent modification. By default a new DST transponder is configured to
compute DST40 responses to a provided challenge. During car manufacturing or key fob
pairing the transponder can be configured to use “80-bit mode” (DST80) by setting the
correct bit in page 30 of the transponder.

In this section we will discuss multiple vulnerabilities which can be exploited using these
interfaces when the transponder is not correctly configured during key fob manufacturing or
pairing. We will assume that the transponder was configured to use DST80 and will discuss
how configuration issues can reduce the security level provided by these transponders.

3.2.1 Downgrade attacks

We identified three distinct scenarios in which a downgrade attack could be used to reduce
the security provided by these transponders. The first two scenarios do not require physical
access to the key fob whereas the third scenario does require physical access.

Page 30 unlocked. A transponder configured to use DST80 with page 30 left unlocked
can be downgraded to use DST40 instead. In this scenario, the transponder uses keyL,
one of the two 40-bit keys used in DST80, to compute a DST40 response. This means
that an adversary can downgrade the transponder and recover half of the 80-bit key using

110 Dismantling DST80-based Immobiliser Systems

only two challenge response pairs, effectively reducing the computational complexity of the
attack from 280 to 241 encryptions. After reverting back to 80-bit mode the transponder
will again use the original 80-bit key. This attack requires short-range LF communication.

Page 4 and page 30 unlocked. Recent work shows that a DST40 key can be recovered
using a 5.4 TB precomputed table, the response to a chosen challenge, a second challenge
response pair and 215 DST40 operations on average [WMA+19]. Our experiments show
that we can recover a DST80 key with only twice the amount of resources if, in addition
to page 30, page 4 is left unlocked. Similar to the previous scenario this attack requires
short-range LF communication.

Specifically, an adversary can first alter the transponder’s configuration to use DST40
instead of DST80 (because page 30 is left unlocked). The transponder will now use keyL
with the DST40 cipher to compute the response to a provided challenge. At this point the
adversary can use the attack as described in [WMA+19] to recover keyL. After recovering
the 40-bit key we can change it to a chosen value (because page 4 was left unlocked) and we
can reconfigure the transponder to use DST80. Empirical results show that in this scenario
the transponder will compute DST80 responses using the original keyR in combination
with the chosen keyL. The last step is now to recover keyR which can be achieved using a
second precomputed table. We can generate this second table by computing the responses
to a chosen 40-bit challenge for all possible values of keyR while keeping keyL fixed to a
chosen value. In fact, we can do this more efficiently if we choose keyL to be the all 0
key. In that case the contents of the LFSR will remain constant throughout the 200-round
execution of DST80 and most of the f -functions can be simplified because of a constant
input, resulting in a more efficient software implementation.

We discovered that the Tesla Model S key fob released as a response to the attacks
shown in [WMA+19] was not properly configured. These key fobs had both page 4 and
page 30 unlocked, allowing for key recovery with approximately twice the effort compared
to the previous attack. The downgrade attack reduces the computational complexity from
280 to 241 encryptions. Additionally, we only require 4 challenge response pairs and two
5.4 TB precomputed tables to recover the full 80-bit key in a matter of seconds.

Tesla was able to resolve the issue using an Over-The-Air software update that allowed
customers to self-service their key fobs.

Page 4 and page 30 locked. The final scenario requires physical access to the key fob
and arises when both page 4 and page 30 are locked down by the manufacturer. If the
target chip has an easily accessible SPI interface the adversary can control the transponder
from this interface and request DST40 responses even if the transponder is configured to
use DST80, again reducing the computational complexity of the attack from 280 to 241.
While this attack is the easiest to apply in the case of a TMS37126 transponder it can also
be applied to the TMS37F128 by exposing the bond wires interconnecting the MSP430
and TMS37126 or by replacing the firmware image running on the MSP430.

If the MSP430 does not have its JTAG fuse blown, a Commercial-Off-The-Shelf (COTS)
MSP430 programmer can be used to create a backup of the firmware before replacing it
with a malicious version. The malicious firmware image can query the transponder for
the required challenge response pairs after which the adversary can restore the original
firmware image. If the JTAG fuse is blown the adversary will first have to obtain a
legitimate firmware image from a single key fob. They could achieve this by exploiting a
vulnerability in the MSP430 bootloader, through a fault attack, or by outsourcing this
firmware recovery step to a reverse engineering service provider [Goo08, BFP19]. Once the
adversary has obtained a copy of the firmware, they can use the Interrupt Vector Table
(IVT) stored at the end of flash as a password to unlock the bootloader in subsequent
attacks. The remainder of the attack is the same as before; replace the firmware to

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 111

get challenge response pairs and rewrite the original firmware image using the MSP430
bootloader instead of the JTAG interface.

3.2.2 Denial-of-Service attacks

Leaving transponder pages unlocked can lead to trivial Denial-of-Service (DoS) attacks.
For example, if the configuration (page 30) is not write protected an adversary could
change the transponder to use DST40 instead of DST80 (or vice versa) to prevent a user
from starting their vehicle. Similarly, if the cryptographic key is not write protected an
adversary can overwrite it to prevent a user from starting their vehicle. If their only goal
is DoS they can additionally lock these pages permanently, preventing a dealership from
repairing the key fob.

Performing this type of DoS attack can be automated by building a device which
repeatedly broadcasts the required commands. While there might be little incentive for
someone to do this type of attack it could lead to bad publicity for the affected car
manufacturers and increased revenue for local garage owners.

3.3 Discussion and mitigation

With regard to the weak key generation based attacks described in Sections 3.1.1 and 3.1.2,
we believe that one reason why manufacturers choose to implement such a scheme is to
facilitate the key pairing process. For instance, certain Toyota models allow programming
a new key fob by inserting it into the ignition and performing a precise sequence of
actions [toy]. This is only possible because the immobiliser can derive the DST80 key
from transponder pages 1-3 as described in Section 3.1.2. Instead of relying on a weak key
generation scheme, the manufacturer can mitigate this by implementing a secure-diagnostics
based solution for pairing a new key, such as the solution proposed in [dHG18].

It is of the utmost importance that DST transponders are configured correctly to offer
any security guarantees. Any car manufacturer or OEM using these transponders should
ensure that page 4 and page 30 are locked. Furthermore, locking other transponder pages
should be considered if they are not used. While migrating the key programming procedure
is an involved task for the manufacturer, the misconfigured transponders described in
Section 3.2.1 are easier to fix. For instance, Tesla fixed the issues with their DST80 key
fobs with a software update issued a few months after disclosure. Finally, enabling mutual
authentication on the transponder would mitigate transponder-only attacks as described
in Sections 3.1.1 and 3.2.1. These require a challenge response pair, which an attacker
could not obtain without knowing the encryption key. However, if the adversary has access
to the car they can still acquire a challenge response pair by eavesdropping the wireless
communication between the transponder and immobiliser ECU.

4 Side-Channel Analysis
The attacks described in Section 3 require knowledge of the manufacturer’s key generation
scheme or transponders with pages 4 and 30 unlocked. In this section we describe how
we use power analysis to recover a randomly generated cryptographic key from a securely
configured DST transponder. In Subsection 4.1 we show how to recover the initial 40-bit
round key in DST80 (or the full key in DST40) using Differential Power Analysis (DPA)
with a difference of means distinguisher. In Subsection 4.2 we describe a profiled side-
channel attack which targets the key loading procedure performed before every invocation
of the cipher.

112 Dismantling DST80-based Immobiliser Systems

Figure 4: Measurement setup for acquiring power traces from a TMS37126 IC (on the
yellow breakout board). Top-right: Tektronix CT-1 current probe. Bottom-left: Arduino
Pro Mini functioning as a serial to SPI translator.

Hardware setup. To acquire power measurements for the side-channel attacks we used a
Tektronix DPO 7254C oscilloscope in combination with a Tektronix CT-1 current probe,
Mini-Circuits ZFL-1000LN+ amplifier and 20 MHz lowpass filter. Our measurement setup
is using a TMS37126 IC as the target and is shown in Figure 4. We captured the traces
using a sample rate of 200Megasamples Per Second (MSPS). Similar results could likely
be obtained using low-cost and open source side-channel evaluation tools such as the
ChipWhisperer Lite, which can sample up to 105MSPS [OC14].

4.1 Differential Power Analysis
In this section we describe a DPA attack which allows recovering the 40-bit DST40 key or
the initial 40-bit round key in DST80. This initial 40-bit round key reveals 20 bits of each
of the 40-bit keys keyL and keyR.

We mainly focus on the first round of the DST ciphers, as recovering the initial round
key reveals the entire secret key in the case of DST40 or half of it in the case of DST80.
As the attack is identical for both DST80 and DST40 we will use a simplified model of the
cipher in which a 40-bit known value is combined with a 40-bit secret to produce a 2-bit
round output (i.e. F (b, c) as shown in Listing 2 and defined in [BGS+05]).

The output of the round function is based on four functions (or g-boxes, reverse
engineered in [BGS+05]), each of which combines 10 bits from the known input with 10
bits from the secret. During the DPA attack we will acquire power traces in which only the
10 bits of the input affecting the output of one of the four functions is varied. Depending
on the state of the remaining three g-boxes, varying this input will result in two possible
output values. Therefore, based on a 10-bit subkey guess, the acquired traces can be split
into two groups. Different key guesses can be evaluated using the difference of means
distinguisher. For each 10-bit subkey there are two keys which produce the same division
of traces. Therefore, we end up with two candidate keys for each of the four 10-bit subkeys.
The remaining key bits can be recovered by means of exhaustive search (24 · 240) or by
extending the attack to more rounds of the cipher.

Empirical results show that approximately 7500 traces are required for each of the four
subkeys. With our current setup, we can measure approximately four traces per second.
Hence, it would be rather cumbersome and time-consuming (around two hours) to acquire
30,000 traces from a key fob during the attack phase. Therefore, we consider a more
practical profiled attack in the following sections.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 113

Figure 5: Average power trace over 1000 measurements (top). The traces were aligned
on the highest peak close to time sample 40000, indicated by a red diamond. To achieve
alignment across multiple devices we identified the peaks of interest (black dots) and
selected 100 time samples around those to form artificial traces (bottom).

4.2 Profiled Side-Channel Attack
While investigating the power traces from a transponder we noticed clear differences in
the power consumption based on the value of the key. To further investigate we acquired
multiple traces with many different keys. The Hamming weight correlation of each key
byte value clearly showed that each byte of the key is loaded sequentially before the DST80
operation starts.

In this section we describe how we preprocessed the raw traces to form aligned traces
of 3000 samples each. Afterwards, we consider two distinct scenarios, in the first scenario
the adversary attempts to recover the key from the same device as the one being profiled
(single device scenario). In the second scenario, the multiple devices scenario, the adversary
has multiple devices for profiling but has to attack a device which was not part of the
profiling set. In this work we explore using machine learning techniques to tackle both
these scenarios.

We show that in the case of a single device the exact value of each key byte can be easily
recovered using a basic MLP model and as little as ten traces on average. Using these same
models on an unseen device does not give good results. Therefore, we explore training
the model on five devices before attacking a sixth, unseen device. In Section 4.2.4 we
investigate which samples are used by the MLP models to perform classification, exploring
the differences between the models.

4.2.1 Preprocessing and identifying regions of interest

For both the single device and multiple device scenario we preprocess the traces using the
same technique. This consists of a rough alignment based on a single power trace peak
followed by peak extraction (Figure 5). During the last step, samples close to the peaks
of interest are selected to form new and aligned traces. Using this technique we obtain
aligned traces even though each target chip has a slightly different operating frequency
and suffers from clock drift. In the end we reduce each raw trace consisting of 70k samples
to a new trace of 3k samples. Using the sum of squared pairwise t-differences (SOST) we
identified the regions of interest in the power traces [GLP06]. Specifically, we used the

114 Dismantling DST80-based Immobiliser Systems

Figure 6: The average preprocessed trace with error bars indicating the spread over the
different devices (in blue). Additionally, for each of the nine labels, this plot shows the
regions of leakage identified by the SOST. The SOST result shown in orange indicates
the locations in the trace containing information on the inter-device difference. All of the
SOST results are scaled to fit the plot. Best viewed on screen.

SOST to uncover regions in the power traces which contain information on the loaded key
byte and regions which contain information on the inter-device variability. Using the SOST
technique we identified leakage for each byte of the key (ki) and the difference between
subsequent bytes (ki⊕ ki+1). Additionally, we identified regions which contain information
identifying the different devices.

Figure 6 shows the average power trace including error bars indicating the spread over
six distinct transponder chips. While we can observe a slight difference in DC offset it is
clearly not the only difference between the devices. Therefore, correcting for the DC offset
as proposed by Choudary and Kuhn [CK18] will not solve all problems in this case.

Figure 6 additionally shows which areas of the power trace contain information on
the inter-device differences. Having this information will hopefully allow to generalise to
unseen devices. Finally, Figure 6 also shows the SOST results for each of the nine labels.
While we observe leakage for each of the byte values (ki) we also observe leakage for the
distance between consecutive byte loads (ki ⊕ ki+1). Note that there is a rather large
spread in the mean power traces in the regions containing information on k1, k2 and k3.
For the remainder of this paper, we will focus on attacking the first half of the DST80 key,
as keyL and keyR are loaded sequentially.

4.2.2 Single device

In the single device scenario an adversary is allowed to create a leakage model (profiling
phase) on the same device as the target device (attack phase). For DST transponders this
type of attack is applicable if the target transponder does not have the key (page 4) locked.
In this scenario an adversary can first acquire a set of attack traces. Afterwards, the key
can be varied to acquire profiling traces. A classifier trained on the profiling traces can
then be used to recover the key from the attack traces, if necessary the key can also be
reprogrammed to the key fob to restore its functionality.

To test the applicability of a single device attack we acquired one million traces with
random keys from a single transponder. After preprocessing the traces we end up with a
dataset of 950k traces of which 850k traces are used for training, 50k for validation and
50k as a test or attack set.

We trained the same model on each of the nine labels identified in Section 4.2.1. The
Multi-Layer Perceptron (MLP) model we employed is listed in Appendix A, this model
was obtained by manual tuning and is by no means the best possible model. Similarly

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 115

Figure 7: Average validation (orange) and attack rank (green) versus the number of epochs
for each of the labels, the two lines mostly overlap. Using the model trained on a single
device to attack any of the other five devices we obtain the average rank depicted in blue
(with error bands).

to Picek et al. we observed that accuracy is often not the best metric to evaluate the
trained models [PHJ+19]. We observe that selecting the best model solely on the loss and
accuracy values is unlikely to result in selecting the model which performs best during an
attack in which traces are combined. Therefore, we propose to evaluate the trained models
by looking at the average rank of the correct label at each epoch for a fixed number of
attack traces.

To that end we classify 50 traces with the same label for each of the 256 possible values
of each label, the classifier outputs are combined using the log-likelihood method. For each
label the results of these 256 experiments are averaged to obtain the mean rank over all
possible label values using 50 attack traces. We repeat this evaluation at each epoch of
the MLP training process. The results for training a model on traces from a single device
are depicted in Figure 7, the figure also shows the results for using that same model to
try and attack an unseen device. From these results it is clear that attacking the same
device as the profiling device is trivial, for each of the nine labels the models perform well
even when the number of traces used for the attack is as low as 50. In fact, using as little
as 10 traces seems to be sufficient to achieve similar results, adding more traces does not
significantly increase the performance.

Figure 7 also shows the results when using the models trained on a single device to
attack five unseen devices. In this case, a model trained on a single device cannot be used
to attack an unseen device unless it happens to match the training device very closely.
Note that the models trained on labels k1, k2 and k3 do not seem to generalise across
devices. Recall from Section 4.2.1 that samples containing information on these labels
significantly differ across different devices.

In the hope of obtaining a more general model over the family of devices we explore
training our models on multiple devices in the following section.

116 Dismantling DST80-based Immobiliser Systems

Figure 8: Average validation (orange) and attack rank (blue) versus the number of epochs
for each of the labels over the 6-fold cross-validation indicated by the error bands.

4.2.3 Multiple devices

The single device scenario is often used in the literature and in security evaluations to
evaluate the worst-case scenario. However, in most cases this overestimates the model’s
ability to generalise to a different device.

In the multiple devices scenario the adversary has access to multiple unlocked transpon-
der chips and can capture as many power traces as necessary during the profiling stage.
Their end goal is to use the model generated during the profiling phase to recover the
cryptographic key from an unseen device.

To evaluate this scenario we acquired one million power measurements from six transpon-
ders using random keys. After preprocessing the traces we end up with 950k traces for each
of the devices. During our experiments we used 900k traces from each device for training
and 50k traces for evaluation, giving us a training set of 4.5 million traces and a validation
set of 250k traces. To ensure that the models generalise to an unseen device we use the
traces from the remaining device as an attack set. We perform this experiment six times,
each time using the traces from a different device as the attack set (cross-validation).

Similar to Section 4.2.2 we use 50 traces of the validation and attack set to evaluate
our models at each training epoch. Figure 8 shows the average validation and attack rank
at each training epoch for each target label. The error bands indicate the results over the
six experiments, each using a different device as the attack set. While the improvement
over the single device scenario is remarkable, the spread in the average attack rank for
some of the labels indicates that the models would likely benefit from more distinct devices
during the training process. It is clear that predicting k1, k2 and k3 is more difficult than
the other labels, this was to be expected from the results obtained in the single device
scenario (Figure 7) and by observing the large spread in the average traces in Figure 6.
We will disregard the models trained on k1, k2 and k3 in the remainder of the paper, as
they cannot be reliably used for classification.

To evaluate the relationship between the number of attack traces and the mean rank

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 117

we select the weights for the model at a specific training epoch for each of the labels. This
selection is performed solely based on the validation rank, as would be the case in a real
world scenario. For each of the six remaining labels we thus select the model at a certain
epoch where the validation rank is the lowest. As we did notice slight overfitting in some
cases we also bound the model selection to not include models which were trained for
more than 175 epochs. After selecting the best model for each label we used this model
to classify an increasing amount of attack traces for each possible value of that label and
recorded the average rank. For each number of traces we averaged the results over five
distinct sets of traces. The results of these experiments indicate that using as little as 10
power traces provides stable results in the output of the models. Furthermore, adding
more traces does not significantly impact the rank of the correct value.

4.2.4 Single device vs. multiple devices

In Section 4.2.1 we identified regions of interest using the SOST method. In this section
we visualise the samples which receive most attention from the MLP models to perform
the classification.

To visualise which samples are considered more important by the MLP model we
analysed the weights of the input layer. In general, for a trace of n samples and an MLP
model with p input neurons, the model will learn n · p input weights. In this case the
model learns one weight for each input sample (3000) in each of the first layer neurons
(500), hence the input layer contains 1.5 M (3000 · 500) weights.

To visualise the attention given to each input sample we use the L∞ norm to reduce
the 3000 · 500 weight matrix to 3000 values of which the magnitude is an indication for the
sample’s importance. We repeat this for each of the trained models at each epoch, in this
way we get information on the important samples and how this evolved during training of
the model. Appendix B contains Figure 9 which depicts the results for the models trained
on a single device and Figure 10 the results for models trained on five devices. For the
single device case the areas of interest identified by the MLP model are mostly consistent
with the SOST from Figure 6. Alternatively, an occlusion or gradient based visualization
technique can be used.

For the multiple device scenario we initially expected the models to combine the samples
containing most information on the inter-device variation (Figure 6) with those containing
information on the target labels. However, in the multiple device scenario the models for
ki⊕ki+1 seem to mostly combine the samples identified to contain information on ki⊕ki+1
and ki+1. This observation indicates that a multi-label time-series classifier could perform
better as it might be able to learn the relationship between labels ki, ki ⊕ ki+1 and ki+1.

4.2.5 Key enumeration

During the attack phase an adversary will collect traces from a target transponder. After
preprocessing the attack traces, the trained models can be used to predict each of the
six labels. At this point the adversary has six lists of labels, each ranked according to
the likelihood provided by the classifier. However, as our classifiers are not perfect the
adversary will have to enumerate some of the remaining key candidates.

We use the classifiers trained on the following six labels: k0, k0 ⊕ k1, k1 ⊕ k2, k2 ⊕ k3,
k3 ⊕ k4, k4. The fact that we obtain six labels for only five target variables (key bytes)
can be used to our advantage as we can easily eliminate keys using a few xor operations
instead of executing the full cipher. In practice we achieve this by bounding the number
of candidates for each label based on the accuracy of our model on the independent attack
set. Concretely, we can form tuples of candidates from the first five labels and check which
of those hold according to the candidates in the bounded list of k4. By keeping track of

118 Dismantling DST80-based Immobiliser Systems

the product of the individual probabilities for each of the labels we can compute an overall
likelihood for this combination of labels and thus the candidate key.

As on average the correct label for each of the six used target labels is close to 20
(Figure 8), we would have to test 205 or 221 keys on average, of which a substantial portion
will be invalid and thus eliminated. Assuming we can obtain similar results for the second
40-bit key which is being loaded sequentially, this would result in a practical key recovery
attack requiring 10 power measurements and about 240 DST80 operations.

In scenarios where the models perform worse or for larger key sizes it could be worthwhile
to extend the work by Li et al. on key enumeration with dependent score lists [LWWW17].
Alternatively, if the models for k1, k2 and k3 performed better (e.g. by having more training
devices or a multi-label classifier) this enumeration strategy could be applied directly,
further decreasing the required effort.

5 Conclusion

In this paper we demonstrated the insecurity of two different immobiliser systems used by
three major car manufacturers. By glitching the firmware protection of the microcontroller
we read the firmware of several immobiliser ECUs. From this firmware, we reverse
engineered the proprietary Texas Instruments DST80 cipher. We present the cipher here
for the first time, which enables other researchers to scrutinise its security. Additionally, we
demonstrate that Toyota derives an 80-bit cryptographic key for each transponder based
on its serial number and other publicly readable transponder data. Similarly, we show how
transponders used in Kia and Hyundai cars rely on three bytes of entropy in the encryption
key. In each of these cases an attacker can recover the full cryptographic key in a matter of
milliseconds. Additionally, we show how insufficient diligence from the manufacturer can
lead to a vulnerable configuration of the transponder, resulting in practical key recovery
and Denial of Service attacks. Moreover, we propose several side-channel attacks to reduce
the key space from 280 to 240 for properly configured transponders with a randomly
generated key. More specifically, we propose a Differential Power Analysis attack to recover
the first 40-bit round key containing 20 bits of each initial key state register. The attack
targets a hardware implementation [Kai08] of the cipher and requires 30k power traces.
Finally, we present a profiled side-channel attack in which we target the key being read
from the transponder’s EEPROM. We show that this is a trivial task in the single device
scenario, while in the more realistic scenario in which we target an unknown device, we
reduce the key space to approximately 240 with as little as 10 power traces.

This wide range of attacks summarised in Table 4 demonstrates the large attack surface
of security critical systems like the vehicle immobiliser. An effective immobiliser system
does not only require secure cryptographic primitives, but also a secure key generation
scheme, rigorously configured transponders and secure hardware implementations. In this
paper we address each of these elements and describe several countermeasures to mitigate
the proposed attacks.

Responsible disclosure. We informed Toyota, Kia, Hyundai and Tesla of the identified
issues and provided each with a tailored report. Additionally, we informed Texas Instru-
ments about our intention of publishing the DST80 cipher and provided them with details
on the downgrade and side-channel attacks. Per request of the manufacturers we redacted
the constants in Algorithms 3 and 4.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 119

Table 4: Attacks on DST80 transponders described in this paper. In the scenarios marked
by an asterisk lookup tables can be employed to speed up the key recovery process.
Affected Prerequisites Consequences
Toyota Communication with the transponder Key recovery

(Algorithms 3
and 4)

Kia Single authentication traceHyundai

Tesla Write access to transponder pages 4 and 30 complexity 241*
Write access to transponder page 30 complexity 241*

All key fobs using
TMS37F128 or
TMS37126

Physical access (DPA ±30k traces) complexity 244

Physical access (Profiled SCA ±10 traces) complexity ±240

Physical access (SPI interface) complexity 241*

Acknowledgments
This work was supported in part by the Research Council KU Leuven C1 on Security
and Privacy for Cyber-Physical Systems and the Internet of Things with contract number
C16/15/058. In addition, this work was supported in part by the Flemish Government
through FWO Sancus G.0876.14N and in part by the European Commission through the
Horizon 2020 research and innovation programme under grant agreement Cathedral ERC
Advanced Grant 695305. Additionally, this work was partly funded by EPSRC Fellowship
EP/R008000/1.

References
[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the

Glitch: Optimizing Voltage Fault Injection Attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(2):199–224, 2019.

[BGS+05] Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Aviel D Rubin,
and Michael Szydlo. Security Analysis of a Cryptographically-Enabled RFID
Device. In USENIX Security Symposium, volume 31, pages 1–16, 2005.

[Bog07] Andrey Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher. In
Dingyi Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Information
Security and Cryptology, Third SKLOIS Conference, Inscrypt 2007, Xining,
China, August 31 - September 5, 2007, Revised Selected Papers, volume 4990
of Lecture Notes in Computer Science, pages 66–80. Springer, 2007.

[Bok17] Wouter Bokslag. An assessment of ECM authentication in modern vehicles.
Master’s thesis, Eindhoven University of Technology, 2017.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David A. Wagner. Algebraic and Slide
Attacks on KeeLoq. In Kaisa Nyberg, editor, Fast Software Encryption, 15th
International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13,
2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 97–115. Springer, 2008.

[CCC+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornelie, François Dassance,
Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff, and Alexandre Venelli.
Deep Learning to Evaluate Secure RSA Implementations. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019(2):132–161, 2019.

120 Dismantling DST80-based Immobiliser Systems

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures -
Profiling Attacks Without Pre-processing. In Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 45–68, 2017.

[CK14] Omar Choudary and Markus G. Kuhn. Template Attacks on Different Devices.
In COSADE, volume 8622 of Lecture Notes in Computer Science, pages 179–
198. Springer, 2014.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, Portable Template
Attacks. IEEE Trans. Information Forensics and Security, 13(2):490–501,
2018.

[Com95] European Commission. Commission Directive 95/56/EC, Euratom of 8
November 1995 adapting to technical progress Council Directive 74/61/EEC
relating to devices to prevent the unauthorized use of motor vehicles. 1995.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[dHG18] Jan Van den Herrewegen and Flavio D. Garcia. Beneath the Bonnet: A
Breakdown of Diagnostic Security. In Javier López, Jianying Zhou, and
Miguel Soriano, editors, Computer Security - 23rd European Symposium on
Research in Computer Security, ESORICS 2018, Barcelona, Spain, September
3-7, 2018, Proceedings, Part I, volume 11098 of Lecture Notes in Computer
Science, pages 305–324. Springer, 2018.

[FDC11] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay Attacks on
Passive Keyless Entry and Start Systems in Modern Cars. In Proceedings
of the Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011. The Internet
Society, 2011.

[GDD+19] Anupam Golder, Debayan Das, Josef Danial, Santosh Ghosh, Shreyas Sen,
and Arijit Raychowdhury. Practical Approaches Toward Deep-Learning-
Based Cross-Device Power Side-Channel Attack. IEEE Trans. VLSI Syst.,
27(12):2720–2733, 2019.

[GLP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
Stochastic Methods. In Louis Goubin and Mitsuru Matsui, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume 4249
of Lecture Notes in Computer Science, pages 15–29. Springer, 2006.

[GOKP16] Flavio D. Garcia, David Oswald, Timo Kasper, and Pierre Pavlidès. Lock It
and Still Lose It - on the (In)Security of Automotive Remote Keyless Entry
Systems. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
pages 929–944. USENIX Association, 2016.

[Goo08] Travis Goodspeed. Practical Attacks against the MSP430 BSL. In Twenty-
Fifth Chaos Communications Congress. Berlin, Germany, 2008.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 121

[HGO18] Christopher Hicks, Flavio Garcia, and David Oswald. Dismantling the AUT64
Automotive Cipher. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(2):46–69, May 2018.

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart
Preneel. A Practical Attack on KeeLoq. In Nigel P. Smart, editor, Advances
in Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2008.

[Kai08] Ulrich Kaiser. Digital Signature Transponder. In Paris Kitsos and Yan Zhang,
editors, RFID Security: Techniques, Protocols and System-on-Chip Design,
pages 177–189. Springer US, Boston, MA, 2008.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analy-
sis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, pages 388–397, 1999.

[KKMP09] Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar. Breaking
KeeLoq in a Flash: On Extracting Keys at Lightning Speed. In Bart Preneel,
editor, Progress in Cryptology - AFRICACRYPT 2009, Second International
Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25, 2009.
Proceedings, volume 5580 of Lecture Notes in Computer Science, pages 403–
420. Springer, 2009.

[LWWW17] Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang. A Strict Key Enumer-
ation Algorithm for Dependent Score Lists of Side-Channel Attacks. In Smart
Card Research and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected
Papers, pages 51–69, 2017.

[MBTL13] David P. Montminy, Rusty O. Baldwin, Michael A. Temple, and Eric D. Laspe.
Improving cross-device attacks using zero-mean unit-variance normalization.
J. Cryptographic Engineering, 3(2):99–110, 2013.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-
Source Platform for Hardware Embedded Security Research. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design - 5th
International Workshop, COSADE 2014, Paris, France, April 13-15, 2014.
Revised Selected Papers, volume 8622 of Lecture Notes in Computer Science,
pages 243–260. Springer, 2014.

[Osw16] David Oswald. Generic Implementation ANalysis Toolkit, 2016. available
online at https://sourceforge.net/projects/giant.

[OT17] Johannes Obermaier and Stefan Tatschner. Shedding too much Light on a
Microcontroller’s Firmware Protection. In William Enck and Collin Mulliner,
editors, 11th USENIX Workshop on Offensive Technologies, WOOT 2017,
Vancouver, BC, Canada, August 14-15, 2017. USENIX Association, 2017.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The Curse of Class Imbalance and Conflicting Metrics with
Machine Learning for Side-channel Evaluations. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(1):209–237, 2019.

https://sourceforge.net/projects/giant

122 Dismantling DST80-based Immobiliser Systems

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database. IACR Cryptology ePrint Archive, 2018:53,
2018.

[Rena] Renesas Electronics. 78K0/Kx2 Flash Memory Programming.

[Renb] Renesas Electronics. 78K0/Kx2 User’s manual: Hardware.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model
for Differential Side Channel Cryptanalysis. In Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings, pages 30–46, 2005.

[STM] STMicroelectronics. STM8AF Series.

[Tex12a] Texas Instruments. Digital Signal Transponder With DST80 Authentication,
EEPROM, and LF Immobilizer, 2012.

[Tex12b] Texas Instruments. TMS3705 Transponder Base Station IC, 2012.

[Tex12c] Texas Instruments. TMS37126 - Remote access identification device with
integrated 3D wakeup receiver and immobilizer interface, 2012.

[Tex12d] Texas Instruments. TMS37F128 - Controller Remote Access Identification
(CRAID) with integrated microcontroller, 3D wakeup receiver, and immobilizer
interface, 2012.

[toy] Toyota Transponder Chip Key & Remote Key Fob Program-
ming Instructions. http://www.diy-time.com/automotive/toyota/
program-chip-toyota-key-remote-fob/.

[traa] Car Keys Online. https://www.car-keys-online.com.

[trab] Transpondery. http://www.transpondery.com/transponder_catalog/
toyota_transponder_catalog.html.

[VGB12] Roel Verdult, Flavio D. Garcia, and Josep Balasch. Gone in 360 Seconds:
Hijacking with Hitag2. In Tadayoshi Kohno, editor, Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages
237–252. USENIX Association, 2012.

[VGE15] Roel Verdult, Flavio D. Garcia, and Baris Ege. Dismantling Megamos Crypto:
Wirelessly Lockpicking a Vehicle Immobilizer. In Samuel T. King, editor,
Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA,
August 14-16, 2013, pages 703–718. USENIX Association, 2015.

[WMA+19] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and
Bart Preneel. Fast, Furious and Insecure: Passive Keyless Entry and Start
Systems in Modern Supercars. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):66–85, 2019.

[ZOB18] Yevhenii Zotkin, Francis Olivier, and Eric Bourbao. Deep Learning vs
Template Attacks in front of fundamental targets: experimental study. IACR
Cryptology ePrint Archive, 2018:1213, 2018.

http://www.diy-time.com/automotive/toyota/program-chip-toyota-key-remote-fob/
http://www.diy-time.com/automotive/toyota/program-chip-toyota-key-remote-fob/
https://www.car-keys-online.com
http://www.transpondery.com/transponder_catalog/toyota_transponder_catalog.html
http://www.transpondery.com/transponder_catalog/toyota_transponder_catalog.html

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 123

A Multi-Layer Perceptron model
We used the following MLP model for each of the nine labelings of the data. This is by no
means the best possible model as we did not perform an exhaustive parameter search. The
model was implemented using Keras and uses the categorical cross-entropy loss function
with the Stochastic Gradient Desecent (SGD) optimizer with a learning rate of 0.0001, a
momentum of 0.95 and the Nesterov momentum enabled. We used a batch size of 10000
during training over multiple devices and a batch size of 2500 when training on a single
device.

• Fully connected layer consisting of 500 perceptrons with relu activation.

• Fully connected layer consisting of 100 perceptrons with relu activation.

• Fully connected layer consisting of 50 perceptrons with relu activation.

• Fully connected layer consisting of 25 perceptrons with relu activation.

• Fully connected layer consisting of 16 perceptrons with relu activation.

• Fully connected layer consisting of 256 perceptrons with softmax activation.

124 Dismantling DST80-based Immobiliser Systems

B MLP input layer weight visualizations

Figure 9: L∞ norm of the input weights over the 250 training epochs (y-axis) for models
trained on a single device.

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 125

Figure 10: L∞ norm of the input weights over the 250 training epochs (y-axis) for a model
trained on five distinct devices.

126 Dismantling DST80-based Immobiliser Systems

C Specification of the DST80 function F (k, s)

In this Section we specify the Feistel function F, originally defined in [BGS+05], again.
We present it here as we reverse engineered it from the immobiliser firmware.

Table 5: The tables used in the Feistel function F
index fα fβ fγ fδ fε g h

0 1 0 1 0 1 0 0
1 0 1 0 1 1 1 1
2 1 1 0 0 1 0 3
3 0 1 0 1 0 0 3
4 0 0 1 1 0 1 2
5 0 1 0 0 0 1 1
6 1 0 1 1 1 1 2
7 1 0 1 0 0 0 0
8 0 0 1 1 0 0 0
9 0 0 1 1 1 1 2
10 1 1 0 0 0 1 1
11 1 0 1 0 0 1 2
12 0 1 0 1 0 0 3
13 1 1 0 1 1 0 3
14 0 1 0 0 1 1 1
15 1 0 1 0 1 0 0
16 1 1 1 0
17 0 0 0 0
18 1 1 1 1
19 0 0 1 1
20 1 1 1 0
21 1 1 0 0
22 0 0 0 1
23 0 0 0 1
24 0 0 0 0
25 1 0 0 1
26 0 1 0 0
27 1 1 1 1
28 1 0 1 1
29 1 1 1 0
30 0 0 0 1
31 0 1 1 0

Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs and Bart Preneel 127

F (k, s) = h(g4, g3, g2, g1)

g1 = g(f16, f15, f14, f13)
g2 = g(f12, f11, f10, f9)
g3 = g(f8, f7, f6, f5)
g4 = g(f4, f3, f2, f1)

f1 = fδ(s32, k32, s24, k24, s16)
f2 = fε(k16, s8, k8, k0)
f3 = fβ(s33, k33, s25, k25, s17)
f4 = fε(k17, s9, k9, k1)

f5 = fδ(s34, k34, s26, k26, s18)
f6 = fγ(k18, s10, k10, s2, k2)
f7 = fβ(s35, k35, s27, k27, s19)
f8 = fα(k19, s11, k11, s3, k3)

f9 = fδ(s36, k36, s28, k28, s20))
f10 = fγ(k20, s12, k12, s4, k4)
f11 = fβ(s37, k37, s29, k29, s21)
f12 = fα(k21, s13, k13, s5, k5)

f13 = fδ(s38, k38, s30, k30, s22)
f14 = fγ(k22, s14, k14, s6, k6)
f15 = fβ(s39, k39, s31, k31, s23)
f16 = fα(k23, s15, k15, s7, k7)

	Introduction
	Contributions
	Related work
	Notation

	DST80
	DST80 transponders
	Reading out immobiliser firmware
	Reverse engineering the cipher
	Cipher details

	Practical attacks on DST80 systems
	Uncovering key diversification schemes from immobiliser firmware
	Transponder configuration issues
	Discussion and mitigation

	Side-Channel Analysis
	Differential Power Analysis
	Profiled Side-Channel Attack

	Conclusion
	Multi-Layer Perceptron model
	MLP input layer weight visualizations
	Specification of the DST80 function F(k, s)

