
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 49–72. DOI:10.13154/tches.v2020.i2.49-72

Highly Efficient Architecture of NewHope-NIST
on FPGA using Low-Complexity NTT/INTT

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo
Liu*

Institute of Microelectronics, Tsinghua University, Beijing, 100084, China.
zhangn16@mails.tsinghua.edu.cn;{bohanyang,chenchen1984,yinsy,wsj,liulb}@tsinghua.

edu.cn
* Corresponding Author.

Abstract. NewHope-NIST is a promising ring learning with errors (RLWE)-based post-
quantum cryptography (PQC) for key encapsulation mechanisms. The performance
on the field-programmable gate array (FPGA) affects the applicability of NewHope-
NIST. In RLWE-based PQC algorithms, the number theoretic transform (NTT) is
one of the most time-consuming operations. In this paper, low-complexity NTT
and inverse NTT (INTT) are used to implement highly efficient NewHope-NIST on
FPGA. First, both the pre-processing of NTT and the post-processing of INTT are
merged into the fast Fourier transform (FFT) algorithm, which reduces N and 2N
modular multiplications for N -point NTT and INTT, respectively. Second, a compact
butterfly unit and an efficient modular reduction on the modulus 12289 are proposed
for the low-complexity NTT/INTT architecture, which achieves an improvement
of approximately 3× in the area time product (ATP) compared with the results
of the state-of-the-art designs. Finally, a highly efficient architecture with doubled
bandwidth and timing hiding for NewHope-NIST is presented. The implementation
results on an FPGA show that our design is at least 2.5× faster and has 4.9× smaller
ATP compared with the results of the state-of-the-art designs of NewHope-NIST on
similar platforms.
Keywords: NewHope, FPGA, post-quantum cryptography, ring learning with errors,
number theoretic transform

Introduction
Conventional public key cryptography algorithms, such as RSA and ECC, can be broken by
implementing the Shor algorithm [Sho94] on a quantum computer. With the development of
quantum computers, there is an urgent need to replace RSA and ECC with cryptographic
algorithms resisting quantum computing attacks, which are known as post-quantum
cryptography (PQC). The National Institute of Standards and Technology (NIST) started
the PQC Standardization Process in 2016 [NIS16]. A total of 69 adequate candidate
algorithms were submitted during the first round of competition, and 26 submissions
survived to the second round. Lattice-based cryptography is a promising family of PQC
schemes because of its high speed, moderately larger key size [ACZ18] and long-standing
open problem for classical computation[BBD09]. The lattice-based candidates accounted
for 38% and 46% of the two rounds of NIST PQC process, respectively.

NewHope[AAB+19], called NewHope-NIST in this paper to distinguish from NewHope-
Simple [ADPS16b] and NewHope-USENIX [ADPS16a], is a lattice-based candidate for key
encapsulation mechanism (KEM) in the second round of the NIST PQC standardization
process. The security of NewHope-NIST is based on the hardness of the ring learning

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.49-72
mailto:zhangn16@mails.tsinghua.edu.cn; {bohanyang, chenchen1984, yinsy, wsj, liulb}@tsinghua.edu.cn
mailto:zhangn16@mails.tsinghua.edu.cn; {bohanyang, chenchen1984, yinsy, wsj, liulb}@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

50 Highly Efficient Architecture of NewHope-NIST

with errors (RLWE) problem [AASA+19]. NewHope-NIST is based on NewHope-Simple,
a variant of NewHope-USENIX. NewHope-USENIX is an RLWE-based key exchange
scheme proposed by Alkim et al. It was evaluated in a version of the SSL/TLS protocol
for the key establishment by Google in its Chrome browser and has demonstrated its
practicality [Bra16]. NewHope-Simple improved NewHope-USENIX by avoiding error
reconciliation at the cost of a slightly larger communication load between the server and
client. NewHope-NIST uses the same encryption-based approach as NewHope-Simple
and uses a modulus switching technique to reduce the bandwidth requirement. The main
mathematical objects in NewHope-NIST are polynomials over Rq = Zq[x]/〈xN + 1〉, where
q is 12289, and N is 1024 or 512.

The performance on different platforms affects the applicability of the PQC algorithms.
The field-programmable gate array (FPGA) is one of the most important platforms for
implementing cryptographic algorithms because of the excellent balance between flexibility
and performance. Although performance evaluation did not play a major role in the early
portion of the evaluation process of the NIST PQC process, this aspect was considered for
the second-round candidates [Moo19]. This paper presents a highly efficient architecture
of NewHope-NIST on FPGA using low-complexity NTT without pre-processing and
low-complexity INTT without post-processing.

Related Work There have been studies on the hardware architecture of NewHope.
[OG19] provided the first FPGA implementation of NewHope-Simple on a low-cost FPGA.
[KLC+17] proposed a high-performance implementation with four butterfly units (BFUs)
and a variant of Montgomery reduction for NewHope-USENIX. [JGCS19] designed a cryp-
toprocessor supporting the three NewHope schemes on an FPGA. [FSM+19] implemented
NewHope-NIST using a RISC-V-based SoC with an NTT accelerator and a SHA accelerator.
[BPC19, BUC19a] designed and fabricated cryptographic processors consisting of RLWE-
based PQC modules in the TSMC 40nm process. Optimizing the NTT implementation
has the top priority considering that NTT is the most time-consuming component in most
RLWE-based cryptography. In addition to improving the architecture of NTT, reducing
computational complexity, which is expressed as the number of modular multiplications, is
one of the most critical optimization methods. [PG12, APS13] used Negative Wrapped Con-
volution (NWC) [Win96] to reduce the complexity of polynomial multiplication. [RVM+14]
further decreased the complexity of forward NTT by avoiding the pre-processing of NTT
with the twiddle factors computed on-the-fly in an RLWE cryptoprocessor. This idea
was adopted by some subsequent works [Win96, DB16, RVVV17, FS19]. Unfortunately,
this optimization cannot be applied to inverse NTT (INTT). [FS19] avoided the extra
cycles for the post-processing of INTT at the cost of additional hardware multipliers,
but this method does not reduce the number of multiplications. [DB16] optimized the
number of modular multiplications of post-processing by pre-computing N−1γ−i

2N , but
the cost is that the memory for pre-computed twiddle factors of INTT was increased
from N to 3N/2. [POG15] reduced the complexity of INTT by avoiding the scaling of
γ−i

2N after INTT in a software implementation on an 8-bit processor. This method does
not increase the memory for pre-computed twiddle factors as [DB16]. In this method,
the scaling of N−1 was hidden with a pre-computed NTT, but not eliminated. Modu-
lar multiplication is one of the most sophisticated arithmetic operations in NTT. Lazy
modular reduction allows the results not to be fully reduced. This method can avoid
some reduction steps for software implementation on a processor with a data bus width
larger than the bit size of the processed data [SD18]. However, this method requires
additional resources for custom hardware. The commonly used Barrett reduction and
Montgomery reduction require additional multiplications and are more suitable for the
non-specific modulus. For the specific moduli 7681 and 12289, [LSSR+15] and [RV17] used
a shift-addition-multiplication-subtraction-subtraction (SAMS2) technique and reduced

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 51

the number of multiplications for modular reduction. However, potential timing attacks
might be enabled by data-dependent operations. [PPM17] successfully gained information
on the secret polynomial from modular reduction because the execution time of modular
reduction is related to the bit size of a dividend used in the reduction algorithm.

Contribution This paper proposes a highly efficient architecture of NewHope-NIST using
the low-complexity NTT/INTT, which is generally applicable to scenarios where the NWC
is used. In particular, the main contributions are as follows:

1. A low-complexity INTT is proposed by merging the post-processing (N−1γ−i
2N)

of INTT into the Gentleman-Sande decimation-in-frequency (DIF) FFT algorithm
[GS66]. This method reduces the number of modular multiplications of the INTT from
(N/2) log2 N + 2N to (N/2) log2 N compared with naive implementation, accounting
for 30.8% and 28.6% modular multiplications for 512-point INTT and 1024-point
INTT, respectively.

2. A compact BFU supporting both DIT and DIF, along with efficient and constant time
modular reductions without additional multiplications utilizing the characteristic
of 214 ≡ 212 − 1 (mod 12289), is proposed to design a highly efficient architecture
supporting both the low-complexity NTT and INTT. This architecture achieves the
best performance and an improvement of approximately 3× in the area time product
(ATP) compared with the results of state-of-the-art designs.

3. Architectural optimization, i.e., bandwidth doubling to match the memories and
processing units, as well as timing hiding between operations, is used to design a
highly efficient and constant time architecture for NewHope-NIST, which achieves at
least 2.5× faster and 4.9× smaller ATPs than other NewHope-NIST implementations
on similar devices.

1 Background
1.1 NewHope-NIST
NewHope-NIST uses a public key encryption (PKE) scheme to construct a KEM. The
key generation, encryption and decryption of the PKE scheme of NewHope-NIST are
shown in Algorithm 1, 2 and 3, respectively [AAB+19]. SHAKE is a family of strong hash
functions [NIS15]. The subfunction Sample performs binomial sampling from the output
of SHAKE256, and GenA performs reject sampling from the output of SHAKE128. The
polynomial multiplication in NewHope-NIST is explicitly accelerated with NTT. Because
the results of the subfunction Sample are noise polynomials, they can be considered to
be already bit-reversed to eliminate the reorder operation before NTT. The subfunctions
Compress and Decompress mainly perform modulus switching to reduce the bandwidth

Algorithm 1 NewHope-CPA-PKE Key Generation
function NewHope-CPA-PKE.Gen()
1: seed← {0, ..., 255}32

2: (noiseseed, publicseed)← SHAKE256(64, seed)
3: â← GenA(publicseed)
4: s← PolyBitRev(Sample(noiseseed, 0))
5: ŝ← NTT (s)
6: e← PolyBitRev(Sample(noiseseed, 1))
7: ê← NTT (e)
8: b̂← â ◦ ŝ + ê
9: return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(ŝ))

52 Highly Efficient Architecture of NewHope-NIST

Algorithm 2 NewHope-CPA-PKE Encryption
function NewHope-CPA-PKE.Encrypt(pk, µ, coin)
1: (b̂, publicseed)← DecodePk(pk)
2: â← GenA(publicseed)
3: s′ ← PolyBitRev(Sample(noiseseed, 0))
4: e′ ← PolyBitRev(Sample(noiseseed, 1))
5: e′′ ← Sample(coin, 2)
6: t̂← NTT (s′)
7: û← â ◦ t̂ +NTT (e′)
8: v ← Encode(µ)
9: v′ ← INTT (b̂ ◦ t̂) + e′′ + v
10: h← Compress(v′)
11: return c = EncodeC(û, h)

Algorithm 3 NewHope-CPA-PKE Decryption
Function NewHope-CPA-PKE.Decrypt(c, sk)
1: (û, h)← DecodeC(c)
2: ŝ← DecodePolynomial(sk)
3: v′ ← Decompress(h)
4: µ← Decode(v′ − INTT (û ◦ ŝ))
5: return µ

requirement. Encode and Decode perform message encoding and message decoding,
respectively, which convert the message to a polynomial in Rq, and vice versa. The
subfunctions EncodePK, DecodePK, EncodePolynomial, DecodePolynomial, EncodeC,
and DecodeC perform the conversion between polynomial and byte arrays only. The main
time-consuming operations in the above algorithms are NTT and INTT. Specifically, key
generation involves two NTTs; encryption involves two NTTs and one INTT; decryption
involves one INTT.

1.2 NTT and INTT
The classic NTT is defined over a finite field Zq = Z/qZ. It is derived from replacing the
complex arithmetic in the discrete Fourier transform (DFT) with modular arithmetic. The
classic NTT is defined as âi = INTTN (â)i =

∑N−1
j=0 ajω

ij
N mod q, where i = 0, 1, ..., N − 1,

ωN denotes a primitive N -th root of unity in Zq. The classic INTT can be obtained by
replacing ωN of the classic NTT by ω−1

N and multiplying by the final scalar N−1 after the
summation. The classic INTT is defined as ai = INTTN (â)i = N−1∑N−1

j=0 âjω
−ij
N mod q,

where i = 0, 1, ..., N − 1. The NTT and INTT can be evaluated with FFT over the finite
field Zq.

According to the convolution theory [Win96], polynomial multiplication can be per-
formed as

INTT2N (NTT2N (zeropadding(a))�NTT2N (zeropadding(b))), (1)

where the symbol � denotes point-wise multiplication and the function zeropadding(a)
expands the length of a from N to 2N with zeros at the end. Thus, multiplication over
the ring Zq[x]/〈f(x)〉 can be calculated with three 2N -point NTT/INTT, followed by a
reduction with the modular polynomial f(x).

When f(x) is set to be a special form xN − 1, multiplication over Zq[x]/〈f(x)〉 can be
efficiently performed using positive wrapped convolution, which requires three N -point
NTT/INTT without doubling the size of NTT/INTT as Equation 2. And the reduction of
f(x) is performed for free.

c = INTTN (NTTN (a)�NTTN (b)). (2)

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 53

When f(x) is changed from xN − 1 to another special form xN + 1, the multiplication
over Zq[x]/〈xN + 1〉 can be performed with NWC, which still requires only three N -point
NTT/INTT without explicit reduction as the multiplication over Zq[x]/〈xN − 1〉. The
NWC method asks the prime q to satisfy q ≡ 1 (mod 2N), then ωN and its square root γ2N

exist. However, this method introduces a "twist" that appends pre-processing before NTT
and post-processing after INTT as detailed below. Let āi = aiγ

i
2N , b̄i = biγ

i
2N , c̄i = ciγ

i
2N .

To compute c = a · b over Zq[x]/〈xN + 1〉, NWC is performed as

c̄ = INTTN (NTTN (ā)�NTTN (b̄)). (3)

In this way, classic N -point NTT is performed on the scaled vector ā and b̄; after the
classic N -point INTT, the scaled vector c̄ is obtained; the final result c can be recovered
by computing ci = c̄iγ

−i
2N . Thus, the NWC method avoids doubling the size of NTT/INTT

and the explicit reduction, but it requires the coefficients to be scaled with γi
2N before

NTT, and the results scaled with γ−i
2N after INTT.

In this article, the pre-processing denotes the coefficient-wise multiplications of ai

and γi
2N before NTT. Note that INTT is generally implemented by FFT and final scaling

by N−1. As a result, we use post-processing to denote the final scaling by N−1 in the
classic INTT and the coefficient-wise multiplication by γ−i

2N after the classic INTT.
Properties of the Twiddle Factor. If N is a power of two, the twiddle factors of

NTT has three important properties, similar as that of the twiddle factors in FFT:

symmetry property: ω
k+N/2
N = −ωk

N

periodicity property: ωk+N
N = ωk

N

scale property: ω
k/m
N/m = ωk

N ,

(4)

where m is also a power of two and smaller than N . Because γ2
2N ≡ ωN , it is easy to see

that γ2N has similar properties as ωN .

2 Low-Complexity NTT and INTT
2.1 Low-Complexity NTT
When straightforwardly calculating the forward NTT as [KLC+17, JGCS19, FSM+19,
FS19], the main FFT requires (N/2) log2 N modular multiplications and the pre-processing
requires N modular multiplications. For the point N being 512 and 1024, the number of
modular multiplications of pre-processing accounts for 22.2% and 20% of that of the main
FFT algorithm, respectively. [RVM+14] proposed a low-complexity NTT with twiddle
factors computed on-the-fly. This method merged the pre-processing into the Cooley-
Turkey DIT FFT algorithm by changing the initialization of the twiddle factors in the
algorithm. Based on this idea, the low-complexity NTT with twiddle factors pre-computed
and stored in memories, as well as the derivation process, is presented in this subsection
for the completeness of this article. The method merges the pre-processing into the DIT
FFT by merely changing the value of the pre-computed twiddle factors.

The derivation of the low-complexity NTT is inspired by the strategy of the Cooley-
Turkey FFT [CT65]. We follow the divide-and-conquer method of FFT that divides in time
domain. First, the pre-processing and the main NTT are written together as a summation
of N items:

âi =
N−1∑
j=0

ajγ
j
2Nω

ij
N mod q, (5)

where i = 0, 1, ..., N − 1.

54 Highly Efficient Architecture of NewHope-NIST

A0

A1

A2

A3

A4

A5

A6

A7

a0

a4

a2

a6

a1

a5

a3

a7

𝜔2
0𝛾4

𝜔2
0𝛾4

𝜔2
0𝛾4

𝜔2
0𝛾4

𝜔4
0𝛾8

𝜔4
1𝛾8

𝜔4
0𝛾8

𝜔4
1𝛾8

𝜔8
0𝛾16

𝜔8
1𝛾16

𝜔8
2𝛾16

𝜔8
3𝛾16

(a) Dataflow

𝑎

𝑏

A = 𝑎 + 𝑏𝜔𝑚
𝑗
𝛾2𝑚

1 𝑚𝑜𝑑 𝑞

B = 𝑎 − 𝑏𝜔𝑚
𝑗
𝛾2𝑚

1 𝑚𝑜𝑑 𝑞
𝜔𝑚
𝑗
𝛾2𝑚

1

(b) Butterfly

Figure 1: Dataflow of 8-point Low-Complexity NTT

By splitting the summation into two groups according to parity of the index of a,
Equation 5 can be rewritten as follows:

âi =
N/2−1∑

j=0
a2jω

2ij
N γ2j

2N +
N/2−1∑

j=0
a2j+1ω

i(2j+1)
N γ2j+1

2N mod q, i = 0, 1, ..., N − 1. (6)

With the scale property of twiddle factors, Equation 6 can be expressed as

âi =
N/2−1∑

j=0
a2jω

ij
N/2γ

j
N + ωi

Nγ2N

N/2−1∑
j=0

a2j+1ω
ij
N/2γ

j
N mod q, i = 0, 1, ..., N − 1. (7)

Then Equations 7 are grouped into two parts according to the size of index i. Applying
the symmetry property and periodicity property of twiddle factors, we obtain:

âi =
N/2−1∑

j=0
a2jω

ij
N/2γ

j
N + ωi

Nγ2N

N/2−1∑
j=0

a2j+1ω
ij
N/2γ

j
N mod q

âi+N/2 =
N/2−1∑

j=0
a2jω

ij
N/2γ

j
N − ω

i
Nγ2N

N/2−1∑
j=0

a2j+1ω
ij
N/2γ

j
N mod q

i = 0, 1, ..., N/2− 1.

(8)

Let â(0)
i =

∑N/2−1
j=0 a2jω

ij
N/2γ

j
N mod q, â(1)

i =
∑N/2−1

j=0 a2j+1ω
ij
N/2γ

j
N mod q. Equations 8

are expressed as follows:

âi = â
(0)
i + ωi

Nγ2N â
(1)
i mod q

âi+N/2 = â
(0)
i − ω

i
Nγ2N â

(1)
i mod q, i = 0, 1, ..., N/2− 1.

(9)

It is easy to see that â(0)
i and â(1)

i are essentially the same as in Equation 5, except that
they are scaled down to N/2 points from N points. In other words, â(0)

i and â
(1)
i are

N/2-point NTTs of a2j and a2j+1, respectively. In this way, N -point NTT can be resolved
with two N/2-point NTTs. The same decimation process can be applied recursively to the
computation of â(0)

i and â(1)
i until 2-point NTT. Taking 8-point NTT as an example, the

dataflow is depicted in Figure1.
Because γ2

2m ≡ ωm (mod q),m = 21, 22, ..., N , considering the scale property of twiddle
factors, we have

ωj
mγ2m ≡ γ2j+1

2m

≡ γ(2j+1)N/m
2N (mod q), m = 21, 22, ..., N, j = 0, 1, ...,m/2− 1.

(10)

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 55

Algorithm 4 Low-Complexity NTT Algorithm without Pre-processing
Let the vectors a and A denote (a0, a1, ...aN−1) and (A0, A1, ...AN−1), respectively, where ai ∈ Zq , Ai ∈
Zq , i = 1, 2, ...N − 1. Let ωN be a primitive N -th root of unity in Zq and let γ2N = √ωN .
Input: a, N, q; γi

2N , i = 0, 1, ..., N − 1.
Output: A = NTT (a)
1: A← scramble(a)
2: for s = 1 to log2 N do
3: m← 2s

4: for j = 0 to m/2− 1 do
5: ω = γ

(2j+1)N/m
2N

6: for k = 0 to N/m− 1 do
7: u = Akm+j

8: t = ω ·Akm+j+m/2 mod q
9: Akm+j = (u+ t) mod q
10: Akm+j+m/2 = (u− t) mod q
11: end for
12: end for
13: end for
14: return A

There are N different values in Equation 10. As a result, the N/2 powers of ωN need not
be stored. Only the N powers of γ2N need to be pre-computed and stored. The details of
the low-complexity DIT NTT are shown in Algorithm 4.

2.2 Low-Complexity INTT
When straightforwardly calculating the INTT, the main FFT requires (N/2) log2 N modular
multiplication and the post-processing requires 2N modular multiplications. The post-
processing requires a considerable number of modular multiplications for N no more than
1024. The ratio of the number of modular multiplications between the post-processing and
the main FFT can be up to 44.4% and 40% for N being 512 and 1024, respectively. [POG15]
reduced the complexity of INTT by merging the scaling of γ−i

2N into the Gentleman-Sande
DIF FFT algorithm with the twiddle factors pre-computed and stored in memories. Based
on this method, we further merge the scaling of N−1 into the DIF FFT. Thus, all the
modular multiplications in post-processing are eliminated. This is achieved by changing
the value of the pre-computed twiddle factors of INTT and slightly modifying the butterfly
unit of the DIF FFT. This method does not require to increase the number of modular
multiplications of the main FFT algorithm or storage space of pre-computed twiddle
factors.

Similar to the derivation of the low-complexity NTT, the derivation of the low-
complexity INTT is inspired by the strategy of another kind of FFT, i.e., the Gentleman-
Sande FFT [GS66]. We follow the divide-and-conquer method of FFT that divides in
the frequency domain. At the beginning, the post-processing and the INTT are written
together as follows:

ai = N−1γ−i
2N

N−1∑
j=0

âjω
−ij
N mod q, (11)

where i = 0, 1, ..., N − 1.
By splitting the items in the summation into two parts according to the size of the

index of â, Equation 11 can be rewritten as follows:

ai = N−1γ−i
2N

N/2−1∑
j=0

âjω
−ij
N +

N−1∑
j=N/2

âjω
−ij
N

 mod q, i = 0, 1, ..., N − 1. (12)

Because of the symmetry property and periodicity property of twiddle factors, the index

56 Highly Efficient Architecture of NewHope-NIST

a0

a1

a2

a3

a4

a5

a6

a7

A0

A4

A2

A6

A1

A5

A3

A7

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

𝜔8
0𝛾16

−1

𝜔8
−1𝛾16

−1

𝜔8
−2𝛾16

−1

𝜔8
−3𝛾16

−1

𝜔4
0𝛾8

−1

𝜔4
−1𝛾8

−1

𝜔2
0𝛾4

−1

𝜔4
0𝛾8

−1

𝜔4
−1𝛾8

−1

𝜔2
0𝛾4

−1

𝜔2
0𝛾4

−1

𝜔2
0𝛾4

−1

(a) Dataflow

1/2

1/2
𝐵 =

1

2
(𝑎 − 𝑏)𝜔𝑚

−𝑗
𝛾2𝑚

−1 𝑚𝑜𝑑 𝑞

A =
1

2
 𝑎 + 𝑏 𝑚𝑜𝑑 𝑞

𝜔𝑚
−𝑗

𝛾2𝑚
−1

𝑎

𝑏

(b) Butterfly

Figure 2: Dataflow of 8-point Low-Complexity INTT

of the second summation in Equation 12 can be changed from [N/2, N − 1] to [0, N/2− 1],
as follows:

ai = N−1γ−i
2N

N/2−1∑
j=0

âjω
−ij
N +

N/2−1∑
j=0

â(j+N/2)ω
−i(j+N/2)
N

 mod q,

i = 0, 1, ..., N − 1.

(13)

In the following, Equations 13 are grouped into two parts according to the parity of i:

a2i = N−1γ−2i
2N

N/2−1∑
j=0

âjω
−2ij
N + (−1)2i

N/2−1∑
j=0

â(j+N/2)ω
−2ij
N

 mod q,

a2i+1 = N−1γ
−(2i+1)
2N

N/2−1∑
j=0

âjω
−(2i+1)j
N + (−1)(2i+1)

N/2−1∑
j=0

â(j+N/2)ω
−(2i+1)j
N

 mod q,

i = 0, 1, ..., N/2− 1.
(14)

With the scale property of twiddle factors, Equation 14 can be simplified as

a2i = (N2)−1γ−i
N

N/2−1∑
j=0

[
âj + â(j+N/2)

2

]
ω−ij

N/2 mod q,

a2i+1 = (N2)−1γ−i
N

N/2−1∑
j=0

{[
âj − â(j+N/2)

2

]
ω−j

N γ−1
2N

}
ω−ij

N/2 mod q,

i = 0, 1, ..., N/2− 1.

(15)

Let b̂(0)
j = âj+â(j+N/2)

2 mod q, b̂(1)
j =

[
âj−â(j+N/2)

2

]
ω−j

N γ−1
2N mod q, we have

a2i = (N2)−1γ−i
N

N/2−1∑
j=0

b̂
(0)
j ω−ij

N/2 mod q,

a2i+1 = (N2)−1γ−i
N

N/2−1∑
j=0

b̂
(1)
j ω−ij

N/2 mod q, i = 0, 1, ..., N/2− 1.

(16)

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 57

Algorithm 5 Low-Complexity INTT Algorithm without Post-processing
Let the vectors a and A denote (a0, a1, ...aN−1) and (A0, A1, ...AN−1), respectively, where ai ∈ Zq , Ai ∈
Zq , i = 1, 2, ...N − 1. Let ωN be a primitive N -th root of unity in Zq and γ2N = √ωN .
Input: a, N, q; γ−i

2N , where 0, 1, ..., N − 1.
Output: A = INTT (a)
1: for s = log2 N to 1 do
2: m← 2s

3: for j = 0 to m/2− 1 do
4: ω = γ

−(2j+1)N/m
2N

5: for k = 0 to N/m− 1 do
6: u = Akm+j

7: t = Akm+j+m/2 mod q
8: Akm+j = u+t

2 mod q
9: Akm+j+m/2 = u−t

2 · ω mod q
10: end for
11: end for
12: end for
13: A← scramble(a)
14: return A

32 80 192 448 1024 2304 5120

16 32 64 128 256 512 1024

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N=16 32 64 128 256 512 1024

main FFT pre-processing

(a) NTT

32 80 192 448 1024 2304 5120

32 64 128 256 512 1024 2048

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N=16 32 64 128 256 512 1024

main FFT post-processing

(b) INTT

Figure 3: Number of modular multiplications of NTT and INTT.

Recalling the definition of N -point INTT as Equation 11, we can easily see that Equation
16 is similar to Equation 11, except that it is scaled down to N/2 points from N points.
In other words, a2i and a2i+1 correspond to N/2-point INTT of b̂(0)

j and b̂(1)
j , respectively.

In this way, N -point INTT can be resolved with two N/2-point INTTs. The same
decimation process can be applied recursively to the computation of a2i and a2i+1 until
2-point INTT if N is a power of two. Taking 8-point INTT as an example, the dataflow is
depicted in Figure 2.

Because γ−2
2m ≡ ω−1

m (mod q),m = 21, 22, ..., N , considering the scale property of
twiddle factors, we have

ω−j
m γ−1

2m ≡ γ
−(2j+1)
2m

≡ γ−(2j+1)N/m
2N (mod q), m = 21, 22, ..., N, j = 0, 1, ...,m/2− 1.

(17)

There are N different values in Equation 17. As a result, we do not need to pre-compute
and store the N/2 powers of ω−1

N . Only the N powers of γ−1
2N are pre-computed and stored.

The details of the proposed DIF INTT are shown in Algorithm 5.
The low-complexity NTT does not require pre-processing with N modular multi-

plications. As a result, an N -point low-complexity NTT requires only (N/2) log2 N
modular multiplications instead of (N/2) log2 N + N modular multiplications for NTT
implemented by pre-processing followed by FFT. Similarly, our proposed low-complexity
INTT does not require post-processing with 2N modular multiplications. As a result, an

58 Highly Efficient Architecture of NewHope-NIST

Bank0

Bank1

Bank2

Bank3

RAM_NTT

Butterfly

unit0

Butterfly

unit1

Address generator
×8

Control

unit

RAM_W

address

sel

access enable

address

a

a

b

b

A

B

A

B

ω

ω

Figure 4: The architecture of NTT/INTT.

N -point low-complexity INTT requires only (N/2) log2 N modular multiplications instead
of (N/2) log2 N + 2N modular multiplications for INTT implemented by FFT followed by
post-processing. This means that our proposed low-complexity NTT and INTT have the
same number of modular multiplications as the FFT algorithm. The decreased number
of multiplications depends on the point of NTT/INTT, i.e., N . The smaller the value of
N , the higher the proportion of the decrement, as depicted in Figure 3. The decreased
modular multiplication by the low-complexity INTT can be up to 50% for 16-point INTT.
For N = 512 in NewHope, the low-complexity NTT and INTT can reduce 18.2% and 30.8%
of modular multiplications, respectively. For N = 1024 in NewHope, the low-complexity
NTT and INTT can reduce 16.7% and 28.6% of modular multiplications, respectively.
[DB16] reduced the number of modular multiplications of post-processing from 2N to N
by combining the multiplications of N−1 and γ−i, but this approach increased the memory
for pre-computed twiddle factors of INTT from N to 3N/2, whereas our method reduces
more modular multiplication and does not increase memory for pre-computed twiddle
factors. The method of [FS19] hides the clock cycles consumed by the post-processing of
INTT, but it does not eliminate the computations, and the cost is two additional modular
multipliers. [POG15] eliminated the scaling of γ−i

2N of the post-processing, but it does not
eliminate the scaling of N−1, whereas our method eliminates both of them.

The low-complexity NTT/INTT can be used in polynomial multiplication over the ring
Zq[x]/〈xN + 1〉, where q is a prime and satisfies that q ≡ 1 (mod 2N) and N is a power
of two. These conditions are the same as those required by NWC. The low-complexity
NTT/INTT does not require any additional conditions. As a result, this method is generally
applicable to NWC, which is widely used in RLWE-based cryptographic algorithms.

3 Architecture of the Low-Complexity NTT/INTT
3.1 The Overall Architecture of NTT/INTT
The overall architecture for the low-complexity NTT/INTT is designed and presented
in Figure 4. Because two different algorithms 4 and 5 are used for DIT NTT and DIF
INTT, the architecture is designed to support both DIT NTT and DIF INTT. The
proposed architecture consists of a coefficient memory RAM_NTT, a twiddle factor
memory RAM_W, two BFUs, and a control unit. Two BFUs are used in the hardware
architecture to speed up the throughput. The BFUs perform in pipeline mode, and
each BFU can read and write two data points every clock cycle when the pipeline is
fulfilled. Their architecture supports two types of butterflies, as shown in Figure 1(b) and

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 59

2(b). Their details are presented in Section 3.2. RAM_NTT is designed as a multi-bank
memory to meet the bandwidth requirements of the two BFUs. The memory contains
four banks, eight MUXs, and eight address generators. The address generators give out
bank addresses to control the MUXs and give out new addresses and enable signals for the
banks. The banks are implemented with dual-port block RAMs in FPGA devices, so they
can provide eight ports for data access. The storage capacity of each bank of RAM_NTT
is (N/4)dlog2 qe. RAM_W is used to store precomputed twiddle factors for DIT NTT
and DIF INTT. Its storage capacity is 2Ndlog2 qe. The control unit generates addresses
and enable signals for RAM_NTT and RAM_W.

An address conflict-free multi-bank memory access scheme for DIT NTT with two
parallel radix-2 BFUs is presented in this paragraph. The partition approach of the
coefficients into the four banks is derived from [WHEW14, LSW01]. Accordingly, the
address generators are designed following Equation 18:

BankAddr =
d 1

2 log2 Ne−1∑
i=0

addr[2i+ 1 : 2i] mod 4

NewAddr = addr >> 2,

(18)

where addr denotes the raw address generated by the control unit; BankAddr denotes
the bank address for selecting the banks; and NewAddr denotes the new address for
the banks. However, the multi-bank scheme does not work well when log2 N is odd,
because accessing conflict exists in the last s-loop in Algorithms 4 for NTT with two BFUs.
Taking N = 8 for example, the raw addresses {0,1,2,3,4,5,6,7} are mapped in the bank
addresses {0,1,2,3,1,2,3,0}, according to the multi-bank scheme in [WHEW14, LSW01]. In
the last s-loop in Algorithm 4, the four data points in raw addresses {0,4,1,5} are accessed
simultaneously by the two BFUs, but the raw addresses {1,4} are both mapped in bank
1, which means accessing conflict. To resolve this problem, the last s-loop of Algorithm
4 is modified. It is interesting that the concurrently accessed four data points in the
penultimate s-loop can be accessed by two butterflies in the last s-loop just with data
crossed. Based on this observation, the execution order of the last s-loop is rearranged as
follows:

for j = 0 to N/4− 1
Aj ← Aj + γ2j+1

2N Aj+N/2

Aj+N/2 ← Aj − γ2j+1
2N Aj+N/2

Aj+N/4 ← Aj+N/4 + γ
2j+N/2+1
2N Aj+3N/4

Aj+3N/4 ← Aj+N/4 − γ
2j+N/2+1
2N Aj+3N/4

(19)

Thus, the four data points being accessed in parallel by two BFUs are always in four
different banks. For DIF INTT, it can be seen that the dataflow topological structures
of DIT NTT and DIF INTT are mirror-symmetric. As a result, the address conflict-free
multi-bank memory access scheme for DIT NTT is also applicable to DIF INTT, as long
as the first s-loop of Algorithm 5 is rearranged according to the execution order of the
second s-loop, just like the schedule of the last s-loop of Algorithm 4.

Based on the algorithms of the low-complexity DIT NTT and low-complexity DIF INTT,
the proposed architecture can complete NTT or INTT in approximately (N/4) log2 N
clock cycles. Pre-processing of NTT and post-processing of INTT are all merged into the
main process of the low-complexity DIT NTT and DIF INTT, so they do not consume
any clock cycles. The scramble function requires N/4 cycles to reorder the data before
or after the transform, benefiting from the multi-bank memory scheme, whereas normal
single-bank memory requires N cycles for the scramble function. If four BFUs are used,

60 Highly Efficient Architecture of NewHope-NIST

...

dm

0
1

1
2

0

1

0

1

...

0

1

dm

ω

a

b

A

B

modular addition

modular subtraction

modular multiplication

sel

1
2

...da

0
1

1
2

modular multiplication by 1/2

Figure 5: The architecture of butterfly unit.

instead of two BFUs, the required clock cycles can be further reduced, but the memory
banks will be doubled and the routing will be complicated.

3.2 Compact Butterfly Unit
Because the DIT and DIF decimation methods are used for NTT and INTT, respectively,
two different butterfly structures are required, as shown in Figure 1(b) and 2(b). If
two different BFUs are responsible for NTT and INTT, respectively, doubled hardware
resources are required compared with the case of a single type of butterfly structure.

In this section, a compact butterfly architecture that supports both DIT NTT and
DIF INTT is proposed. The proposed butterfly architecture is depicted in Figure 5. Our
BFUs also support modular multiplication, modular addition, and modular subtraction
for polynomial operations with little additional control logic, which is not shown in
Figure 5 for brevity. The signal sel controls all the MUXs and determines the function
of the BFU. When sel equals zero, the BFU performs the DIT NTT butterfly; that is,
A = a+ bω mod q,B = a− bω mod q. When sel equals one, the BFU performs the DIF
INTT butterfly; that is, A = (a+ b)/2 mod q,B = (a− b)ω/2 mod q.

The modular multiplication by 1/2, i.e., x/2 mod q, does not need any multiplications.
For a given odd prime q, 1/2 mod q equals (q + 1)/2. When x is even, x/2 mod q equals
(x� 1). When x is odd, x/2 can be express as

x

2 ≡ (2bx2 c+ 1)q + 1
2 ≡ bx2 c(q + 1) + q + 1

2 ≡ bx2 c+ q + 1
2 (mod q), (20)

where bx
2 c equals (x � 1) and (q + 1)/2 is a constant. Thus, the result of x/2 mod q is

selected from (x � 1) or (x � 1) + (q + 1)/2, which is achieved by a shifter, an adder,
and a MUX.

There is only one modular multiplier in our butterfly architecture. Due to the different
execution orders of modular multiplication in DIT and DIF butterflies, some registers are
required to balance the pipeline latency for the correctness of timing. Assume that the
modular multiplier has dm pipeline stages; dm registers are added to the input data a and
b to balance the pipeline latency. If the modular adder and subtractor have da pipeline
stages, da registers should be added to the path of ω to balance the pipeline latency. There
are (2dm + da + 2)dlog2 qe registers in our BFU architecture, excluding the registers in the
modular multiplier, adder and subtractor.

The occupied hardware resources by our compact BFU supporting both DIT and DIF
are much less than that of two independent DIT BFU and DIF BFU, which means a doubled
number of modular multipliers and modular adders. [BPC19, BUC19a] implemented a
unified butterfly architecture that supports DIT and DIF. It requires only one modular
multiplier, but it requires two modular adders and two modular subtractors. Its architecture
requires one more modular adder compared with our compact BFU.

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 61

3.3 Modular Reduction
In this section, an efficient and constant time modular reduction method for the modulus
q = 12289 of NewHope-NIST and its hardware architecture are proposed. For the
convenience of description, x[msb : lsb] is used to represent a (msb − lsb + 1)-bit data
according to the grammar specification of the Verilog hardware description language. The
bits of x[msb : lsb] is taken from the lsbth bit to the msbth bit of the data x. Let z be the
multiplication result of a and b, i.e. z = a · b, where 0 ≤ a < q, 0 ≤ b < q. Thus the largest
value of z is 28’h9000000, which has a bit length of 28. To obtain z mod q efficiently, the
feature 214 ≡ 212 − 1 (mod 12289) is used recursively. Thus, z is expressed as follows:

z ≡ 214z[27 : 14] + z[13 : 0]
≡ 212z[27 : 14]− z[27 : 14] + z[13 : 0]
≡ 214z[27 : 16] + 212z[15 : 14]− z[27 : 14] + z[13 : 0]
...

≡ 212(z[27 : 26] + z[25 : 24] + z[23 : 22] + z[21 : 20] + z[19 : 18] + z[17 : 16] + z[15 : 14])
− (z[27 : 26] + z[27 : 24] + z[27 : 22] + z[27 : 20] + z[27 : 18] + z[27 : 16] + z[27 : 14])
+ z[13 : 0]
≡ 212c− d+ z[13 : 0] (mod q),

(21)
where c = z[27 : 26]+z[25 : 24]+z[23 : 22]+z[21 : 20]+z[19 : 18]+z[17 : 16]+z[15 : 14], and
d = z[27 : 26]+z[27 : 24]+z[27 : 22]+z[27 : 20]+z[27 : 18]+z[27 : 16]+z[27 : 14]. Because
the largest value of z is 28’h9000000, the largest value of z[27 : 26] + z[25 : 24] is four in
the case of z[27 : 24] =4’h7. It is not difficult to see that the value of c is less than or equal
to 19, which is in the case z[27 : 14] =14’h1FFF, so c can be expressed with 5 bits. The
largest value of d can be obtained from the summation of chopped high bits of 28’h9000000;
i.e., max(d) = 2 + 9 + (9� 2) + (9� 4) + (9� 6) + (9� 8) + (9� 10) =14’h2FFF.

Then, 212c is also simplified with the special property of modulus q as

212c ≡ 214c[4 : 2] + 212c[1 : 0]
≡ 212c[4 : 2] + 212c[1 : 0]− c[4 : 2]
≡ 214c[4] + 212(c[3 : 2] + c[1 : 0])− c[4 : 2]
≡ 212(c[4] + c[3 : 2] + c[1 : 0])− (c[4] + c[4 : 2])
≡ 212e− (c[4] + c[4 : 2]) (mod q),

(22)

where e = c[4] + c[3 : 2] + c[1 : 0]. Because c is not greater than 19, it is easy to see that
the maximum value of e is 6, which is 3 bits in length. Then, Equation 22 can be further
simplified as

212c ≡ 214e[2] + 212e[1 : 0]− (c[4] + c[4 : 2])
≡ 212(e[2] + e[1 : 0])− (e[2] + c[4] + c[4 : 2])
≡ f (mod q),

(23)

where f = 212(e[2] + e[1 : 0])− (e[2] + c[4] + c[4 : 2]). Because e is not greater than 6, the
maximum value of e[2] + e[1 : 0] is 3. Thus, f must be less than q. It is easy to see that
212(e[2] + e[1 : 0]) ≥ e[2] + c[4] + c[4 : 2]. As a result, 212c mod q = f .

Based on the above analysis, the hardware architecture of modular multiplication is
proposed as depicted in Figure 6. The modular multiplication is implemented with a
4-stage pipeline architecture. At the first pipeline stage, z = a · b is calculated, which is
carried out with a single DSP unit in the target FPGA. At the second pipeline stage, d
and 212c+ z[13 : 0] mod q are calculated in parallel. At the third pipeline stage, a modular

62 Highly Efficient Architecture of NewHope-NIST

a

b

addition subtractionmultiplication

28

z c
2
2
2
2
2
2
2

5

1

2
2

e

3

1

1
3

1

2

<<12

f

14

14

14

2
4
6
8

10
12
14

d

14

a∙b mod q

summation modular addition modular subtraction

2

4

14

14

14

14

14

Figure 6: The architecture of modular multiplication.

RAM_NTT

(R2)

N/4×14 ×4

RAM_W

2N×14

RAM(R1)

N/2×28

RAM(R0)

N/2×28

Butterfly

units

Binomial Sample

Keccak

Reject Sample

Decode

Polynomial

Decompress

Decode

Polynomial
sk

Encode

c

pk/c

μ hv′

seed/
coin/
pk

Encode

Polynomial

Compress

𝑠

𝑢 /𝑏 pk/sk
/c/

μ
Decode

μ

Figure 7: The architecture of NewHope-NIST.

subtraction is executed to obtain the result. At the last pipeline stage, the results are
output. Among the timing paths, the path from z to d, i.e., the summation to get d, is the
critical path in timing. Although the summation for c has 7 inputs as the summation for
d, the widths of its inputs are all two, which is much smaller than that of the summation
for d. As a result, the delay of the summation for c is smaller than that for the summation
for d.

Barrett reduction and Montgomery reduction are the most commonly used algorithms
to obtain modular reduction after multiplication. Both of these algorithms require two
additional multiplications, which are expensive in time and hardware resources. For the
specific modulus q = 7681, [LSSR+15] used a SAMS2 technique for modular reduction.
[RV17] adapted the SAMS2 technique to the modulus q = 12289. This technique requires
a multiplication and at most six additional 15-bit subtractions for the modulus q = 12289.
The number of additional subtractions depends on the result of the first reduction in
SAMS2, which could be problematic for a side-channel attack if the reduction is not
dealt with carefully in constant time. Our proposed modular reduction does not require
additional multiplications as Barrett and Montgomery algorithms. The specific operations
of our reduction are not data-dependent as in [LSSR+15, RV17]. As a result, our reduction
on the modulus q = 12289 is efficient and time-constant.

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 63

4 Architecture of NewHope-NIST
The hardware architecture is designed to support key generation, encryption, and decryption
of NewHope-NIST, instead of a hardware corresponding to a function. Figure 7 shows
the architecture of the hardware design. The blocks Binomial Sample and Reject Sample
perform sampling in the functions Sample and GenA, respectively. The blocks Compress
and Decompress perform ciphertext compression and decompression, respectively. The
blocks Decode Polynomial and Encode Polynomial transform the data format between
a byte array and coefficients of a polynomial. The blocks Encode and Decode perform
message encoding and decoding, respectively. The block Keccak performs the functions of
SHAKE256 and SHAKE128. We modified the open-source code [Ope] as [KLC+17] did.
It takes 24 clock cycles to execute 24 rounds in the function KECCAK-f.

Doubled bandwidth matching carries through the architecture to reduce clock cycles.
The blocks RAM_NTT(named R2), RAM_W and BFUs follow the architectures in Section
3. There are two additional RAMs, named R0 and R1, in the architecture to store data of
the intermediate polynomial. As the two BFUs can deal with two point-wise operations, R0
and R1 are arranged with two coefficients in an address to match the doubled bandwidth
with the BFUs. Most other blocks, such as Binomial Sample, Reject Sample, Compress,
Decompress, Decode Polynomial, Encode Polynomial and Encode, are also designed to
be able to process two data points every cycle, to match the doubled bandwidth of the
memories. Message decoding requires four coefficients to generate one bit of plain text
when N = 1024. Decode is designed to take in four data at most at one cycle, and the
pending data for Decode are arranged in the multi-bank memory R2. As a result, this
method can output one bit every cycle for both N = 512 and N = 1024.

Timing hiding is achieved by simultaneously performing operations without resource
conflict and data dependency to further decrease clock cycles. Resource conflict means
that two operations use the same processing unit. Data dependency means that an
operation uses data from the results of another operation. The temporal and spatial detail
of our implementation with the above architecture is described with pseudo-code. The
pseudo-code of key generation, encryption and decryption are shown in Algorithm 6, 7,
and 8, respectively. The operations in the same state of the pseudo-code are performed
simultaneously. In our architecture, a specific RAM may be read and write by operations
in the same line, such as R2 at State 4 in Algorithm 6, R2 at State 3 and State 5 in
Algorithm 7. The reason is that the operations sequentially access the RAM; thus, the
operation that writes the RAM can be executed as soon as the data in the corresponding
address are read out by another operation. As a result, although data dependencies exist,
the operations can be performed simultaneously at the operation level. The polynomials
are stored in a bit-reversed order after the INTT at State 7 of Algorithm 7. As a result,
the polynomial is accessed in a bit-reversed order at State 8, which requires the access
address to be bit-reversed and does not require additional clock cycles.

The architecture of NewHope-NIST is designed to perform in constant time. The
required cycles of the functions in NewHope-NIST are discussed below without considering
a small number of stalls caused by pipeline setup. NTT and INTT always access coefficients

Algorithm 6 Pseudo-code for implementation of NewHope-CPA-PKE Key Generation
Input: seed.
Output: pk, sk.
1: (noiseseed, publicseed)← SHAKE256(64, seed); output publicseed
2: R2 ← Sample(noiseseed, 0)
3: R2 ← NTT (R2);R0 ← GenA(publicseed)
4: output EncodePolynomial(R2); R0 ← R0 ◦R2;R2 ← Sample(noiseseed, 1)
5: R2 ← NTT (R2)
6: output EncodePolynomial(R0 +R2)

64 Highly Efficient Architecture of NewHope-NIST

Algorithm 7 Pseudo-code for implementation of NewHope-CPA-PKE Encryption
Input: pk, µ, coin.
Output: EncodePolynomial(û), h.
1: R2 ← Sample(coin, 0)
2: R2 ← NTT (R2);R0 ← GenA(pk[0 : 31])
3: R0 ← R0 ◦R2;R1 ← R2;R2 ← Sample(coin, 1)
4: R2 ← NTT (R2)
5: output EncodePolynomial(R0 +R2) ; R2 ← DecodePolynomial(pk[32 : 7n/4 + 31])
6: R2 ← R2 ◦R1;R0 ← Sample(coin, 2)
7: R2 ← INTT (R2)
8: R0 ← PolyBitRev(R2) +R0;R1 ← Encode(µ)
9: output Compress(R0 +R1)

Algorithm 8 Pseudo-code for implementation of NewHope-CPA-PKE Decryption
Input: c, sk.
Output: µ.
1: R2 ← DecodePolynomial(c[0 : 7n/4− 1]);R1 ← DecodePolynomial(sk)
2: R2 ← R2 ◦R1
3: R2 ← INTT (R2);R1 ← Decompress(c[7n/4 : 17n/8− 1])
4: R2 ← R1 −R2
5: output Decode(R2)

from the multi-bank memory R2 and require (N/4) log2 N cycles. The function Encode
requires N/2 cycles, while Decode requires 256 cycles, benefiting from taking four data
points from R2. All the point-wise multiplication, addition and subtraction operations of
the polynomial require N/2 cycles. The function Sample requires N/64×(26+64/2) cycles,
where 26 cycles are for SHAKE256 and 64/2 cycles are for accessing memory. Both the
functions Decode Polynomial and Encode Polynomial require max(14N/bandwidth,N/2)
cycles, where the bandwidth is 16 in our design. The required cycles for GenA are variable
because of rejection sampling. GenA is related only to the public key, so it does not
require protection against timing attacks. Despite this, we implement GenA in constant
time for the entire design to be time-constant in form. In our design, the operation
GenA is scheduled to execute simultaneously with NTT as State 3 in Algorithm 6 and
State 2 in Algorithm 7. In case GenA takes a longer time than NTT , the algorithm
is simply restarted. Our design requires one cycle for SHAKE128Absorb, 25 cycles for
SHAKE128Sequeeze, and 86 cycles for the rejection sample. When the total number of
SHAKE128Sequeeze required in GenA is less than 22 for N = 1024 or 10 for N = 512,
GenA requires fewer cycles than NTT . The probability that GenA takes longer time is
approximately 2.3E-37, 8.6E-13 for N = 1024 and 512, respectively, which is so low that
performance loss is negligible.

5 Results and Comparison
The low-complexity NTT/INTT and NewHope-NIST are designed with Verilog HDL and
verified on a 28 nm Xilinx Artix-7 FPGA (XC7Z020CLG484-3), which is recommended by
NIST and widely adopted in the state-of-the-art evaluations. The hardware resources and
highest frequency are obtained from Vivado 2019.1.1 with the default strategy for synthesis
and implementation. In this section, the implementations results of both NTT/INTT and
NewHope-NIST are discussed and compared with the state-of-the-art.

5.1 Implementation Results of NTT/INTT
Table 1 lists the key results for the realization of the low-complexity NTT/INTT of
1024 points and 512 points. Other state-of-the-art NTT designs with the same modular

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 65

Table 1: Implementation Results of NTT/INTT on FPGA and Comparison.

Design size NTT/INTT
Cycles

Freq.
(MHz)

Time
(µs)

LUT/
ATP

FF/
ATP

DSP/
ATP

BRAM/
ATP Device

This
Work

1024

2569/2569 244 10.5 847/8.9 375/3.9 2/21.1 6/63.2 XC7Z020

[FS19] 10240/10240 - - 980/41.1 395/16.6 26/1091 2/83.9 XC7Z020
[KLC+17] 1592/1592a 150 10.6 2832/30.1 1381/14.7 8/84.9 10/106.1 XC7Z020
[JGCS19] 6206/6206 251 24.7 343/8.5 493/12.2 3/74.2 6/148.4 XC7Z020
[FSM+19] 24609/24609 - - 886/89.4 618/62.3 26/2622 1/100.9 XC7Z020
[BUC19b] 6155/6155 - - 7690/194 16/0.4 11/277.5 13/327.9 XC7A200T

This
Work

512

1289 245 5.3 741/3.9 330/1.7 2/10.5 5/26.3 XC7Z020

[FS19] 4608/4608 - - 980/18.4 395/7.4 26/489 2/37.6 XC7Z020
[RVM+14] 3443/4775 278 14.8 994b/14.7 944b/14 1/14.8 3/44.3 V6LX75T
[BUC19b] 2826/2826 - - 7690/88.7 16/0.2 11/126.9 13/150 XC7A200T
a : The cycles for order reverse are not included.
b : The hardware resources occupied by the TRNG and Gaussian sampler have been removed.

q = 12289 for lattice-based PQC algorithms are also listed in the table for comparison. As
the FPGA has various types of hardware resources, the ATPs are measured by multiplying
time by the number of LUTs, FFs, DSPs, and BRAMs, respectively, for a comprehensive
comparison. When computing ATPs, the works that do not show frequency are supposed
to run at the same frequency as our design; and the cycle value is set as the average of
NTT and INTT. It can be seen from Table 1 that our NTT is the fastest and has the
smallest ATP compared with the state-of-art NTT designs with the same point numbers
except the ATP measured by FF compared with [BUC19b], which has much larger ATPs
measured with LUT, DSP, and BRAM. Note that the clock cycles in Table 1 do not include
the cycles for the scramble function. If these cycles are considered, our design is more
advantageous, because our design requires only N/4 cycles for the scramble function, while
most other designs generally require N cycles.

[FS19] optimized the last round of INTT and avoided the cycles required by post-
processing. However, this approach does not reduce the computational complexity that
is represented by the number of modular multiplications. That technique requires 6N
Montgomery modular multiplications for the optimized last round of INTT, whereas our
low-complexity INTT requires only N/2 cycles for the last round and avoids the post-
processing of INTT. The price of avoiding post-processing is two additional multipliers,
which are used only in the last round of INTT. As a result, [FS19] requires up to 26 DSPs,
whereas our design requires only 2 DSPs. If the design in [FS19] runs at the same frequency
as ours, its ATPs measured by LUT, FF, DSP, and BRAM are 4.0×, 3.7×, 45.5× and 1.2×
that of our design for N = 1024, respectively. The corresponding speedups of ATPs for
N = 512 are 4.2×, 3.8×, 41.0× and 1.3×. [FSM+19] designed a hardware NTT accelerator
for a PQC processor. Compared with our design, it consumes more registers and DSPs
and almost the same amount of LUTs and less BRAMs, while it requires almost 10× clock
cycles.

[KLC+17] proposed an NTT-based high-performance hardware architecture for NewHope-
USENIX. It uses four BFUs to reduce clock cycles of NTT and uses a variant of Montgomery
reduction to optimize reduction. Its number of BFUs is two times that of ours, whereas
the occupied DSPs are four times that of ours. This is because Montgomery reduction
requires additional multipliers, but our proposed reduction does not. Its clock cycles are
lower than those of our design, benefiting from doubled BFUs, but the occupied hardware
resources are all greater than our design. Considering the two factors, its ATPs measured
by LUT, FF, DSP, and BRAM are 3.4×, 3.7×, 4.0× and 1.7× that of ours, respectively.

[JGCS19] proposed a fast and configurable NTT module, but it did not eliminate

66 Highly Efficient Architecture of NewHope-NIST

either the pre-processing of NTT or the post-processing of INTT. It requires many more
clock cycles than our design. The ATP measured by LUT is similar. However, its ATPs
measured by FF, DSP, and BRAM are 3.1×, 3.5× and 2.3× that of our design, respectively.

[RVM+14] proposed a method to eliminate the pre-processing of NTT for the first
time, but the method cannot be applied to eliminate the post-processing of INTT. It uses
only one multiplier to compute butterfly and twiddle factors on the fly. As a result, it
uses fewer DSPs and BRAMs but requires many more clock cycles. Its ATPs measured by
LUT, FF, DSP and BRAM are 3.8×, 8.0×, 1.4× and 1.7× that of our design, respectively.

[BUC19a] utilized DIT and DIF to eliminate the scramble function of NTT and designed
a unified butterfly architecture for the DIT and DIF. The results on FPGA are exhibited
on an extended version [BUC19b]. The results show that it requires more than 2.1× cycles
than our design. Much more LUTs, DSPs and BRAMs are also required. The possible
reasons are the support of several moduli and single-port memory architecture that asks
for double memory for NTT. It requires very few registers because of one cycle ALU, the
corresponding result of which is that the frequency is as low as 72MHz on the TSMC 40nm
process.

5.2 Implementation Results of NewHope-NIST
The key generation, encryption, and decryption of NewHope-NIST are implemented to-
gether on an FPGA for the parameters N = 1024 and N = 512, respectively. The key
results of our implementation are presented in Table 2. Our NewHope-NIST design is the
fastest and has the smallest ATP compared with the state-of-art NewHope-NIST designs.
The encapsulation/decapsulation of NewHope-CPA-KEM in NewHope-NIST has only
two/one more SHAKE256 than the encryption/decryption of NewHope-NIST, while each
SHAKE256 requires only 26 cycles in our architecture. As a result, they are directly com-
pared. [JGCS19] implemented NewHope-NIST on the same XC7Z020 FPGA device. It con-
sumes 2.5×/2.9× time than our design for the key generation plus decryption/encryption.
When implemented on a higher-end device XCZU4EG (16 nm vs 28 nm) at 2× frequency,
it still consumes 1.2×/1.3× time. Because [JGCS19] supports three algorithms, it is
reasonable that it occupies more hardware resources. [BSNK19] evaluated NewHope-
NIST with high-level synthesis (HLS) on a Virtex-7 FPGA. It requires 163×/451× time,
160×/194× LUTs and 70×/77× registers for encapsulation/decapsulation, compared with
encryption/decryption of our design. The main reasons for the huge difference are probably
our low-complexity NTT/INTT, highly efficient architecture and the relatively inefficient
HLS of [BSNK19]. [FSM+19] implemented NewHope-NIST using a RISC-V-based SoC
with an NTT accelerator and a SHA accelerator. It requires 34 ∼ 47× cycles while
consuming 1.7× LUTs, 1.2× Registers, 13× DSPs and 0.13× BRAMs for only the NTT
and SHA accelerators. [BUC19b] presented a configurable processor for lattice-based PQC.
Its NewHope-NIST consumes 4.8×/8.5×/11.7× and 4.5×/8.1×/11.6× cycles than our
design for the key generation/decryption/encryption for the parameter N to be 1024 and
512, respectively. The occupied LUTs, DSPs, and BRAMs are more than our design, while
the Registers are less. The reasons and consequences are discussed in Section 5.1. In
summary, our design is at least 2.5× faster, and the ATPs are at least 4.9× smaller than
other NewHope-NIST designs on similar devices.

The calculation of key generation/encryption/decryption of NewHope-NIST is similar to
the calculation of Alice0/Bob/Alice1 of NewHope-USENIX and NewHope-Simple. Thereby,
the related works are listed for comparison. NewHope-USENIX is designed for high per-
formance in [KLC+17]. Alice0/Bob/Alice1 of [KLC+17] consumes 1.3×/0.9×/1.3× time
compared with the key generation/encryption/decryption of our design. The performance
of Alice1 is even slightly better than the decryption of our design. However, [KLC+17] con-
sumes approximately 1.8 ∼ 4× hardware resources. Its ATPs measured by LUT, FF, DSP
and BRAM are 3.6×/3.9×/2.4×, 3.0×/3.0×/2.0×, 5.2×/5.0×/3.5× and 2.3×/2.2×/1.5×

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 67

Table 2: Implementation Results of NewHope-NIST on FPGA and Comparison.

Scheme Cycles
(k)

Freq.
(MHz)

Time
(µs) LUT FF DSP BR

AM Device

parameters: N=1024, q=12289

NewHope-NIST
(this work)

Key/Enc/Dec:
8.0/12.5/4.8 200 40/62.5/24 6781 4127 2 8 XC7Z020

NewHope-NIST
[JGCS19]

Key+Dec/Enc:
30.6/34.0 190 160/178 13244 8272 24 18 XC7Z020

NewHope-NIST
[JGCS19]

Key+Dec/Enc:
30.6/34.0 406 75/83 13961 8149 25 18 XCZU4EG

NewHope-NIST
[BUC19b]

Key/Enc/Dec:
38.0/106.7/56.1 - - 14975 2539 11 14 XC7A200T

NewHope-NIST
[BSNK19]

Encaps: 680.1 66.7 10196 135689 26257 - - Virtex-7Decaps: 722 66.7 10825 164937 28999 - -
NewHope-NIST
[FSM+19]a

Key/Encaps/Decaps:
357.1/589.3/167.6 - - 11321 4843 26 1 -

NewHope-USENIX
[KLC+17]

Alice0/Alice1:
6.9/2.8 133 51.9/21.1 18756 9412 8 14 XC7Z020

Bob: 10.3 131 78.6 20826 9975 8 14

NewHope-Simple
[OG19]

Alice0/Alice1:
115.8/55.3 125 918/443 5142 4452 2 4 XC7A35T
Bob: 179.3 117 1532.4 4498 4635 2 4

parameters: N=512, q=12289

NewHope-NIST
(this work)

Key/Enc/Dec:
4.2/6.6/2.5 200 21/33/12.5 6780 4026 2 7 XC7Z020

NewHope-NIST
[BUC19b]

Key/Enc/Dec:
18.7/53.5/29.1 - - 14975 2539 11 14 XC7A200T

RLWE
[RVM+14]

Enc/Dec:
13.3/5.8 278 47.9/21 1536 953 1 3 V6LX75T

RLWE
[RV17]b

Enc: 1.2 231 5.2 31880 31540 28 226c
EP4SGXDec: 0.64 232 2.8 7272 8641 24 20c

parameters: N=640, q=32768

FrodoKEM
[HOKG18]

Key: 3277 167 19622 6621 3511 1 6
XC7A35TEncaps: 3318 167 19867 6745 3528 1 11

Decaps: 3359 162 20733 7220 3549 1 16

parameters: N=976, q=65536

FrodoKEM
[HOKG18]

Key: 7621 167 45632 7155 3528 1 8
XC7A35TEncaps: 7683 167 46006 7209 3537 1 16

Decaps: 7746 162 47811 7773 3559 1 24
a : The hardware resources occupied by RISC core and Peripherals/Memory have been removed.
b : The data are from the cryptoprocessors R2M-LBE/LBD with radix-2 butterfly as our design.
c : This BRAM is 9K.

that of our design (Alice0/Bob/Alice1 vs key generation/encryption/decryption), respec-
tively. NewHope-Simple is optimized for area in [OG19]. It occupies 0.5 ∼ 1.1× hardware
resources, but requires 18 ∼ 25× time. The ATPs of [OG19] are approximately 9 ∼ 28×
that of our design. Note that [KLC+17] and [OG19] realized the schemes on two inde-
pendent hardware components, whereas the three functions are all realized on a single
hardware component in our design. Therefore, the hardware resource advantage of our
design is actually larger.

Some other implementations of lattice-based PQC algorithms are also listed in Table 2,
although they cannot be directly compared with our design because of significant differences
in algorithms and parameters. [RVM+14] and [RV17] implemented an RLWE encryption
scheme introduced in [LPR10]. [RVM+14] requires more time but consumes much fewer
hardware resources than our design. One important reason is that the Keccak module
for SHA3 occupies 4333 LUTs and 2262 Registers, which account for 63.9% and 56.2% of

68 Highly Efficient Architecture of NewHope-NIST

the total hardware resources in our design, whereas there is no Keccak in the design of
[RVM+14]. [RV17] requires less time but consumes much more hardware resources than
our design because it uses the multiple-path delay commutator (MDC) architecture for
NTT, which achieves high throughput at the cost of a large number of hardware resources.
Compared with the implementation of FrodoKEM [HOKG18], our design achieves more
than 300× performance advantage while consuming a similar amount of hardware resources.

For RLWE-based PQC, several masking schemes have been proposed against differential
power analysis (DPA). [RRdC+16, RSRVV15] proposed a masking method to split the
secret polynomial into two random shares. [RdCR+16] inspired additive homomorphic
masking by introducing encryption on a secret random message in the decryption algorithm.
[BUC19a] discussed the application of the additive homomorphic masking in NewHope.
[OSPG18] also used randomized sharing in their masked RLWE implementation. In the
computing perspective, most of the masking schemes are on the NTT level or higher. The
main overhead of these maskings is due to the additional NTTs introduced by the maskings.
The low-complexity NTT/INTT can be used in these masking schemes if the ability to
resist DPA requires strengthening. Note that the LUTs and Registers consumed by the
NTT/INTT only occupy 12.5% and 9.1% of the entire NewHope-NIST. As a result, the
cost of the maskings can be relatively small if additional NTT/INTT hardware is equipped
for masking of NewHope-NIST.

6 Conclusion
This paper presents a highly efficient architecture of NewHope-NIST using low-complexity
NTT/INTT. The implementation results show that the low-complexity NTT/INTT and
the architecture of NewHope-NIST have a clear advantage in speed and ATP. Furthermore,
the low-complexity NTT/INTT can benefit other NTT-inside algorithms, such as Crystals-
Kyber[ABD+19], Crystals-Dilithium[DKL+19], qTesla[BAA+19]) and Falcon[FHK+19]. It
will be interesting and essential to take further measures to resist side-channel analysis on
our implementation. Constant execution time is realized, and the cost of countermeasure
against DPA is discussed for our implementation. However, specific countermeasures
against side-channel analysis, such as power analysis and electromagnetic analysis, and
the protective effects are not covered in this work.

Acknowledgments
This work is supported in part by the National Natural Science Foundation of China
(Grant No. 61672317) and in part by the National Key R&D Program of China (Grant No.
2018YFB2202101). We thank Min Zhu from Wuxi Micro Innovation Integrated Circuit
Design Co.Ltd for his help in engineering. We also thank the editors and reviewers for
their valuable comments.

References
[AAB+19] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,

Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. Newhope:
algorithm specification and supporting documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project (2019),
2019. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 69

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the first round of
the nist post-quantum cryptography standardization process. NISTIR 8240,
January 2019. https://doi.org/10.6028/NIST.IR.8240.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. Crystals-kyber: algorithm specification and support-
ing documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project (2019), 2019. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[ACZ18] Dorian Amiet, Andreas Curiger, and Paul Zbinden. Fpga-based accelerator
for post-quantum signature scheme sphincs-256. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(1):18–39, Feb, 2018.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange—a new hope. In 25th USENIX Security Symposium
(USENIX Security 16), pages 327–343, Austin, TX, August 2016. USENIX
Association.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Newhope
without reconciliation. Cryptology ePrint Archive, Report 2016/1157, 2016.
https://eprint.iacr.org/2016/1157.

[APS13] A. Aysu, C. Patterson, and P. Schaumont. Low-cost and area-efficient fpga
implementations of lattice-based cryptography. In 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pages 81–86,
June 2013.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Jo-
hannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick
Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qtesla:
algorithm specification and supporting documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project (2019),
2019. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
Quantum Cryptography. Springer-Verlag Berlin Heidelberg, 2009.

[BPC19] U. Banerjee, A. Pathak, and A. P. Chandrakasan. 2.3 an energy-efficient
configurable lattice cryptography processor for the quantum-secure internet
of things. In 2019 IEEE International Solid- State Circuits Conference -
(ISSCC), pages 46–48, Feb 2019.

[Bra16] M. Braithwaite. Experimenting with post-quantum cryptography. Google
Security Blog, Jul 2016. https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html.

[BSNK19] Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri. Nist
post-quantum cryptography- a hardware evaluation study. Cryptology ePrint
Archive, Report 2019/047, 2019. https://eprint.iacr.org/2019/047.

https://doi.org/10.6028/NIST.IR.8240
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2016/1157
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2019/047

70 Highly Efficient Architecture of NewHope-NIST

[BUC19a] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 4(3):17–61,
Aug, 2019.

[BUC19b] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire:
A configurable crypto-processor for post-quantum lattice-based protocols
(extended version). Cryptology ePrint Archive, Report 2019/1140, 2019.
https://eprint.iacr.org/2019/1140.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of Computation, 19(90):297–301,
May 1965.

[DB16] C. Du and G. Bai. Towards efficient polynomial multiplication for lattice-
based cryptography. In 2016 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1178–1181, May 2016.

[DKL+19] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium: algorithm specification
and supporting documentation. Submission to the NIST Post-Quantum
Cryptography Standardization Project (2019), 2019. https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions.

[FHK+19] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: algorithm specification and support-
ing documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project (2019), 2019. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[FS19] T. Fritzmann and J. Sepúlveda. Efficient and flexible low-power ntt for lattice-
based cryptography. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 141–150, May 2019.

[FSM+19] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlicht-
mann, and J. Sepulveda. Towards reliable and secure post-quantum co-
processors based on risc-v. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1148–1153, March 2019.

[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), pages 563–578, New York, NY, USA, 1966. ACM.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Guneysu. Standard
lattice-based key encapsulation on embedded devices. cryptographic hardware
and embedded systems, 2018:372–393, 2018.

[JGCS19] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar
Sanadhya. Spqcop: Side-channel protected post-quantum cryptoprocessor.
Cryptology ePrint Archive, Report 2019/765, 2019. https://eprint.iacr.
org/2019/765.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High performance post-quantum key
exchange on fpgas. Cryptology ePrint Archive, Report 2017/690, 2017. https:
//eprint.iacr.org/2017/690.

https://eprint.iacr.org/2019/1140
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/765
https://eprint.iacr.org/2019/765
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2017/690

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei and Leibo Liu* 71

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, pages 1–23, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[LSSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim,
and Ingrid Verbauwhede. Efficient ring-lwe encryption on 8-bit avr processors.
In Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and
Embedded Systems – CHES 2015, pages 663–682, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[LSW01] Hsin Fu Lo, Ming Der Shieh, and Chien Ming Wu. Design of an efficient
fft processor for dab system. In IEEE International Symposium on Circuits
and Systems, IEEE International Symposium on Circuits and Systems, pages
654–657 vol. 4, 2001.

[Moo19] Dustin Moody. Round 2 of the nist pqc "competition" - what
was nist thinking? PQCrypto 2019 in Chongqing, China, May
2019. https://csrc.nist.gov/Presentations/2019/Round-2-of-the-NIST-PQC-
Competition-What-was-NIST.

[NIS15] NIST. Fips pub 202 – sha-3 standard: Permutation-based hash and extendable-
output functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.202.pdf.

[NIS16] NIST. Announcing request for nominations for public-key post-quantum
cryptographic algorithms. 81 Federal Register 92787, December 2016. https:
//federalregister.gov/a/2016-30615.

[OG19] Tobias Oder and Tim Güneysu. Implementing the newhope-simple key
exchange on low-cost fpgas. In Tanja Lange and Orr Dunkelman, editors,
Progress in Cryptology – LATINCRYPT 2017, pages 128–142, Cham, 2019.
Springer International Publishing.

[Ope] OpenCores. Sha3(keccak). https://opencores.org/projects/sha3. [On-
line; accessed 09-November-2012, updated 11-October-2018].

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical cca2-secure and masked ring-lwe implementation. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 1:142–174, Feb, 2018.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware. In Alejandro Hevia
and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT 2012,
pages 139–158, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit atxmega microcontrollers. In Kristin
Lauter and Francisco Rodríguez-Henríquez, editors, Progress in Cryptology
– LATINCRYPT 2015, pages 346–365, Cham, 2015. Springer International
Publishing.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES
2017, pages 513–533, Cham, 2017. Springer International Publishing.

 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS. 202.pdf.
 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS. 202.pdf.
https://federalregister.gov/a/2016-30615
https://federalregister.gov/a/2016-30615
https://opencores.org/projects/sha3

72 Highly Efficient Architecture of NewHope-NIST

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and
Ingrid Verbauwhede. Additively homomorphic ring-lwe masking. In Tsuyoshi
Takagi, editor, Post-Quantum Cryptography, pages 233–244, Cham, 2016.
Springer International Publishing.

[RRdC+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and
Ingrid Verbauwhede. Masking ring-lwe. Journal of Cryptographic Engineering,
6(2):139–153, Jun 2016.

[RSRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-lwe implementation. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems – CHES
2015, pages 683–702, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[RV17] C. P. Rentería-Mejía and J. Velasco-Medina. High-throughput ring-lwe cryp-
toprocessors. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(8):2332–2345, Aug 2017.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In Lejla
Batina and Matthew Robshaw, editors, Cryptographic Hardware and Embedded
Systems – CHES 2014, pages 371–391, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[RVVV17] S. S. Roy, F. Vercauteren, J. Vliegen, and I. Verbauwhede. Hardware as-
sisted fully homomorphic function evaluation and encrypted search. IEEE
Transactions on Computers, 66(9):1562–1572, Sep. 2017.

[SD18] S. Streit and F. De Santis. Post-quantum key exchange on armv8-a: A new
hope for neon made simple. IEEE Transactions on Computers, 67(11):1651–
1662, Nov 2018.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Nov 1994.

[WHEW14] W. Wang, X. Huang, N. Emmart, and C. Weems. Vlsi design of a large-
number multiplier for fully homomorphic encryption. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 22(9):1879–1887, Sept 2014.

[Win96] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag,
Berlin, Heidelberg, 1996.

	Background
	NewHope-NIST
	NTT and INTT

	Low-Complexity NTT and INTT
	Low-Complexity NTT
	Low-Complexity INTT

	Architecture of the Low-Complexity NTT/INTT
	The Overall Architecture of NTT/INTT
	Compact Butterfly Unit
	Modular Reduction

	Architecture of NewHope-NIST
	Results and Comparison
	Implementation Results of NTT/INTT
	Implementation Results of NewHope-NIST

	Conclusion

