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Abstract. We propose TEDT, a new Authenticated Encryption with Associated
Data (AEAD) mode leveraging Tweakable Block Ciphers (TBCs). TEDT provides
the following features: (i) It offers full leakage-resistance, that is, it limits the
exploitability of physical leakages via side-channel attacks, even if these leakages
happen during every message encryption and decryption operation. Moreover, the
leakage integrity bound is asymptotically optimal in the multi-user setting. (ii) It
offers nonce misuse-resilience, that is, the repetition of nonces does not impact the
security of ciphertexts produced with fresh nonces. (iii) It can be implemented
with a remarkably low energy cost when strong resistance to side-channel attacks is
needed, supports online encryption and handles static and incremental associated
data efficiently. Concretely, TEDT encourages so-called leveled implementations, in
which two TBCs are implemented: the first one needs strong and energy demanding
protections against side-channel attacks but is used in a limited way, while the other
only requires weak and energy-efficient protections and performs the bulk of the
computation. As a result, TEDT leads to more energy-efficient implementations
compared to traditional AEAD schemes, whose side-channel security requires to
uniformly protect every (T)BC execution.
Keywords: Authenticated encryption · leakage-resilience/resitance · beyond-birthday
bound · multi-user security · masking countermeasure · leveled implementations

1 Introduction
The development of Authenticated Encryption with Associated Data (AEAD) schemes
has been an area of extremely active research since the beginning of this millennium.
Numerous prominent designs have emerged and, on top of the traditional confidentiality
and integrity requirements [KY01, BN08], a number of desirable functional and (sometimes
conflicting) security properties emerged. This paper proposes TEDT, a new AEAD mode
for tweakable block ciphers that primarily aims at a high efficiency when a strong resistance
to side-channel attacks is needed, which are among the most practical threats against
cryptographic implementations, as highlighted in a recent white paper [ABB+, chapter
1.1] – see also [EKM+08, MBKP11, ZYSQ13, BGRV15, GPT15, GST17, DK18].

Every time an encryption or a decryption operation takes place, some side-effects may
be observable, which can leak information on the internal state of a computing device,
including keys: these can be timing, power consumption and electromagnetic radiation
measurements. Such attacks can be mounted in two main flavors which, in the context
of power consumption, are called Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) [MOP07]. In an SPA, an attacker takes advantage of the leakages resulting
from a single input (message) provided for encryption, with measurements that are possibly
repeated multiple times in order to remove the noise in measurements. A DPA exploits
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the leakages resulting from multiple inputs, which all provide new information about the
internal state of the device, reducing the computational secrecy of this state at a rate that
is exponential in the number of distinct inputs.

Standard AEAD are typically susceptible to the mounting of a DPA attack: for instance,
prominent modes like OCB [RBBK01], CCM [WHF03], or GCM [MV04] all evaluate a
block cipher used with a single key on a distinct input for each message block, which is
the exact setting in which DPA applies.

The protection against side-channel attacks is then typically left to engineers who
will implement the block ciphers and other components of the AEAD in a way that
limits the leakages as much as possible. One of the most popular countermeasures is
masking [CJRR99], in which the internal state of the device is secret-shared into a number
of pieces (leading to so-called higher-order security under some noise and independence
assumptions [DFS19]), which are then used for the computation. The strong protection of
a block cipher against DPA usually decreases the standard performance metrics of both
software and hardware implementations by orders of magnitude compared to non-protected
implementations [GR17, GMK17]. The overheads for the full AEAD mode are of the same
order, since all message blocks are processed by the strongly protected block cipher.

Another approach consists in designing leakage-resilient or leakage-resistant modes
of operations [BMOS17, BKP+18, BPPS17, DEM+17].1 These modes, which often come
with some computational overheads in the black-box setting, e.g., require more block cipher
calls than a standard AEAD or require more keying material, aim at considerably reducing
the effect of leakages and the possibility to mount a DPA. A first classical ingredient
is to use some form of key update or re-keying [DP08, YSPY10] in order to make sure
that each execution of a block cipher leaks about a different key, hence effectively leaving
the adversary with the possibility to mount an SPA only. A second common ingredient,
required in modes aiming at integrity properties, is that the decryption/verification of
the validity of a ciphertext/MAC does not require computing the correct value of the
authentication tag [BMOS17, BKP+18]. This prevents attacks in which an adversary uses
a verification oracle, which it repeatedly queries with a forged message or ciphertext and
an invalid tag in order to obtain leakages about the correct tag.

Leakage-resistant modes can also be designed in such a way that they are amenable
to so-called leveled implementations, in which different implementations of the mode
components (e.g., block ciphers) are used. On the one hand, a leveled implementation
relies on the limited use of highly protected components. In practice, these components
are at least expected to be secure against DPA, thanks to protections like masking.
Theoretically, they are usually modeled as leak-free for simplicity. On the other hand,
it will be tolerated that the rest of the components, which would perform the bulk of
the computation, continuously leak a certain amount of information to the adversary
every time they are used, hence requiring very limited protections, or even no specific
protection at all depending on the platform. For example, shuffled implementations could
be considered in case of mid-range devices [MSGR10, VMKS12], and plain unprotected
(parallel) implementations could even be sufficient in case of hardware devices [BGSD10].
The expected benefits of this leakage-resistant approach are twofold.

First, they can lead to more efficient implementations for a given level of resistance
to side-channel attacks. Indeed, even if these modes come with apparently heavier
requirements in the black-box world (TEDT requires 4 calls of a TBC per message block),
this cost is expected to be largely compensated by the more limited use of side-channel
countermeasures that is required. For example, using the cycle counts of the higher-order
masked implementations in ARM 32-bit devices from the recent work of Goudarzi and

1 We use the term leakage-resistant for security definitions of confidentiality that allow all the compu-
tations (including the computation of the “challenge ciphertext”) to leak, and the term leakage-resilient
for security definitions that exclude it, following the terminology in [GPPS19a, Sta19].
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Rivain at Eurocrypt 2017 [GR17], we show that TEDT leads to reduced cycle counts (hence
more energy efficiency) compared to a uniformly protected implementation of OCB already
with two shares, and that the factor of gain approximately reaches `+2

2 for messages of `
blocks as the number of shares in the masking schemes increases. For “reasonable” number
of shares (given the high security goal of TEDT), like four to eight, the gains can reach
factors larger than ten for moderate size messages (like ` = 100). We expect similar energy
gains to be observed in hardware (since the cost of masking is in general quadratic).

Second, the security reductions that come with the definition of leakage-resistant modes
bring clear requirements on the specific blocks to implement. This considerably simplifies
the task of designers and evaluation laboratories, and can then also increase the confidence
that can be placed in the result of these evaluations. The reductions also clarify the effect
of the failure of some components. For instance, in the case of TEDT, we show that weakly
protected components that would leak their internal state in full through an SPA would
break confidentiality, but would have no impact on ciphertext integrity. In the context of
confidentiality, we reduce the security requirements on these weakly protected components,
in encryption and decryption, to two simple security games that require evaluating the
effect of at most two leakages of a single TBC, a task that is considerably simpler than
evaluating what can be derived from millions of leakages of a full mode.
Besides, TEDT also comes with the following important benefits:

• TEDT avoids the so-called multi-user security degradation, i.e., its security bounds do
not degrade significantly as the number of users increases. Such a feature is typically
handy to avoid massively parallel attacks that could occur under a mass-surveillance
adversary [BT16], but are also potentially applicable in an IoT context where an
adversary tries to take control of some physical infrastructure. While it is known
that increasing the length of secret keys and randomizing nonces can help avoid such
degradation, we achieve this using a public key (used in addition to the usual secret
key). This approach might be of independent interest.

• Using a TBC with n-bit blocks, TEDT offers asymptotically optimal multi-user (mu)
integrity against 2n/n2 queries up to ≈ 2n users, even with nonce misuse and full
side-channel leakages. Note that such a “Beyond Birthday Bound” (BBB, beyond
2n/2) security was highlighted in [GL17] and [ABB+, chapter 1.2].

• TEDT offers nonce misuse-resilience in the sense of Ashur et al. [ADL17]. Misuse-
resilience guarantees that repeated nonces do not have an impact on the security of
messages that are encrypted with fresh nonces, a property that is not satisfied by
many standard modes of operation. We do not aim for nonce misuse-resistance [RS06],
a stronger form of protection that requires that security is maintained even for cipher-
texts produced with repeated nonces, provided that distinct messages are encrypted.
Misuse-resistance requires two successive passes on messages for encryption, which
creates additional latency and memory requirements, and is expected to be infeasible
to achieve in most settings in which the encryption process leaks [GPPS19a] (as also
discussed in supplementary material, Appendix A).

• Under very conservative leakage assumptions (see later), TEDT is proved CCA secure
with misuse-resilience and decryption leakages, under the definitions in [GPPS19a].
While the conservative assumptions only enable a birthday-type n/2-bit security, the
security is again retained up to ≈ 2n users (i.e., no degradation).

TEDT analysis. TEDT runs a keyless hash function from the underlying TBC. By this,
the TBC has to be as strong as an ideal TBC, i.e., a randomly selected TBC. Strong
dedicated TBC algorithms, e.g., Skinny-128-256, and Deoxys-BC-256, could be used to
instantiate TEDT. On the other hand, many common block cipher-based TBCs such as the



F. Berti, Chun Guo, O. Pereira, T. Peters and F.-X. Standaert 259

XEX construction are not sufficient (as justified in supplementary material, Appendix B).
While as debated as the random oracle model [CGH98], this ideal model also gives a
clear and rigorous way to measure the offline computation in terms of the number of
adversarial queries to the ideal TBC, as argued in previous works [BT16, BHT18]. In fact,
non-degrading mu security results typically rely on the ideal model [Tes15], and for some
constructions (e.g., XGCM [BT16] and its underlying FX-key length extension [KR01])
it can only be proved effective in the ideal model. Still, most of the security properties
of TEDT can also be proven in the standard model. This analysis then leads to weaker
security bounds, which is a well-known artifact of the proof techniques on re-keying designs
and rarely relates to actual weaknesses [ST16, Men17] (this constitutes another equally
important reason for relying on ideal model analysis).

In terms of leakages, the ideal cipher model prompts us to make very simple assumptions.
Our weakly protected components might even leak their full state as far as authentication is
concerned, which follows [BKP+18], while they only need to satisfy hard-to-invert leakages
for confidentiality, which follows [YSPY10] and appears theoretically minimal & practically
measurable (which we believe is essential for modes in use). Our strongly protected compo-
nents are modeled as leak-free, that is, hiding their key and, in the case of confidentiality,
also mildly hiding their output, which follows [PSV15]. We additionally provide analyzes
in the standard model in supplementary material, Appendix C: they require to make a
stronger (physical) assumption of leakage simulatability [SPY13] regarding the weakly
protected components. Interestingly, these analyzes lead to comparable bounds.

Organization. Preliminaries and security definitions with leakage in the multi-user setting
are in Section 2. We detail and motivate our techniques step by step in Section 3, which
leads to the specification of TEDT in Section 4. We give a thorough analysis of the leakage
integrity (resp. confidentiality) of TEDT in Section 5 (resp. Section 6). We conclude the
paper with a discussion of performances and related works attempting to model and realize
secure authenticated encryption in a leakage setting in Section 7.

To better explain and to further illustrate the advantage of TEDT we provide a black-box
CCA Ssecurity in supplementary material, Appendix D.

2 Preliminaries
The size or the length of a bit string x ∈ {0, 1}∗, denoted |x|, is the integer a such that
x ∈ {0, 1}a; an a-bit string has length a. Let n be a non-negative integer so that, when
n is clear in the context, given a bit string x ∈ {0, 1}∗, the padding x‖0∗ is the smallest
bit string containing the prefix x only followed, if necessary, by 0’s and whose length is
a multiple of n. Given x ∈ {0, 1}n and 1 ≤ a ≤ n, x[: a] is the a-bit prefix of x. We
denote by [num]size the size-bit binary encoding of the integer num. We denote by a
(q1, . . . , qω, t)-bounded adversary a probabilistic algorithm that has access to ω oracles,
O1, . . . , Oω, can make at most qi queries to its i-th oracle Oi, and can perform computation
bounded by running time t. A leaking version of an algorithm Algo is denoted LAlgo. It
runs both Algo and a leakage function Lalgo which captures the information given by an
implementation of Algo during its execution. LAlgo returns the outputs of both Algo and
Lalgo which all take the same input.

2.1 Primitives
A Tweakable Block Cipher (TBC) with key space {0, 1}κ, tweak space {0, 1}t, and domain
{0, 1}n is a mapping TE : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for any key
K ∈ {0, 1}κ and any tweak T ∈ {0, 1}t, X 7→ TE(K,T,X) is a permutation of {0, 1}n.
We call such TBCs (κ, t, n)-TBC. Similarly, we denote (κ, n)-block cipher those with
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κ-bit keys and n-bit blocks. Note that we focus on (n, n, n)-TBC in this paper. A block
cipher which is sampled uniformly at random from the set of all block ciphers with
corresponding key space and domain is called an ideal cipher. Similarly, an ideal TBC
IC : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n is a TBC sampled uniformly at random from
all (n, n, n)-TBCs. In this case, ICTK is a random independent permutation of {0, 1}n for
each (K,T ) ∈ {0, 1}n × {0, 1}n even if the key K is public. Throughout the remaining, we
simply use the notation E for TBCs (instead of TE); and in our ideal TBC-based security
proofs, we use the notation IC.

In this paper we focus on nonce-based authenticated encryption schemes with associated
data (AEAD), which is defined as a tuple AEAD = (Enc,Dec) such that:
• Enc : K ×N ×AD ×M → C maps a key selected from K, a nonce from N , blocks of
associated data from AD, and a message fromM to a ciphertext in C.
• Dec : K×N ×AD×C →M∪{⊥} maps a key from K, a nonce from N , blocks associated
data from AD, and a ciphertext from C to a message inM that is the decryption of the
ciphertext, or to a special symbol ⊥ if integrity checking fails.

We consider AEAD schemes with constant stretch, for which the message size `m
uniquely determines the ciphertext size `c = `m + oh, where the constant oh is the
overhead. C`m

denotes the set of all the ciphertexts encrypting `m-size messages. Given a
key k ← K, Enck(N,A,M) := Enc(k,N,A,M) and Deck(N,A,C) := Dec(k,N,A,C) are
deterministic functions whose implementations may be probabilistic. Nonce-based AEAD
must be correct meaning that for any key k ← K and any triple (N,A,M) ∈ N ×AD×M,
Deck(N,A,Enck(N,A,M)) = M . Since we only focus on correct nonce-based authenticated
encryption with associated data in this paper, we will often simply refer to it as authenticated
encryption in the following.

2.2 Leakage Security of AEAD in the Multi-User Setting
As our model, we extend important existing leakage integrity notions of Berti et al. [BPPS17]
and confidentiality notions of Guo et al. [GPPS19a] to the multi-user setting.

In face of a leakage adversary, separate definitions for integrity and confidentiality po-
tentially offer more gradual degradation. This relies on the feature of physically observable
cryptography that unpredictability is much easier to ensure than indistinguishability [MR04],
which naturally splits the level of confidence we might expect to achieve both notions. Here,
we will focus on leaking AEAD with nonce-misuse-resistant integrity and nonce-misuse-
resilient confidentiality (as mentioned earlier, nonce-misuse-resistant confidentiality seems
unachievable, see Appendix A). To formalize the leakage depending on an implementation,
AEAD is associated to both an encryption leakage function Lenc and a decryption leakage
function Ldec. Berti et al. defined a leakage integrity notion Ciphertext Integrity with
Misuse-resistance and (encryption & decryption) Leakage in [BKP+18, BPPS17], which
is denoted CIML2. In some sense, the definition is obtained by enhancing the traditional
INT-CTXT security game with encryption and decryption leakage. Here we further extend
it to multi-user setting, denoted muCIML2. Formally, given a nonce-based authenticated
encryption AEAD = (Enc,Dec) with leakage function pair L = (Lenc, Ldec), the multi-user
ciphertext integrity advantage with misuse-resistance and leakage of an adversary A against
AEAD with u users is

AdvmuCIML2
A,AEAD,L,u

def==
∣∣∣Pr

[
ALEncK,LDecK,IC,IC−1

⇒ 1
]
− Pr

[
ALEncK,LDec⊥K,IC,IC

−1
⇒ 1

]∣∣∣ ,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), with Ki ← K, over
A’s random tape and the ideal TBC IC,2 and where (for 1 ≤ i ≤ u):
• LEncK(i,N,A,M): outputs the cipher EncKi(N,A,M) and the corresponding leakage
trace Lenc(Ki, N,A,M);

2 We follow Bellare and Tackmann [BT16] and highlight IC in the definition.
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PrivKmuCCAmL2,b
A,AEAD,L,u is the output of the following experiment, which starts (resp. ends) with

Initialization (resp. Finalization), while the other types of queries can be made in any
order and possibly multiple times:

Initialization: generates u secret keys K1, . . . ,Ku ← K and sets Ech, E1, . . . , Eu ← ∅.
Leaking encryption queries: AL gets adaptive access to LEnc(·, ·, ·, ·),

LEnc(i,N,A,M) outputs ⊥ if (i,N, ∗, ∗) ∈ Ech, else computes C ← EncKi
(N,A,M)

and leake← Lenc(Ki, N,A,M), updates Ei← Ei ∪{N} and finally returns (C, leake).
Leaking decryption queries: AL gets adaptive access to LDec(·, ·, ·, ·),

LDec(i,N,A,C) outputs ⊥ if (i,N,A,C) ∈ Ech, else computes M ← DecKi(N,A,C)
and leakd ← Ldec(Ki, N,A,C) and returns (M, leakd);

Challenge queries: on possibly many occasions AL submits (i,Nch, Ach,M0,M1),
IfM0 andM1 have different (block) length or Nch ∈ Ei or (i,Nch, ∗, ∗) ∈ Ech, returns
⊥; Else computes Cb ← EncKi

(Nch, Ach,M b) and leakbe ← Lenc(Ki, Nch, Ach,M
b),

updates Ech ← Ech ∪ {(i,Nch, Ach, Cb)} and finally returns (Cb, leakbe);

Decryption challenge leakage queries: AL gets adaptive access to Ldecch(·, ·, ·, ·),
Ldecch(i,Nch, Ach, Cb) computes and outputs leakbd ← Ldec(k,Nch, Ach, Cb) if
(i,Nch, Ach, Cb) ∈ Ech; Else it outputs ⊥;

Finalization: AL outputs a guess bit b′ which is defined as the output of the game.
Figure 1: The PrivKmuCCAmL2,b

A,AEAD,L,u game.

• LDecK(. . .): outputs
(
DecKi(N,A,C), Ldec(Ki, N,A,C)

)
;

• LDec⊥K(. . .): computes leakd ← Ldec(Ki, N,A,C) and if C is an output of some leaking
encryption query (i,N,A,M) for some M outputs (M, leakd), else outputs (⊥, leakd).

To capture an achievable level of nonce robustness in confidentiality, Guo et al. formal-
ized CCAmL2, after chosen-ciphertext security with misuse-resilience and leakage. In a
high level, this notion is a leakage CCA security with “fresh nonces” [GPPS19a]. Such a
level of nonce robustness was borrowed from Ashur et al. who formalized nonce-misuse re-
silience for integrity, CPA, and CCA security [ADL17].3 Below we define the mu extension
muCCAmL2: given an authenticated encryption AEAD = (Enc,Dec) with leakage function
pair L = (Lenc, Ldec), the multi-user chosen-ciphertext advantage with misuse-resilience and
leakage of an adversary A against AEAD with u users is

AdvmuCCAmL2
A,AEAD,L,u

def==
∣∣∣Pr

[
PrivKmuCCAmL2,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKmuCCAmL2,1

A,AEAD,L ⇒ 1
]∣∣∣,

where the security game PrivKmuCCAmL2,b
A,AEAD,L is defined in Figure 1.

When the context is clear, we will refer to the muCCAmL2 advantage (also in the ideal
TBC model) with the next less formal notation

AdvmuCCAmL2
A,AEAD,L,u

def==
∣∣∣Pr[ALEncK,LEnc0

K,Ldecch,LDecK,IC,IC−1
⇒1]− Pr[ALEncK,LEnc1

K,Ldecch,LDecK,IC,IC−1
⇒1]
∣∣∣,

which allow us to talk about the 1st oracle, the 2nd oracle, and so on.
The CCAmL2 notion is more or less the traditional CCA notion enhanced with encryp-

tion and decryption leakage. The presence of Ldecch, which provides decryption leakage to
challenge queries, follows the single-user version of Guo et al. [GPPS19a]: their intention
was to capture the informativeness of valid decryption leakage, and it was motivated
by applications such as secure bootloading [OC15], in which decrypting valid cipher-
texts may leak crucial information. It was proved in [GPPS19a] that the combination

3 We prove the black box nonce misuse-resilience CCA security of TEDT in Appendix D.
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Figure 2: The AE mode EDT. E denotes a classical block cipher: EDT is a block cipher-based
AEAD mode. The two dark blocks indicate two “leak-free” executions of E, while the others
are leaky. pA and pB could be any two distinct constants, while in section 3.1 we consider the
simplest case pA = 0 and pB = 1.

CIML2 + CCAmL2 is not implied by other combinations of any natural relaxation of these
two notions. To provide a high leakage-resistant guarantee, an AEAD should satisfy both
CIML2 and CCAmL2 (while in this paper we consider the mu extensions of both).

Note that leakage CCA is not defined in the “real-or-random” form due to the conceptual
difficulty to define the leakage of the idealized (random) objects that are used in such
definitions [GPPS19a, Sta19].

3 Background and Design Considerations
Starting from EDT [BPPS17], a nonce-based authenticated encryption mode without
associated data (see Figure 2), we detail the different techniques to concretize our TEDT
mode and improve the level of integrity and confidentiality.

3.1 Overview of the Starting Point EDT
While composing leakage-resistant building blocks does not necessarily lead to a leakage
resistant scheme, EDT is an Encrypt-then-MAC (EtM) composition of a re-keying encryp-
tion due to [PSV15] and a Hash-then-MAC, where the hash function is keyless and the
fixed-length MAC is a Strong PseudoRandom Permutation (SPRP).

While going one step further in the direction of a fully analyzed practical mode with
tight security bounds maintained in a multi-user setting, TEDT inherits some of the core
ideas of EDT for achieving security under leakage.4

Re-keying against Side-Channel Key-Recovery. Re-keying prevents DPA by deriv-
ing session keys and by consistently refreshing the key, so that the attacker cannot collect
side-channel leakage on the key in use during cryptographic operations with different
inputs. Concretely, for EDT, upon each encryption, a new session key k0 is computed via
an IV-based Key-Derivation Function (KDF), i.e., k0 ← KDFK(N). This KDF is heavily
protected, so that the master key K is kept safe. Therefore, as long as the IV is fresh, the
resulting encryption process generates a new internal state that has not been affected by
the previously observed leakage. Then, the key k0 is served to a block cipher E to produce
a key stream block y1 ← Ek0(1). In parallel, k0 is refreshed into a new ephemeral key
k1 ← Ek0(0). This process is repeated until the number of key stream blocks matches the
number of message blocks. In all, upon a message of ` blocks, ` keys are produced during
the encryption, and E is re-keyed ` times. But for each of these keys, only 2 different
leakage traces of E are produced (i.e., with inputs 0 and 1), and this typically makes
side-channel attacks (mainly DPAs) hard to mount (if not impossible). Re-keying is usually

4 EDT was proved CIML2 in [PSV15], but its CCAmL2 security was not formally analyzed.
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deemed as costly. However, as mentioned in the introduction, this cost is expected to be
largely compensated by the more limited use of side-channel countermeasures (i.e., when
targeting high side-channel security – see Section 7).5

Minimal Message Manipulation for Side-Channel Confidentiality. Encryption
schemes have to perform operations on sensitive messages. Concretely, the more operations
manipulate messages, the more information leaks about them, and this leakage is very
hard to completely avoid [PSV15]. To remedy this situation, in EDT each message block is
involved in only a single and easy to protect XOR operation. This is arguably the minimum
that cannot be avoided in the current state-of-the-art.

EtM & Hash-then-MAC for Side-Channel Integrity. As efficiency remains the
primary concern for crypto designs it may seem surprising, at a first sight, not to sim-
ply adopt a good black-box design and add leakage protections to it. Concretely, for
AE, integrated designs that perform encryption and tag generation in a “single run”
seem the most efficient and attractive: examples include IAPM [Jut08], OCB [RBBK01],
TAE [LRW11], OTR [Min14], COFB [CIMN17], and sponge-based proposals [BDPV12,
BDH+15, CDNY18, BBLT18]. However, integrated designs typically employ the Decrypt-
then-Verify style decryption, which (as observed by Barwell et al. [BMOS17]) would leak
unverified plaintext and alter the side-channel security. In contrast, as independently
observed in [DEM+17, BPPS17, BMOS17], the plain Encrypt-then-MAC (EtM) paradigm
grants resistance to decryption leakage: since its decryption is Verify-then-Decrypt, invalid
decryption queries are prevented to step into the decryption process and thus cannot
produce much leakage (i.e., it only needs to secure the tag verification). As a result, EtM
seems the most suitable classical solution to mitigate concrete side-channel leakages.

For MAC designs, a similar situation appears: during the input-absorbing phase, keyless
crypto hash functions are preferred to the typically more efficient universal hash functions.
The motivation is simply to minimize the number of calls to keyed primitives. Used in the
plain Hash-then-MAC paradigm T = TGFK(H(U)) (U = IV ‖C in EDT as well as in all
our examples: this maximizes the resistance to invalid decryption queries), side-channel
protections are only needed for the Tag Generation Function TGFK , which is much easier.
In fact, leakage security of Hash-then-MAC has been extensively analyzed [MOSW15,
BKP+18, DEM+17]. Interestingly, if we replace the IV by a nonce, then such designs
naturally achieve full nonce-robustness on the decryption side, since resisting invalid (i.e.,
inherently nonce-misuse) decryption means resisting misuse.

The elegant and provably secure idea used in EDT is to use an invertible block cipher
for TGF, and to define the integrity checking as “For input (U,Z), If H(U) = TGF−1

K (Z)
then accept Else reject”. In this vein, decryption only leaks a useless pseudorandom value
TGF−1

K (Z) rather than the right tag of U , excluding the obvious forgery.

Shortages of EDT. EDT did not consider handling Associated Data (AD), rendering it
insufficient for practical use. Note that existing approaches for enhancing an authenticated
encryption scheme with efficient AD handling [Rog02] was only proved secure in the
black-box setting, and thus may not suffice in the leakage setting.

Another drawback of EDT is the concrete security, which contains the birthday terms
σ2/2n + tσ/2n + t2/2n even in the black-box setting, where t denotes the time complexity
of the adversary, σ denotes the number of processed message blocks, and n is the block-size
of the block cipher in use. While the term σ2/2n, concerning with the security of the
encryption part, could be overcome by using counters (like the standard approach in the
counter mode, or in GCM) instead of two fixed constants, the terms tσ/2n and t2/2n,
resulting from the hash-then-SPRP authentication, are more problematic. Indeed the

5 This re-keying-per-block stream cipher was first analyzed in [AB00, BY03] for black-box security, but
its leakage security was only later proved in [YSPY10, SPY13]. These were actually the basis of EDT.
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term tσ/2n is matched by a simple attack.6 In detail, the attacker first pre-computes
t hash digests H(IV, c1) = d1, . . . ,H(IV, ct) = dt for arbitrary IV ’s and c1, . . . , ct, and
then encrypts σ messages m∗1, . . . ,m∗σ to obtain (IV1, c1, Z1), . . . , (IVσ, cσ, Zσ). Now, as
long as a hash collision H(IVi, ci) = dj is found—the probability is tσ/2n—the tuple
(IV, cj , Zi) constitutes a valid forgery. As the standard NIST recommendation is to stop
using a key when the probability of some leakage exceeds 2−32, this means (assuming
that the adversary could afford t computations) that the key of EDT has to be updated
after processing ≈ 296/t message blocks. Nowadays it is likely to have t ≥ 264 [SBK+17],
meaning that the number of message blocks that can be securely processed by EDT is less
than 232, which is less than 64GB when n = 128. In all, using a (tweakable) block cipher
with n-bit blocks, we would like to achieve beyond n/2-bit security which is usually called
“beyond-birthday-bound” (see, e.g., [PS15]).

In addition, unlike modes such as GCM-SIV [BHT18], the multi-user security of EDT
cannot be boosted by simply increasing the key length of the block cipher. This constitutes
another limitation for its practical use. In fact, it is not even clear how to use a (2n, n)-bloc
kcipher in a re-keying encryption mode while keeping the rate 1/2.

3.2 Our New Ideas
First, it is quite obvious that the random IV in EDT can be replaced by a nonce, and
this increases its robustness against randomness misuse (see [Rog04c]). Then, besides
replacing the two constants in EDT by GCM-style counters to achieve BBB encryption (as
mentioned), TEDT uses four main new ideas that we describe next.
Efficient Handling of AD. Our first observation is that, to securely handle the AD, we
can simply insert the AD as a part of the input to the Hash-then-MAC authenticator.
Hash-then-TBC for Efficient BBB Authentication. After many failed trials, it
appears that the simplest and most efficient approach to BBB secure leakage-resistant
authentication is to increase the output of the hash to 2n bits, and then use an (n, n, n)-TBC
for the tag generation function TGF to absorb this digest.

Concretely, upon tagging U , we apply a 2n-bit hash function H, i.e., V ‖W = H(U),
where V and W are the two n-bit halves. Then, the tag is Z = TGFK(W,V ) = (EWK )(V ).
To resist verification/ decryption leakage, we utilize the inverse, i.e., upon (U,Z), “If
(EWK )−1(Z) = V for V ‖W = H(U) then accept Else reject”.

If one insists on using classical (n, n)-block ciphers, then it seems two calls are necessary
for the BBB (leakage-resistant) authentication. Both of them as well as the additional
internal wires have to be well protected, which could be problematic. We believe a single
protected TBC-call would be more efficient/secure than two protected classical block cipher
calls. Moreover, the (n, n, n)-TBC also cinches the mu security strengthening trick.
Making the Hash Function Concrete. To make the mode more concrete (and practi-
cal), we instantiate the hash function H from the same TBC E, as in Figure 3. For this
purpose, we (have to) view E as an ideal TBC IC. An ideal (n, n, n)-TBC is essentially
the same as an ideal (2n, n)-block cipher—both are 22n independent random permuta-
tions. With the consideration that Hirose’s double-block-length (DBL) construction is
XOR-only and does not require re-keying within each invocation, we select it to instantiate
a 3n-to-2n-bit compression function Hir[E] [Hir06], and then use Hir[E] in the strengthened
Merkle-Damgård to build H[E]. The formal description is given later in Fig 5. In this vein,
the obtained mode is purely TBC-based which may reduce implementation costs. Yet, the
DBL hash does not trivially offer security: see the end of this section.
Public Randomness to Remedy mu Security Degradation. Roughly, mu security

6 The term t2/2n is more severe as it indicates low-data attacks with 2n/2 computations. But this is
not matched by any attack, and might be an artifact of the standard model proof approach.
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Figure 3: The hash function H upon a message U = u1‖ . . . ‖u`+1 of `+ 1 blocks, with initial
vector g0‖h0. For each square, the input to the triangle denotes the key input. θ is a domain
separation constant used by the Hir[E] DBL compression function.

degradation stems from (i) collision between user keys, and (ii) multiple user keys that
increase the effectiveness of offline computations.

We illustrate both with examples. Consider u users. For issue (i), the probability
to have two users i and j such that Ki = Kj is u2

2n+1 . With this, for any (N,A,M),
EncKi(N,A,M) is a valid forgery for user j. For issue (ii), the adversary could compute
EncK∗(N,A,M) → C for a guess K∗, and as long as K∗ equals Ki for some user i the
adversary could have a chance to detect and notice Ki = K∗: the probability of such a
collision is 1

2n in the su setting, yet balloons to u
2n in the mu setting.

Clearly, increasing the secret key length solves both (just boosting the denominator).
We show that they can be overcome by properly using public key bits. Concretely, after we
replace all E-calls in the EDT encryption by TBC-calls, we could simply use the “public
key” PK for the tweak input. This simple trick does not work for the authentication since
the tweak input of TGF has been “occupied” by a half V of the hash digest. Yet, once we
append PK to the hash input U , we achieve some separation between users.

Roughly speaking, now two encryption instances collide only if a collision occurs
between both their secret and public keys. Thus, the probability of user key collision is
decreased and issue (i) is solved. For issue (ii), while PK cannot immediately enlarge the
denominator, it makes each guess K∗ = SK∗‖PK∗ less effective: the guess K∗ hits a key
Ki = SKi‖PKi only if PK∗ = PKi. Therefore, if the maximal multiplicity of the PK
value is small µ� u (which can be achieved by ensuring distinct PK values, or picking
PK at random), for issue (ii) the additional public randomness reduces the probability to
µ

2n � u
2n .7 While more random bits are required, the secret key remains of n bits. In this

respect, we note that it is easier to generate “public keys” than secret ones: for the latter a
key agreement protocol is needed, while for the former one could uniformly pick and send
it to the other user in (authenticated) plaintext form.
Summary. Our technical contribution is focused on solving the two following problems:

(1) Proving that public randomness does avoid the aforementioned multi-user degradation
(both for encryption and authentication).

(2) Proving that the hash-then-TBC authentication does achieve BBB mu security
against verification leakage when the hash function is a strengthened Merkle-Damgård
iteration of Hirose DBL compression function. We remark this is highly non-trivial,
since we aim at 2n/n2 security (so far beyond birthday).8

A simpler mode AEDT. If we only apply the efficient AD handling technique to EDT,
then we’ll obtain an AEAD mode for block ciphers that achieve the same birthday-bound

7 This clarification is simplified. We have to rely on some non-standard collision properties of H.
8 If H was (indifferentiable from) a random oracle with good 2n/n2 bounds, then the result would be much

easier to obtain. Yet, neither “plain” Merkle-Damgård [CDMP05] nor Hir[IC] [Men13] is indifferentiable.
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Figure 4: The TEDT AEAD. The constants Pi and Qi are derived from the nonce N , i.e.,
Pi = N‖[i] n

4−1‖0, and Qi = N‖[i] n
4−1‖1, where i ∈ [0, . . . , 2 n

4−1 − 1]. The two dark blocks are
KDFK and TGFK , and for side-channel security they need heavy protection to be “leak-free”. The
other TBC-calls are leaking. For each square, the input to the triangle denotes the key input.
The tweak T = PK‖0 is the public-key PK padded with 0. H is instantiated as in Figure 3.

security as EDT. We may name it AEDT, standing for EDT with AD handling. In this
paper, we concentrate on the more secure mode TEDT.

4 Specification for TEDT
Parameters. Built upon an (n, n, n)-TBC, the key of TEDT is written as K‖PK, with
|K| = n and |PK| = n− 1. While K is secret, PK can be public.

The secret key K is picked uniformly (from now on we eschew the notation SK used in
section 3.2). On the other hand, PK could be either uniformly picked or ensured distinct for
each user. See section 3.2: this requirement avoids mu security degradation. TEDT accepts
3n
4 -bit nonce and results in n-bit stretch. From a nonce N , it generates two sequences of
distinct constants for encryption / decryption, i.e., Pi(N) = N‖[i] n

4−1‖0, and Qi(N) =
N‖[i] n

4−1‖1, where the integer i ∈ [0, . . . , 2 n
4−1 − 1].9 The index i corresponds to the

message block index, and the first sequence Pi(N) is used for re-keying, while Qi(N) is
used to generate key stream blocks: see Figure 4. By this, a single message cannot exceed
n · 2 n

4−1 bits. In Table 1, we list the TEDT parameters for the general n-bit case, and for
the primary use case n = 128.

Table 1: TEDT parameters.
General n n = 128

Key size 2n− 1: 255 bits:
n secret, n− 1 public 128 private, 127 public

Nonce size 3n
4 bits 96 bits

Maximal message 2n/4−1 blocks 235 bytes
Maximal AD 2n/2 − 1 bits 261 − 1 bytes

Stretch n bits 16 bytes

Hash and Padding. Our TBC-based hash function H[E] is a Merkle-Damgård iteration
of the Hirose DBL compression function Hir[E]. The domain separation constant in Hir[E]
is θ = 1, and the initial vector for the Merkle-Damgård is all-zero [0]2n. The fact that
Pi(N) = Qi(N)⊕θ will help reducing some constant factors in the security proof. Formally,
H[E] is described in Figure 5. For our purpose, the hash input is a 4-tuple (A,N, c, T ),
with A first to handle static and some type of incremental associated data. A suffix-free

9 Any function ensures Pi(N) 6= Pi′ (N ′), Qi(N) 6= Qi′ (N ′) for any (i, N) 6= (i′, N ′), and Pi(N) 6= Qi(N)
for any (i, N), (i′, N ′), would suffice. But our choice, motivated by GCM, is an obvious simple approach.
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padding pad(A,N, c, T ) is needed for the Merkle-Damgård iteration. This padding must
prevent the attacks trying to confuse the A and c fields of variable length. For this, we
define pad(A,N, c, T ) := A‖N‖c‖T‖0∗‖[|A|]n/2‖[|c|]n/2. This padding upper-bounds the
length of A by 2n/2 − 1, as shown in Table 1. We remark that this padding is part of the
AEAD scheme and not of the hash function H.
The Encryption is an EtM composition of the counter-based variant of Pereira et al.’s
re-keying encryption [PSV15] and the Hash-then-TBC tag generation, as discussed in
section 3.2. Both KDF (in the encryption) and TGF (in the authentication) are instantiated
with a single TBC-call. To achieve a separation (so that we can use the same secret key
K for both), we reserve 1 bit in the tweak input: concretely, we derive T = PK‖0 by
padding 0 and use it for the tweak of KDFK , and chop the output of H by 1 bit to obtain
an n− 1 bit half W and use W‖1 for the tweak of TGFK . The whole process is described
by the algorithm TEDT[E].EncK,PK(N,A,M) in Figure 5. We separate KDF and TGF
from the other TBC-calls (though algorithmically equal) for conceptual convenience: both
highlighting the heavily protected calls and simplifying language. Since T = PK‖0, in the
remainder of this paper, we also call T a “public-key”.
The Decryption is of Verify-then-Decrypt type: it first invokes the Hash-then-TBC
verification to check the integrity, and decrypts only if the input is decided as authentic.
To ensure this verification does not leak the right tag, the inverse of TGF is invoked. The
whole process is described by the algorithm TEDT[E].DecK,PK(N,A,C) in Figure 5.10

Remark. The public-key T in the KDF call is also crucial for avoiding the mu security
degradation term 2n/u, so it cannot be replaced by a constant. Furthermore, unlike most
TBC modes [PS15, IMPS17], we do not use domain separation to make TBC-calls during
encryption and authentication independent. This avoids many issues (such as unusual
message block size) discussed in [IMPS17, section 6.1].

We are not aware of any comprehensive analysis of how symmetric cryptosystems shall
manage “public keys”. In particular, it is not clear if PK shall be updated with the secret
part K during key updating, which we recommend in order to be conservative.

5 Leakage Integrity of TEDT
We now investigate the muCIML2 security of TEDT in the “unbounded leakage” set-
ting [BKP+18, BPPS17], which means all the intermediate values completely leak, except
the master key K of KDFK and TGFK (which remains secret). Formally, we define the
leakage function L∗ = (L∗enc, L∗dec), where:

• L∗enc consists of the following information appearing during the encryption:

– {K,T,X, Y } for each leaking TBC-call to ETK(X)→ Y or (ETK)−1(Y )→ X,
– {T, I, S} for each leak-free KDF-call to KDF(K,T, I)→ S,
– {W,V,Z} for each leak-free TGF-call to TGF(K,W, V )→ Z, or inverse leak-free

TGF-call TGF−1(K,W,Z)→ V ,
– {a, b} for each XOR action a⊕ b.

• L∗dec consists of the above that are generated during the decryption.

Note that the above means KDF- and TGF-calls do not leak any information about K:
the same assumption will be used in Section 6. Of course it is too strong to be fulfilled in
reality. Yet, it nicely abstracts the details in the TBC and allows to focus on the mode-level
leakages. So we use it as a first step and leave relaxations for further research.

10 There are two decryption times for the ciphertexts of any given length, corresponding to invalid &
valid ciphertexts (the difference of which is not critical since available through black box queries).
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algorithm TEDT[E].EncK,P K(N,A,M)
1. `← d|M |/ne, r ← |M | − n(`− 1)
2. parse M as m1‖ . . . ‖m`, with |m1| = . . . =
|m`−1| = n and 1 ≤ |m`| = r < n

3. T ← PK‖0, m` ← m`‖0∗

4. if ` > 0 then
5. k0 ← KDF(K,T, P0(N))

// Pi(N) = N‖[i] n
4−1‖0

6. for i = 1 to ` do
7. yi ← ET

ki−1
(Qi−1(N))

// Qi(N) = N‖[i] n
4−1‖1

8. ci ← yi ⊕mi

9. ki ← ET
ki−1

(Pi(N))
// line 9. omitted for i=`

10. c← c1‖ . . . ‖c`[:r]
11. U ← pad(A,N, c, T )
12. V ‖W ← H[E](U)
13. Z ← TGF(K,W, V ), C ← c‖Z
14. return C

algorithm H[E](U)
1. parse U as u1‖ . . . ‖u`

with |u1|=. . .=|u`| = n

2. g0‖h0 ← [0]2n // IV
3. for i = 1 to ` do
4. gi‖hi ← Hir[E](ui‖gi−1‖hi−1)
5. V ← g`, W ← h`[:n− 1]
6. return V ‖W

algorithm pad(A,N, c, T )
1. u← A‖N‖c‖T
2. `← |u|
3. ∆← d `

n
e · n− `

4. return u‖[0]∆‖[|A|]n/2‖[|c|]n/2

algorithm TEDT[E].DecK,P K(N,A,C)
1. `← d|C|/ne − 1, r ← |C| − n`
2. parse C as c‖Z, with c = c1‖ . . . ‖c`, |c1| =

. . . = |c`−1| = |Z| = n, and 1 ≤ |c`| = r < n

3. T ← PK‖0, c` ← c`‖0∗

4. U ← pad(A,N, c, T )
5. V ‖W ← H[E](U)
6. V ∗ ← TGF−1(K,W,Z)
7. if V 6= V ∗ then return ⊥
8. if ` > 0 then
9. k0 ← KDF(K,T, P0(N))
10. for i = 1 to ` do
11. yi ← ET

ki−1
(Qi−1(N))

12. mi ← yi ⊕ ci

13. ki ← ET
ki−1

(Pi(N))
// line 13. omitted for i=`

14. M ← m1‖ . . . ‖m`[:r]
15. return M

algorithm KDF(K,T, I)
1. return ET

K(I)

algorithm TGF(K,W, V )

1. return EW‖1
K (V )

algorithm TGF−1(K,W,Z)

1. return (EW‖1
K )−1(Z)

algorithm Hir[E](X)
1. parse X as u‖g‖h, |u| = |g| = |h| = n

2. g′ ← Eh
u(g)⊕ g

3. h′ ← Eh
u(g ⊕ 1)⊕ g ⊕ [1]n // θ = 1

4. return g′‖h′

Figure 5: Definition of the TEDT mode, using a TBC E.

Since we will analyze TEDT in the ideal TBC model, we can prove information
theoretic security that only requires bounded amount of adversarial queries. This means
the adversarial power is characterized by q = (qe, qd, qIC), where qe, qd, and qIC denotes the
number of adversarial queries to the leaking encryption oracle, the leaking decryption oracle,
and the ideal TBC oracle, respectively. To simplify the notations, using the definition
given in Section 2.2 we define

AdvmuCIML2
TEDT,L∗ (u,q, σ) def== max

{
AdvmuCIML2

A,TEDT,L∗,u

}
,

where the maximum is taken over all q-bounded adversaries against u users that have at
most σ blocks in all their queried plaintexts and ciphertexts including associated data.
Then our main claim is as follows:
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Theorem 1. Assume that the u public-keys T1, . . . , Tu are uniformly distributed, n ≥ 6,
2σ + 3(qe + qd) + qIC ≤ 2n/8, and leakage L∗ is “unbounded” as above. Then

AdvmuCIML2
TEDT,L∗ (u,q, σ) ≤ (2n2 + 17)(4σ + 6(qe + qd) + 2qIC)

2n + u2

22n + 1
2n! ·

(
4u
2n

)n
(1)

in the ideal TBC model.

The bound means that, as long as we carefully protect the key of KDFK and TGFK ,
the muCIML2 bound is asymptotically optimal O

(
u2

22n + n2σ+n2qIC
2n

)
. Concretely, when

n = 128, the integrity security is up to u ≈ 2126 users, σ ≈ 2114 blocks, and qIC ≈ 2114

offline computation. If the u public-keys are ensured to be distinct, then we could drop
the terms u2

22n and 1
2n! · (4u/2

n)n, but the bound does not substantially improve. In the
black-box model, similar asymptotically optimal bounds can be proved: see Appendix D.11

The remaining of this section is filled by the proof of Theorem 1. We first serve an
outline of the proof and some hints on how we obtain the involved terms in subsection
5.1. The two core steps of the proof will be in subsection 5.3 and 5.4, but before them
we prove some crucial properties for the Hirose compression function and the pad scheme
in subsection 5.2. Finally, as mentioned, the TBC-call in line 6 of Dec (Fig. 5) has to be
backward to resist decryption leakages. To give more insights, at the end in subsection 5.5
we discuss where our proof approach fails for the design without the backward TBC-call.

5.1 Outline of the Proof and Hints on the Terms
We proceed in two main steps. First, below in section 5.3, we idealize the scheme
TEDT[IC]K,T via replacing calls to KDFK1 ,TGFK1 , . . . ,KDFKu

,TGFKu
by several tweak-

able random permutations ∼π1, . . . ,
∼πu, such that ∼πi and ∼πj are independent if and only if

Ki 6= Kj . These permutations are secret, i.e., they cannot be queried by A.
We then show the real and idealized schemes are indistinguishable. The actual goal of

this step is to argue that during the interaction, the secret keys K cannot be recovered
from information gained by the adversary. The indistinguishability is proved using the
H-coeffcient technique [CS14]. For this step, note that all the internal values of the
TBC-calls, except K, are given to the adversary A. This additional information increases
the offline computation power of A. Therefore, conceptually, the situation is that the
adversary A makes O(σ + qIC) queries to IC and tries to recover the secret user keys.

Typically, the naive proof idea would be: since each offline IC query will “hit” one of
the u user secret keys with probability u/2n, a union bound over all the offline queries
yields O

(
u(σ+qIC)

2n

)
. But our goal is to avoid the factor u, i.e., the multi-user security

degradation. To have a better bound, we rely on the fact that these O(σ + qIC) offline
queries are “separated” by the tweak inputs. In detail,

• The KDF-calls make IC-calls of the form ICPK‖0K (I), and this is related to the
distribution of the public keys. When the public keys are uniformly picked, the
number of users sharing a same public key value cannot exceed n, except with a
sufficiently small probability of O(u/2n). The TBC ensures independence between
calls with different tweaks, i.e., for a user with public key PK ′ 6= pk and secret
key K ′, an offline IC query of the form ICpk‖0k (x) is independent from its KDF-calls
ICPK

′‖0
K′ (I), even if k = K ′. By this, an offline IC query of the form ICpk‖0k (x) can

11 In an ongoing lightweight cryptography standardization effort, the NIST requires new proposals to
securely process more than 250 bytes of data (before key updating) and resist 2112 computations in the
single-user setting [NIS19]. What TEDT achieves is clearly far better.
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have its key k “hit” at most n users (i.e., the users using pk as the public key). This
decreases the term to O

(
n(σ+qIC)

2n

)
and avoids the factor u.12

• The TGF-calls make IC-calls of the form ICW‖1K (V ) or (ICW‖1K )−1(Z), in which the
tweak W is always (half of) the output of the hash function. Given distinct inputs,
the number of semi-collisions among the outputs of H cannot exceed n, except with
a sufficiently small probability of O(σ+qIC

2n ). This means for each W , TEDT makes at
most n calls of the form ICW‖1K (V ) or (ICW‖1K )−1(Z) for each user. But note that, due
to the collision among the public keys, TEDT may make the same hash evaluation
for different users: as argued, this situation appears at most n times. The two effects
indicate that each offline IC query of the form ICW‖1k (x) simultaneously “targets” at
most n2 TGF calls, and this creates the term O

(
n2(σ+qIC)

2n

)
. Although the factor n2

is worse, the factor u is still avoided.

Next, in subsection 5.4, we prove unforgeability for the idealized scheme to complete the
muCIML2 proof. To this end, we show that various query records gained by the adversary
during the interaction will not form certain “chains”, except with a sufficiently small
probability. As will be seen in the detailed analysis, the adversary has two ways to create
such “chains”: either trying to create a collision between two different hash evaluations,
or trying to create a collision between a hash digest and an inverse TGF-call. Since we
are using a DBL hash, the probability of hash collision is O

(
(σ+qIC)2

22n

)
; since it is hard

to create n-collisions on the W values, it can be shown that the probability of collisions
between a hash digest and an inverse TGF-call is O

(
nqd

2n

)
.

As an additional remark and hint, note that if we compute the tag from the digest
V ‖W = H[E](pad(A,N, c)) without using the public key T , then a user secret key collision
Ki = Kj enables forgery since TGF(Ki,W, V ) = TGF(Kj ,W, V ). But since the public keys
are injected, for V ‖W = H[E](pad(A,N, c, Ti)) and V ′‖W ′ = H[E](pad(A,N, c), Tj) we
have TGF(Ki,W, V ) = TGF(Kj ,W

′, V ′) only if both Ki = Kj and Ti = Tj , the probability
of which is reduced to the small enough term u2/22n.

5.2 Properties of Hirose Compression Function and pad
Denote by Hir[IC] the Hirose compression function built upon the ideal TBC IC. Note that
any adversary A against Hir[IC] can be normalized to an adversary A′ that only makes
pairs of Hirose matching queries: A′ runs A, and

• each time A makes a forward query ICK(T,X), A′ makes a query ICK(T,X⊕θ)→ Y ′

right after relaying ICK(T,X)→ Y , and

• each time A makes a backward query IC−1
K (T, Y ), A′ makes a query ICK(T,X⊕θ)→

Y ′ right after relaying IC−1
K (T, Y )→ X.

Therefore, we could concentrate on adversaries that only make such pairs of matching
queries. In this vein, the function Hir[IC] has the following collision-related properties.

Lemma 1. For any A making q pairs of matching queries to IC with 1 ≤ q ≤ 2n/4, it
holds

Pr
[
(X,X ′)← AIC : chop(Hir[IC](X)) = chop(Hir[IC](X ′))

]
≤ 6q

2n .

12 When the public keys are ensured distinct, then following the same idea, the factor n is decreased to 1.
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Proof. The collision resistance of Hir[IC] does not necessarily imply the collision resistance of
chop◦Hir[IC]. To show the latter, consider any two pairs of matching queries ((v, h, g, y), (v⊕
θ, h, g ⊕ θ, z) and ((v′, h′, g′, y′), (v′ ⊕ θ, h′, g′ ⊕ θ, z′). We now bound the probability of
collision due to these queries. We distinguish two cases:
Case 1: (v, h, g, y) = (v′⊕θ, h′, g′⊕θ, z′). This means the two pairs are actually the same
two IC queries in different orders. Then the collision indicates chop(g⊕y) = chop(g⊕θ⊕z).
Without loss of generality, assume (v, h, g, y) is made after (v ⊕ θ, h, g ⊕ θ, z). Then
regardless of whether the query is forward or backward, either g or y is uniform in a set of
size at least 2n − 2q. Therefore,

Pr[chop(g⊕y) = chop(g⊕θ⊕z)] = Pr[g⊕y = b | chop(g⊕θ⊕z) for b = 0 or 1] ≤ 2
2n − 2q ,

and with q matching pairs, we have

Pr[Case 1] ≤ 2q
2n − 2q .

Case 2: (v, h, g, y) 6= (v′ ⊕ θ, h′, g′ ⊕ θ, z′). Then it can be seen the involved queries are
four different ones, and a collision indicates

g ⊕ y = g′ ⊕ y′ ∧ chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ θ ⊕ z′) (2)

or

g ⊕ y = g′ ⊕ θ ⊕ z′ ∧ chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ y′). (3)

Similarly to Case 1, in any subcase, we have

Pr[g ⊕ y = g′ ⊕ y′] ≤ 1
2n − 2q and Pr[chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ θ ⊕ z′)] ≤ 2

2n − 2q ,

so that Pr[Eq. (2)] ≤ 2
(2n−2q)2 . A similar reasoning shows Pr[Eq. (3)] ≤ 2

(2n−2q)2 . There-
fore, when q ≤ 2n/4 we have

Pr[Case 2] ≤
(
q

2

)
· 4

(2n − 2q)2 ≤
( 4q

2n
)2
≤ 4q

2n .

In summary,

Pr[collision after chopping] = Pr[Case 1] + Pr[Case 2] ≤ 6q
2n

as claimed.

We also need the multi-collision resistance of the chopped Davies-Meyer.

Lemma 2. Consider the Davies-Meyer function DM[IC](K‖T, h) = ICTK(h)⊕ h built upon
the ideal TBC IC. Then, for any adversary A making at most q ≤ 2n/2 queries to IC and
any integer λ, it holds

Pr
[
(X1, . . . , Xλ)← AIC : chop(DM[IC](X1)) = . . . = chop(DM[IC](Xλ))

]
≤ (4q)λ

λ!2(λ−1)n .

Proof. Consider any λ IC queries (K1‖T1, h1, y1), . . . , (Kλ‖Tλ, hλ, yλ) listed according the
order they were made, and let zi = hi ⊕ yi for each i. Then, since q ≤ 2n/2, for any i ≥ 2
we have Pr[chop(zi) = chop(z1)] ≤ 2

2n−q ≤
4

2n . Therefore,

Pr[λ collisions] ≤
λ∏
i=2

Pr[chop(zi) = chop(z1)] ≤
(
q

λ

)
·
(

4
2n

)λ−1
≤ (4q)λ

λ!2(λ−1)n

as claimed.
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Initialization(u):

1. Choose u random keys K∗ = (K∗1 , . . . ,K∗u) $← (K)u, and tweakable random permutations
∼π1, . . . ,

∼πu from {0, 1}n × {0, 1}n → {0, 1}n, under the constraint that ∼πi=∼πj if and only if
K∗i = K∗j .

Interface TRPFamily(i, T,X)
1. Return ∼πi (T,X)

Interface TRPFamily−1(i, T, Y )
1. Return ∼π−1

i (T, Y )
Finalization(u):

1. Choose u random keys K = (K1, . . . ,Ku) $← (K)u under the constraint that Ki = Kj if
and only if K∗i = K∗j .

Figure 6: Definition of the primitive TRPFamily.

Last, the pad scheme is effective in distinguishing between inputs with different semantics.

Lemma 3. It holds pad(A,N, c, T ) 6= pad(A′, N ′, c′, T ′) for any two distinct tuples
(A,N, c, T ) and (A′, N ′, c′, T ′).

Proof. Note that pad(A,N, c, T ) 6= pad(A′, N ′, c′, T ′) unless |A| = |A′| & |c| = |c′|, as oth-
erwise the values appended in the length field are different. But if |A| = |A′| and |c| = |c′|
(note |N | = |N ′| and |T | = |T ′| always hold), then (A,N, c, T ) 6= (A′, N ′, c′, T ′) indicates
at least one of them has different values, and we thus have A‖N‖c‖T 6= A′‖N ′‖c′‖T ′ and
the resulting values are different after padded.

5.3 Idealizing TEDT
To formally define the idealized scheme, we define an ideal primitive TRPFamily in Fig. 6.
Briefly, TRPFamily captures the behavior of an ideal TBC instantiated with u uniformly
picked keys (K∗1 , . . . ,K∗u), i.e., u tweakable random permutations ∼π1, . . . ,

∼πu. Yet, the u
keys (K∗1 , . . . ,K∗u) are actually not used by TRPFamily: they only define a “pattern” for
the permutations ∼π1, . . . ,

∼πu.13 The definition and use of TRPFamily are similar to Gueron
and Lindell [GL17]. Based on this, the ideal scheme is obtained by replacing every call to
KDF(Ki, t,X)/TGF(Ki, t,X) and KDF−1(Ki, t, Y )/TGF−1(Ki, t, Y ) by TRPFamily(i, t,X)
and TRPFamily−1(i, t, Y ) for i = 1, . . . , u. Denote the obtained idealized scheme by
TEDT[IC,TRPFamily]T.

5.3.1 Preparation for the Indistinguishability Proof: Notations

Denote by LEncK,T and LDecK,T the leaking encryption and decryption oracles of the real
scheme TEDT[IC]K,T, and by ILEncT and ILDecT the leaking encryption and decryption
oracles of the idealized scheme TEDT[IC,TRPFamily]T (the keys have been made explicit).
Formally, we are to derive an upper bound for∣∣∣Pr

[
ALEncK,T,LDecK,IC,IC−1

⇒ 1
]
− Pr

[
AILEncT,ILDecT,IC,IC−1

⇒ 1
]∣∣∣

for any q-bounded D—since this is essentially a distinguishing advantage, we use the
notation D instead of A. For this, we employ Patarin’s H-coefficient technique [CS14]. We
first define the transcripts of the distinguisher when interacting with the real/ideal scheme,
and recall the technique.

13 As mentioned, we cannot always use independent ∼π1, . . . ,
∼πu, otherwise the u keys have to be

collision-free, resulting in the undesired birthday term u2

2n .
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In detail, we summarize the adversarial queries to the ideal TBC IC in a set

τIC = ((k1, t1, x1, y1), . . . , (kqIC , tqIC , xqIC , yqIC)),

which indicates the i-th query is either forward ICt1k1
(x1)→ y1 or backward ICt1k1

(y1)→ x1.
Note that by our assumption, all the IC queries (except for KDF and TGF) made by

TEDT are leaked to D. Such information also gives rise to records of the form (ki, ti, xi, yi).
To make a distinction, we denote by τ∗IC the union of these records and the adversarial
query transcript τIC. For the number of internal IC calls made by the scheme, we have:

• upon encrypting (N,A,M), TEDT makes at most 2 · 2 · d |M |n e+ 2 · d |A|n e ≤ 4(d |M |n e+
d |A|n e) IC queries during encrypting and hashing A and M , and 2× 3 queries during
hashing the additional 3 blocks due to N , T , and the padded length field. Therefore,
the number of internal IC calls is at most 4(d |M |n e+ d |A|n e) + 6;

• upon decrypting (N,A,C) with C = c‖Z, the number of internal IC calls is at most
4(d |c|n e+ d |A|n e) + 6.

Therefore, when interacting with the idealized scheme TEDT[IC,TRPFamily]T, the number
of internal IC calls is at most 4σ + 6(qe + qd), and thus∣∣τ∗IC∣∣ ≤ 4σ + 6(qe + qd) + qIC. (4)

We also summarize the calls to KDF and TGF in a list

τ∼π = ((K1, t1, x1, y1), (K2, t2, x2, y2), . . .).

In this set, the i-th tuple (Ki, ti, xi, yi) indicates:

• When interacting with the real AEAD scheme TEDT[IC]K,T, the i-th query is either
KDF/TGF(Ki, ti, xi)→ yi or KDF−1/TGF−1(Ki, ti, yi)→ xi; and,

• When interacting with the idealized scheme TEDT[IC,TRPFamily]T, the i-th query
is either TRPFamily(j, ti, xi)→ yi or TRPFamily−1(j, ti, yi)→ xi for some user index
j such that Kj = Ki, where Kj is the key sampled by the procedure Finalization(u)
(see Table 6).

Note that since we assume leak-freeness of KDF and TGF-calls, the secret user keys cannot
be seen by the distinguisher, and don’t appear in the true adversarial transcripts. One
could imagine that we append these keys to the true adversarial KDF/TGF transcripts at
the end of the interaction for conceptual simplicity (see below), and this enables reconstruct
the above τ∼π .

For convenience, we also keep a list

τ∗H =
(
(U1, V1‖W1), (U2, V2‖W2), . . .

)
for the appeared inputs and outputs of the hash function H[IC]. Note that by the
specification of TEDT, none of the Ui can be empty. As we assumed all the underlying IC
queries have been leaked and included in τ∗IC, this list contains redundant information: it
can be recovered from τ∗IC. But it simplifies the language: for example, see the simple form
of Eq. (5).

In addition to the above, the “public-keys” T = (T1, . . . , Tu), where Ti = PKi‖0, are
also included in the transcript. Moreover, to simplify the arguments (in particular, the
definition of bad transcripts), we reveal to the distinguisher the user keys K = (K1, . . . ,Ku)
at the end of the interaction. In detail,

• in the real world, we reveal the keys K in use, and
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• in the ideal world, we reveal the keys K sampled by the procedure Finalization(u)
(see Table 6).

This is without loss of generality since D is free to ignore this additional information to
compute its output bit. Formally, we append both T and K to the tuple (τ∗H, τ∗IC, τ∼π) and
obtain what we call the transcript

τ = (τ∗H, τ∗IC, τ∼π,T,K).

It may seem exotic that transcripts for an AEAD scheme do not include encryption and
decryption query transcripts τe and τd. This is due to the unbound leakage assumption:
since during encryption and decryption, almost all the underlying queries to IC are leaked,
the transcripts τ∗IC and τ∼π allow completely recover the encryption/decryption queries and
answers. Therefore, there is no need for their presence in this section.

With respect to some fixed distinguisher D, a transcript τ is called attainable if
there exist oracles (IC,TRPFamily) such that the interaction of D with the ideal scheme
(TEDT[IC,TRPFamily]T, IC) yields τ . We denote T the set of attainable transcripts. In
all the following, we denote Tre, resp. Tid, the probability distribution of the transcript
τ induced by the real world, resp. the ideal world (note that these two probability
distributions depend on the distinguisher). By extension, we use the same notation to
denote a random variable distributed according to each distribution.

Given a set τ∗IC and an ideal TBC IC, we say that IC extends τ∗IC, denoted IC ` τ∗IC, if
ICtk(x) = y for all (k, t, x, y) ∈ τ∗IC. Given a set τ∼π ,

• in the real world, we say IC extends τ∼π , denoted IC ` τ∼π , if ICtK(x) = y for all
(K, t, x, y) ∈ τ∼π ;

• in the ideal world, we say TRPFamily extends τ∼π , denoted TRPFamily ` τ∼π , if
TRPFamily(i, t, x) = y for all (K, t, x, y) ∈ τ∼π and all user index i such that Ki = K.

It’s easy to see that for any attainable transcript τ = (τ∗H, τ∗IC, τ∼π,T,K), the interaction
of D with oracles (TEDT[IC,TRPFamily]T, IC) produces τ if and only if IC ` τ∗IC and
TRPFamily ` τ∼π .

With the above, the main lemma of H-coefficient technique is as follows.

Lemma 4. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the set of
attainable transcripts T . Assume that there exists ε1 such that for any τ ∈ Tgood, one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

A proof could be found in [CS14].

5.3.2 Completing the Transition

Following the above framework, we start by defining bad transcripts. For a transcript τ ,
we define µT and µW , the maximum multiplicity of T and W , as

µT := max
t∈{0,1}n

∣∣{i ∈ {1, . . . , u} : Ti = t}
∣∣,

µW := max
w∈{0,1}n−1

∣∣∣{(U, V ‖W ) ∈ τ∗H : W = w
}∣∣∣. (5)
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Then, an attainable transcript τ is bad, if either of the following conditions is fulfilled:

• (B-1) µT ≥ n, µW ≥ n.

• (B-2) there exists a KDF/TGF query (K, t, x, y) ∈ τ∼π such that (K, t, x, ?) ∈ τ∗IC or
(K, t, ?, y) ∈ τ∗IC.

The bound on µT depends on the distribution PKDistribution. If T1, . . . , Tu are uniformly
distributed, then it’s easy to see

Pr[µT ≥ n] ≤
(
u

n

)
· 1

2(n−1)(n−1) ≤
2n−1 · un

n!2(n−1)n ≤
1

2n! ·
(4u

2n
)n
. (6)

Whereas if T1, . . . , Tu are distinct, then it trivially holds µT = 1 and Pr[µT ≥ n] = 0.
Reasoning about µW requires the multi-semicollision resistance of H. Formally, we rely

on the following lemma, which claims (multi-semi) collision resistance on H.

Lemma 5. Consider the interaction between an muCIML2 q-adversary A and the scheme
TEDT[IC,TRPFamily]T, and A has at most σ blocks in all its queried plaintext, ciphertext,
and associated data. Define

q∗IC := 4σ + 6(qe + qd) + 2qIC. (7)

Then with probability at least 1− 8q∗IC
2n , it holds:

(1) H is collision-free: any two distinct (U, V ‖W ) and (U∗, V ∗‖W ∗) in τ∗H necessarily
have V ‖W 6= V ∗‖W ∗;

(2) H is multi semi-collision-free: µW < n.

Proof. We denote by G1 the game that captures the interaction between the muCIML2
adversary A and TEDT[IC,TRPFamily]T. Following Hirose [Hir06], we normalize the game:
for each IC query either made by A or made by the TEDT mode, we assume the system
makes its Hirose matching query immediately (see section 5.2). Denote by G2 the obtained
normalized game. We now count the number of IC queries in G2:

• Since Qi(N) = Pi(N)⊕ 1 for any i, the 2σ− 1 IC queries made during the encryption
pass only result in an increase of at most 1 new IC queries for the first constant
P0(N) (since P0(N) is the input to KDF, it wouldn’t appear in τ∗IC);

• the 2σ+ 6(qe + qd) IC queries made by H would not result in new queries, since their
matching queries have been included in these 2σ + 6(qe + qd) queries, and

• the qIC queries made by A may give rise to ≤ qIC new queries.

Therefore, in G2, the number of IC queries does not exceed q∗IC = 4σ + 6(qe + qd) + 2qIC
as in Eq. (7), and the upper bound on the number of matching IC query pairs is q∗IC/2.

Then consider G2. We define three bad conditions during its execution:

• (C-1) Collision occurs between compression function outputs. Formally, there exists
two 3n-bit values u‖g‖h and u′‖g′‖h′ such that:

– (u, h, g, g⊕g′), (u, h, g⊕θ, g⊕θ⊕h′), (u, h, g, g⊕g′′), (u, h, g⊕θ, g⊕θ⊕h′′) ∈ τ∗IC
for some g′, h′, g′′, h′′, and

– chop(g′‖h′) = chop(g′′‖h′′).

• (C-2) Initial-vector is hit: ∃u, g, h : Hir[τ∗IC](u‖g‖h) = [0]2n. Formally, there exists a
3n-bit value u‖g‖h such that (u, h, g, g), (u, h, g ⊕ θ, g ⊕ θ) ∈ τ∗IC;
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• (C-3) n-collision occurs: there exists n records (u1, h1, g1, z1), . . . , (un, hn, gn, zn) ∈
τ∗IC such that chop(g1 ⊕ z1) = . . . = chop(gn ⊕ zn).

For (C-1), from Lemma 1 we have (when q∗IC/2 ≤ 2n/4, i.e., q∗IC ≤ 2n/2)

Pr[(C-1)] ≤ 6
2n ·

q∗IC
2 = 3q∗IC

2n .

For (C-2), consider any pair of queries (k, t, x, y) and (k, t, x⊕ θ, y′). Clearly, regardless
of the directions of these two queries, it holds Pr[y = x ∧ y′ = x ⊕ θ] ≤ 1

(2n−q∗IC)2 ≤ 4
22n

when q∗IC ≤ 2n/2, and thus

Pr[(C-2)] ≤ 4
22n ·

q∗IC
2 =2q∗IC

22n ≤
q∗IC
2n . (n ≥ 2)

For (C-3), an application of Lemma 2 (also requires q∗IC ≤ 2n/2) yields Pr[(C-3)] ≤
(4q∗IC)n

n!2n(n−1) . Using n! ≥
(
n
e

)n ≥ 2n (since n ≥ 6 > 2e), we reach

Pr[(C-3)] ≤ (4q∗IC)n

2n·n ≤ 4q∗IC
2n . (4q∗IC ≤ 2n)

A union bound yields
Pr[(C-1) ∨ (C-2) ∨ (C-3)] ≤ 8q∗IC

2n .

Then, conditioned on ¬(C-1)∧¬(C-2)∧¬(C-3), we show that the two claims hold. We
first consider claim (1). For any two records (U, V ‖W ) and (U∗, V ∗‖W ∗), assume that tail is
the maximum common suffix of U and U∗, i.e., U = header‖u‖tail, U∗ = header∗‖u∗‖tail,
|u| = |u∗| = n, u 6= u∗, and |header|, |header∗|, and |tail| are multiples of n. Then we
distinguish two cases:
Case 1: either header‖u or header∗‖u∗ is empty. Without loss of generality, we
assume header‖u is empty. Since U isn’t empty, this means tail isn’t empty. Then we
have H(header∗‖u∗) 6= [0]2n by ¬(C-2), i.e., in H(U∗), the hash-chain value after absorbing
u∗ is different from the initial vector [0]2n. So the two “first-block” calls in absorbing tail
in H(U) and H(U∗) are different. By ¬(C-1), this means the resulted hash-chain values
are different. Then by iteratively applying ¬(C-1), it can be seen the “last-block calls” in
H(U) and H(U∗) are different, and further V ‖W 6= V ∗‖W ∗.
Case 2: neither header‖u or header∗‖u∗ is empty. Then by ¬(C-1), H(header‖u) 6=
H(header∗‖u∗), i.e., the two hash-chain values after absorbing u 6= u∗ are different. If tail
is empty, then as u 6= u∗ the “last-block calls” in H(U) and H(U∗) are clearly different and
further V ‖W 6= V ∗‖W ∗; otherwise, the two claims follow by iteratively applying ¬(C-1).

We then prove claim (2). The above show that distinct hash inputs U and U∗ necessarily
result in distinct “last-block-calls”. By this, any n hash inputs (U1, . . . , Un) necessarily
result in n distinct “last-block-calls” denoted Hir(u1, g1, h1), . . . ,Hir(un, gn, hn). By the
definition of Hir, it can be seen such an n-semicollision correspond to an n-collision within
n chopped Davies-Meyer function calls. Concretely, assume that for

g′1‖h′1 = Hir(u1‖g1‖h1), . . . , g′n‖h′n = Hir(un‖gn‖hn),

it holds chop(h′1) = . . . = chop(h′n), then it essentially holds

chop
(
ICh1
u1

(g1 ⊕ θ)⊕ (g1 ⊕ θ)
)

= . . . = chop
(
IChn
un

(gn ⊕ θ)⊕ (gn ⊕ θ)
)
,

contradicting ¬(C-3). These complete the proof.
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Lemma 5 indicates

Pr[µW ≥ n] ≤ 8q∗IC
2n . (8)

We continue analyzing bad transcripts, and consider (B-2). Note that by our definition,
for every (K, t, x, y) ∈ τ∼π in the ideal world, the key K is actually given by the “dummy”
key vector K. We thus need to argue that:

• The “dummy” key vector K is uniformly distributed, i.e., for any “target” K† =
(K†1 , . . . ,K†u), the keys K picked during the Finalization(u) process of TRPFamily
satisfies Pr[K = K†] = 1

2un .

For this, define a set of keys K◦ as

K◦ :=
{

K◦ = (K◦1 , . . . ,K◦u) : ∀(i, j),K†i = K†j if and only if K◦i = K◦j
}
.

Then, the sufficient and necessary condition for TRPFamily to finally reach K† is: (i) a key
vector K◦◦ ∈ K◦ is sampled during Initialization(u), and (ii) the key vector K, which is
essentially sampled from K◦, hits K† during Finalization(u). Therefore,

Pr[K = K†] =
∣∣K◦∣∣
2un ·

1∣∣K◦∣∣ = 1
2un

as expected. For the remaining analysis, we introduce an auxiliary set

τ∗IC[t] :=
{
k ∈ {0, 1}n : (k, t, x, y) ∈ τ∗IC for some x, y

}
.

The sets τ∗IC[0], τ∗IC[1], . . . constitutes a partition of τ∗IC, and thus
∑
t∈{0,1}n |τ∗IC[t]| = q∗IC.

Then, the condition (B-2) can be divided into two subconditions, i.e.,

• (B-21) there exists a KDF query (K, pk‖0, x, y) ∈ τ∼π such that (K, pk‖0, x, ?) ∈ τ∗IC
or (K, pk‖0, ?, y) ∈ τ∗IC;

• (B-22) there exists a TGF query (K,W‖0, x, y) ∈ τ∼π such that (K,W‖0, x, ?) ∈ τ∗IC
or (K,W‖0, ?, y) ∈ τ∗IC.

A necessary condition (not yet sufficient) for (B-21) is that there exists a user index i such
that Ki ∈ τ∗IC[PKi‖0]. As argued, Ki is uniformly distributed. Therefore, conditioned on
¬(B-1), we have

Pr[(B-21)] =
u∑
i=1

Pr
[
Ki ∈ τ∗IC[PKi‖0]

]
≤ µT

∑
pk∈{0,1}n−1

∣∣τ∗IC[pk‖0]
∣∣

2n ≤
∑

pk∈{0,1}n−1

n
∣∣τ∗IC[pk‖0]

∣∣
2n .

A necessary condition (not yet sufficient) for (B-22) is that there exists a user index
i such that, there exists a corresponding encryption query ILEnc(i,N,A,M) → c‖Z
or decryption query ILDec(i,N,A, c‖Z) that results in a hash evaluation of the form
H[IC](pad(A,N, c, Ti)) → U‖W , and that Ki ∈ τ∗IC[W‖0]. Therefore, conditioned on
¬(B-1), we have
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Pr[(B-22)] ≤
u∑
i=1

∑
W :(pad(A,N,c,Ti),∗‖W )∈τ∗H

∣∣τ∗IC[W‖1]
∣∣

2n

≤µT ·
∑

T∈{0,1}n

∑
W :(pad(A,N,c,T ),∗‖W )∈τ∗H

∣∣τ∗IC[W‖1]
∣∣

2n

≤µT · µW ·
∑

W∈{0,1}n−1

∣∣τ∗IC[W‖1]
∣∣

2n

≤n2 ·
∑

W∈{0,1}n−1

∣∣τ∗IC[W‖1]
∣∣

2n . (9)

Summing over the two subconditions, we obtain

Pr[(B-2) | ¬(B-1)] ≤ n2 ·
∑

t∈{0,1}n

∣∣τ∗IC[t]
∣∣

2n ≤ n2|τ∗IC|
2n ≤ n2q∗IC

2n . (10)

Now consider a good transcript τ = (τ∗H, τ∗IC, τ∼π,T,K). Define

τ∼π [K, t] :=
{

(x, y) ∈ ({0, 1}n)2 : (K, t, x, y) ∈ τ∼π
}
.

With this notation, the ideal world probability is calculated as

Pr[Tid = τ ] = Pr(K,T) · Pr[IC ` τ∗IC] ·
∏

(K,t)

1
(2n)|τ∼π [K,t]|

,

where Pr(K,T) stands for the probability that the u user keys take the values (K,T). For
the real world distribution, we have

Pr[Tre = τ ] = Pr(K,T) · Pr[IC ` τ∼π | IC ` τ
∗
IC] · Pr[IC ` τ∗IC]

= Pr(K,T) · Pr[ICtK(x) = y for all (K, t, x, y) ∈ τ∼π | IC ` τ
∗
IC] · Pr[IC ` τ∗IC],

Since τ is good, (K, t, ∗, ∗) /∈ τ∗IC for all (K, t, x, y) ∈ τ∼π (otherwise (B-2) is fulfilled).
Therefore,

Pr[ICtK(x) = y for all (K, t, x, y) ∈ τ∼π | IC ` τ
∗
IC]

= Pr[ICtK(x) = y for all (K, t, x, y) ∈ τ∼π ] =
∏

(K,t)

1
(2n)|τ∼π [K,t]|

.

Therefore, for any good transcript τ we have

Pr[Tre = τ ] = Pr[Tid = τ ],

and thus ∣∣∣Pr
[
ALEncK,T,LDecK,IC,IC−1

⇒ 1
]
− Pr

[
AILEncT,ILDecT,IC,IC−1

⇒ 1
]∣∣∣

≤ Pr[Tid ∈ Tbad] ≤ Pr[(B-2) | ¬(B-1)] + Pr[(B-1)]

≤ (n2 + 8)q∗IC
2n + 1

2n! ·
(4u

2n
)n
. (from Eqs. (6), (8), and (10)) (11)
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5.4 Unforgeability of the Idealized TEDT
Denote by G1 (as before) the game that captures the interaction between the muCIML2
adversary A and TEDT[IC,TRPFamily]T. We divide the unforgeability argument into two
substeps in two paragraphs below: first, we define and bound several simple bad conditions
that may be fulfilled during an execution of the game G1; then, we show that certain
chains of queries never appear during the interaction between the muCIML2 adversary
A and TEDT[IC,TRPFamily]T. As a decryption query returning non-empty message is
necessarily validated by such chains of queries, the above indicates that A is unable to
forge in G1 as long as none of these conditions is fulfilled.

5.4.1 Bad Conditions for Unforgeability

We identify the following conditions during an execution of G1:

• (C-1) there exists two user indices i, j such that Ki‖Ti = Kj‖Tj ;

• (C-2) one of the three claims in Lemma 5 is fulfilled, i.e.,

– collision: there exists (U, V ‖W ) 6= (U∗, V ∗‖W ∗) ∈ τ∗H with V ‖W = V ∗‖W ∗;
– multi semi-collision: µW ≤ λ.

For (C-1), since T is uniform, we have Pr[(C-1)] ≤
(
u
2
)
· 1

22n−1 = u2

22n . The other bound
Pr[(C-2)] ≤ 8q∗IC

2n follows from Lemma 5, where q∗IC is defined in Eq. (7). For simplicity let
Bad = (C-1) ∨ (C-2), then

Pr[Bad] ≤ u2

22n + 8q∗IC
2n .

5.4.2 Unforgeability unless Bad

We call a decryption query ILDecT(i,N,A,C) non-trivial, if the corresponding encryption
query ILEncT(i,N,A,M) → C never happened before. Conditioned on ¬Bad, we argue
all such non-trivial decryption queries result in ⊥ except with a bounded probability. Let
C = c‖Z. If this query does not give rise to ⊥, then right after this query is processed,
for some user index i, there exists a hash record (pad(A,N, c, Ti), V ‖W ) and a TRPFamily
query (Ki,W

∗‖1, V ∗, Z) in the history, such that W ∗ = W and V ∗ = V . This means at
some time during the execution, the following queries exist in the history:

(a, h, g, g ⊕ V ) ∈ τ∗IC, (a, h, g ⊕ θ, g ⊕ θ ⊕W‖b) ∈ τ∗IC, (Ki,W
∗‖1, V ∗, Z) ∈ τ∼π,

where a is the last block of pad(A,N, c, Ti), b is either 0 or 1, and W ∗ = W and V ∗ = V .
We distinguish two cases:

Case 1: (Ki,W
∗‖1, V ∗, Z) is created After the pair of IC queries. As W ∗ = W , we

simplify the notation as (Ki,W‖1, V ∗, Z). We argue this query (Ki,W‖1, V ∗, Z) cannot
be forward. For this, assume otherwise, then it’s due to an earlier encryption query
ILEncT(j,N ′, A′,M ′)→ c′‖Z, and that H(pad(A′, N ′, c′, Tj)) = V ‖W (i.e., it collides with
the pair of IC queries in question). Now,

• if j = i and (N,A, c) = (N ′, A′, c′), then since we forbid trivial decryption queries,
the tag produced by ILEncT(j,N ′, A′,M ′) cannot be Z, and hence cannot create the
query (Ki,W‖1, V ∗, Z);

• if j = i while (N,A, c) 6= (N ′, A′, c′), then by Lemma 3 we have pad(A,N, c, Ti) 6=
pad(A′, N ′, c′, Ti), which then implies a hash collision and contradicts ¬(C-2);
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• if j 6= i and Kj 6= Ki, then the query ILEncT(j,N ′, A′,M ′) cannot lead to creating
(Ki,W‖1, V ∗, Z);

• finally, if j 6= i yet Kj = Ki, then we have Tj 6= Ti by ¬(C-1), which by Lemma 3
further implies pad(A,N, c, Ti) 6= pad(A′, N ′, c′, Tj) and contradicts ¬(C-2).

In all, (Ki,W‖1, V ∗, Z) has to be backward. During the execution of G1, the number
of such backward queries is at most qd. Conditioned on ¬(C-2), the number of records
(U†, V †‖W †) ∈ τ∗H with W † = W is at most n. This implies that the number of “tar-
get” V † values is also at most n. For each such “target” V † and each backward query
(Ki,W‖1, V ∗, Z), we have

Pr[V ∗ = V †] ≤ 1
2n − qe − qd

≤ 2
2n .

Therefore,

Pr[Case 1 | ¬Bad] ≤ 2nqd
2n . (12)

Case 2: (Ki,W
∗‖1, V ∗, Z) is created Before the pair of IC queries. We consider

the query (v, h, g, g ⊕ V ) first. Regardless of its direction, V = g ⊕ (g ⊕ V ) is uniform in
≥ 2n − q∗IC possibilities. So

Pr[V = V ∗] ≤ 1
2n − q∗IC

≤ 2
2n .

As argued before,
Pr[W = W ∗] ≤ 2

2n − q∗IC
≤ 4

2n .

Therefore, for each such triple of queries, the probability of collision is at most 8
22n . We

have at most qd + qe choices for (Ki,W
∗‖1, V ∗, Z), and q∗IC choices for the pair of IC

queries.14 Therefore,

Pr[Case 2] ≤ 8q∗IC(qd + qe)
22n . (13)

Note that these arguments are significantly simplified by the normalization of the game:
without the normalization, (Ki,W

∗‖1, V ∗, Z) may be created between the two matching
IC queries, which gives rise to many additional cases. Gathering (12) and (13) yields

Pr[A forge in G2 | ¬Bad] ≤ 2nqd
2n + 8q∗IC(qd + qe)

22n .

This plus Pr[Bad] yield

AdvmuCIML2
D,TEDT[IC,TRPFamily]T,L∗,u ≤

u2

22n + 8q∗IC
2n + 2nqd

2n + 8q∗IC(qd + qe)
22n

≤ u2

22n + (n2 + 9)q∗IC
2n , (14)

since q∗IC ≤ 4σ + 6(qe + qd) + 2qIC, 8q∗IC(qd+qe)
22n ≤ 8(q∗IC)2

6·22n ≤ q∗IC
2n , and 2nqd

2n ≤ n2q∗IC
2n . Then, Eq.

(14) and Eq. (11) yield Eq. (1):

AdvmuCIML2
D,TEDT[IC]K,T,L∗,u ≤

u2

22n + (2n2 + 17)(4σ + 6(qe + qd) + 2qIC)
2n + 1

2n! ·
(

4u
2n

)n
.

14 Note that the pair
(
(v, h, g, g ⊕ V ), (v, h, g ⊕ θ, g ⊕ θ ⊕W‖b)

)
should be deemed as an ordered pair.
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5.5 The Necessity of the Inverse
Upon each decryption query DecK,PK(N,A, c‖Z), after deriving the digest V ‖W =
H(pad(A,N, c, PK‖0)), if we use the inverse-free checking “If TGF(K,W, V ) 6= Z then
return⊥; else decrypt”, then the forgery attack turns clear: as mentioned, invalid decryption
queries leak the correct tag TGF(K,W, V ). Let’s see where our proof approach fails for
this design. Concretely, when the proof proceeds into the analogue of Case 1 in Section 5.4,
the query (Ki,W‖1, V ∗, Z) may be a forward query created during decryption (which is
exactly the case of the aforementioned obvious forgery attack), and we are unable to utilize
the uniformness of V ∗ to complete this argument as we did in section 5.4. Overall, in
our model, the inverse of the underlying primitives seems necessary to achieve integrity
against decryption/verification leakage. In practice, this means the use of inverse increases
robustness against decryption leakage.

6 Leakage CCA Security of TEDT
We now detail the leakage-resistant CCA security of TEDT. The leakage model and
assumption are much more complicated than those in Section 5. Therefore, we first state
the model in subsection 6.1, then specify the (mild) assumptions in subsections 6.2 and
6.3, present the security claims in subsection 6.4, and give the proof in subsection 6.5.

6.1 Modeling Leakage Functions
We model the leakage as probabilistic efficient functions manipulating and/or computing
(partially) secret values. In TEDT, each computation of E (resp. ⊕) comes with some
additional (internal) information given by LE (resp. L⊕). However, we make a distinction
between the leakages given by KDF and TGF and those given by the less protected calls to
E. Indeed, while KDF and TGF both use E, the implementation of these algorithms might
offer different levels of protection compared to all the other calls to E in TEDT, including
those of the hash function in Figure 3.

We split the leakage trace resulting from the leaking execution of the TBC E between
its input and output parts: if ETK(X)→ Y , LE(K,T,X, Y ) := (LinE (K,T ;X), LoutE (K,T ;Y ))
with semicolon. While this distinction appears a bit theoretical at first, it better reflects
the designers’ implementation goals for each functions/calls and it allows interpreting the
security bounds based on cryptanalytic experience (as explained later in section 6.2).

Finally, we insist one more time on the probabilistic feature of the leakage functions
LinE , LoutE , and L⊕ (which is indeed likely in practice): measuring p times the leakage from
the same computation would not result in completely identical traces. Therefore, we will
write [L⊕]p for the vector of p leakage traces of ⊕ (and use similar notations for the other
operations). Because of the plentiful possible uses of E, we will next denote its input-output
leakage function pair as (Lin,Lout) for simplicity.

Oracle-free leakage function. An artifact of modeling leakages as probabilistic functions
is that LE might contain “future” calls to E [DP08]. While benign as a first sight, the
possibility for an adversary to call such a leakage function gives him the ability to mount
a “future computation attack” [YSPY10]. For instance, if the leakage resulting from
E(k0, T, P1(N)) → k1 in TEDT might also already contain y2 = E(k1, T,Q1(N)), the
value y2 cannot remain unpredictable in the next block. Preventing LE(k0, ∗, ∗) from
calling E(k1, ∗, ∗) cannot be achieved only from the tweakable pseudorandom permutation
in the standard model. Hence, leakage security (mainly confidentiality) cannot follow.
Consequently, for the natural single-pass re-keying encryption used in TEDT, there are only
two reliable existing proof approaches which are (i) the leakage simulatability assumption
in the standard model [SPY13], and (ii) the non-invertible leakage assumption (or variants)
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in the ideal model [YSPY10].15 Since we focus here on the ideal TBC model, and since
the non-invertible leakages can be more easily measured by cryptanalytic practice (which
we believe is important for designing modes), we start following this approach of Yu et
al. Nevertheless, we also provide a standard model analysis (of muCCAmL2) based on the
former approach in Appendix C.

With this in mind, and to prevent future computation attacks in the ideal model, we
assume oracle-free leakage functions [YSPY10]: they cannot make any call to IC, since
it is natural for an implementation not to evaluate computations that are unrelated to
its current state — e.g., E(k0, ∗, ∗) in our above example. Therefore, we will say that the
leakage function associated to E is oracle-free, if τ(LinE ) = τ(LoutE ) = ∅, where τ(L∗E) is the
transcript of queries and answers made by L∗E to IC when L∗E is evaluated on its inputs.

As discussed in [YSPY10], this model appears to have a natural correspondence with
concrete attacks on circuits implementing (tweakable) block ciphers, where the measured
leakages can be interpreted as a simple function of the cipher’s input and key during the
first few rounds of the computation, and/or as a simple function of the cipher’s output
and key during the last few rounds of the computation, but where any useful function
of the cipher input and output remains elusive (or is the sign of a completely broken
implementation). Also, the use of ideal models does not result in trivial results, as the
bounds essentially match simple side-channel attacks to some extent.

6.2 Non-Invertible Leakage Assumption
To achieve confidentiality, the leakages have to be somewhat “bounded”—unlike Section 5.
To capture this, we follow [YSPY10] and require that the ephemeral TBC keys remain
secret in the following sense: the probability that an adversary recovers an ephemeral key
before it is being refreshed should be small.

Yu et al. required the adversary A to precisely output the secret [YSPY10, Definition 2].
We are more generous as we allow A to output a set of q guesses instead, and A wins as
long as the secret is in this set. Clearly, this weakens the assumption. Yet, interestingly,
this weaker assumption results in better bounds than Yu et al. [YSPY10] (which should be
an artifact of the proof technique). More formally, we define

Adv2-up[q](A) (15)
def== PrIC,s1

[
s2 ← ICTs1

(PA), z ← ICTs1
(PB),Guesses← AIC(s2, z, leak) : s1 ∈ Guesses

]
,

where |Guesses| = q, and A’s input leak is a list of leakages depending on values
T, PA, PB , s0 specified by A:16

leak =
[
Lout(s0, T ; s1), Lin(s1, T ;PA), Lout(s1, T ; s2), Lin(s1, T ;PB), Lout(s1, T ; z)

]p
. (16)

Note that the challenge secret s1 is uniformly picked. This emulates the real scenario, in
which the target secret is (nearly) uniform in all the possibilities. We further define

Adv2-up[q](p, qIC, t)
def== max

{
Adv2-up[q](A)

}
, (17)

where the maximum is taken over all adversaries that repeat their measurements p times,
makes qIC IC-queries, and runs in time t.

15 Using the standard model and PPT leakage functions, existing provably secure re-keying schemes
typically require a more complicated alternating structure [DP08, Pie09], or public randomness [YSPY10,
FPS12] in order to overcome the “future computation” attack.

16 This is a simplified description of a challenge-response process. Granting A the freedom to choose
this s0 is for composability purpose (which appears in the proof): the same holds for s in Equation (19).
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Figure 7: (Left) Illustration on the 2-up assumption; (Right) Basic message manipulation.

Understanding 2-up[q] Advantage. Equation (15) defines a leakage property of a
small “unit” of TEDT, pictured in Figure 7 (left). Concretely, it captures that the secret
s1 cannot be recovered from the involved leakages. Note that s1 is used in two subsequent
TBC-calls (this is why we call this assumption “2-up”), from which both the “input”
and the “output” leakages may contain information on s1: this clarifies the presence of
Lin(s1, T ;PA), Lout(s1, T ; k2), Lin(s1, T ;PB), and Lout(s1, T ; y2) in Equation (16). On the
other hand, s1 itself is the output of the previous cipher-call, and this explains the presence
of Lout(s0, T ; s1), which may contain information on s1 as well. The goal of repeating
the measurements p times is to fit into the requirement of providing challenge decryption
leakages several times in the muCCAmL2 security game. It should be noted that while
this repetition may reduce the measurement noise and make an SPA attack easier, the
corresponding advantage of (17) should still be smaller than that of a DPA.

Testers: Measuring in Practice. The concrete values of Adv2-up[q] can be measured
by running the following tester against the best known SCA adversary A. This along with
Theorem 2 allows deriving concrete limits on the capability of the implementation.
1: Tester for UP Adv2-up[q]

2: Let the challenging adversary A specify s0.
3: Pick the secret s1

$← {0, 1}n and compute Ppre ← (ET
s0 )−1(s1).

4: Repeat s1 ← ET
s0 (Ppre), s2 ← ET

s1 (PA), and z ← ET
s1 (PB) for p times.

5: Pass the leakages of Step (4) to A. In our model, this means [Lout(s0, T ; s1), Lin(s1, T ;PA)]p,
[Lout(s1, T ; s2), Lin(s1, T ;PB), Lout(s1, T ; z)]p are returned to A.

6: Let the challenging adversary A output q guesses k1, . . . , kq, the adversary A wins as long as
s1 ∈ {k1, . . . , kq}.

6.3 Capturing the (In)Security of the XOR
As a last step before stating the muCCAmL2 bound, we have to measure the leakage
resulting from XORing the random (looking) block stream with the message blocks in
TEDT. To capture this concrete information we follow Pereira et al. [PSV15] and we define

AdvLORL2(A) def==
∣∣∣∣PrIC,z

[
c0 ← z ⊕m0 : AIC(c0, leak0)⇒ 1

]
− PrIC,z

[
c1 ← z ⊕m1 : AIC(c1, leak1)⇒ 1

]∣∣∣∣ , (18)

where leakb again depends on values T, s specified by A:

leakb =
(

[Lout(s, T ; z)]p, L⊕(z,mb), [L⊕(z, cb)]p−1
)
. (19)

In the abbreviation LORL2, the suffix L stands for leaking, and the suffix 2 indicates both
encryption and decryption leakages are given. We also define

AdvLORL2(p, qIC, t)
def== max

A

{
AdvLORL2

T (A)
}
. (20)
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Understanding LORL2 Advantage. Equation (18) defines the information that an
adversary might extract from the “basic” message manipulation made in TEDT, which
involves XORing as pictured in Figure 7 (right). Concretely, the sensitive point is the key
stream block z. This block is the output of a TBC-call, hence the presence of [Lout(s, T ; z)]p
(repeated p times as clarified before). Then, the block z is used to mask the message
block, and thus the leakage L⊕(z,mb) comes. Finally, the presence of [L⊕(z, cb)]p−1, the
leakage from the decryption direction, still stems from the challenge decryption leakage
requirements of muCCAmL2.

Like in [HLWW16, PSV15], if a single XOR of the message leaks a single bit, then no
muCCAmL2 security would spring up. Thus, on the one hand it is legitimate to focus on
protecting this part of leaking implementations. But on the other hand, we cannot claim
that AdvLORL2(p, qIC, t) is negligible. So our goal here is to faithfully reduce the muCCAmL2
to simple and precise pieces that are more easy to protect as isolated components. This
type of methodology is not new in the theory community. For example, it is typically
assumed that the PRP advantage of AES is concrete 0.01 rather than “negligible” [Tes11].
Yet, the more critical nature of physical leakages also make us deviate from these results.
In some sense, we argue that the advantage degrades in an inevitable rate during the
encryption, rather than to argue for some level of security amplification. So in this sense,
TEDT is a security-preserving domain extender for a “single-block” encryption operation.
In practice, the value AdvLORL2 can be similarly measured by a tester and it is easier to
study (and to reduce with relevant protections) than to study entire modes.
1: Tester for LORL2 AdvLORL2

2: Let the challenging adversary A give s, T , and (m0,m1).
3: Pick the secrets y $← {0, 1}n, b $← {0, 1}, and compute Ppre ← (ETs )−1(y).
4: Compute c← y⊕mb, and repeat y ← ETs (Ppre) for p times while mb ← y⊕ c for p− 1

times.
5: Pass c and the leakages of Step (4) to A. In our model, this means (c, [Lout(s, T ; y)]p,

L⊕(y,mb), [L⊕(y, c)]p−1) are returned to A.
6: Let the challenging adversary A output the guess b′.

6.4 muCCAmL2 Analysis of TEDT
We define the leakage function L = (Lenc, Ldec) of TEDT as:

• Lenc, the leakages generated during the encryption:

– Lin(k, t;x) & Lout(k, t; y) generated by internal calls to E(k, t;x)→ y (excluding
KDF- and TGF-calls which are again modeled as leak-free),

– L⊕(a, b) generated by the internal actions a⊕ b,
– all the intermediate values involved in the computations of the hash functions
(i.e., hash functions are non-protected, and leak everything).

• Ldec, the above that are generated during the decryption.

We denote q = (qm, qe, qd, p− 1, qIC) and we define

AdvmuCCAmL2
TEDT,L (u,q, t, σ) def== max

{
AdvmuCCAmL2

A,TEDT,L,u

}
,

where the maximum is taken over all (q, t)-bounded adversaries against u users that have
at most σ blocks in all their (challenge & non-challenge) queries including AD.

Theorem 2. In the ideal TBC model, with the TEDT leakage functions L = (Lenc, Ldec)
defined above, if the leakage functions Lin, Lout, L⊕ satisfy the assumptions specified by
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Equation (15) and Equation (18), then the following holds:

AdvmuCCAmL2
TEDT (u,q, t, σ) ≤ 1

n! ·
(

4u
2n

)n
+ 2u2

22n + 4(n2 + 9)q∗

2n

+ σ ·AdvLORL2(p, q∗, t∗) + 2σ ·Adv2-up[q∗](p, q∗, t∗). (21)

where Adv2-up[q∗] and AdvLORL2 are defined in Eq. (17) and Eq. (20) respectively, q∗ =
2qIC +4σ+6(qe+qd+qm), t∗ = O(t+pσtl), and tl is the total time to evaluate Lin and Lout.

Interpreting the bound. We focus on the last two terms since the others have been
analyzed before. On the one hand, the term σ ·AdvLORL2(p, q∗, t∗) corresponds to the
reduction to the “minimal” message manipulation. On the other hand, the term 2σ ·
Adv2-up[q∗](p, q∗, t∗) captures the hardness of side-channel key recovery, and it is roughly
of some birthday type, namely

O

(
σ · qIC + σ + t

c · 2n

)
= O

(
(qIC + σ + t)σ

c · 2n

)
,

for some parameter c that depends on the concrete conditions. Yet, it is nowadays a
common assumption that with such a small data complexity (only 3 relevant leakage
traces), the value of c should not be significant [MOP07, Pie09].

The term σ ·Adv2-up illustrates the security loss of “hybrid factor” mentioned in the
introduction. A standard model-based proof for the black-box security of TEDT would
also suffer from a similar term σ ·AdvTBC: this is unavoidable for hybrid-based proofs,
see [Men17]. However, for the black-box setting the term σ ·AdvTBC is not tight, and is
merely an artifact of the technique. By contrast, here with leakage the term σ ·Adv2-up is
tight. This is easy to see: this term captures the collision between the σ keying actions, and
such a collision allows the adversary to obtain more than 2 leakage traces about a single
key, while our Equation (16) only assumed security with 2 traces. In all, our assumption
Equation (16), though a bit conservative, tightly results in a birthday-type bound.

6.5 Proof of Theorem 2
Let’s see some intuition first. To prove muCCAmL2 security, we need to show:

(i) Messages encrypted by fresh nonce values have confidentiality, and

(ii) Leakages given by the decryption oracle would not affect the above confidentiality.

Since TEDT has been proved muCIML2 (Theorem 1), all non-trivial decryption queries
will be invalid, and then the Encrypt-then-MAC design ensures that every such invalid
decryption query only leaks a “useless” pseudorandom value, i.e. (IC∗‖1K )−1(Z) for some Z.
By these, the above (ii), harmlessness of decryption leakages, is clear. For the above (i),
note that essentially, for each fresh nonce N , TEDT derives a new initial key k0 = ETK(N)
(for some K,T ) and takes it as the key of a TBC-based stream cipher TStreamk0 [IC]
(which we formally describe in Fig. 8). This k0 is somewhat independent from all the
other information gained by the adversary. This enables a standard hybrid argument that
reduces the left-or-right confidentiality of challenge messages to the indistinguishability
of the leaking encryption of two messages LTStreamk0 [IC](M0) and LTStreamk0 [IC](M1)
under a random initial key k0. Formally, it requires to derive an upper bound for∣∣Pr[AIC(LTStreamk0 [IC](M0))⇒ 1]− Pr[AIC(LTStreamk0 [IC](M1))⇒ 1]

∣∣
for any adversary AIC with bounded power. This indistinguishability resembles the classical
eavesdropper security enhanced with leakages. To establish this “leakage eavesdropper
security”, we rely on an ideal stream cipher IStream for “relay”: IStream encrypts a single
message with a true random key stream and offers leakages. Now:
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• The “leakage eavesdropper security” of IStream is easily reduced to AdvLORL2;

• The outputs of TStreamk0 [IC] and IStream can be proved indistinguishable, using the
non-invertible assumption on the leakage functions.

The above presented a “top-down” style overview. For the proof, we proceed with a
“bottom-up” style flow. In detail, we first formally define and study TStreamk0 [IC] and
IStream in subsection 6.5.1, then bound the leakage eavesdropper security of IStream in
subsection 6.5.2, and then the leakage eavesdropper security of TStreamk0 [IC] in 6.5.3, and
finally derive the muCCAmL2 bound in subsection 6.5.4.

6.5.1 TEDT versus the ideal stream cipher

Description of TStreamk0 [IC](T,N,M), M = m1‖ . . . ‖m`:

• Initializes an empty list leak for the leakage;
• For i = 1, . . . , `, computes ki ← ICTki−1

(Pi(N)), yi ← ICTki−1
(Qi−1(N)), and

ci ← yi ⊕mi, and adds the leakage traces [Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; ki)]p,
[Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]p, L⊕(yi,mi), and [L⊕(yi, ci)]p−1 to the list
leak.

• Returns (c1, . . . , c`).
We define LTStreamk0 [IC](T,N,M) = (TStreamk0 [IC](T,N,M), leak) for the list leak
standing at the end of the above process.

Description of IStream(T,N,M), M = m1‖ . . . ‖m`:

• Initializes an empty list leak for the leakage;
• For i = 1, . . . , `, samples ki $← {0, 1}n and yi

$← {0, 1}n such that ki 6= yi,
sets ci ← yi ⊕ mi, and adds the leakages [Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; ki),
Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]p, L⊕(yi,mi), and [L⊕(yi, ci)]p−1 to the list
leak.

• Returns (c1, . . . , c`).
We define LIStream(T,N,M) = (IStream(T,N,M), leak) for the list leak standing at the
end of the above process.

Figure 8: The real stream cipher TStreamk0 [IC] and its ideal counterpart IStream.

Formally, the two stream ciphers as well as their leakages are described in Fig. 8. For
their indistinguishability, we have the following lemma.

Lemma 6. For every `-block message M , every T,N , and every (qIC, t)-bounded distin-
guisher DIC, it holds

|Pr[DIC(LTStreamk0 [IC](T,N,M))⇒ 1]− Pr[DIC(LIStream(T,N,M))⇒ 1]|

≤` ·Adv2-up[qIC](p, qIC + 2`, t∗
)
,

where t∗ = O(t+ ` · p · tl), tl is the total time needed for evaluating Lin and Lout.

There is no term capturing AdvPRP
IC since it has been captured by the term Adv2-up[qIC]:

if A predicates the secret then it clearly breaks the PRP security of IC.

Proof. Consider the execution of DIC upon the inputs LTStreamk0 [IC](T,N,M), M =
m1‖ . . . ‖m`. We define a bad event BadQuery, which occurs when any of the internal keys
k0, k1, . . . , k`−1 appears in the key field of an IC query made by DIC. This event, once
happens, would cause the key stream blocks lose randomness. We remark that in [YSPY10,
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Appendix A], an event with the same meaning termed Querya was defined, and was later
proved negligible. So here we just need to adapt Yu et al.’s argument to our setting. In
detail, given an adversary DIC, we construct an adversary AIC such that

Adv2-up[qIC](A) ≤ Pr
[
BadQuery in DIC(LTStreamk0 [IC](T,N,M))

]
. (22)

Concretely, AIC runs an instance of D, and keeps record of D’s queries to IC in a set τIC
(as defined in previous proofs). AIC simulates the following process against D:

(1) AIC randomly guesses an index i $← [0, ` − 1], uniformly samples an initial key k0,
and initializes an empty list leak;

(2) for j = 1, . . . , i − 1, AIC queries IC to obtain kj ← ICTkj−1
(Pj(N)) and yj ←

ICTkj−1
(Qj−1(N)), and computes cj ← yj ⊕mj . AIC then adds the leakage traces

[Lin(kj−1, T ;Pj(N)), Lout(kj−1, T ; kj)]p, [Lin(kj−1, T ;Qj−1(N)), Lout(kj−1, T ; yj)]p,
L⊕(yj ,mj), and [L⊕(yj , cj)]p−1 to leak;

(3) AIC queries yi ← ICTki−1
(Qi−1(N)) and computes ci ← yi ⊕mi. Aπ then submits

T, PA = Pi+1(N), PB = Qi(N), and s0 = ki−1 to its 2-up[q] challenger, and (accord-
ing to our convention) this results in the outputs (s2, z, leak), where

leak =
([

Lout(ki−1, T ; s1), Lin(s1, T ;PA), Lout(s1, T ; s2), Lin(s1, T ;PB), Lout(s1, T ; z)
]p
)

for the challenge secret s1 ∈ {0, 1}n. Aπ adds [Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; s1)]p,
[Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]p, L⊕(yi,mi), and [L⊕(yi, ci)]p−1 to leak as
the leakage of the i-th iteration.

(4) AIC sets ki+1 ← s2 and yi+1 ← z, and computes ci+1 ← yi+1⊕mi+1. It (conceptually)
takes the challenge s1 as the key ki and adds [Lin(s1, T ;Pi+1(N)), Lout(s1, T ; ki+1)]p,
[Lin(s1, T ;Qi(N)), Lout(s1, T ; z)]p, L⊕(yi,mi), and [L⊕(yi, ci)]p−1 to leak as the leak-
age of the i+ 1-th iteration.

(5) Then AIC starts from ki+1 to emulate the remaining actions of LTStreamk0 [IC]
encrypting the tail mi+1‖ . . . ‖m` to obtain ci+1‖ . . . ‖c`. Eventually, AIC serves
the ciphertext c1‖ . . . ‖c` as well as the leakage list leak to D, and outputs the set
Guesses = {k : (k, t, x, y) ∈ τIC for some t, x, y}.

The strategy of AIC is quite obvious: if D triggers the event BadQuery then the key k
being queried must be in τIC. Therefore, AIC makes a uniform guess on the position of the
first key on which such a query is made; guessing the first queried key ensuring that that
key will only be correlated to one thing: the corresponding leakages (and not any previous
call on IC). This guess will be correct with probability 1/`. Then, AIC emulates the
encryption process of TStreamk0 [IC] and provides the leakages to D, except for the i index,
for which the leakages and IC output are replaced by those obtained from a challenger for
the seed-preserving property. If the guess on the index i is correct, all the inputs sent to
D are distributed exactly as those produced by TStreamk0 [IC](T,N,M). Therefore, when
D halts, if D made a query on s1, then simply outputting τIC would break the game. So
we have Pr[s1 ∈ Guesses | BadQuery in DIC(LTStreamk0 [IC](T,N,M))] = 1

` .
Now, we observe that

Pr
[
s1 ∈ Guesses | BadQuery in DIC(LTStreamk0 [IC](T,N,M))

]
≤ Pr[s1 ∈ Guesses]

Pr
[
BadQuery in DIC(LTStreamk0 [IC](T,N,M))

] .
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And it can be seen A is (qIC + 2`, t∗)-bounded for t∗ = O(t+ ` · p · tl): the factor p before
tl stems from the fact that the leakage functions are evaluated p times in total. By this,

Pr
[
BadQuery in DIC(LTStreamk0 [IC](T,N,M))] ≤ ` · Pr[s1 ∈ Guesses

]
≤ ` ·Adv2-up[qIC](A) (Eq. 15)

≤ ` ·Adv2-up[qIC](p, qIC + 2`, t∗). (Eq. 17)

During the real execution DIC(LTStreamk0 [IC](T,N,M)), as long as the event BadQuery
never happens, all the keys and key stream blocks are fresh random values independent
from τIC the transcript of IC queries of D, and have the same distribution as those in the
ideal execution DIC(LIStream(T,N,M)). Therefore,∣∣Pr[DIC(LTStreamk0 [IC](T,N,M))⇒ 1]− Pr[DIC(LIStream(T,N,M))⇒ 1]

∣∣
≤ ` ·Adv2-up[qIC](p, qIC + 2`, t∗)

as claimed.

6.5.2 Leakage eavesdropper security of the ideal stream cipher

We then show how to reduce the leakage eavesdropper advantage of IStream encrypting an
`-block message to the defined term AdvLORL2.

Lemma 7. For every pair of `-block messages M0 and M1 and (qIC, t)-bounded adversary
AIC, it holds∣∣Pr[AIC(LIStream(T,N,M0))⇒ 1]− Pr[AIC(LIStream(T,N,M1))⇒ 1]

∣∣
≤ ` ·AdvLORL2(p, qIC, t

∗) + `

2n ,

where t∗ is as defined in Lemma 6.

Proof. Let M0 = m0
1‖ . . . ‖m0

` and M1 = m1
1‖ . . . ‖m1

` . We start by building a sequence
of `+ 1 messages Mh,0, . . . ,Mh,` starting from M0 and modifying its blocks one by one
until obtaining M1. That is, Mh,i := m1

1‖ . . . ‖m1
i ‖m0

i+1‖ . . . ‖m0
` . For any i, assuming a

(qIC, t)-bounded adversary AIC against IStream(T,N,Mh,i−1) and IStream(T,N,Mh,i), we
build a (qIC, t

∗)-bounded adversary AIC
2 against the distribution defined in Eq. (18). In

detail, AIC
2 proceeds in four steps:

(1) AIC
2 uniformly samples k0 and initializes an empty list leak;

(2) for j = 1, . . . , i− 1, AIC
2 uniformly samples random values kj , yj such that kj 6= yj ,

computes cj ← yj ⊕ m1
j , and adds the traces [Lin(kj−1, T ;Pj), Lout(kj−1, T ; kj)]p,

[Lin(kj−1, T ;Qj−1), Lout(kj−1, T ; yj)]p, L⊕(yj ,m1
j ), and [L⊕(yj , cj)]p−1 to leak;

(3) AIC
2 samples ki, and submits s = ki−1, T to its LORL2 challenger. According

to our convention, AIC
2 will receive the outputs (cb, leakb), where the leakage list

leakb =
(
[Lout(s, T ; z)]p, L⊕(z,mb), [L⊕(z, cb)]p−1). AIC

2 sets yi = z, and adds the
leakages [Lin(ki−1, T ;Pi), Lout(ki−1, T ; ki)]p, [Lin(ki−1, T ;Qi−1), Lout(ki−1, T ; yi)]p,
L⊕(yi,mb), and [L⊕(yi, cb)]p−1 to leak;

(4) Then AIC
2 starts from ki to emulate the remaining actions of IStream encrypting

the tail m0
i+1‖ . . . ‖m0

` to obtain ci+1‖ . . . ‖c`. Eventually, AIC
2 serves the ciphertext

c1‖ . . . ‖ci−1‖cb‖ci+1‖ . . . ‖c` as well as all the generated simulated leakages to AIC,
and outputs whatever AIC outputs.



F. Berti, Chun Guo, O. Pereira, T. Peters and F.-X. Standaert 289

It can be seen that, as long as ki 6= z, depending on whether the input tuple received
by AIC

2 captures the LORL2 challenger encrypting m0
i or m1

i , the inputs to AIC capture
IStream encrypting Mh,i−1 or Mh,i. Note that Pr[ki = z] = 1/2n. Moreover, AIC

2 is
(qIC, O(t+ ` · p · tl))-bounded if AIC is (qIC, t)-bounded, which means∣∣Pr[AIC(IStream(T,N,Mh,i−1))⇒ 1]− Pr[AIC(IStream(T,N,Mh,i))⇒ 1]

∣∣
≤AdvLORL2(p, qIC, O(t+ ` · p · tl)) + 1

2n

by Eq. (20). Taking a union bound over the ` hybrids yields the main claim.

6.5.3 Leakage eavesdropper security of the stream cipher TStream[π]
For simplicity, we define

Adveavl2
TStream(p, qIC, t, `)

:= max
A

{∣∣Pr[AIC(LTStreamk0 [IC](T,N,M0))⇒ 1]− Pr[AIC(LTStreamk0 [IC](T,N,M1))⇒ 1]
∣∣},

where the abbreviation eavl2 stands for eavesdropper security with encryption and decryption
leakages, and the maximal is taken over all adversaries making qIC queries to IC and
running in time t. Gathering Lemmas 6 and 7, we could obtain an upper bound on
Adveavl2

TStream(p, qIC, t, `).

Lemma 8. For every pair of `-block messages M0 and M1, (qIC, t)-bounded adversary
AIC and t∗ is as defined in Lemma 6, it holds

Adveavl2
TStream(p, qIC, t, `) ≤

`

2n + ` ·AdvLORL2(p, qIC, t
∗) + 2` ·Adv2-up[qIC](p, qIC + 2`, t∗).

Proof. By the previous lemmas, we have∣∣Pr[AL(TStreamk0(T,N,M0))⇒ 1]− Pr[AL(TStreamk0(T,N,M1))⇒ 1]
∣∣

≤
∣∣Pr[AL(IStreamk0(T,N,M0))⇒ 1]− Pr[AL(IStreamk0(T,N,M1))⇒ 1]

∣∣︸ ︷︷ ︸
≤`·AdvLORL2(p,qIC,O(t+`·p·tl))+ `

2n (by Lemma 7)

+
∑
b=0,1

∣∣Pr[AL(TStreamk0(T,N,M b))⇒ 1]− Pr[AL(IStreamk0(T,N,M b))⇒ 1]
∣∣

︸ ︷︷ ︸
≤2`·Adv2-up[qIC](p,qIC+2`,O(t+`·p·tl)) (by Lemma 6)

Hence the claim.

6.5.4 Completing the muCCAmL2 Proof

The core step is a bit similar the standard hybrid-based, eavesdropper-to-CPA security
reduction: to prove that encrypting M0

1 ,M
0
2 , . . . is close to encrypting M1

1 ,M
1
2 , . . ., we will

replace encrypting M0
i by M1

i one-by-one, and bound the gap introduced by each such
replacement using Lemma 8. What makes the situation more complicated is the presence
of the decryption queries (since we are considering CCA rather than CPA). Decryption
queries may be trivial or non-trivial: recall from subsection 5.4.2 that a decryption query
LDecK,T(i,N,A,C) is trivial if the encryption LEncK,T(i,N,A,M)→ C happens before.
The leakages of trivial decryption queries may serve new information, thus requiring some
treatments. Formally, we start by defining G0 as the game capturing the interaction
between A and (LEncK,T, LEnc0

K,T, Ldecch, LDecK,T, IC) (cf. subsection 2.2), and G∗0 as the
game capturing the interaction between A and (LEncK,T, LEnc1

K,T, Ldecch, LDecK,T, IC).
The subsequent proof consists of several small steps presented in the following paragraphs.
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Idealizing TEDT. We then define two intermediate games G1 and G∗1: G1, resp. G∗1, is
obtained from G0, resp. G∗0, by replacing all the KDF- and TGF-calls by calls to TRPFamily
(as done in section 5.3). By Eq. (11) (although the formalisms are different), with
q∗IC = 4σ + 6(qm + qe + qd) + 2qIC (which is tweaked from Eq. (7)), we have

∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]
∣∣ ≤ (n2 + 8)q∗IC

2n + 1
2n! ·

(
4u
2n

)n
(23)

∣∣Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣ ≤ (n2 + 8)q∗IC

2n + 1
2n! ·

(
4u
2n

)n
. (24)

Excluding non-trivial decryption queries. We then define two new intermediate games
G2 and G∗2: they differ from G1 and G∗1 in that:

• They return ⊥ (as well as the decryption leakages) for all non-trivial decryption
queries

• They abort when ∃i 6= j : Ki‖Ti = Kj‖Tj .

The gaps have been bounded by Eq. (14) in section 5.4 (with Pr[∃i 6= j : Ki‖Ti = Kj‖Tj ]
included). Therefore,

∣∣Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]
∣∣ ≤ u2

22n + (n2 + 9)q∗∗∗IC
2n (25)∣∣Pr[G∗2 ⇒ 1]− Pr[G∗1 ⇒ 1]

∣∣ ≤ u2

22n + (n2 + 9)q∗∗∗IC
2n . (26)

The main hybrid-based argument. For this, we denote the qe challenge tuples by

(i1, N1, A1,M
0
1 ,M

1
1 ), . . . , (iqe

, Nqe
, Aqe

,M0
qe
,M1

qe
).

Then, we use qe hops to replace M0
1 , . . . ,M

0
qe

by M1
1 , . . . ,M

1
qe

in turn, to show that G2 can
be transited to G∗2. For convenience, we define G3,0 = G2, and define a sequence of games

G3,1,G3,2, . . . ,G3,qe ,

such that in the j-th system G3,j , the first j messages processed by the challenge en-
cryption oracle are M0

1 , . . . ,M
0
j , while the remaining qe − j messages being processed are

M1
j+1, . . . ,M

1
qe
. It can be seen that G3,qe = G∗2.

We then show that for j = 1, . . . , qe, G3,j−1 and G3,j are indistinguishable for AIC. For
this, from AIC we build an adversary AIC

2 , such that |Pr[G3,j−1 ⇒ 1] − Pr[G3,j ⇒ 1]|
is related to Adveavl2

TStream(p, q∗IC, O(t), |M0
j |/n). In detail, initially, AIC

2 samples u dis-
tinct keys K1‖T1, . . . ,Ku‖Tu for subsequent simulations. It also keeps a pair of ta-
bles (ETable,ETable−1), which have entries of the form ETable(K,T,X) = Y and
ETable−1(K,T, Y ) = X, to simulate the primitive TRPFamily via lazy sampling (note
that TRPFamily is essentially an ideal cipher IC2 independent from IC). It then runs A.
Upon A’s action, AIC

2 reacts as follows:

• Upon a query to IC: A2 simply relays the query to IC and the answer to A.

• Upon a (non-challenge) encryption query (i∗, N∗, A∗,M∗) from A,

– if (Ki∗ , Ti∗ , C0(N∗)) /∈ ETable, AIC
2 samples an initial key k0 such that

(Ki∗ , Ti∗ , k0) /∈ ETable−1, defines the two entries ETable(Ki∗ , Ti∗ , C0(N∗))←
k0 and ETable−1(Ki∗ , Ti∗ , k0) ← C0(N∗), and then emulates the encryp-
tion process LTStreamk0 [IC](Ti∗ , N∗,M∗) to get the ciphertext c∗ and leak-
ages. AIC

2 then computes V ∗‖W ∗ ← H[IC](pad(A∗, N∗, c∗, Ti∗)) and Z∗ ←
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ETable(Ki∗ ,W
∗‖1, V ∗) (if (Ki∗ ,W

∗‖1, V ∗) /∈ ETable then AIC
2 samples Z∗

and defines ETable(Ki∗ ,W
∗‖1, V ∗)← Z∗ as before). For this entire process

AIC
2 has to make 4`∗ + 6 queries to IC with `∗ = |M∗|/n and costs O(p · `∗ · tl)

time to evaluate the leakage functions. Finally, AIC
2 returns the ciphertext c‖Z

and the leakages to A;
– if (Ki∗ , Ti∗ , C0(N∗)) ∈ ETable, AIC

2 simply emulates LTStreamk0(Ti∗ , N∗,M∗)
with k0 = ETable(Ki∗ , Ti∗ , C0(N∗)), calls V ∗‖W ∗ ← H(pad(A∗, N∗, c∗, Ti∗))
and computes the tag Z∗ ← ETable(Ki∗ ,W

∗‖1, V ∗) on the obtained c∗, and
returns c∗‖Z∗ and the leakages to A. The cost is similar to the above case.

• Upon a trivial decryption query (i∗, N∗, A∗, C∗) from A, AIC
2 parses C∗ = c∗‖Z∗,

computes k0 = ETable(Ki∗ , Ti∗ , C0(N∗)), and simply emulates the decryption of
LTStreamk0 [IC] on (Ti∗ , N∗, c∗), and relays the outputs to A. The cost is similar to
the encryption case.

• Upon a non-trivial decryption query (i∗, N∗, A∗, C∗) from A, AIC
2 parses C∗ = c∗‖Z∗,

and computes V ∗‖W ∗ ← H[IC](pad(A∗, N∗, c∗, Ti∗)). Then,

– if (Ki∗ ,W
∗‖1, Z∗) /∈ ETable, AIC

2 samples V ∗∗ such that (Ki∗ ,W
∗‖1, V ∗) /∈

ETable, and defines the two table entries ETable(Ki∗ ,W
∗‖1, V ∗∗) ← Z∗,

ETable−1(Ki∗ ,W
∗‖1, Z∗)← V ∗∗;

– if (Ki∗ ,W
∗‖1, Z∗) ∈ ETable, AIC

2 just sets V ∗∗ ← ETable−1(Ki∗ ,W
∗‖1, Z∗).

Now AIC
2 returns (⊥, V ∗∗) to A (regardless of V ∗∗ = V ∗ or not).

• Upon A submitting the `-th challenge tuple (i`, N`, A`,M0
` ,M

1
` ), it necessarily holds

(Ki` , Ti` , C0(N`)) /∈ ETable, since:

– Previous encryption queries to the i`-th user cannot define ETable(Ki` , Ti` , C0(N`))
due to the challenge nonce-respecting restriction on A;

– Previous encryption queries to the i`′ -th users cannot define ETable(Ki` , Ti` , C0(N`))
since Ki`‖Ti` 6= Ki`′ , Ti`′ .

Therefore, depending on `, AIC
2 reacts as follows:

– When ` < j, it encrypts M0
` and returns. In detail, AIC

2 samples k(`)
0 , sets

ETable(Ki` , Ti` , C0(N`))← k
(`)
0 and ETable−1(Ki` , Ti` , k

(`)
0 )← C0(N`), and

then emulates LTStream
k

(`)
0

[IC](Ti` , N`,M0
` )→ c`, performs the tag generation

accordingly to produce Z` and returns (c`, Z`) and the leakages to AIC. The
cost is similar to the non-challenge encryption queries.

– When ` = j, it relays M0
` and M1

` to its eavesdropper challenger to obtain cb`
and leakages leakenc and [leakdec]p−1, and then performs the tag generation
accordingly to produce Z` and returns Cbch = (cb`, Z`) to A. Note that this
means the relation ETable(Ki` , Ti` , C0(N`)) = kch0 is implicitly fixed, where
kch0 is the secret key generated inside the eavesdropper challenger;

– When ` > j, it simply encrypts M1
` and returns. The details are similar to the

described case ` < j.

• Upon A making the λ-th query to Ldecch(`) (1 ≤ λ ≤ p− 1),

– When ` 6= j, AIC
2 performs the corresponding decryption and returns the

obtained leakages to A;
– When ` = j, AIC

2 simply returns the λ-th trace in the vector [leakdec]p−1 as the
answer.
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It can be seen that, depending on whether b = 0 or 1, the whole process is the same
as either G3,j−1 or G3,j . By the remarks before, besides running A, AIC

2 samples at
most 2(qm + qe + qd) random values (to emulate TRPFamily) and internally processes
qm + qe + qd − 1 queries (except for the query encrypted by the challenger). Therefore,
AIC

2 makes q∗ = 4σ + 6(qm + qe + qd) additional queries to IC, and evaluates the leakage
functions for 2pσ times, resulting in O(pσtl) additional running time. By these, and since
qIC + q∗ ≤ q∗IC, we have∣∣Pr[G3,i ⇒ 1]− Pr[G3,i−1 ⇒ 1]

∣∣ ≤ Adveavl2
TStream(p, q∗IC, O(t+ pσtl), `i),

where `i is the number of blocks in the ith challenge message. This means

∣∣Pr[G∗2 ⇒ 1]− Pr[G2 ⇒ 1]
∣∣ ≤ qe∑

i=1

∣∣Pr[G3,i ⇒ 1]− Pr[G3,i−1 ⇒ 1]
∣∣

≤
qe∑
i=1

Adveavl2
TStream(p, q∗IC, O(t+ pσtl), `i). (27)

Summing over Eqs. (23), (24), (25), (26), and (27), we eventually reach∣∣Pr[G0 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣

≤ 1
n! ·

(
4u
2n

)n
+ 2u2

22n + (4n2 + 34)q∗IC
2n +

qe∑
i=1

Adveavl2
TStream(p, q∗IC, O(t+ pσtl), `i), (28)

with the last term bounded by Lemma 8 as

σ

2n + σ ·AdvLORL2(p, q∗IC, O(t+ pσtl)) + 2σ ·Adv2-up[q∗IC](p, q∗IC, O(t+ pσtl)).

Using (4n2+34)q∗IC
2n + σ

2n ≤ 4(n2+9)q∗IC
2n , we reach Eq. (21).

7 Performance Evaluation and Related Work
TEDT is designed in order to reach high security guarantees in the presence of leakage.
The previous sections gave comprehensive theoretical analyzes of our security claims and
physical assumptions. In this section, we finally discuss the cost of these guarantees.

In a first part, we provide performance estimations highlighting the interest of such
a leakage-resistant mode of operation enabling leveled implementations, compared to a
standard mode where all the blocks require to be uniformly protected against leakage.

In a second part, we provide a discussion of possible competitors. Our main conclu-
sion is that published solutions illustrate an interesting tradeoff between mode-level and
implementation-level side-channel resistance. In this respect, a fair comparison would re-
quire an evaluation of the performance overheads needed to satisfy the various assumptions
used in these modes. We believe such an evaluation and a rigorous discussion of the best
way to achieve given levels of confidentiality and integrity in the presence of leakage is
among the most important open problems in this field of research.

7.1 Leveled versus Uniform Software Implementations
As a first step in our discussion, we compare two extreme situations with respect to leakage-
resistance. First, TEDT reaches the top of the hierarchy in the definitional framework of
Guo et al. [GPPS19a] (ignoring black box misuse-resistance) and is therefore expected
to minimize the need of implementation-level countermeasures. For this purpose, TEDT
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Figure 9: Performance estimations (I): uniformly masked implementation of OCB based
on the AES versus leveled implementation of TEDT based on Deoxys-BC-256.

requires 4 TBC calls per message block and a decryption-based tag verification. (The first
requirement is due to the need of a two-pass mode in order to ensure CCAmL2, where the
encryption pass embeds a re-keying process that requires 2 TBC calls per message block
and the hashing, based on the Hirose construction, needs another two calls; the second
requirement is necessary to reach CIML2 in the unbounded leakage model). Next, OCB-
AES provides no guarantees against leakage, but has an amortized cost of one TBC call
per message block and is fully parallelizable (which is not possible with re-keying) [Rog04a]
The rationale behind this choice of modes is to avoid a comparative discussion of different
leakage assumptions that is challenging given the current (lack of) understanding of the
respective implementation cost needed to fulfill these assumptions.

We consider masking as implementation-level countermeasure, and base our estima-
tions on the state-of-the-art solutions proposed by Goudarzi and Rivain in [GR17]. We
specifically exploit Table 3 in this reference, which provides cycle counts in function of
the number of shares in the masking scheme. We selected Deoxys-BC-256 as instance of
TBC to use in TEDT, which was recently elected as a winner of the CAESAR competi-
tion [JNPS]. This choice is mostly motivated by the AES-based structure of this cipher,
which enables exploiting the same masking countermeasure. In particular, compared to the
AES, Deoxys-BC-256 implies performance overheads of a factor 1.4 to 1.6 for unprotected
implementations, and has a total of 224 S-boxes compared to 200 for the AES (i.e., 10× 16
for the rounds and 10× 4 for the key rounds). By counting the fraction of time spent on
S-boxes (also provided in the work by Goudarzi and Rivain), this allows us to estimate
the respective cycle counts for Deoxys-BC-256 and the AES, for various number of shares
(with a ratio 1.5 for one share, converging to 224

200 as the number of shares increases).

For illustration, we then compare implementations of OCB uniformly protected thanks
to masking, and leveled implementations of TEDT. The first ones use ` + 2 calls to a
masked AES implementation, while the second ones uses 2 calls to masked Deoxys-BC-256
implementations and 4` calls to the unprotected Deoxys-BC-256 implementation. The
results of these estimations can be found in Figures 9 and 10 for messages of various
sizes. The most interesting conclusion is that starting from 2 shares (i.e., the minimum
amount of masking), TEDT compares favorably to OCB, independent of the message
size. This is easily observed thanks to the “factor of gain” on the right Y axis of the
figures. It is explained by the large overheads paid when moving from an unprotected
implementation (that can run in a few thousands of cycles) to a masked one (e.g., a
2-share masked AES takes > 50, 000 cycles in [GR17]). The second important conclusion
is that the factor of gain approximately converges towards `+2

2 as the number of shares
increases. Quite naturally, the gains get larger and the full convergence requires more
shares as the message sizes increase. Concretely, factors of gain larger than 10 can already
be observed for medium size messages (e.g., ` = 100 blocks) and 4 to 8 shares. Note that
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Figure 10: Performance estimations (II): uniformly masked implementation of OCB based
on the AES versus leveled implementation of TEDT based on Deoxys-BC-256.

the factor of gain is actually slightly lower than `+2
2 , which can be explained by the slightly

worse performances (and larger number of S-boxes) of Deoxys-BC-256 compared to the
AES. In this respect, it is worth mentioning that combining TEDT with an underlying
cipher specifically optimized for efficient masked implementation, such as the LS-designs
in [GLSV15], would actually allow even better results. Note also that these estimations
ignore the cost needed to protect the whitening values ∆’s in OCB.

We insist that these estimations are only used to give trends and show that mode-level
side-channel resistance gains interest as physical security becomes a concern (exact figures
require algorithm-specific optimizations that are out of scope here). We also mention
that we expect similar (energy) gains in hardware. The only difference is that the energy
overheads of the masking countermeasure may then be due both to an increase of the cycle
count (as in software) and to a increased area [GMK17]. Also, hardware implementations
provide additional opportunities to implement the weakly protected implementation at
minimum energy cost (e.g., thanks to low-latency designs [KDH+12]).

7.2 Competing Modes of Operation & Discussion
We conclude this work with a brief overview of other approaches to leakage-resistant (or
resilient) authenticated encryption and emerging challenges for their fair comparison.

Starting with seed results, and as already mentioned in Section 3.1, Berti et al. [BKP+18,
BPPS17] and Guo et al. [GPPS19a] introduced several security definitions and modes of
operation for leakage-resistant AEADs. While their security definitions are the starting
point of the TEDT design, we extend their work in several directions. (i) TEDT is designed
to offer strong mu security, which is ignored in previous modes, and which, as mentioned
before, is highly important for practical use. (ii) TEDT is fully specified, while their
proposals left several questions open, including the way to implement a hash function.
(iii) TEDT is analyzed in several security models, including the ideal cipher model based
on very mild assumptions on leakages (one-wayness) with tight security bounds, while
such a tight security analysis is not available for other modes.17

Following with competitors, the most relevant and conceptually closest proposal is ISAP,
which is an elegant two-passes sponge-based AEAD originally aiming at mode-level DPA
resistance [DEM+17]. Subsequently, two works independently proposed methodologies for
formally analyzing the leakage security of sponge/duplex designs [GPPS19b, DM19]. While
being based on different constructions and primitives, ISAP uses the Encrypt-then-MAC
pattern that is similar to TEDT and the analysis in [GPPS19b] suggests that its leveled
implementations achieve similar security guarantees as TEDT under different assumptions.

17 While tight security proofs under idealized assumptions must admittedly always be interpreted with
care, it remains that they are desirable targets in general, and practically-relevant in many cases.
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Namely, its strongly protected components depend on a rate-1 sponge-based re-keying
function (rather than a masked TBC) and its tag verification is not inverse-based so has
to be protected against DPA to avoid forgeries.18 Analyzing ISAP and TEDT reveals
why comparing leakage-resistant modes of operation is challenging and requires more
research. For example, it depends on (i) whether the sponge-based re-keying of ISAP gives
better or worse concrete security guarantees than the masked TBC of TEDT for a given
cost/performance target, which additionally depends on whether encryption or decryption
leakages are considered, and (ii) whether a DPA-resistant tag verification is preferable or
not to an inverse-based tag verification which can leak in full.19

Yet, one concrete advantage of ISAP over TEDT is that it anyway enjoys simplified
passes: two TBC calls are replaced by a single permutation calls. Several other modes
take advantage of the appealing structure of sponges for leakage-resistance (or resilience).
For example, Guo et al. proposed a sponge-based variant of TEDT that they denote
as TEDTSponge and (as key contribution) a single-pass design TETSponge that only
guarantees CCAmL1 (and CIML2) security under similar assumptions as TEDT. It serves as
a basis for the Spook candidate to the NIST lightweight cryptography standardization effort
(https://www.spook.dev).20 The Ascon cipher, both elected as a winner of the CAESAR
competition and candidate to the NIST lightweight cryptography standardization effort
(https://ascon.iaik.tugraz.at) provides similar guarantees (CCAmL1 and CIML2)
under different assumptions: its leveled implementations use masking as TETSponge
but its tag verification is not inverse-based [GPPS19b]. In general, the sponge duplex
construction (without complementary ingredients) also provides some (weaker) security
guarantees (formally, CPA security and ciphertext integrity with leakage in encryption only)
at low(er) cost [GPPS19b, DM19], which means that implementation-level countermeasures
are then needed if stronger security targets must be reached. So overall, comparing the
security that these proposals in a fair manner requires understanding the implementation
overheads needed to fulfill their respective physical assumptions. We believe the exhibition
of this mode-level vs. implementation-level side-channel security tradeoff is an important
conclusion of this work and opens interesting avenues for further invetigations.

We finally mention the work of Barwell et al. [BMOS17] who propose a mode of
operation and a choice of PRF that satisfy a complementary definition of leakage-resilient
and misuse-resistant AEAD (rather than leakage-resistant and misuse-resilient for TEDT).
Their security definition is different from ours, notably in the fact that they do not offer
to the adversary any leakage that would come from queries in which the game challenger
would encrypt either a real or a random message. Such a definition could classify as secure
an implementation that leaks plaintexts in full but, on the other hand, makes it feasible
to require misuse-resistance instead of misuse-resilience. Their mode of operation is also
incompatible with leveled implementations: each block-cipher call needs to be equally well
protected, and they propose using, for that purpose, a PRF that is based on pairings. As
such, the (e.g., energy) efficiency of a uniformly protected implementation of their mode
would be considerably lower than a leveled implementation of TEDT as we propose.
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Supplementary Material

Common belief arguing about the infeasibility to achieve nonce-misuse resistance with
(non-restricted) leakage is given in Appendix A. Appendix B shows that XEX is not an ideal
TBC. In the misuse-resilience black-box setting (i.e. without leakage), TEDT competes
with standards and even outperforms them in the multi-user setting. Unfortunately, the
details and the proofs of its optimal security must have been deferred to Appendix D
due to space constraints. Eventually, Appendix C shows that even in the standard model
TEDT keeps its leakage confidentiality. This final analysis simply gives as more confidence
in the rationale of our mode.

A Full Nonce Robustness (Misuse-Resistance) is Hard to
Achieve Facing Leakage

(Very informal) The hardness of realizing misuse-resistance in the leakage setting was
argued from two different ideas due to Berti et al. [BKP+18] and Guo et al. [GPPS19a].
Below we elaborate in detail. We ignore the associated data A since it’s irrelevant here.
Concentrating on the re-keying designs, if nonce N is fixed in CPA attacks, then the
initial state of the re-keying is fixed, and likely a same ephemeral key will appear in
each encryption process. This allows the adversary to observe long-term information
about this ephemeral key and recover it via SPA [BKP+18]. Such a “state-fixing” attack
is always possible unless the AEAD scheme first derives a digest D ← f(N,M) that
depends on both N and M . But in the latter case, the scheme has to rely on: (i) a
variable input length PRF fK , which again faces the problem of “state-fixing” attacks,
or (ii) a keyless hash function f (like that used in SIVAT [BMOS17]), which leaks easy-
to-compare information about the message M and ruins confidentially (we stress that
SIVAT was designed for applications without challenge leakage, so our observation does
not contradict the security claim in [BMOS17]). The above “state-fixing” attack won’t
be effective on the leakage-resilient PRF/PRP-based DAE or MR AE schemes (such as
those proposed by Barwell [BMOS17]): it’s effective on re-keying designs just because the
latter are expected to use PRF/PRPs that are weak w.r.t. leakage-resilience. But for
these DAE schemes, another possibility for distinguishing occurs. Concretely, virtually
all (D)AE perform actions on the message block-by-block. For example, in the SIV(-like)
composition, message is absorbed block-by-block by a universal hash function (SCT [PS15]
and ZAE [IMPS17] are two concrete examples); in sponge, message is absorbed block-by-
block by a iterative process (e.g., SUNDAE [BBLT18]). In all, the prefix of the leakage
Lenc(m1‖m2‖ . . . ‖m`) only depends on m1 (or m1 and m2, when Feistel networks are used).
Therefore, using Lenc(m1‖ . . . ‖m`) as a template, for M0 = m1‖ . . . and M1 = m′1‖ . . .,
m′1 6= m1, it’s easy to distinguish Lenc(M0) from Lenc(M1) and break the LOR game. In
all, while there isn’t any formal analysis, “full” robustness against nonce-misuse in the
presence of challenge query leakage seems impossible. We further stress that: (1) The
(informal) attacks described here never contradict the security claims in the mentioned
papers [PS15, IMPS17, BBLT18, BMOS17]: the former three only claimed security without
leakage, while the last [BMOS17] is only tailored to the setting without challenge query
leakage; (2) The impossibility of “full” robustness against nonce-misuse with challenge
query leakage isn’t an artifact of the security model. Instead, it’s the reality. It shows
if challenge query leakage cannot be avoided, then one has to manage the nonce more
carefully.
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B XEX is not an Ideal TBC
We first recall the definition of XEX, which was introduced by Rogaway [Rog04b] as an
instance of a construction of [LRW11]. XEX uses ∆ = xα1

1 · · · x
α`

` Ek(T ) to mask the input
and output of a classical block cipher E, where x1, . . . , x` ∈ GF(2n) are some pre-defined
generators. Formally,

XEXk((α1, . . . , α`, T ),m) = Ek(m⊕∆)⊕∆.

If the generators and the tweak space are defined such that the xα1
1 · · · x

α`

` are unique and
unequal to 1 for all tweaks, XEX achieves birthday bound security [Rog04b]. For example,
practical applications with n = 128 often take ` ≤ 3 and (x1, x2, x3) = (2, 3, 7), and an
allowed tweak space would be [1, 2n/2]× [0, 10]× [0, 10]× {0, 1}n.

Note that the security of XEX crucially relies on the secretness of the key k: otherwise,
regardless of the choice of x1, . . . , x`, the adversary could find α1, . . . , α`, T, α

′
1, . . . , α

′
`, T
′

such that xα1
1 · · · x

α`

` Ek(T ) = xα
′
1

1 · · · x
α′`
` Ek(T ′) via querying E−1

k , which then satisfy
XEXk((α1, . . . , α`, T ),m) = XEXk((α′1, . . . , α′`, T ′),m) for any m. By this, XEX is not
secure in the known-key setting [KR07] and thus not ideal.

C An Analysis in the Standard Model
Compared to subsection 6.5, the analysis is even closer to the FEMALE proof in [GPPS19a].
To ease comparison, in this subsection we adopt the notations of [GPPS19a].
Assumptions. In this section, we model the TBC E as a strong tweakable pseudorandom
permutation, defined as follows.

Definition 1 (Strong Tweakable Pseudorandom Permutation). A function E : K×T W ×
M→M is a (q, t, εE)-strong tweakable pseudorandom permutation (STPRP) for a security
parameter n if, for all (q, t)-bounded adversaries A, we have∣∣∣Pr

[
k

$← K : AEk,E−1
k (1n)⇒ 1

]
− Pr

[
P

$← T P : AP,P
−1

(1n)⇒ 1
]∣∣∣ ≤ εE,

where T P denotes the set of all tweakable permutations on M and with tweak space
T W so that for any tweakable permutation P , and for any tweak tw, P tw = P (tw, ·) and
P tw,−1 = P−1(tw, ·) are the inverse of each other.

Further, we assume the leakages are “recyclably simulatable”, which was first intro-
duced in [GPPS19a] and is defined below (adapted to TPRP setting) based on (p, q)-
rsim-game in Table 2. We abbreviate it as (p, q)-recyclable-simulatability. This (p, q)-
recyclable-simulatability assumption is an extension of the q-simulatability notion [SPY13],
by allowing each of the q leakages in q-simulatability to be repeated p times.

Table 2: The (p, q)-rsim-game for TBC.
Game (p, q)-rsim(A,E, L,S, b).
The challenger selects two random keys k, k∗ $← K. The output of the game
is a bit b′ computed by AL based on the challenger responses to a total of
at most q adversarial queries of the following type, each repeated at most p times:
Query Response if b = 0 Response if b = 1
TEnc(T, x) ETk (x), L(k, T, x) ETk (x),SL(k∗, T, x,Ek(T, x))
and one query of the following type, repeated at most p times:
Query Response if b = 0 Response if b = 1
Gen(kpre, Tpre, x) SL(kpre, Tpre, x, k) SL(kpre, Tpre, x, k∗)
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Definition 2 ((p, q)-recyclable-simulatability of leakages). Let E be a TPRP with L as
its leakage function. Then the leakages of E are said to have (qS , tS , ql, t, ε(p,q)-rsim) (p, q)-
recyclable-simulatability, if there exists a (qS , tS)-bounded simulator SL such that, for
every (ql, t)-bounded adversary AL (making at most ql queries to L and running in time t),
we have∣∣∣Pr[(p, q)-sim(A,E, L,S, 1)⇒ 1]− Pr[(p, q)-sim(A,E, L,S, 0)⇒ 1]

∣∣∣ ≤ ε(p,q)-rsim.

Throughout the remaining, we would simply call such leakages R-simulatable. It isn’t
hard to see (p, q)-recyclable-simulatability captures very similar SPA security setting as
Eq. (15), the non-invertible leakage assumption. Please see [GPPS19a] for additional
discussion on this assumption.
To the muCCAmL2 Advantage. We define

AdvmuCCAmL2
TEDT (q, t, σ) def== max

{
AdvmuCCAmL2

TEDT (A)
}
,

where q = (qm, qe, qd, p−1, ql), and the maximal is taken over all (q, t)-bounded adversaries:
that make qm queries to the non-challenge encryption oracle, qd queries to the decryption
oracle, p− 1 queries to Ldecch, qe queries to the challenge encryption oracle, and ql queries
to L, run in time t, and have at most σ blocks in its queries. For the formal analysis, we
define the leakage function L = (Lenc, Ldec) of TEDT as:

• Lenc consists of the follows that are generated during the encryption:

– the leakages LE(s, T, x) generated by all the internal calls to Es(T, x), and
– the leakages L⊕(a, b) generated by all the internal actions a⊕ b, and
– all the intermediate values involved in the computations of the hash functions.

• Ldec consists of the above that are generated during the decryption.
Our security reduction is made against (i) the simulatability of the leaking blocks, (ii) the
security of the encryption of one single block with a fresh key. In detail, following Pereira et
al.’s approach [PSV15], we consider a Leaking Real Single-block Encryption scheme LRSE
defined in Fig. 11 as the basic unit of TEDT, and as the leakage confidentiality assumption
for TEDT in the standard model. Since for each generated key kch LRSE will be used to
encrypt a single message m composed of a single block, we assume that given a security
parameter n, LRSE is (p, ql, t, εs-block) secure in the following sense: for any (ql, t)-bounded
eavesdropper adversary ALRSE choosing T, pA, pB ,m0,m1 ∈ {0, 1}n with pA 6= pB , it holds∣∣∣Pr[ALRSE (LRSEnc+

kch
(m0))⇒ 1]− Pr[ALRSE (LRSEnc+

kch
(m1))⇒ 1]

∣∣∣ ≤ εs-block, (29)

where LRSEnc+
kch

(mb) = (LRSEnckch
(mb), [Lrsdec(kch, cb)]p−1, kpre) for the pair of outputs

(cb, kup) = RSEnckch
(mb). The reason why the adversary also gets the auxiliary outputs

kpre and kup is for composability purpose which will be apparent in the proof. Similar to
Eq. (15), εs-block may not be negligible.

Based on the assumption (29), the muCCAmL2 advantage bound could be established
below.

Theorem 3. Let E : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2qe + 2qd + 2qm, t′, εE∗)-
STPRP. Assume that E has two implementations: a strongly protected implementation E∗
underlying KDF and TGF is leak free, and a plain implementation E have leakage function
LE that is (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable. Then the TEDT implementation
with leakage function L = (Lenc, Ldec) defined before has

AdvmuCCAmL2
TEDT (q, t, σ) ≤2(qe + qd + qm)εE + AdvmuCIML2

TEDT (qe + qd + qm, t
′)

+ 4σ(εE + ε(p,2)-rsim) + σ · εs-block, (30)
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Description of LRSE scheme: (tool for the proof and for capturing the confidentiality
advantage)

RSGen(1n) picks kch $← {0, 1}n,M, C = {0, 1}n (T, pA, pB ∈ {0, 1}n, pA 6= pB)

RSEnckch(m) returns (kup, c), where c = ych ⊕ m, ych = Ekch
(T, pB), and kup =

Ekch
(T, pA). (The term “up” is short for “update”.)

RSDeckch(c) proceeds in the natural way.

The leakage LRSE = (Lrsenc, Lrsdec, kpre) resulting from the LRSE implementation is defined
as

• Lrsenc(kch,m) = (LE(kch, T, pA), LE(kch, T, pB), L⊕(ych,m),SL(kpre, T, pA, kch)),

• Lrsdec(kch, c) = (LE(kch, T, pA), LE(kch, T, pB), L⊕(ych, c),SL(kpre, T, pA, kch))

for a fixed random kpre
$← {0, 1}n. As usual we denote LRSEnckch

(m) =
(RSEnckch

(m), Lrsenc(kch, T, pA, pB ,m)).
Figure 11: Basic unit: the single-block encryption scheme LRSE.

where σ is the number of blocks in the challenge messages and εs-block is as defined in Eq.
(29). Here t′ = t + (qe + qd + qm)(t$ + t1−pass), t1−pass is the maximum running time
of TEDT upon a single (encryption or decryption) query, and t$ is the time needed for
randomly sampling a value from {0, 1}n.

As proved in section 6, the term AdvmuCIML2
TEDT (qe+qd+qm, tAL′ ) is likely close to optimal.

The other terms are of some birthday type and are comparable to Theorem 2. In some
sense, this result can also be seen as domain extension of the single-block encryption LRSE.
It’s worth noting that by setting ε(p,2)-rsim = 0 and εs-block = 0 we obtain a muCCAm$
bound in the standard model:

AdvmuCCAm$
TEDT (qm, qe, qd, t, σ) ≤ 2(qe + qd + qm + 2σ)εE + AdvmuCIML2

TEDT (qe + qd + qm, t
′).

This concrete bound is weak. It doesn’t reflect the influence of key collisions. Also it
suffers from the (unreal) “hybrid security loss” (as discussed subsequently to Theorem 2).
On the positive side, the above two bounds show that when the TBC isn’t ideal, TEDT
still enjoys (a weaker) provable security.

The proof flow for Theorem 3 is very similar to Section 6.5. We first prove that based on
the pseudorandomness of E and the simulatability of the leakage, the “real-leaking world”
(ETk (p), L(k, T, p)) is indistinguishable from the “ideal-simulating” world ($,SL(k, T, p, $)).
This is actually a lemma of Guo et al. [GPPS19a] adapted to our TPRP setting.

Lemma 9 (Indistinguishability of Real-Leak and Ideal-Simulation). Let E : {0, 1}n ×
{0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εE)-TPRP, whose implementation has a leakage
function LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an
appropriate (qS , tS)-bounded leakage simulator. Then, for every kpre, T, pA, pB , z ∈ {0, 1}n
and every (ql − q∗, t− t∗)-bounded distinguisher DL, the following holds:∣∣Pr[kch $← {0, 1}n : DL(ETkch

(pA),ETkch
(pB), [LE(kch, T, pA), LE(kch, T, pB),SL(kpre, T, z, kch)]p)⇒ 1]

− Pr[kch, cA, cB $← {0, 1}n, cA 6= cB :
DL(cA, cB , [SL(kch, T, pA, cA),SL(kch, T, pB , cB),SL(kpre, T, z, kch)]p)⇒ 1]

∣∣ ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS , while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS augmented with
the time needed to make 2 oracle queries to the TPRP challenger and select a uniformly
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Description of LISE: (tool for the proof)

ISGen(1n) picks kch $← {0, 1}n,M, C = {0, 1}n (T, pA, pB ∈ {0, 1}n, pA 6= pB)
ISEnckch(m) returns (kup, c), where c = ych ⊕m, and kup, ych $← {0, 1}n, kup 6= ych.
ISDeckch(c) proceeds in the natural way.

The leakage LISE = (Lisenc, Lisdec, kpre) resulting from the LISE implementation is defined
as Lisenc(kch,m) = (SL(kch, T, pA, kup),SL(kch, T, pB , ych), L⊕(ych,m),SL(kpre, T, pA, kch)),
Lisdec(kch, c) = (SL(kch, T, pA, kup),SL(kch, T, pB , ych), L⊕(ych, c),SL(kpre, T, pA, kch)) for a
fixed random kpre

$← {0, 1}n.
Figure 12: The ideal single-block encryption scheme ISEnc.

random key in {0, 1}n, and tsim is the time needed to relay the content of 2p TEnc and p
Gen queries from and to a (p, 2)-rsim challenger.

Proof. The proof consists of two simple transitions: first replace the real leakages by
with simulated ones, relying on the recyclable-simulatability assumption, then replace
Ekch

(T, pA) and Ekch
(T, pB) by two distinct random values to obtain the target inputs,

relying on the assumption that E is a TPRP.

We then define the tweakable variant of the “single-block scheme” in [GPPS19a]:
roughly, all the intermediate values are replaced by random and all the leakages are
replaced by simulation. The resulted algorithm is in Fig. 12. We also define LISEnc+

kch
(m) =

(LISEnckch
(m), [Lisdec(kch, c)]p−1, kpre) for (c, kup) = ISEnckch

(m).

Lemma 10 (Indistinguishability of ISEnc and RSEnc). Let E : {0, 1}n×{0, 1}n×{0, 1}n →
{0, 1}n be a (2, t, εE)-TPRP, whose implementation has a leakage function LE having
(qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-
bounded leakage simulator. Then, for every T, pA, pB ∈ {0, 1}n, pA 6= pB, and every
(ql − q∗, t− t∗)-bounded distinguisher DL, the following holds:∣∣Pr[DLRSE (m, LRSEnc+

kch
(m))⇒ 1]− Pr[DLISE (m, LISEnc+

kch
(m))⇒ 1]

∣∣ ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS + p, while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS + 2t⊕
augmented with the time needed to make 2 oracle queries to the TPRP challenger and
select a uniformly random key in {0, 1}n, t⊕ is the time needed to evaluate the ⊕ action
on an n-bit input, and tsim is the time needed to relay the content of four TEnc and two
Gen queries from and to a (p, 2)-rsim challenger.

Proof. Follows the same line as Lemma 9.

We then define (L)TStream and (L)IStream in the standard model in Fig. 13 and prove
their indistinguishability.

Lemma 11 (Indistinguishability of LTStream and LIStream). Let E : {0, 1}n × {0, 1}n ×
{0, 1}n → {0, 1}n be a (2, t, εE)-TPRP, whose implementation has a leakage function LE
having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate
(qS , tS)-bounded leakage simulator. Then, for every `-block message m, every T,N, pA, pB,
and every (ql − 2qr − q∗, t− 2tr − t∗)-bounded distinguisher DL, the following holds:

|Pr[DL(m,TStreamk0(T,N,m))⇒ 1]− Pr[DL(m, IStreamk0(T,N,m))⇒ 1]| ≤ `(εE + ε(p,2)-rsim).

Here qr = `(2qS+3), q∗ and t∗ are as defined in Lemma 10, and tr = 2`(tS+t$ +tE)+` ·t⊕,
where tE is the time needed for evaluating E once, t$ is the time needed for randomly
sampling a value from {0, 1}n, and t⊕ is the time needed for evaluating ⊕ once.
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Description of TStream:
• Gen picks k0

$← {0, 1}n
• TStreamk0(T,N,m1, . . . ,m`) proceeds in two steps:

(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, computes ki ← Eki−1(T,Ci(N)), yi ← Eki−1(T,Di−1(N)), and

ci ← yi ⊕mi, and adds [LE(ki−1, T, Ci(N)), LE(ki−1, T,Di−1(N))]p, L⊕(yi,mi),
and [L⊕(yi, ci)]p−1 to the list leak.

TStreamk0(T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`). And we define
LTStreamk0(T,N,m) = (TStreamk0(T,N,m), leak) for the list leak standing at the
end of the above process.

Description of IStream:
• IStreamk0(T,N,m1, . . . ,m`) proceeds in two steps:

(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, samples ki $← {0, 1}n and yi

$← {0, 1}n such that ki 6= yi,
sets ci ← yi ⊕mi, and adds [SL(ki−1, T, Ci(N), ki),SL(ki−1, T,Di−1(N), yi)]p,
L⊕(yi,mi), and [L⊕(yi, ci)]p−1 to the list leak.

IStreamk0(T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`). And we define
LIStreamk0(m) = (IESMk0(m), leak) for the list leak standing at the end of the
above process.

Figure 13: The TStream and IStream scheme.

Proof. We define G0 as the security game in which AL receives TStreamk0(T,N,m) as
the input, and G` as the game in which AL receives IStreamk0(T,N,m) as the input. We
show that G0 could be transited to G` via a sequence of games G1,G2, . . . ,G`−1. In detail,
for i from 1 to `, we consider the game Gi−1: we replace the two intermediate values
ETki−1

(Ci(N)) and ETki−1
(Di−1(N)) by two distinct random values ki and yi, and replace

the leakages [LE(ki−1, T, Ci(N)), LE(ki−1, T,Di−1(N))]p, L⊕(ETki−1
(Di−1(N)),mi), and

[L⊕(ETki−1
(Di−1(N)), ci)]p−1 by the simulated [SL(ki−1, T, Ci(N), ki), SL(ki−1, T,Di−1(N), yi)]p,

L⊕(yi,mi), and [L⊕(yi, ci)]p−1. This yields the game Gi.
We next derive an upper bound for |Pr[(DL)Gi ⇒ 1]− Pr[(DL)Gi−1 ⇒ 1]|. For this, we

assume a (ql − p · qr − q∗, t− p · tr − t∗)-bounded distinguisher DL against Gi and Gi−1,
and we build a distinguisher DL′ against the real-leaking and the ideal-simulation-world.
Assume DL′ receives (cA, cB , [leak1, leak2,SL(kpre, T, Ci−1(N), kch)]p, kpre) as inputs, with
cA 6= cB . DL′ proceeds in six steps:

(1) DL′ first uniformly samples k0;

(2) For j = 1, . . . , i− 3, DL′ uniformly samples 2 random values kj 6= yj , simulates the
traces [SL(kj−1, T, Cj(N), kj),SL(kj−1, T,Dj−1(N), yj)]p, computes cj ← yj ⊕mj

and mj ← yj ⊕ cj and obtains the traces L⊕(yj ,mj) and [L⊕(yj , cj)]p−1;

(3) DL′ then sets yi−2 ← kpre, samples yi−2 6= kpre, obtains [SL(ki−3, T,Di−3(N), yi−2)]p,
computes ci−2 ← yi−2 ⊕ mi−2 and mi−2 ← yi−2 ⊕ ci−2 and obtains the traces
L⊕(yi−2,mi−2) and [L⊕(yi−2, ci−2)]p−1. These along with [SL(kpre, T, Ci−1(N), kch)]p
are used as the leakages of the i− 2 th iteration;

(4) Then it uniformly samples yi−1, computes ci−1 ← yi−1 ⊕mi−1, mi−1 ← yi−1 ⊕ ci−1,
and uses [SL(ki−2, T, Ci−1(N), kch),SL(ki−2, T,Di−2(N), yi−1)]p, L⊕(yi−1,mi−1),
[L⊕(yi−1, ci−1)]p−1 as the traces of the i− 1 th iteration in the first pass;

(5) Sets ki ← cA and yi ← cB, computes ci ← yi ⊕ mi, and uses [leak1, leak2]p,
L⊕(yi,mi), [L⊕(yi, ci)]p−1 as the corresponding leakages;
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(6) Takes ki as the starting point and emulates the remaining part of the execution of
TStream encryption. Eventually, DL′ serves the obtained ciphertext c1‖ . . . ‖c` as
well as the leakage traces to DL, and outputs whatever DL outputs.

It can be seen that depending on whether the input tuple received by DL′ is real-leaking
or ideal-simulation, DL is interacting with Gi−1 or Gi.

We further show that to perform the additional operations, DL′ makes at most p · sr
additional queries to L and spend p · tr additional time. To this end, we note that the
encryption process of TStream involves 2`− 1 calls to E and ` xor operations. Moreover, to
emulate the “hybrid” encryption process once, DL′ needs at most (2`− 1)(qS + 1) + ` = qr
queries to L and (2`− 1)(tE + t$ + tS) + ` · t⊕ = tr running time. To obtain the required
decryption leakage traces, DL′ has to additionally perform the “hybrid” decryption process
for p − 1 times, which contributes to (p − 1)qr more queries and (p − 1)tr more time.
Therefore, as claimed, DL′ makes at most p · qr additional queries to L and spends p · tr
additional time for the additional operations. By the above and Lemma 9, we have∣∣Pr[(DL)Gi ⇒ 1]− Pr[(DL)Gi−1 ⇒ 1]

∣∣ ≤ εE + ε(p,2)-rsim.

Therefore, the ` transitions yield∣∣Pr[DG` ⇒ 1]− Pr[DG0 ⇒ 1]
∣∣ ≤ `(εE + ε(p,2)-rsim)

in total.

Then is the standard model version of Lemma 7. Unlike Lemma 7, there is no query to
the ideal TBC here, and thus the notation qIC disappears in Adveavl2

TStream(p, t, `).

Lemma 12 (1-Block Advantage to `-Block). For every pair of `-block messages m0 and
m1 and (ql, t)-bounded adversary AL, there exists a (ql + 2qr, t+ 2tr)-bounded adversary
AL′ such that

Adveavl2
TStream(p, t, `) :=|Pr[AL(IStreamk0(T,N,m0))⇒ 1]− Pr[AL(IStreamk0(T,N,m1))⇒ 1]|

≤
∑̀
i=1
|Pr[AL′(LISEnc+

ki−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+
ki−1

(m1
i ))⇒ 1]|,

where k0, . . . , k`−1 are chosen uniformly at random, and m0
i and m1

i are the i-th block of
m0 and m1 respectively. Here qr = `(2qS + 1) and tr = `(2tS + 2t$ + t⊕), where tE, t$,
and t⊕ are as assumed in Lemma 11.

Proof. The proof follows the same line as Lemma 7.

Gathering Lemmas 10, 11, and 12, and following the same line as Lemma 8 we obtain

Lemma 13. Let E : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εE)-TPRP, whose im-
plementation has a leakage function LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable
leakages, and let SL be an appropriate (qS , tS)-bounded leakage simulator. Then, for every
pair of `-block messages m0 and m1 and (ql − 2qr − q∗, t − 2tr − t∗)-bounded adversary
AL, it holds

|Pr[AL(TStreamk0(T,N,m0))⇒ 1]− Pr[AL(TStreamk0(T,N,m1))⇒ 1]|
≤ 4`(εE + ε(p,2)-rsim) + ` · εs-block,

where qr, tr are as defined in Lemma 11, and q∗, t∗ are as defined in Lemma 10.
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Completing the muCCAmL2 Proof. We start by defining G0 as the game PrivKmuCCAmL2,0
AL,TEDT ,

and G∗0 as the game PrivKmuCCAmL2,1
AL,TEDT . From G0 we obtain G1 by replacing the u in-

stances of E∗K1
, . . . ,E∗Ku

invoked during the execution by u independent tweakable ran-
dom permutations P̃1, . . . , P̃u. For each such Ki it’s a quite standard trick to build a
(2qe + 2qd + 2qm, tB)-bounded adversary BSTPRP against the STPRP security of E∗, with
tB ≤ t+ (qe + qd + qm)t1−pass ≤ t′. The number of such Ki involved in the execution is
≤ qe + qd + qm, thus

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ (qe + qd + qm)εE∗

follows from the assumption that E∗ is a (2qe + 2qd + 2qm, t′, εE∗)-secure STPRP. Similarly,
we replace E∗K1

, . . . ,E∗Ku
by P̃1, . . . , P̃u to turn G∗0 into G∗1, which also introduces a gap of

(qe + qd + qm)εE∗ .
Then, following the proof of Eq. (27), the gap between G1 and G∗1 can be bounded:∣∣Pr[(AL)G1 ⇒ 1]− Pr[(AL)G∗1 ⇒ 1]

∣∣
≤AdvmuCIML2

TEDT (qe + qd + qm, t
′) + qe + qm − 1

2n +
∑qm

i=1 Adveavl2
TStream(p, t, `)︸ ︷︷ ︸

≤4σ(εE+ε(2,2)-rsim)+σ·εs-block (by Lemma 13)

,

with `i the number of blocks in the ith challenge message. This plus the above gap
2(qe + qd + qm)εE∗ yield the final claim.

D Black-box CCA Security of TEDT
In this section, we prove asymptotically optimal CCA security (without leakage) bounds
for TEDT. We first present the security model in subsection D.1. The result and proof are
later given in subsection D.2.

D.1 CCA Security with Misuse-Resilience
Ashur et al. [ADL17] proposed a strong indistinguishability notion for authenticated
encryption which divides adversarial encryption queries into challenge and non-challenge
ones, and only requires the adversary to be nonce-respecting among the former type of
queries. The nonce-misuse in non-challenge queries should not affect the pseudorandomness
of the responses to the challenge queries, i.e. of the challenge ciphertexts. To avoid
confusion with misuse-resistance [RS06] we will not refer to misuse-resilience with its
initials but as CCAm$ since it is a “real-or-random” indistinguishability game between
the real world (Enck,Enck,Deck) and the random (or ideal) world (Enck, $,⊥), hence
the $, where the second oracle is the challenge oracle. Formally, given a nonce-based
authenticated encryption AEAD = (Enc,Dec), the multi-user chosen ciphertext misuse
resilience advantage of an adversary A against AEAD with u users is

AdvmuCCAm$
AEAD,A,u

def==
∣∣∣Pr
[
AEncK,EncK,DecK,IC,IC−1

⇒ 1
]
− Pr

[
AEncK,$,⊥,IC,IC−1

⇒ 1
]∣∣∣,

where the probability is taken over the u user keys K = (K1, . . . ,Ku), with Ki ← K, over
A’s random tape and the ideal TBC IC and where EncK(i,N,A,M): if 1 ≤ i ≤ u, outputs
EncKi

(N,A,M); $(i,N,A,M) outputs and associates a fresh random ciphertext C $← C|M |
to fresh input; Dec(i,N,A,C) outputs DecKi

(N,A,C); ⊥(i,N,A,C) outputs ⊥; for each
user i: (i) nonce N cannot be used both in query to O1(i,N, ∗, ∗) and O2(i,N, ∗, ∗); (ii)
O2(i, ∗, ∗, ∗) is nonce-respecting; (iii) if C is returned by O1(i,N,A,M) or O2(i,N,A,M)
query O3(i,N,A,C) is forbidden; (iv) a nonce used twice with O1 cannot be used for an
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O3 query. The extended muCCAm$ advantage muCCAm$∗ is defined as the muCCAm$
one where the last restriction (iv) is waived from the definition. We stress that all these
conditions were already introduced in [ADL17], mainly to enable standard to fall into
misuse-resilient AEAD.

D.2 muCCAm$ Security of TEDT
To simplify the notations, we define

AdvmuCCAm$∗
TEDT (u,q, σ) def== max

{
AdvmuCCAm$∗

TEDT,A,u

}
,

where q = (qm, qe, qd, qIC), and the maximum is taken over all (q, t)-bounded adversaries
against u users that have at most σ blocks in all their queried plaintext (both challenge
and non-challenge) and ciphertext including AD.

Theorem 4. When the u public-keys T1, . . . , Tu are uniformly distributed, n ≥ 6, and
2σ + 3(qe + qd) + qIC ≤ 2n/8, then the following holds in the ideal TBC model:

AdvmuCCAm$∗
TEDT (u,q, σ) ≤ 2u2

22n + 1
n! ·

(
4u
2n

)n
+ (7n2 + 26)(4σ + 6(qe + qd) + 2qIC)

2n ·

Partly thanks to the GCM-like counters the muCCAm$∗ bound is asymptotically optimal
O
(
u2

22n + n2σ+n2qĨC
2n

)
. Moreover, the terms 2u2

22n and 1
n! · (4u/2

n)n disappear if the u public-
keys are distinct. While the bound seems not to depend on qm, the non-challenge queries
actually affect σ which, in turn, affects the bound. The bound of GCM-SIV with KDF is
at best σ`max+qĨC

2n , which we surpass when the maximal query length `max exceeds n2: see
Appendix D.3 for the details.

In the remaining of this subsection we prove Theorem 4. We rely on a balls-in-bin
lemma from [PS15] presented as follows.

Lemma 14 (Balls-in-Bin). Consider throwing a ball into a bin that is chosen independently
uniformly at random from 2n ≥ 8 bins. Then the probability that, after throwing σ balls
with 8 ≤ σ ≤ 2n, any bin contains 2 log2 σ balls or more, is less than 1

2n .

Proof. See [PS15, Appendix A]. That proof covered more general cases which we don’t
rely on.

Then, note that in the misuse resilience setting, schemes which achieve both CPA
confidentiality and authenticity also achieve CCA confidentiality [ADL17]:

AdvmuCCAm$∗
A,AEAD,u =

∣∣∣Pr
[
AEncK,T,EncK,T,DecK,T,IC,IC−1

⇒ 1
]
− Pr

[
AEncK,T,$,⊥,IC,IC−1

⇒ 1
]∣∣∣

≤
∣∣∣Pr
[
AEncK,T,EncK,T,DecK,T,IC,IC−1

⇒ 1
]
− Pr

[
AEncK,T,EncK,T,⊥,IC,IC−1

⇒ 1
]∣∣∣︸ ︷︷ ︸

Advmu-INT-CTXT
A,AEAD,u

: mu INT-CTXT advantage of A on AEAD

+
∣∣∣Pr
[
AEncK,T,EncK,T,⊥,IC,IC−1

⇒ 1
]
− Pr

[
AEncK,T,$,⊥,IC,IC−1

⇒ 1
]∣∣∣︸ ︷︷ ︸

defined as AdvmuCPAm$∗
A,AEAD,u

. (31)

Clearly, Advmu-INT-CTXT
A,TEDT,u ≤ AdvmuCIML2

A,TEDT,u. Therefore, we focus on the CPA advantage
AdvmuCPAm$∗

A,TEDT,u—switching to the CPA setting greatly simply the setting as well as the
notations. Again we employ the H-coefficient technique, and present the two steps in two
subsequent subsections.
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D.2.1 Bad Transcripts

Following section 5.3, during the interaction, we also reveal some underlying IC queries to
D and include them in the transcript. In detail,

• First, we reveal all the IC queries underlying the non-challenge encryption queries
(i.e., queries to the first encryption oracle);

• Second, for the challenge encryption queries, we emulate the corresponding hash
evaluations, and reveal all the induced IC queries.

We merge these queries with the adversarial queries to obtain a set τ∗IC. Thus we have∣∣τ∗IC∣∣ ≤ q∗IC which is as defined by Eq. (7). Note that this upper bound is a bit coarse, but
it’s enough for the remaining argument.

We also organize the hash query transcript τ∗H. Besides, the set

τe =
(

(u(1), N (1), A(1),M (1), C(1)), . . . , (u(qe), N (qe), A(qe),M (qe), C(qe))
)

summarizes the queries to the challenge (second) encryption oracle. Recall that we’ve
switched to the CPA setting, so these are “enough”: transcripts are defined as

τ = (τ∗H, τe, τ∗IC,T,K).

For an encryption query (u(i), N (i), A(i),M (i), C(i)), we denote

M (i) = m
(i)
1 ‖ . . . ‖m

(i)
`i

and
C(i) = c(i)‖Z(i) = c

(i)
1 ‖ . . . ‖c

(i)
`i
‖Z(i),

i.e., m(i)
j , resp. c(i)

j , denotes the j th n-bit block of M (i), resp. C(i). Wlog assume that
|m(i)

j | = n for any block. And we define an auxiliary quantity

µY := max
y∈{0,1}n

∣∣{(i, j) : m(i)
j ⊕ c

(i)
j = y}

∣∣.
Note that in the ideal world, all the blocks in C(1), . . . , C(qe) are uniformly distributed

in {0, 1}n. Therefore,

Pr[Tid = τ ] = Pr(K,T) · Pr[IC ` τ∗IC] ·
(

1
2n

)qe+
∑qe

i=1
`i

. (32)

With the above, a transcript τ is bad if one of the following is fulfilled:

• (B-1) there exists two user indices i, j such that Ki‖Ti = Kj‖Tj ;

• (B-2) µT ≥ n, or µW ≥ n;

• (B-3) there exists an encryption query (u,N,A,M,C), C = c‖Z, such that (Ku, Tu, x, y) ∈
τ∗IC or (Ku,W‖1, x, y) ∈ τ∗IC for some x, y, where W comes from its corresponding
hash record (pad(A,N, c, Tu), V ‖W ) ∈ τ∗H;

• (B-4) µY ≥ 2 log2 σ;

• (B-5) there exists distinct queries (u(i), N (i), A(i),M (i), C(i)) and (u(j), N (j), A(j),M (j), C(j))
with the corresponding hash records (U (i), V (i)‖W (i)) and (U (j), V (j)‖W (j)) in τ∗H
satisfying (U (i) = pad(A(i), N (i), c(i), Tu(i)), U (j) = pad(A(j), N (j), c(j), Tu(j))):



F. Berti, Chun Guo, O. Pereira, T. Peters and F.-X. Standaert 313

– hash collision: V (i)‖W (i) = V (j)‖W (j), or
– contradiction: W (i) = W (j) and Z(i) = Z(j).

The first three conditions have been analyzed in subsection 5.3.2. We recycle the results
as follows: when T is uniform, we have

Pr[(B-1)] ≤ u2

22n , Pr[(B-3) | (B-2)] ≤ n2q∗IC
2n ,

Pr[(B-2) ∨ hash collision] ≤ 1
2n! ·

(4u
2n
)n

+ 8q∗IC
2n ,

where q∗IC is defined by Eq. (7).
For (B-4), in the ideal world c

(i)
j and thus m(i)

j ⊕ c
(i)
j is uniformly and independent

from anything else. In addition
∣∣{(i, j)}∣∣ ≤ σ2 ≤ σ � 2n with σ2 denoting the number of

blocks in queries to the challenge encryption oracle. So Lemma 14 yields

Pr[(B-4)] = Pr[µY ≥ 2 log2 σ] ≤ 1
2n .

For (B-5), the collision event has been included in the above bounds. On the other
hand, for any two indices i, j, it can be seen from the proof in Section 5.2 that Pr[W (i) =
W (j)] ≤ 2

2n−q∗IC
. On the other hand, the tags Z(i) and Z(j) are uniform in the ideal world,

and thus Pr[Z(i) = Z(j)] = 1
2n . Since we have ≤ q2

e/2 such pairs of indices (i, j), it holds

Pr[contradiction in (B-5)] ≤ q2
e

2n(2n − q∗IC) ≤
2q2
e

22n ≤
q∗IC
2n .

In all,

Pr[Tid ∈ Tbad] ≤
u2

22n + 1
2n! ·

(4u
2n
)n

+ (n2 + 9)q∗IC + 1
2n . (33)

D.2.2 Ratio of Probabilities of Good Transcripts

For a good transcript τ , by ¬(B-3), for any (u(i), N (i), A(i),M (i), C(i)) ∈ τe the initial
session key k(i)

0 = ICTu(i)
K

u(i)
(P0(N (i))) is uniform. With this observation, we define the first

predicate BadKD(IC) to capture the “badness” of this key. Formally, BadKD(IC) is fulfilled
if one of the following conditions is fulfilled:

• (C-1)“none-freshness” of the key: there exists (u(i), N (i), A(i),M (i), C(i)) ∈ τe such
that the key k

(i)
0 = ICTu(i)

K
u(i)

(P0(N (i))) satisfies (k(i)
0 , Tu(i) , P1(N (i)), y) ∈ τ∗IC, or

(k(i)
0 , Tu(i) , Q0(N (i)), y) ∈ τ∗IC for some y, or (k(i)

0 , Tu(i) , x, y
(i)
1 ) ∈ τ∗IC for some x;

• (C-2)nonce-reuse across different users: there exists two queries (u(i), N (i), A(i),M (i), C(i))
and (u(j), N (j), A(j),M (j), C(j)) in τe such that Tu(i) = Tu(j) = T , N (i) = N (j) = N ,
and the two keys k(i)

0 = ICTK
u(i)

(P0(N (i))) and k(j)
0 = ICTK

u(j)
(P0(N (j))) are identical.

We remark that the event of nonce-reusing for a single user, i.e., there exists two queries of
the form (u,N,A,M,C), (u,N,A′,M ′, C ′) in τe, is also bad for the subsequent probability
calculation. But this is forbidden by the muCCAm$ security definition.

For a specific public-key T , a nonce N , and an index j, we define an auxiliary set of
keys

τ∗IC
[
T, j,N

]
:=
{
k : (k, T, Pj+1(N), y) ∈ τ∗IC or (k, T,Qj(N), y) ∈ τ∗IC for some y

}
.
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In addition, for T and a key stream block y ∈ {0, 1}n, define

τ∗IC
[
T, y

]−1 :=
{
k : (k, T, x, y) ∈ τ∗IC for some x

}
.

Conditioned on IC ` τ∗IC and the values of

k
(1)
0 = ICTu(1)

K
u(1)

(N (1)), . . . , k(i−1)
0 = ICTu(i−1)

K
u(i−1)

(N (i−1)),

the key k(i)
0 = ICTu(i−1)

K
u(i)

(N (i)) is uniform in ≥ 2n− q∗IC− qe possibilities: the first half is due
to ¬(B-3), while the second half is due to the non-repeating property of the triple (K,T,N)
(for the same user N can’t be repeated, while for different users i, j we’ve Ki‖Ti 6= Kj‖Tj
by ¬(B-1)). Therefore,

Pr[(C-1)] ≤
qe∑
i=1

∣∣τ∗IC[Tui , 0, N (i)]∣∣
2n − q∗IC − qe

+
qe∑
i=1

∣∣τ∗IC[Tui , y
(i)
1
]−1∣∣

2n − q∗IC − qe
.

For (C-2), the number of choice for (u(i), N (i), A(i),M (i), C(i)) is ≤ qe. For each such choice,
the number of choice for the (u(j), N (j), A(j),M (j), C(j)) is ≤ µT due to the restriction
Tu(i) = Tu(j) . Thus

Pr[(C-2)] ≤ µT qe
2n − q∗IC − qe

≤ 2µT qe
2n .

Thus when q∗IC + qe ≤ 2n/2, we have

PrIC[BadKD(IC) | IC ` τ∗IC] ≤ 2µT qe
2n +

qe∑
i=1

2
∣∣τ∗IC[Tu(i) , 0, N (i)]∣∣

2n +
qe∑
i=1

2
∣∣τ∗IC[Tu(i) , y

(i)
1
]−1∣∣

2n .

(34)

We then analyze the qe encryption queries in turn, and define a sequence of bad
predicates

BadE(1)
1 ,BadE(1)

2 , . . . ,BadE(1)
`1−1,

. . .

BadE(qe)
1 ,BadE(qe)

2 , . . . ,BadE(qe)
`qe−1. (35)

As will be seen, each predicate concerns with the encryption of a specific plaintext block.
Formally, for 1 ≤ i ≤ qe, consider the i-th query (u(i), N (i), A(i),M (i), C(i)), and for
1 ≤ j ≤ `i − 1, let

k
(i)
0 = ICTu(i)

K
u(i)

(P0(N (i))), k(i)
1 = ICTu(i)

k
(i)
0

(P1(N (i))), . . . , k(i)
j = ICTu(i)

k
(1)
j−1

(Pj(N (i)))

be the derived intermediate values. Then BadE(i)
j (IC) is fulfilled, if at least one of the

following conditions is fulfilled:

• (C-ij1): k(i)
j ∈ τ∗IC

[
Tu(i) , j,N (i)], or

• (C-ij2): there exists s < i such that for the s-th encryption query (u(s), N (s), A(s),M (s), C(s)),
it holds:

– Tu(s) = Tu(i) and N (s) = N (i), and

– k
(i)
j equals the intermediate value k(s)

j derived correspondingly.



F. Berti, Chun Guo, O. Pereira, T. Peters and F.-X. Standaert 315

• (C-ij3): k(i)
j ∈ τ∗IC

[
Tu(i) , y

(i)
j+1
]−1, or

• (C-ij4): there exists two indices (s, t) such that either s < i, or s = i and t < j, and:

– y
(s)
t+1 = y

(i)
j+1, and

– k
(i)
j equals the intermediate value k(s)

t derived correspondingly.

• (C-ij5): k(i)
j = y

(i)
j = m

(i)
j ⊕ c

(i)
j .

It isn’t hard to see conditioned on IC ` τ∗IC and ¬BadKD(IC) and ¬BadE(i)
j−1(IC) ∧ . . . ∧

¬BadE(1)
1 (IC), the value k(i)

j is uniform in ≥ 2n − q∗IC − qe possibilities. Therefore,

Pr[(C-ij1) ∨ (C-ij3)] ≤

∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣+
∣∣∣τ∗IC[Tu(i) , y

(i)
j+1
]−1
∣∣∣

2n − q∗IC − qe
.

For (C-ij2), due to the restriction Tu(s) = Tu(i) and the design of TEDT, it can be seen the
number of such index s is at most µT −1. Similarly, for (C-ij4), the restriction y(s)

t+1 = y
(i)
j+1

indicates the number of such pairs of indices (s, t) is at most µY − 1. Therefore,

Pr[(C-ij2) ∨ (C-ij4) ∨ (C-ij5)] ≤ µT − 1 + µY − 1 + 1
2n − q∗IC − qe

.

Thus when q∗IC + qe ≤ 2n/2 we have

Pr[BadE(i)
j (IC) | ¬BadE(i)

j−1(IC) ∧ . . . ∧ ¬BadE(1)
1 (IC) ∧ ¬BadKD(IC) ∧ IC ` τ∗IC]

≤2

∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣+
∣∣∣τ∗IC[Tu(i) , y

(i)
j+1
]−1
∣∣∣+ µT + µY

2n .

For 1 ≤ i ≤ qe and 1 ≤ j ≤ `i, conditioned on ¬BadE(i)
j (IC) ∧ ¬BadE(i)

j−1(IC) ∧ . . . ∧
¬BadE(1)

1 (IC) ∧ ¬BadKD(IC) ∧ IC ` τ∗IC, it can be seen the value y† = ICTu(i)

k
(i)
j−1

(Qj−1(N (i)))

is uniform in ≥ 2n − q∗IC − qe possibilities, and these possibilities include y(i)
j . Therefore,

Pr[y† = y
(i)
j ] ≥ 1

2n . (36)

The probabilities of the predicates cumulate to

Pr[BadE(qe)
`qe−1(IC) ∨ . . . ∨ BadE(1)

1 (IC) ∨ ¬BadKD(IC)︸ ︷︷ ︸
=Bad(IC)

| IC ` τ∗IC]

≤
qe∑
i=1

`i∑
j=1

2
(∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣+

∣∣∣τ∗IC[Tu(i) , y
(i)
j+1
]−1
∣∣∣+ µT + µY

)
2n .

This plus Eq. (34) yields

Pr[Bad(IC) | IC ` τ∗IC] ≤
qe∑
i=1

`i−1∑
j=0

2
(∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣+

∣∣∣τ∗IC[Tu(i) , y
(i)
j+1
]−1
∣∣∣+ µT + µY

)
2n .
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It’s easy to see
∑qe

i=1
∑`i−1
j=0 (µT +µY ) ≤ (µT +µY )σ. On the other hand, for the summation∑qe

i=1
∑`i−1
j=0

∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣, we reorganize it according to different T values. In this
vein, we have

qe∑
i=1

`i−1∑
j=0

∣∣∣τ∗IC[Tu(i) , j,N (i)]∣∣∣ ≤ µT ·
∑

T∈{0,1}n,N∈N ,
j∈{0,...,`i−1}

∣∣∣τ∗IC[T, j,N]∣∣∣ ≤ µT |τ∗IC| ≤ µT q
∗
IC.

Similarly,
qe∑
i=1

`i∑
j=1

∣∣∣τ∗IC[Tu(i) , y
(i)
j

]−1
∣∣∣ ≤ µY q∗IC.

Gathering the above and Eq. (36) yields

Pr
[
TEDT[IC].EncK,T(u(i), N (i), A(i),M (i)) = c(i), for all i ∈ {1, . . . , qe} | IC ` τ∗IC

]
≥ Pr [¬Bad(IC) | IC ` τ∗IC]

(
1
2n

)∑qe

i=1
`i

≥
(

1− 2µTσ + 2µY σ + 2µT q∗IC + 2µY q∗IC
2n

)(
1
2n

)∑qe

i=1
`i

. (37)

It remains to analyze the produced tags. Let the hash query record corresponding
to (u(i), N (i), A(i),M (i), C(i)) be (U (i), V (i)‖W (i)). Therefore, the event that the qe tags
equal Z(1), . . . , Z(qe) is equivalent to qe equalities as follows:

ICW
(1)‖1

K
u(1)

(V (1)) = Z(1), . . . , ICW
(qe)‖1

K
u(qe)

(V (qe)) = Z(qe).

Consider the first equality. The entry ICW
(1)‖1

K
u(1)

(V (1)) may have been rendered non-random
due to the condition TEDT[IC].EncK,T(u(i), N (i), A(i),M (i)) = c(i) for all i ∈ {1, . . . , qe} or
due to IC ` τ∗IC. However, the former condition only affects entries with the tweak T‖0, while
the latter would not affect ICW

(1)‖1
K

u(1)
(V (1)) due to ¬(B-3). Therefore, Pr[ICW

(1)‖1
K

u(1)
(V (1)) =

Z(1)] = 1
2n .

In a similar vein, for any index i ∈ {1, . . . , qe}, under the conditions that IC `
τ∗IC and “TEDT[IC].EncK,T(u(i), N (i), A(i),M (i)) = c(i) for all i ∈ {1, . . . , qe}”, the out-
put ICW

(i)‖1
K

u(i)
(V (i)) remains uniform. We need to additionally consider the condition

“ICW
(j)‖1

K
u(j)

(V (j)) = Z(j) for j = 1, . . . , i − 1”. By ¬(B-5), V (j)‖W (j) 6= V (i)‖W (i) and

Z(j)‖W (j) 6= Z(i)‖W (i) for any j < i. By this, Pr[ICW
(i)‖1

K
u(i)

(V (i)) = Z(i)] ≥ 1
2n , and thus

Pr[ICW
(i)‖1

K
u(i)

(V (i)) = Z(i) for i = 1, . . . , qe] ≥
1

2qen
. (38)

Gathering Eq. (32), (37), and (38), and with σ ≤ 2n/48⇒ log2 σ ≤ n, we have

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(
1− 2µTσ + 2µY σ + 2µT q∗IC + 2µY q∗IC

2n

)(
1
2n

)qe+
∑qe

i=1
`i
/(

1
2n

)qe+
∑qe

i=1
`i

≥ 1− 2n(σ + q∗IC) + 4n(σ + q∗IC)
2n , (µT ≤ n, µY ≤ 2 log2 σ ≤ 2n)

≥ 1−
6n( q

∗
IC
4 + q∗IC)
2n ≥ 1− 8nq∗IC

2n , (σ ≤ q∗IC
4 )
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This plus Eq. (33) yield

AdvmuCPAm$∗
D,TEDT,u ≤

u2

22n + 1
2n! ·

(4u
2n
)n

+ (n2 + 8n+ 9)q∗IC + 1
2n .

By Eq. (31), this plus the bound in Eq. (1) yields

u2

22n + (2n2 + 17)(4σ + 6(qe + qd) + 2qIC)
2n + 1

2n! ·
(4u

2n
)n

+ u2

22n + 1
2n! ·

(4u
2n
)n

+ (n2 + 8n+ 9)(4σ + 6(qe + qd) + 2qIC) + 1
2n

=2u2

22n + 1
n! ·

(4u
2n
)n

+ (3n2 + 8n+ 26)(4σ + 6(qe + qd) + 2qIC)
2n

≤2u2

22n + 1
n! ·

(4u
2n
)n

+ (7n2 + 26)(4σ + 6(qe + qd) + 2qIC)
2n (n ≥ 2).

D.3 Detailed Comparison with GCM-SIV with KDF
GCM-SIV with nonce-based KDF was recently proposed by Gueron and Lindell [GL17]
as a very elegant and efficient BBB secure variant of GCM-SIV. Its security bounds are
further improved by Bose et al. [BHT18] in the ideal cipher model.

In summary, AES-128-GCM-SIV with KDF uses n = 128 key bits, and its advantages
are:

(i) Misuse-resistance (in black-box setting)

(ii) Asymptotically optimal mu security when nonce is random

(iii) Much less calls to the block cipher

For n = 128 TEDT uses 255 key bits but only 128 bits are secret. Its advantages are:

(i) Asymptotically optimal mu security for fresh nonce (misuse-resilience), say allowing
arbitrary nonce reuse across different users, and slightly better bounds than AES-
128-GCM-SIV (see below)

(ii) Provable side-channel security.

Concretely, in the mu setting, if nonce is arbitrarily reused across many users, then
security of AES-128-GCM-SIV is capped at u2

2128 . While Bose et al. proved that using
random nonce could forbid arbitrarily reuse and achieve mu BBB, this method turns
ineffective when the nonces in use are the same in each session (e.g., TLS 1.3 uses the
sequence number to compute the nonces). Also according to Rogaway random nonce may
be more prone to misuse. In comparison, in TEDT we employ additional 127-bit public
randomness to achieve mu BBB. Though don’t support full nonce misuse, TEDT does
support arbitrarily reusing the same nonce across different users.

In terms of bounds, with 128-bit secret keys, the mu bound of AES-128-GCM-SIV is

σ`max + d(qIC + σ)
2128 ,

where `max and d are upper bounds, respectively, the number of blocks encrypted per
user-nonce pair, and of the number of users that re-use a particular nonce value. Setting
d = 1 recovers its su bound. By this, TEDT probably achieves slightly better bounds
214σ+214qIC

2128 even in the su setting (revisiting the calculations in Eq. (9) shows that the factor
n2 could be improved to n in the su setting, so its su bound could be better 128σ+128qIC

2128 ).
As mentioned, we believe this shows the benefits of protocol-level leakage-resilient designs.
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E A single-pass TBC Mode TET
The single-pass mode TET is defined in Figure 14 and illustrated in Figure 15. It achieves
muCIML2 with nearly optimal bounds as TEDT. Yet, since it has only one pass, the consen-
sus is that the confidentially is unavoidably altered given decryption leakages. Consequently,
TET only ensures muCCAmL1 security, with bounds comparable to Theorem 2.
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algorithm TET[E].EncK(N,A,M)
1. `← d|M |/ne
2. ν ← d|A|/ne
3. parse M as M [1]‖ . . . ‖M [`], with |M [1]| =

. . . = |M [`− 1]| = n and 1 ≤ |M [`]| ≤ n
4. M [`]←M [`]‖0∗

5. parse A as A[1]‖ . . . ‖A[ν], with |A[1]| = . . . =
|A[ν − 1]| = n and 1 ≤ |A[ν]| ≤ n

6. A[ν]← A[ν]‖0∗

7. T ← PK‖0
8. S ← ET

K(N‖0∗)

9. a← EP K‖0
S (N‖0∗)

10. b← EP K‖1
S (N‖0∗)

11. h1 ← lsn−1(a⊕ b)
12. k1 ← b⊕ (N‖0∗)
13. for i = 1 to ` do

14. C[i]← Ehi‖0
ki

(M [i])

15. c∗i ← Ehi‖0
ki

(M [i])

16. hi+1 ← lsn−1(C[i]⊕ c∗i )
17. ki+1 ← c∗i ⊕M [i]
18. for i = 1 to ν do

19. j ← i+ `

20. di ← Ehj‖0
kj

(A[i])

21. d∗i ← Ehj‖0
kj

(A[i])

22. hj+1 ← lsn−1(dj ⊕ d∗j )

23. kj+1 ← d∗j ⊕A[i]
24. j ← `+ ν + 1
25. tail← [|M |]n/2‖[|A|]n/2

26. d← Ehj‖0
kj

(tail)

27. d∗ ← Ehj‖0
kj

(tail)

28. V ← lsn−1(d⊕ d∗)
29. U ← d∗ ⊕ tail

30. Z ← EV ‖1
K (U)

31. C ← C[1]‖ . . . ‖C[`M ]‖Z
32. return C

algorithm TET[E].DecK(N,A,C)

1. `← d |C|−n
n
e

2. ν ← d|A|/ne
3. parse C as C[1]‖ . . . ‖C[`]‖Z, with |C[1]| =

. . . = |C[`− 1]| = |Z| = n and 1 ≤ |C[`]| ≤ n
4. parse A as A[1]‖ . . . ‖A[ν], with |A[1]| = . . . =
|A[ν − 1]| = n and 1 ≤ |A[ν]| ≤ n

5. A[ν]← A[ν]‖0∗

6. T ← PK‖0
7. S ← ET

K(N‖0∗)

8. a← EP K‖0
S (N‖0∗)

9. b← EP K‖1
S (N‖0∗)

10. h1 ← lsn−1(a⊕ b)
11. k1 ← b⊕ (N‖0∗)
12. for i = 1 to ` do
13. M [i]← (Ehi‖0

ki
)−1(C[i])

14. c∗i ← Ehi‖0
ki

(M [i])

15. hi+1 ← lsn−1(C[i]⊕ c∗i )
16. ki+1 ← c∗i ⊕M [i]
17. for i = 1 to ν do
18. j ← i+ `

19. di ← Ehj‖0
kj

(A[i])

20. d∗i ← Ehj‖0
kj

(A[i])

21. hj+1 ← lsn−1(dj ⊕ d∗j )

22. kj+1 ← d∗j ⊕A[i]
23. j ← `+ ν + 1
24. tail← [|M |]n/2‖[|A|]n/2

25. d← Ehj‖0
kj

(tail)

26. d∗ ← Ehj‖0
kj

(tail)

27. V ← lsn−1(d⊕ d∗)
28. U ← d∗ ⊕ tail

29. U∗ ← (EV ‖1
K )−1(Z)

30. if U∗ 6= U then return ⊥
31. M ←M [1]‖ . . . ‖M [`]
32. return M

Figure 14: Definition of the TET mode, using a TBC E.
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SN‖0

E

Z

C = C[1]‖C[2]‖Z

ET

K

E

K

E

PK

N‖0

N‖0
k1

h1

M [1]

M [1]

E

E

0
1

n− 1

k2

h2

C[1] M [2]

M [2]

E

E

0
1

n− 1

k3

h3

C[2]
n− 1

k4

h4

tail

tail

E

E

0
1

n− 1

k5 = U

h5 = V 1

0
1

k3

h3

A[1]

A[1]

E

E

0
1

n− 1

Figure 15: Illustrating the TET AEAD. The two dark blocks are “leak-free” TBC-calls.
The other TBC-calls are leaking. For each square, the input to the triangle denotes the
key input. The “tail” block is tail = [|M |]n/2‖[|A|]n/2, and T = PK‖0.
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