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Abstract. We take advantage of a recently published open source implementation
of the AES protected with a mix of countermeasures against side-channel attacks
to discuss both the challenges in protecting COTS devices against such attacks and
the limitations of closed source security evaluations. The target implementation has
been proposed by the French ANSSI (Agence Nationale de la Sécurité des Systèmes
d’Information) to stimulate research on the design and evaluation of side-channel
secure implementations. It combines additive and multiplicative secret sharings
into an affine masking scheme that is additionally mixed with a shuffled execution.
Its preliminary leakage assessment did not detect data dependencies with up to
100,000 measurements. We first exhibit the gap between such a preliminary leakage
assessment and advanced attacks by demonstrating how a countermeasures’ dissection
exploiting a mix of dimensionality reduction, multivariate information extraction and
key enumeration can recover the full key with less than 2,000 measurements. We then
discuss the relevance of open source evaluations to analyze such implementations
efficiently, by pointing out that certain steps of the attack are hard to automate without
implementation knowledge (even with machine learning tools), while performing them
manually is straightforward. Our findings are not due to design flaws but from the
general difficulty to prevent side-channel attacks in COTS devices with limited noise.
We anticipate that high security on such devices requires significantly more shares.
Keywords: Side-Channel Attacks · Security Evaluations · Certification · Affine Mask-
ing · Shuffling · Worst-Case (Multivariate) Analysis · Open Source Design

Introduction
General context. The main motivation of this work is to discuss and illustrate a worrying
(and potentially increasing) gap between academic research and industrial practice in the
field of embedded security. Our starting observation for this purpose is that the design
of concretely relevant side-channel countermeasures is now widely accepted as a critical
ingredient for the security of embedded devices that are deployed in an increasing amount
of applications. The recent NIST competition stating this as an explicit goal is one good
illustration of this trend.1 Yet, the meaning of what is concretely relevant in this field of
study is still a matter of quite subjective interpretation. We argue that this state of affairs
is at least in part due to the very different (open source vs. closed source) models in which
academic research and industrial practices perform their investigations.

On the one hand, recent academic research has been strongly focused on the understand-
ing of the basic mechanisms that can lead to any kind of “physical security amplification”,
which is typically obtained in an open source setting. As generally accepted in cryptography
(and formalized by Kerckhoffs’ principle), the hope of this line of works is to implement
objects for which security can be argued based on a mix of physical assumptions and

1 https://csrc.nist.gov/projects/lightweight-cryptography
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mathematical analysis, without relying on the secrecy of the countermeasures implemented.
The most prominent example of such investigations is masking [CJRR99], which has been
formally analyzed in different models [ISW03, PR13, DDF14, DFS15, BDF+17]. Roughly,
masking can amplify the noise in the side-channel measurements exponentially [DDF14],
at the cost of quadratic performance overheads. Yet, reaching high security levels us-
ing Commercially available Of The Shelf (COTS) components typically requires a large
number of shares (see [JS17, GPSS18] for recent discussions in software) and therefore
performance overheads which may at some point exceed the limits imposed by industrial
application constraints.2 Various other countermeasures have been introduced and ana-
lyzed, ranging from heuristic to formal. We mention shuffling [HOM06, VMKS12] and
re-keying [MSGR10, DKM+15] as popular examples.

On the other hand, public reports of side-channel analysis against real-world devices are
actually scarce and mostly limited to unprotected (or weakly protected) implementations. In
this line of works, an important part of the contribution generally lies in the understanding
of the (protocols and algorithms) specifications and implementation, in order to exhibit an
attack vector [RSWO17]. Once such a (time-consuming) reverse engineering is completed,
the actual side-channel attack is usually simple. Typical examples include attacks against
the Keeloq hopping scheme [EKM+08], against FPGA bitstream encryption [MBKP11],
against (unprotected) SIM cards [ZYSQ13] or more recently against IoT devices [RSWO17,
DK18]. While these works are very important to increase the awareness that side-channel
attacks are quite accessible with limited equipment, they are not very informative regarding
the level of security of more protected (possibly certified) products.

In this respect, an additional source of gap is that current certification schemes favor
“security by obscurity”. Namely, making implementations public may currently reduce the
certification levels since the use of “sensitive information” in an attack increases its “com-
plexity”, as perceived by certification schemes [LR10, Lib19]. In general, one may certainly
wonder about the long-term relevance of relying on the secrecy of an implementation (in
view of the history of failures of closed source cryptographic designs [BSW00, GdKGM+08]).
Concretely, our perception is that such a policy prevents academic research to be of any
direct use in improving the security of deployed products, since (i) the reverse engineering
effort has usually little value from a scientific viewpoint, and (ii) the publication of any
result of an attack against a certified product, even performed under responsible disclosure
practices, has good chances being blocked at a legal level. So while it is generally assumed
that certified products are based on a mix of countermeasures, how these countermeasures
are mixed and how their security is assessed can only be speculated.

Considering this general context, the recent publication of an AES implementation
protected against side-channel attacks thanks to a mix of countermeasures, purposed for
an accessible COTS device, namely an STM32 chip that is based on an ARM Cortex-M4
architecture, by a team from the French ANSSI (Agence Nationale de la Sécurité des
Systèmes d’Information), is a very welcome initiative [BKPT].

Besides the effort in publishing an open source library mixing state-of-the-art coun-
termeasures aimed at a minimum security level, the ANSSI implementation also comes
with a preliminary leakage assessment that we can hope is reflective of the first (minimum)
steps that an evaluation laboratory would perform, namely leakage detection [SM16] /
SNR computations [Man04] and basic (1st-, 2nd- and 3rd-order) divide-and-conquer at-
tacks [SVO+10]. So while this implementation was not claimed to be designed to pass
certification nor to be usable for commercial applications, it is at least a useful starting
point for research purposes, since it was developed and analyzed by a team of experts
with both academic and industrial experience. More specifically, it can be used to guide

2 Similar challenges appear in hardware, with slight variations. For example, better noise levels can
usually be achieved but physical defaults such as glitches may lead to additional implementation constraints,
especially in the composition of masked gadgets at high security orders [NRS11, GMK17, MMSS19].
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research towards a better understanding of three important questions, namely (i) how to
evaluate such a mix of countermeasure in a (close to) worst-case manner; (ii) which security
levels can be reached by software implementations with low number of shares in (e.g.,
ARM-based) COTS devices (that are typical targets for deployment in IoT applications);
and (iii) how much the knowledge of the target implementation is critical to reach such a
worst-case understanding of the physical security level?

Contributions. Based on this state-of-the-art, we start by tackling the first two afore-
mentioned questions related to the security evaluation of protected cryptographic imple-
mentations. Precisely, we use the ANSSI software library in order to discuss how much
the preliminary leakage assessment that comes with this implementation can be used as
an indicator of a quantitative (close to worst-case) security level. For this purpose, we
investigate the problem of evaluating combined countermeasures and their effectiveness.

In this respect, preliminary leakage assessments based on simple detection tools are
typically reflecting the informal expectation that the security of each countermeasure leads
to a (strong) multiplicative impact on the security level. We mitigate this expectation
thanks to methodological and technical tweaks.

At a high level, we use knowledge of the implementation to perform countermeasures’
dissection. By dissection, we mean a detailed analysis of each ingredient of a protected
implementation, in order to limit their (combined) impact as much as possible. We note
that from a complexity viewpoint, a dissection attack is not equivalent to a divide-and-
conquer one. Divide-and-conquer attacks turn a multiplication of complexities into a sum.
This is what happens when performing 16 independent DPAs against the 16 key bytes of
the AES (which has a time complexity ∝ 16 · 28) rather than performing an exhaustive
search on the full key (which has a time complexity of 2128). In a dissection attack, the
complexities of different countermeasures are still multiplied, but the adversary aims at
keeping the attack factors as close to one as possible.

At a low level, we use more advanced (multivariate) information extraction tools.
Precisely, the ANSSI implementation is mixing an affine masking scheme [FMPR10] with
a shuffled execution. We show that a Principal Component Analysis (PCA) can be used
to recover the multiplicative mask of the affine masking in full [APSQ06], that some
parts of the implementation are weakly (or not) shuffled, that a multivariate higher-order
template attack can significantly reduce the number of samples needed to circumvent the
remaining shuffling and additive masks [CRR02], and that key enumeration can be used to
additionally reduce the data complexity of the attack [PSG16]. Our tools remain simple
(e.g., we do not exploit algebraic/analytical techniques [RSV09, VGS14, GS15, GRO18])
and the risks of pre-computed tables in masking was put forward in [TWO13, BGNT18]).
Yet, their combined impact is strong: preliminary leakage assessments did not detect data
dependencies with up to 100,000 measurements. We recover a full key with less than 2,000
measurements. Our evaluations further indicate that reaching high security levels with the
same masking scheme on a Cortex-like device would require a large number of shares.

As a side-result, we briefly discuss the impact of using different implementations of
the same Cortex-M4 architecture, with different measurement setups. We observe that
conclusions are similar (i.e., the same instructions can be targeted essentially in the same
way) with some limited variations in the measurement noise and attack complexities.

Following these findings, our second goal is to analyze how much the knowledge of
the implementation details is useful to gain such a better understanding of the worst-case
security level. We link this question to recent (and numerous) attempts to improve security
evaluations thanks to machine learning / deep learning. In this context, a recurrent claim
is that machine learning / deep learning has the potential to simplify / automate some
(most?) of the attacks steps. For example, it has been shown that machine learning /
deep learning can limit the need to synchronize traces and to identify their points of
interests (see [HGM+11, HZ12, LMBM13, LPB+15, CDP17, PSK+18, ZS19, ZBHV20] for
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a few examples), while some works further argue that such tools can succeed in a fully
black box / automated manner and without knowledge / understanding of the underlying
implementation [Tim19, BP19]. Our results suggest that despite the latter claim could be
demonstrated in some previous studies where at most one countermeasure was implemented
at a time, such an automation may not always succeed with low complexities in case of
combined countermeasures. In particular, our experiments show that countermeasures
dissection may benefit from manual expertise and highly improve the attack complexities.
For example, our attacks recover the multiplicative mask of an affine masking scheme and
therefore perform a field multiplication in order to retrieve sensitive information. Learning
this field multiplication in a fully automated manner appears to be a challenging task for
existing machine learning / deep learning tools (besides being a waste since this part of the
attack is trivial to perform manually). So while our results do not rule out the possibility
for such tools to succeed eventually, they question their efficiency for doing so. Concretely,
we believe our work at least states an interesting challenge to machine learning / deep
leaning research: can the ANSSI implementation be broken in less than 2,000 traces in a
black box manner (and with similar time complexities and profiling efforts as ours)?3

1 Background
In this section, we first recall the countermeasures implemented in [BKPT]. Then, the
statistical estimation tools used to perform the attack are listed and described.

1.1 Affine Masking
The targeted library implements the affine masking scheme proposed in [FMPR10] to
protect the AES. All the operations are performed over the Galois Field GF(28). In such a
masking scheme, the sensible value x (i.e., the Sbox output) is encoded thanks to

C(x; rm, ra) = (rm ⊗ x)⊕ ra, (1)

where C(·) is the encoding function, rm the multiplicative mask and ra the additive mask.
The multiplicative mask is uniformly distributed over {1, . . . , 255} allowing to invert the
multiplication. The additive mask is uniformly distributed over {0, . . . , 255}.

The main challenge in such a masking scheme is to implement the AES Sbox. Before
every encryption, an alternative Sbox′ is pre-computed depending on two additional
additive masks rin and rout as well as rm. During the encryption, the Sbox is applied to
the encoding of x following

C(Sbox(x); rm, ra) = Sbox′(C(x; rm, ra)⊕ rin ⊕ ra)⊕ ra ⊕ rout. (2)

That is, a look-up table to the alternative Sbox′ is made while the additive mask ra is
locally canceled and replaced by the input and output masks rin and rout (that correspond
to the pre-computed table). In the studied implementation, one ra per byte is required
and a single alternative Sbox′ is pre-computed for all the bytes, meaning that a single
rm, rin and rout triple is used, leading to randomness requirements per encryption of 19
bytes. In the rest of the paper, ~C denotes the encoded 4 × 4 matrix of the AES state.
Similarly, ~Ra corresponds to the 16 additives masks consistent with the encoding ~C. The
MixColumns operation can be performed on each column of ~C and ~Ra independently.

3 We insist that our questioning is not about the interest of machine learning / deep learning algorithms
as useful tools (among others) for side-channel analysis in general, but about the need to know and exploit
implementation details and expert knowledge in order to reach a good quantitative understanding of the
worst-case security level of an implementation efficiently.
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1.2 Shuffling
On top of the previously exposed affine masking, the targeted implementation is using
operations’ shuffling [VMKS12]. Therefore, some sets of independent operations are
performed in a randomized order. For the Sbox executions and for ShiftRows, permutations
p~C and p ~Ra

over the set {0, . . . , 15} are generated based on a 16-bit random seed. For
MixColumns, smaller permutations p′~C and p′~Ra

over the set {0, . . . , 3} are generated based
on a 2-bit random seed. In the following, we will assume that the first permutations cannot
be enumerated while the second ones can trivially (making them similar to the weaker
random start index shuffling discussed in [VMKS12]).

A high-level view of how the affine masking and shuffling countermeasures are combined
in the ANSSI implementation is given in Figure 1.
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Figure 1: Combined (affine masking + shuffling) countermeasures: high-level view.

1.3 Statistical Tools
One of the main challenge in side-channel analysis is to estimate a Probability Density
Function (PDF) f[x|~l] where x is an internal state and ~l the observed (possibly multivariate)
leakage sample. Such a PDF can (for example) be estimated with Gaussian templates
(gT) [CRR02]. There, the adversary uses a clone device to estimate the distribution of the
leakage conditioned on x under a Gaussian assumption, namely

f[~l|x] = 1√
(2π)k|~Σx|

exp− 1
2 (~l−~µx)′~Σx(~l−~µx) . (3)

As a result, she has to estimate the co-variance matrix ~Σx and the mean ~µx for each
possible intermediate variable x ∈ X. Bayes’ theorem is used to obtain the probability

Pr[x|~l] = f[~l|x]∑
x∗∈X f[~l|x∗]

, (4)

which will be later used to mount the attack.



6 Side-Channel Countermeasures’ Dissection

The Signal-to-Noise Ratio (SNR) metric can be used to determine the available (first-
order) signal about x within the leakage traces [Man04]. In such a situation, the signal is
assumed to lie in the means of the leakage samples. The SNR can be estimated as

ˆSNR = E[µ2
x − E[µx]]
E[σ2

x]
, (5)

where E[·] is the expectation operator. The SNR is also useful in order to highlight all
the so-called Points-Of-Interest (POIs) in the traces (i.e., the points that contain first-
order information about x). Such a preliminary inspection allows determining the points
for which it is useful to build a Gaussian template. So it can be viewed as a simple
dimensionality reduction technique. A slightly more advanced dimensionality reduction is
PCA. In [APSQ06], the authors showed how to use PCA as a pre-processing before launching
a template attack. In short, it takes as input a trace with a high number of dimensions and
outputs a reduced trace with at most |X| − 1 dimensions, while maximizing the inter-class
variance (i.e., the upper term of Equation (5)).

Similarly to classical gTs, Multi-Layer Perceptrons (MLP) can be used as an estimation
tool allowing to compute a metric f̃[~l|x] used later as an alternative to a template’s PDF.
An MLP is composed of layers each containing nodes. The nodes of sub-sequent layers are
connected in a forward manner. Each of them outputs a weighted sums of their inputs
applied to a non-linear function called activation function. The weights are estimated with
the back-propagation algorithm during the profiling phase. The meta-parameters of the
MLP must also be selected during the profiling phase. We refer to [Bis07] for the details.

2 Code Inspection / Countermeasures’ Dissection
In this section, we discuss different attack vectors that are exploitable in the protected
implementation from [BKPT]. First, a generic distinguisher strategy is proposed. Second,
the generic equation is simplified based on reasonable hypotheses (that we discuss in this
section and will validate experimentally in the next sections). This allows a significant
improvement of the attacks’ time complexity. Third, we dissect the combination of
countermeasures and describe how the different ingredients of the ANSSI implementation
can be analyzed separately, in order to reduce the attacks’ data complexity. Finally, four
different attack strategies are proposed for comparison purposes.

2.1 Generic Distinguisher
In order to mount a successful attack, a side-channel distinguisher is interested in the
probability of an intermediate variable X depending on the secret key (e.g., the output of
the Sbox) given a fresh leakage sample. In the case of affine masking, the secret value x is
protected with two random masks rm and ra, so we need to compute

f[l|xi] =
∑
rm

∑
ri

a

f[l|rm, ria, ci = (xi ⊗ rm)⊕ ria] · Pr[ria] Pr[rm] , (6)

where the exponent i denotes the targeted byte. This equation sums over all the possible
masks weighted by their (uniform) probability. Given these masks, the likelihood to observe
the leakage l conditionally to xi is computed. This expression can latter be used by a
distinguisher to apply the Bayes’s law and recover the secret key.

If a shuffled execution is used on the top of the affine masking, the probabilities of the
shuffled states also have to be computed by summing over the shuffled cycles (and possibly
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permutations). A generic expression for the corresponding conditional PDF was given
in [VMKS12]. Using our notations, it can be written as

f[l|rm, ria, ci] =
∑
o1

g(o1, i, l
′
1)∑

o′1
g(o′1, i, l′1) ·

∑
o2

g(o2, i, l
′
2)∑

o′2
g(o′2, i, l′2) · f[lo1 , lo2 |rm, ria, ci, o1, o2] , (7)

where o1 and o2 respectively correspond to the cycles/operations’ indexes where ci and
ria can be manipulated. The leakages about both permutations are denoted as l′1 and l′2.
The leakage about ci (resp. ria) is written as lo1 (resp. lo2) when manipulated at index o1
(resp. o2). The function g(·) depends on the permutation and the attacker strategy. We
detail the functions used for this work in Subsection 2.3.

2.2 Time Complexity Improvements
The previous generic expression implies a need to estimate a large (and hardly realistic)
number of PDFs (aka templates). Indeed, a direct/exhaustive profiling requires to estimate
a template for every combination of rm,ria and ci as well as for the indexes when they
are manipulated, leading to a total of 255 · 28 · 28 · |o1| · |o2|. Hereafter, we show how
the profiling and attack time complexities can be reduced by exploiting an independence
assumption in Equation (6). For this purpose, we first assume that the leakage l is
composed of three leakages with independent noise (which is natural in the context of
software implementations). The previous equation then becomes

f[l|xi] =
∑
rm

∑
ra

f[lrm |rm] · f[lri
a
|ria] · f[lci |ci] · Pr[ria] · Pr[rm] , (8)

where l? is the leakage about the share ?. This simplification allows one to target the
permutation on each of the shuffled shares independently and not jointly as performed in
Equation (7). This results in equations

f[lci |ci] =
∑
o1

g(o1, i, l
′
1)∑

o′1
g(o′1, i, l′1) f[lo1 |ci, o1] , (9)

and
f[lri

a
|ria] =

∑
o2

g(o2, i, l
′
2)∑

o′2
g(o′2, i, l′2) f[lo2 |ria, o2] . (10)

Therefore, the profiling time complexity is greatly simplified (with direct impact on
the data complexity). Namely, the number of templates to estimate is reduced to only
255 + 28 · |o1|+ 28 · |o2|. Additionally, in the direct/exhaustive profiling, a fresh profiling
trace l can only be used to estimate a single template since it corresponds to a single
combination of secret values (i.e., shares and permutations). Thanks to the independence
assumption, that trace can be separated in independent l?’s, each being used to update a
template. Consequently, for a fix number of available profiling traces, each of the PDFs will
be estimated with more samples, leading to more accurate templates (i.e., less estimation
errors) with less data complexity.

The introduced independence assumption also has a (more limited) positive impact on
the complexity of the online attack. Namely, the computation of Equation (8) is slightly
improved compared to Equation (6). Indeed, the impact of the two permutations can
be estimated separately, reducing the number of sums it induces from |o1| · |o2| down to
|o1| + |o2|. In Subsection 2.3, we show how the attack complexity can be further (and
significantly) improved by exploiting countermeasures’ dissection.

As already mentioned, the proposed independence assumption is natural in the context
of software implementations where the shares are manipulated in different clock cycles. Yet,
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it requires that the noise variables of the different shares are uncorrelated to a sufficient
extent, which may of course not be perfectly fulfilled. Our following experimental results
will show that this assumption leads to excellent attack results (yet that a machine learning
based attack escaping this assumption leads to mild improvements).

2.3 Countermeasures’ Dissection
Based on the previous abstractions, we can now easily describe the goal of countermeasures’
dissection. Namely, and in order to reduce the data complexity of the attacks, the goal of
such a dissection is to try biasing the weights of each sum in Equation (8), ideally to the
point where there is a single possible event (i.e., mask, permutation) to consider. To do so,
sub-attacks are performed against each single trace in order to (at least partially) recover
ephemeral secrets such as the multiplicative mask rm. For example, the previous equation
can be rephrased by using Bayes’s law as

f[l|xi] =

 1
|ra||rm|

·
∑
r′m

f[lr′m |r
′
m]

 ·∑
rm

∑
ri

a

Pr[rm|lrm ] · f[lri
a
|ria] · f[lci |ci]

= α ·
∑
rm

Pr[rm|lrm
] ·

∑
ri

a

f[lri
a
|ria] · f[lci |ci]. (11)

There, the factor α does not need to be computed since it is independent of x and will
therefore be canceled in Equation (4) (i.e., when the attack is performed). Expressed in
that form, it appears that the probability of the multiplicative mask rm given the leakage
sample is first computed. This is equivalent to a partial attack on that secret value of
which the output is used to attack the complete scheme.

In the case this sub-attack is successful, Pr[rm|lrm
] will be close to one for the correct

rm and close to zero for all the remaining possibilities. In that case, only the sum over ra
must be performed for the correct rm. This reduces the number of sums by a factor 255
and completely cancels the impact of this mask on the data complexity. In the following,
we will show that such a partial attack on rm is successful with an accuracy of 100%
(thanks to the heavily leaking pre-computation that manipulates this mask).

A similar approach can be used to skip the sum over |o1| and |o2| in Equation (9)
and Equation (10). The main observation in this case is that the ANSSI implementation
contains two permutations: one over the 16 Sboxes, one over the 4 MixColumns. As a
result, a natural target for an adversary is to try recovering the smaller permutation (and
to sum over all the remaining candidates, which can be easily done). Using the terminology
of [VMKS12], it means that we can anyway exploit a direct permutation leakage. In this
case, we take g(o1, i, l

′
1) = f[l′1|o1 = col(i)], where col(i) corresponds to the index of the

processed column in which the byte i is contained (the same holds with o2 and l′2). And in
case more than one permutation remains possible, we can simply sum over the remaining
ones.4 As a result, the previous equation can be rephrased as

f[lci |ci] =
∑
o1

f[l′1|o1 = col(i)]∑
o′1

f[l′1|o′i = col(i)] f[lo1 |ci, o1]

=
∑
o1

Pr[o1 = col(i)|l′1] · f[lo1 |ci, o1], (12)

thanks to Bayes’s law. Additionally, since a 2-bit seed is used to generate the MixColumns
permutation, o1 = col(i) is only true for a single seed value. Taking advantage of these

4 Which is in strong contrast with an attack against the permuted Sboxes where enumerating over
16! ≈ 244 is hardly practical. This is why it is advised in [VMKS12] to perform 12 dummy MixColumns
operations so that this part of the AES implementation can be sufficiently shuffled as well.
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observations, we will show in the following that a sub-attack against the seed of the
permutation reaches a 98% accuracy, only leading to a very limited increase of the attack
data complexity. As for the time complexity, the only remaining sum after the dissection
presented here is over the 256 additive masks.

One may note that an extreme version of the countermeasures’ dissection proposed
here would be to directly express the ANSSI implementation as a factor graph and to
take advantage of algebraic/analytical attacks [RSV09, VGS14, GS15, GRO18], where a
similar independence assumption and a similar knowledge of the implementation details
are also exploited, yet with more complex tools. We leave the investigation of such attacks
as an interesting scope for further investigation.

2.4 Exemplary Attack Strategies
Before moving to concrete experiments, we finally specify a few representative (more or
less powerful) attacks against the ANSSI implementation. Concretely, they are all based
on the computation of Equation (8) exploiting the leakage of different operations.

Looking at Figure 1, it appears that an adversary at least has to target one operation
involving ~C and one operation involving ~Ra. Depending on this choice, the signal available
from the leakage samples as well as the effectiveness of the shuffling countermeasure (e.g.,
if only MixColumns is considered) may change, leading to different attack complexities.

Our four instantiated adversaries are:

• A1 obtains information about ~C by targeting the XOR of the state with rout.
This operation is not shuffled making the estimation of f[lic|ci] straightforward.
Information about ~Ra is extracted from the shuffled MixColumns with the complete
sum of Equation (12). We note that this attack path could be easily avoided by
shuffling the XOR operation. The number of sums to perform is 28 · 4.

• A2 targets MixColumns for both shares but does not exploit the permutation leakage.
Therefore, she has to perform the sum of Equation (9) and Equation (10) with
g(·) = 1/4. Hence, the number of sums to perform is equal to 28 · (4 + 4).

• A3 is similar to A2 but does exploit the MixColumns permutation leakage. She
explicitly computes the sum over all the possible indexes with Equation (12).

• Finally, A4 is equivalent to A3 but only considers one (i.e., the most likely) event
in Equation (12) in order to limit the number of sums to 28.

All these attacks will be performed, compared and discussed next. First, in Subsec-
tion 3.3, the PDFs will be estimated under a Gaussian assumption (possibly exploiting PCA
for dimensionality reduction). Next, in Section 4, we show how a MLP can used to estimate
the leakage on each of the shares individually, leading to slightly improved performances.
In between, we discuss the limitations of black box security evaluations.

3 Experimental Results
In this section, we show how practical attacks can be performed against the ANSSI library.
First, the measurement setup is described. Then, the profiling phase is explained during
which the PDFs of each secret value are estimated. Finally, the performances of all the
adversaries are reported and commented.
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Figure 2: Mean trace obtained from the studied target.

3.1 Measurement Setup
The targeted library is running on a ATSAM4LC4CA that is a Cortex-M4 based micro-
controller. The circuit under test is placed on a commercial board SAM4L Xplained Pro
that has been slightly modified by removing decoupling capacitors. The target is running
at its maximum clock frequency of 48[MHz].5

Its power consumption is measured through an electromagnetic near field probe R&S
HZ-15 placed directly above the package of the micro-controller. The pre-amplified signal
with a matched R&S HZ-16 is sampled at 1[GSamples/s] with a PicoScope 5244d and an
8-bit resolution. The resulting averaged power trace is shown in Figure 2 where only the
pre-processing and the 6 first rounds of the AES are recorded. The traces are 106 samples
long and are obtained at a rate of about 35 traces per second (because of the interface
with the scope). For this paper, 5 · 105 traces have been recorded with known random
masks, seeds, keys and plaintexts for profiling purpose. In addition, 2 · 105 traces were
also recorded with a fixed key in order to mount the attacks.

We stress that particular care was paid to the quality of the measurements. More
precisely, a large configuration space has been explored including probe position, sampling
frequency/resolution as well as decoupling network. The traces used in this work are
recorded in the setup maximizing the SNR on the multiplicative mask rm. This choice
is made because of its importance in countermeasures’ dissection. No engineering on
frequency filtering was performed, which could possibly lead to improved attacks.

Note that the implementation and setup described in this section are not exactly the
same as used in the preliminary leakage assessments performed by the ANSSI team. The
impact of these differences on our conclusions will be discussed in Section 3.5.

3.2 Templates’ Estimation
Our template estimation uses the tools from Subsection 1.3 and proceeds in two steps:

1. Dimensionality reduction by using the SNR to isolate the samples for which the mean
contains information about the sensible variables. Then a PCA is optionally applied
depending on the number of dimensions showing evidence of leakage.

2. Gaussian Templates (gT) are built on the reduced dimensions. Ten of them are
typically taken into account since it allows to cover most of the leakage samples.

We next highlight how a PDF can be estimated for all the secret variables, starting with
the multiplicative mask, followed by the permutations’ seed and the additive shares.

5 It turned out that the library was not constant time because of cached memory access on this
platform. The experiment are performed with a table free xtime making the encryption constant time.
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3.2.1 Multiplicative Mask

In order to build a gT to obtain f[lrm
|rm], the pre-computation of the multiplicative table

by rm is targeted. Indeed, this is the only pre-computation that only involves rm and no
other secret value. The corresponding SNR is shown in Figure 3, and exceeds 200 on the
peaks value. Such a high value is due to type of memory accesses targeted: words of 32
bits are stored in memory for each of the four bytes corresponding to four multiples of
rm. The stored values are 32-bit wide but only depend on 8 bit. This leads to a variance
between the signal of the 255 classes that dominates the noise in our experimental setup.
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Figure 3: SNR on rm during the multiplicative table pre-computation.

Because of the large number of samples depending on rm, a PCA is additionally used as
a dimensionality reduction tool on all the samples from the table pre-computation. Only
the 10 most significant dimensions are used to build the gT. The resulting model allows to
perfectly re-identify the multiplicative mask with a single trace (i.e., with an accuracy of
100% and on all the 2 · 105 attack traces).

3.2.2 Permutations

The PDF f[l′1|o1 = col(i)] can be derived from f[l′1|seed′1] where seed′1 is a 2-bit value
used to generate the permutation (again, a similar equation holds with o2, l′2 and seed′2).
The SNR of both permutations is shown in Figure 4. The first peak shows the loading of
the random bits. The second ones correspond to the permutations’ computation. Then,
the pattern repeated six times is the actual MixColumns. It clearly appears that the two
shares are processed serially starting with ~Ra followed by ~C. In this operation, the leakage
depends on the memory address accessed, which depends on the studied seeds.

Because of the large dimensionality of the leakage, we first selected 3, 000 dimensions
showing evidence of leakage based on the SNR. These are reduced using a PCA to only
3 dimensions (leveraging the small sample size variant of PCA proposed in [APSQ06]).
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Figure 4: SNR on MixColumns permutations’ seeds.
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Figure 5 shows the projected samples for the four possible seed′1 values. Already by
looking to the two first dimensions (Figure 5a), most of the classes are well separated.
Only the pink and the green clusters are overlapping. By taking the third dimension into
consideration, these two are also well separated. Four gTs are then fitted based on these
clusters, and allow retrieving the correct seed with an accuracy of 98%.
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Figure 5: PCA output on seed′1 for the three studied dimensions.

Intuitively, this accuracy can be explained by the fact that the same permutation
is used at every round, increasing the number of leaking dimensions about the seeds.
These distant samples have potentially uncorrelated noise while manipulating the same
data and therefore allow reducing the noise thanks to averaging. Such an averaging is
implicitly performed by the PCA that is a weighted sum of samples. Additionally, the
seed (and its bijectively derived data) are involved in different operations such as loads,
permutation computations or memory accesses, each of them leaking in a different way,
therefore providing additional independent information about the seed as well.

3.2.3 Additive Shares

We finally highlight how information can be extracted on the additive shares given
a permutation. For this purpose, one single template is computed for each index o1,
omitting the dependency to the actual manipulated byte i. In total, 16 gTs are estimated
independently of the shuffling strategy. Because the leakage about a share is typically
contained in a few cycles, only the SNR is used to isolate the POIs. In the following, we
restrict our profiling to the operations exploited by the previously mentioned adversaries.

First, in Figure 6, the SNR on each byte of ~C is reported and color-grouped by column
during the addition with rout. This operation is implemented with a few sequential
instructions. An entire column is loaded from memory, then it is bitwise XORed with rout
(duplicated 4 times) and finally it is stored in memory. Therefore, all the four bytes of the
same columns leak at the same time. To our understanding, the first peaks correspond
to the XOR operation while the larger (and last) peak corresponds to the memory write.
The resulting gTs are used only by A1.

Second, information about ~C can also be extracted from the MixColumns operation as
exploited by A2,A3 and A4. Because this operation is shuffled, a profile for each index
o1 is built. The SNR is plotted in Figure 7 where the color-grouping corresponds to a
constant o1. Contrarily to the previous case, the bytes of the columns are serially loaded
from memory and stored in registers. Then, these bytes are combined one with each other
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Figure 6: SNR on ~C during rout addition.
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Figure 7: SNR on ~C during MixColumns.

within registers to perform the matrix multiplication of MixColumns. Therefore, the four
bytes of the processed column do not always leak at the same point in time.

A similar behavior is observed for the template corresponding to ~Ra in Figure 8.
Additionally, we see smaller peaks before MixColumns, generated by ShiftRows. Each of
them corresponds to the shuffled loading of a byte or the store of one of them. These
smaller SNR values would typically be the ones that would be exploited by an adversary
targeting the (well) shuffled Sbox executions in a black box manner.

3.3 Adversary Comparison
Based on the previous profiling efforts, we can now compare the different adversaries
introduced in Subsection 2.4. For each of them, the Guessing Entropy (GE) for each subkey
byte is first reported [SMY09]. Then, the key rank of the full key is also estimated thanks
to the rank estimation algorithm of [PSG16].
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Figure 8: SNR on ~Ra during MixColumns.
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The first adversary A1 exploits jointly the leakage from the addition of ~C with rout
and the leakage of MixColumns on ~Ra. As shown on Figure 9, such an adversary requires
about 10 · 103 measurements to recover the full encryption key. The data complexity is
reduced to 3 · 103 if key enumeration is performed.
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Figure 9: Attack results for A1.

The second adversary A2 targets MixColumns for both shares but does not exploit
information about the permutation used. The resulting attack performances are given
in Figure 10. With a total amount of 50 · 104, the full key is not recovered without
post-processing. The latter is due to some “harder to recover” subkey bytes, as illustrated
in Figure 10a. Yet, key enumeration still allows recovering the full key with 20 · 103 traces.
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Figure 10: Attack results for A2.

The third attack performed by A3 exploits the MixColumns leakage for both shares as
well as the leakage on the permutations. The attack results are shown in Figure 11. With
around 1.1 · 103 traces, the entropy of the full key is reduced to less than 32 bit, while it
is directly recovered with 3 · 103. One can also notice that one byte per column is more
difficult to recover, slowing down the full attack.

The last adversary, A4, is reported in Figure 12. It requires about 1.2 · 103 traces with
key enumeration and 4 · 103 without. Note that the GE of some of the bytes is not to 1
(but close to it) with that amount of traces (so the outputted key is not necessarily ranked
first but closed to it).
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Figure 11: Attack results for A3.
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Figure 12: Attack results for A4.

3.4 Discussion
Our different results are summarized in Table 1, which allows evaluating the influence of
the shuffling and targeted operations on the attacks’ complexity.

First, by moving from A1 to A3, only the targeted operation to gain knowledge about
~C is changed. Hence, the reduced complexity is inherent to the targeted operation.
Namely, the information exploited by A1 is coming from a few cycles with 24 random bits
manipulated in parallel (Figure 6). The information exploited by A3 comes from multiple
operations in MixColumns, leading to more extractable and independent signal.

The effect of shuffling can be measured by moving from A2 to A3. If no information is
exploited about the permutation, the information per share is (roughly) divided by the
number of possible indexes (i.e., |o1| and |o2|). As a result, the noise on each share is
increased by a factor 4, leading to a data complexity 16 larger (because of masking). This
factor 16 fits the difference between both attacks (that respectively require 1.1 · 103 and
2 · 104 traces) reasonably well.

Eventually, omitting some terms in the sums (i.e., moving from A3 to A4) only
marginally increases the data complexity since the secret permutation is recovered with
98% of accuracy in our experiments. So it mostly improves the attack time complexity by
a factor 8. (In case of less accurate information extraction about the permutation, this
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Table 1: Summary of all data complexity for all the investigated adversaries.
Adversary Direct key recovery Key enumeration

A1 10 · 103 3 · 103

A2 > 50 · 103 20 · 103

A3 3 · 103 1.1 · 103

A4 4 · 103 1.2 · 103

A5 2 · 103 0.9 · 103

change would be more of a tradeoff between an improved time or data complexity).

We recall that all the attacks described in this section are exploiting the (full) knowledge
of the multiplicative mask rm that is recovered in a single trace. With this knowledge, the
affine masking is turned into a Boolean masking with two shares (given a multiplication
by rm in GF(28) is performed). Overall, the success of these attacks is mostly due to
the limited amount of noise on the target device, which naturally implies that the “noise
amplification” that masking provides only has a limited impact on the final complexities.

We insist that such a low noise level was already pointed out in the technical report
of [BKPT] where the analysis was made on a different target (STM32 with a Cortex-M4).
For example, given the noise level that we measured, extrapolations based on [DFS15]
show that extending the same masking scheme as used in the ANSSI library would require
18 shares to prevent attacks with up to 264 measurements. So our results mostly show that
ensuring security in such low-cost devices is challenging, and a first step would probably
be to try increasing the – algorithmic or physical – noise so that masking becomes more
effective (which would also have a positive impact on shuffling [VMKS12]).

3.5 Comparison with the ANSSI Measurements
In view of the previous results, a natural question is whether they are due to imple-
mentation and setup differences with the ones used in the ANSSI leakage assessments.
After we communicated our results to them, the ANSSI team kindly accepted to share
their measurements so that we could answer this question. It turns out their (STM32)
implementation has some minor difference with the one we analyzed (in particular the
non-constant time behavior mentioned in Footnote 5). But for the rest, it gives rise to the
same POIs as we exploit in our attacks. We therefore repeated the same attacks as in this
section using the traces from [BKPT] and could recover the full key with approximately
5,000 traces and an enumeration power of 232. The only noticeable difference is a slightly
lower SNR, especially for the same four bytes as we observed (so enumeration is actually
more critical in the case of the measurements used by the ANSSI team). We assume this
difference is mostly due to an improved measurement setup.

4 Machine Learning based Evaluations
As mentioned in the introduction, machine learning / deep learning algorithms are in-
creasingly popular tools to analyze side-channel resistance. In this section, we question
whether such tools can improve the attacks in the previous section. Since one of the claimed
advantages of machine learning / deep learning algorithms is their potential for automation,
we will consider two experimental settings. First, a close to black box setting where the
neural network is fed with the same POIs as the attacks in the previous section. Next, a
dissection attack where the neural network is used to extract information about specific
targets. We analyze the performance of a MLP as a first step and leave the investigation of
other machine learning / deep learning tools as a scope for further investigations.
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4.1 Methodology
In contrast with gTs that only require one pass on the data to estimate means and
covariances, meta-parameters must be tuned for a MLP, which is typically done with
(k-fold) cross-validation. Parameters such as the number of layers, the learning rate and
the activation function were selected accordingly (with k = 5). We allowed a maximum
number of 3 hidden layers with up to 500 nodes, a learning rate between 0.01 and 0.2, and
sigmoid, relu and tanh activation layers. We selected the best set of parameters with a
random grid search performed independently for each of the investigated problems. The
number of epochs was fixed to 250. Once the meta-parameters are found, the MLP is trained
again with all the training samples. Practically, the open source library Keras was used as
a front end to TensorFlow.6 The training was performed on 48 available cores. We refer
to the recent work [ZBHV20] for more details on such parameters’ selection.

4.2 Close to Black-box Evaluations
Using the previous methodology, we tried to perform a close to black box analysis of the
ANSSI implementation. However, despite feeding an MLP with the same POIs as for the
previous attacks, none of the attacks succeeded. To gain intuition about this failure, we
therefore ran some simulated experiments. Namely, we compared a gT adversary similar
to the previous section to an MLP attack in two scenarios:

x⊕ r r ← {0, . . . , 255} 1

HW (·) HW (·)

+ +η1 η2

l1 l2 l3

(a) Boolean masking.

(x⊗ rm)⊕ r r ← {0, . . . , 255} rm ← {1, . . . , 255}

HW (·) HW (·)

+ +η1 η2

l1 l2 l3

(b) Affine masking.

Figure 13: Simulation settings.

1. The first scenario corresponds to a Boolean masking (as illustrated in Figure 13a).
There, the secret value x is XORed with a single random byte r. In order to perform
the attack, the gT adversary needs knowledge of x and r associated to the leakage
samples l?. He can then estimate the distributions of l1 and l2 individually. The
attack is performed by summing over all the possible r’s as shown in Equation (6).
The training of the MLP is performed without the knowledge of the masks and
therefore called black box. It only needs the label x corresponding to the l?’s.

2. The second scenario corresponds to an affine masking with known multiplicative
mask rm (Figure 13b). It is therefore similar to the previous practical experiments
where rm was recovered with a SPA. Despite trivariate, the gT adversary in this
setting is essentially the same as the one targeting the previous Boolean masking
scheme: she just needs to compute x ⊗ rm in the attack phase. Indeed, if rm is
known the only remaining protection is a Boolean masking with two shares. By
contrast, the MLP adversary does not change, raising the question whether she will
be able to automatically learn the field multiplication.

Note that in case (1), an additional useless dimension is added so that the MLP can
take exactly the same inputs in both scenarios (for the gT, this has no impact given an

6 https://keras.io

https://keras.io
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accurate profiling [LPB+15]). Furthermore, and in order to help interpreting the results,
we investigated attacks against encodings in Galois fields of sizes ranging from three to
eight bits (hoping to observe a gradual degradation of the MLP attack in the second scenario
as the field size increases). The number of traces used for the profiling is fixed to 2, 000
per intermediate values, which is a similar profiling effort as in the previous practical
experiments. We use the Hamming weight leakage model and the SNR is set to 10 (i.e., a
high value since we are interested in the hardness of learning the field multiplication).
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Figure 14: GEs of MLP and gT in front of Boolean masking and affine masking with known
multiplicative mask for SNR =10 with n traces (estimated over 100 experiments).

The GEs obtained for each of the scenarios and adversaries are shown in Figure 14.
The first observation is that for all the experiments, the gT attacks against the Boolean
masking and the ones against the affine masking with known multiplicative masks show
similar performances. So as expected, a Boolean masking scheme and an affine masking
scheme with known multiplicative mask are equivalent for such an adversary (who can
easily perform the multiplication by rm with perfect knowledge of rm).

The second observation is that the efficiency of the MLP attacks compared to the one
of gT differs in function of the scenario. In the context of a Boolean encoding, the MLP
adversary performs as good as the gT without requiring knowledge of the randomness
during the profiling. This makes the MLP an appealing solution when the randomness
cannot be controlled by the evaluator. It implies that the MLP is able to efficiently estimate
the Gaussian mixture model with a low noise (i.e., a SNR of 10).

By contrast, and contrary to what is observed for a gT adversary, the MLP requires more
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traces to recover a word of the key for the affine masking scheme than for the Boolean
masking, despite the known multiplicative mask. Furthermore, this trend clearly increases
with the size of the field in which the multiplications are performed. For example, if the
operations are performed in GF(24), the secret can be recovered with 5 times more traces
than with a Boolean masking; in GF(28), hundred times more samples do not allow to
recover the secret byte. We conclude that the problem of learning a field multiplication
based on side-channel leakages is not trivial (despite it is trivial to perform manually).

Overall, our results suggest the attack of the ANSSI implementation with less than
2,000 traces (and similar time complexities and profiling efforts as ours) as an interesting
challenge for black box machine learning based evaluations. While such experiments
are admittedly no proofs, we believe the general intuition they illustrate is correct and
important: even if the field multiplications of an affine masking scheme can eventually be
learned in a black box manner, it is likely that it will imply significant profiling overheads
while manually exploiting the knowledge of an additive mask is actually trivial.

So these simulated experiments allow an interesting illustration of the pros and cons of
machine learning in the context of side-channel security evaluations. On the positive side,
they are handy to automate some parts of the attacks such as the learning of a Gaussian
mixture with low noise (which is interesting since performed without mask knowledge).
On the negative side, they remain limited in a fully black box setting. In this respect, the
ANSSI implementation provides a realistic example where the gap between a black box
security evaluation and a countermeasures’ dissection is actually wide.

Based on this observation, the next section concludes the paper by illustrating how
to integrate the MLP distinguisher as a useful ingredient to improve our countermeasures’
dissection while still exploiting the knowledge of the target implementation.

4.3 Dissection with MLP

As discussed in Section 2, performing an efficient countermeasures’ dissection based on
gT requires a few (independence) assumptions. Despite the experiments in Subsection 3.3
show that these assumptions hold to a sufficient extent so that powerful attacks can be
mounted based on them, it remains that avoiding such hypotheses may lead to improved
attacks (e.g., a better modeling of the leakages).

In the following, we run a MLP on each of the shares individually, so that the MLP replaces
the computation of Equation (9) and Equation (10) given the same leakage samples. As a
result, it estimates independently the probability of each share while taking into account
the leakage of the permutation on MixColumns. This adversary is denoted as A5.

The resulting attack performances are reported in Figure 15 where only 2 · 103 traces
are needed to recover the full 128-bit key. Furthermore, the correct key is ranked in the
232 most probable ones with only 900 measurements, which improves over A3. This gain
presumably comes from the absence of leakage assumption for the MLP. In particular, it
does not assumes independence between the leakage of the permutation and the data, nor
a Gaussian distribution. Interestingly, we note from Figure 15a that all the bytes are now
roughly equivalent in front of A5, while it was not the case for A3 (Figure 11a), so we
assume that some bytes were hard to recover due to assumption errors by A3.

This last attack confirms that machine learning algorithms can be used in complement
with other approaches to evaluate protected implementations in a close to worst-case
manner. It also shows that claims of better automation do materialize in advanced
scenarios, since the manipulation of the permutation and shares leakages in this section is
simpler than in Section 3, which is in line with previous results (e.g., [CDP17]). Yet, these
positive results have to be moderated by the inherent limitations of black box security
evaluations that experiments such as in Subsection 4.2 illustrate.
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Figure 15: Attack results for A5.

5 Conclusion (how not to interpret our results)
Considering the low-complexity of the attacks put forward in this paper, a tempting
conclusion could be that the open approach chosen for the ANSSI implementation is too
risky. In our opinion, the correct conclusion is the exact opposite. Namely, the ANSSI
implementation puts forwards the (significant) risks of overstated security that closed
source designs evaluated in a black box manner carry.

Concretely, the fine grain analysis we provide was only possible (under the time
constraints of evaluators and researchers) because of the knowledge of the target im-
plementation. Hence, as our understanding of side-channel countermeasures progresses,
preventing such a fine grain analysis can still postpone the finding of some attacks (by the
time needed to reverse engineer a single implementation), but it is more and more at the
cost of the long-term security guarantees that an open approach leveraging sound physical
assumptions and mathematical amplification can offer (see [Sta19] for a discussion).

As far as designs are concerned, we believe it is an important long-term goal to evolve
towards physical security based on well-understood solutions surviving public audits. The
collaboration of public agencies is of great help for this purpose, in order to gradually
increase the security level of public implementations and identify relevant targets.

As far as evaluations are concerned, we believe the analogy with cryptographic research
is worth consideration. Namely while automation (e.g., with machine learning / deep
learning) is perfectly valid as an attack tool and has lead to several positive results in
recent years, such tools may have limited coverage (and therefore limited relevance) in the
context of black box evaluations. In other words, while an adversary is perfectly happy
to see a single attack succeeding, a designer has to argue that no attack is possible: a
challenge for which a theoretically founded approach is likely to remain the way to go.
Interestingly, a similar view has been recently put forward in a CHES 2019 invited talk by
Helena Handschuh (on RISCV and Security: how, when and why?) [Han19].

Finally, we insist that the weak security levels we put forward originate from the general
difficulty to secure a COTS (e.g., ARM Cortex) device rather than from flaws in the ANSSI
library. Precisely, the main weakness of the implementation we analyzed is its limited noise,
which strongly reduces the impact of both masking and shuffling against countermeasures’
dissection. We see no obvious fix to improve the worst-case security level in similar 32-bit
devices without significantly increasing the number of shares and leveraging algorithmic
noise as much as possible. Taking advantage of bitslice implementations and considering
security against horizontal attacks (when d increases) may be an interesting first step
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in this direction. Given that Cortex-like architectures are generally considered as good
candidates for deployment in the IoT, this confirms that physical security is unlikely to be
possible without significant overheads in such COTS devices.
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