
Improved Heuristics for Short Linear Programs
Quan Quan Tan and Thomas Peyrin

Nanyang Technological University, Singapore
quanquan001@e.ntu.edu.sg,thomas.peyrin@ntu.edu.sg

Abstract. In this article, we propose new heuristics for minimising the amount of
XOR gates required to compute a system of linear equations in GF(2). We first
revisit the well known Boyar-Peralta strategy and argue that a proper randomisation
process during the selection phases can lead to great improvements. We then propose
new selection criteria and explain their rationale. Our new methods outperform
state-of-the-art algorithms such as Paar or Boyar-Peralta (or open synthesis tools
such as Yosys) when tested on random matrices with various densities. They can be
applied to matrices of reasonable sizes (up to about 32 × 32). Notably, we provide a
new implementation record for the matrix underlying the MixColumns function of
the AES block cipher, requiring only 94 XORs.

Keywords: XOR gate · gate count · linear systems · diffusion matrices.

1 Introduction
Lightweight cryptography has received a lot of attention in the past decade and with
the increasing miniaturisation of electronic chips and devices, this trend will probably
continue further. In a general sense, the study of lightweight cryptography refers to
finding cryptographic primitives circuits that are efficient in constrained environments.
The definition of efficiency obviously differs depending on the use-case: throughput, area,
energy, power, latency are classical dimensions of the problem that have been considered so
far. Trade-offs are often possible and desirable for a cryptographic primitive to adapt well
to various situations. Yet, circuit area is a crucial criterion for lightweight cryptography in
hardware, as smaller and cheaper devices means stronger area constraints.

Many lightweight ciphers have been proposed [BKL+07,CDK09,GPPR12,BCG+12,
BJK+16,BPP+17] and they all share the particularity that a lot of efforts has been spent
on minimising the circuit area; for example by using a state as small as possible, or
by minimising the number of logical gates (especially the expensive ones such as XOR)
required to implement the primitive. For many of them, a small or even the smallest
implementation of their subcomponents is provided by construction, but it is interesting
more generally to study how one can minimise the area cost of any function (circuit depth
can also be an important criterion).

Tools providing a good circuit that is efficient in area and/or depth already exist, but
this task being very complex they all have limitations: they either provide optimal or
close to optimal circuits for small problem sizes, or they provide non-optimal solutions
for bigger function domains. Examples of the former are SAT-based tools [Sto16], or
LIGHTER [JPST17]. For small circuits, LIGHTER is an automated tool that uses a meet-
in-the-middle approach to find efficient or even optimal circuits (under some assumptions).
However, for larger circuits, the search space of the circuits grows exponentially large and
this requires completely different heuristics. One can cite for example synthesis tools such
as Yosys [Wol] and ABC [BM10] that offers circuit optimisation for large domain size.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2020, No. 1, pp. 203–230
DOI:10.13154/tches.v2020.i1.203-230

mailto:quanquan001@e.ntu.edu.sg,thomas.peyrin@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2020.i1.203-230


204 Improved Heuristics for Short Linear Programs

Generally, a cipher can be broken down into two distinct layers: the linear layer and
the non-linear layer (often composed of the application of Sboxes or modular additions).
The tools mentioned previously can handle both linear or non-linear layers and many
papers in the literature have proposed new techniques to implement the non-linear layer
efficiently. This is especially true in particular for the AES S-Box. In [Can05], Canright
used a technique involving the subfield arithmetic that eventually led to a small and
compact AES S-box circuit.

While the non-linear layer, which generally costs a substantial part of the total encryp-
tion circuit, has been well studied, a lot of attention has also been given to the case of
linear circuits, which can be seen as a potentially simpler sub-case. As the linear layer is
usually implemented with many (relatively costly) XOR gates, improvements on this part
can lead to non-negligible savings on the final circuit.

Although the problem of finding optimal linear circuits has been shown to be NP-
hard [BMP08,BMP13], there are existing heuristics that could give quite good approxima-
tions. Paar’s algorithms [PR97], for instance, provide good estimations for matrices, even
for large sizes. In recent years, a series of algorithms have been published solely focusing on
reducing the number of XORs required for linear circuits. In 2017, [KLSW17] showed that
by using the Boyar-Peralta (BP) algorithm [BP10,BMP13], many linear circuits can be
more efficiently handled when the size of the matrix is not too large. Many research have
built on the structure of the BP algorithm in order to further reduce the complexity of
linear circuits [VSP18,RTA18,ME19]. As a benchmark to compare the various heuristics,
a prominent circuit to study is obviously the AES diffusion matrix, whose XOR gate cost
has been reduced down to 97 XORs after several successive improvements [KLSW17].

Our Contributions. In this paper, we provide new heuristics to improve the XOR gates
count in linear circuits, which can be used to optimise the implementation of diffusion
matrices or any linear function with or without full rank. Firstly, we show that the
randomisation of the BP algorithm [BP10,BMP13] can lead to improvements over the
state-of-the-art. One particularly interesting case is that by inducing randomisation, we
can obtain an implementation of the AES MDS matrix requiring only 95 XORs, a new
record. The benefits of randomisation became increasingly more significant as the size and
density of the matrix increase.

Then, we also propose two new algorithms, so-called A1 and A2, that aim at improving
the XOR count even further. The main idea of the algorithms is to attempt to reach
some of the outputs first, provided they are not too costly and at the same time, trying to
minimise the cost required for the rest of the outputs. As for all known heuristics except
Paar’s algorithm, the size of the linear layers that A1 and A2 can handle is limited (32×32
matrices of low density such as the AES matrix will usually take around 30 to 40 minutes
for a single run on a small computation cluster). We have implemented these algorithms
on a set of many random square matrices (of sizes 15× 15 to 20× 20 with the densities
ranging from 0.1 to 0.9) which is a subset from the benchmark set used in [VSP18]. We
compared the results obtained with various state-of-the-art algorithms such as Paar1, BP,
and a randomised version of Shortest-Dist-First [RTA18]. A distinctive trend we observed
is that when the density, ρ, of the matrix is small, ρ ≈ 0.1− 0.2, all the above-mentioned
algorithms yielded about the same results (the problem is generally much easier to solve
as the search space is very limited). When ρ ≈ 0.4− 0.6, we start to see that A1 and A2
algorithms are performing better. More importantly, as the size of the matrix increases, the
criteria used in A1 and A2 provide even stronger gains over other existing heuristics, which
indicates that A1 and A2 are indeed fundamentally improving over the state-of-the-art.
In order to further improve the circuits’ size, we have also incorporated Yosys synthesis
tool [Wol] in the picture, as well as some simple local optimisation techniques we propose
in order to reduce the XOR count. In some cases, we even managed to reduce the circuit



Quan Quan Tan and Thomas Peyrin 205

depth as well. The benchmark results are shown in Table 4 and Table 5. We have also
implemented the algorithms on matrices from [DL18] and the results are shown in Table 6
and Table 7. All in all, even though these matrices came with an optimised circuit by
construction, we surprisingly managed to improve 7 of them (out of 24).

Finally, as the ultimate benchmark, we have run both A1 and A2 algorithms on the
AES diffusion matrix and it produces a circuit requiring only 94 XORs, again a new record.
This circuit is shown in Appendix E.

Organisation of the paper. In Section 2, we provide a brief overview of the mathematical
background required for the understanding of this paper. In Section 3, we explain with
some small examples the various state-of-the-art heuristics that are used to find good
linear circuits for linear matrices (Paar’s algorithms, BP algorithm and its variants, as well
as algorithms proposed by Masoleh, Taha and Ashmawy in [RTA18]). In Section 4, we will
provide our heuristics, mainly A1 and A2 algorithms, as well as a randomised version of the
BP algorithm, mainly to illustrate the importance of randomisation while finding optimised
circuits. Also, we will provide a short description of the local optimisation techniques in
order to further post-reduce the number of XOR gates, starting from a circuit provided by
the various global optimisation algorithms. In Section 5, we will provide the results after
comparing the heuristics. These results are mainly on two different groups of matrices - a
subset of the benchmark set in [VSP18] (which is a set of random matrices with varying
densities of size 15× 15 to 20× 20) and matrices of size 16× 16 and 32× 32 from [DL18].
Finally, we conclude in Section 6 and propose possible future research directions.

2 Preliminaries
A linear Boolean function is a circuit consisting n input signals {x0, x1, ..., xn−1} and m
output signals {y0, y1, ..., ym−1}. Following the notation in [BP10], the output signals are
also called targets. A circuit that is constructed only by the XOR gates (which can be
represented by ⊕), is considered as linear. To describe a linear circuit, we will be using a
series of ti variables to represent the intermediate values. In this article, we will not put
any restrictions on the number of such values ti, but studying optimised linear circuits
with bounded memory is also a relevant research direction.

Generally, most cryptographic applications use matrices with elements from the finite
field, F2k in their calculations. The finite field is defined by some irreducible polynomial of
degree k with coefficients from F2. To do multiplication with a fixed element from F2k ,
we can represent the fixed element as a k × k matrix, K, with elements from F2 and the
input element to be multiplied with as a vector x = (x0, x2, ..., xk−1)T with each xi ∈ F2
for i ∈ {0, .., k − 1}. A simple matrix multiplication with modulo 2 operation can be used
to obtain the desired result: K · x for the purpose of multiplication. Therefore, a matrix
M , of size n × n with fixed elements from F2k , can also be interpreted as a matrix of
size nk × nk with elements from F2. Therefore, we will now discuss only matrices with
elements from F2.

A naive implementation of matrix (blindly computing the XORs directly given in
the matrix representation) is usually very inefficient as there will be a lot of repeated
calculations. This is especially true as the density of a matrix increases. Currently, the
possibility of finding a circuit with least XOR gates relies on the fact that we can reuse
intermediate variables ti that were calculated once, for other computation steps. This
strategy also forms the basis for all the algorithms that we discuss in this paper.

In [BP10], Boyar and Peralta coined the term “cancellation-free programs” which
refers to programs that do not “cancel” out common terms; all cancellation-free programs
have circuits that follow the rule: if the computation ti = u⊕ w is in the circuit where
u = xu1 + xu2 + ...+ xuk

and v = xv1 + xv2 + ...+ xvl
, then {xu1 ...xuk

} ∩ {xv1 ...xvl
} = ∅.



206 Improved Heuristics for Short Linear Programs

For instance, Paar’s algorithm produces a cancellation-free program whereas BP algorithm
does not. Currently, it seems that by considering non-cancellation-free circuits, the XOR
count can be improved. One such case can be observed in the example matrix given in
Section 3.

3 State-of-the-art Heuristics
3.1 Paar’s Algorithm [PR97]
In [PR97], Paar proposed two global optimisation algorithms, we will refer to them as
Paar1 and Paar2 (i.e. Algorithm 1 and its improvement respectively in [PR97]). Both
Paar1 and Paar2 take a binary matrix as input and attempt to find a more efficient circuit
than its naive implementation. In essence, Paar1 first searches and records the frequency
for all possible pairing of the input variables, xi ⊕ xj for i, j = 0, ..., n− 1, i 6= j occurring
in the matrix. The pair with the highest frequency will then be computed and placed back
into the matrix as a new variable, e.g. t0. In the next round, all possible occurrences of
u⊕ v where u, v ∈ {x0, x1, ..., xn−1, t0} will be considered. This process will repeat until
all possible pairs of variables occur at most once in the matrix. Then, the remaining gates
will just be computed naively. In Table 1, we take the example of a matrix M and apply
Paar1 algorithm on it.

Paar2 is an improvement over Paar1, as when it considers all possible pairs with the
highest frequency, it will then conduct a tree search for all such pairs. We note that this
exhaustive search may not work very well as the dimension of the matrices increases.

Note that Paar1 and Paar2 produce cancellation-free circuits. However, the advantage
of Paar1 is in its time complexity: it can be easily implemented for large matrices and
obtains a circuit with a very reasonable computational effort.

3.2 BP algorithm [BP10]
The BP algorithm adopted a rather different approach to the problem. While the algorithm
is much slower than Paar’s algorithms and inapplicable for matrices of large size due to the
exhaustive search nature for the calculation of the distance vector, it generally produces
more efficient circuits. Notably, in [KLSW17], the BP algorithm managed to reduce the
AES diffusion matrix circuit to 97 XORs. The general idea of BP is to reach a common
path among as many targets as possible. Thus, the criteria for next gate in each step is to
choose a gate that reduces the distance1 to the highest number of targets. We describe
here this heuristic:

1. Place all variables {x0, x1, ..., xn−1} into a set, Base. The rows in the matrix are
denoted as set of targets {y0, y1, ..., ym−1} that we want to compute

2. Initialise an m-integer vector Dist which keeps track of the distances of each target
from Base

3. Repeat until all the targets are added into the Base:

(a) perform XOR on every unique pair of elements in Base and re-evaluate Dist
vector

(b) Select the pair candidate that minimises
m−1∑
i=0

Dist[i] and add it into Base

(c) In case of tie, choose the pair candidate that maximises the Euclidean norm of
Dist (Norm criterion)

1The distance of a target is defined as the minimal number of XOR operations required to perform on
a subset of elements in Base to reach the target



Quan Quan Tan and Thomas Peyrin 207

Table 1: Computation sequence when applying Paar1 algorithm to matrix M . xi refers
to the input signals ∀i ∈ {0, ..., 13}, yj refers to the targets ∀j ∈ {0, ..., 6} and tk refers to
the temporary intermediate gates ∀k ∈ N

Iter. Pair with Freq.
highest freq.

1 t0 = x4 + x13 4
2 t1 = x8 + x9 4
3 t2 = x10 + t1 4
4 t3 = x3 + t0 3
5 t4 = x5 + x6 3
6 t5 = t2 + t4 3
7 t6 = x1 + x2 2
8 t7 = x7 + t5 2
- t8 = x0 + x13 1
- y0 = t6 + t8 1

Iter. Pair with Freq.
highest freq.

- y1 = t3 + t6 1
- t11 = x2 + x5 1
- y2 = t3 + t11 1
- y3 = t3 + t5 1
- y4 = t0 + t7 1
- y5 = x13 + t7 1
- t16 = x7 + x11 1
- t17 = x12 + x13 1
- t18 = t2 + t16 1
- y6 = t17 + t18 1

M =



1 1 1 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 1
0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1



Remark 1. In [BP10], the authors also mentioned that if there is any target with a distance
value of 1 at some point (i.e. there exists two distinct Base elements, Bi and Bj such that
the target yk is equal to yk = Bi ⊕Bj), then we can directly choose this gate to be added
into Base as it will not increase the size of the resulting circuit (one gate will have to be
spent to reach yk anyway, so using Bi ⊕Bj is necessarily among the best possible choices).
In Table 2, we provide the circuit produced by the BP algorithm when using the same
input matrix M that was used for Table 1. This circuit is slightly shorter as compared
to the one in Table 1 as it allows for cancellation of variables. This can be observed
by looking at the construction for the intermediate variable t17 (t17 = t4 ⊕ y5, where
y5 = x3⊕ (x7⊕ (t5⊕ t4))) and thus, a cancellation of the value t4). This led to a reduction
of the number of gates required to obtain y6.

In the rest of the article, we will say that a target is far (resp. near) if the corresponding
value in the Dist vector is large (resp. small) relative to the other values in Dist.

3.3 BP algorithm for dense matrices [VSP18]
Visconti, Schiavo and Peralta proposed in [VSP18] a new heuristic for matrices that are
dense. The gist of the heuristic is to approach the Boolean complement of the matrix that
it wants to compute first. It will attempt to find the all-one vector along with the targets
in the complementary matrix. Eventually, an additional XOR is used between the all-one
vector and each of the complementary target to get the original target. They applied their
strategy on a benchmark set, which is a set consisting of random matrices of different sizes



208 Improved Heuristics for Short Linear Programs

Table 2: Computation sequence when applying BP algorithm to matrix M . B refers to
the initialized base elements, xi refers to the input signals ∀i ∈ {0, ..., 13}, yj refers to the
targets ∀j ∈ {0, ..., 6} and tk refers to the temporary intermediate gates ∀k ∈ N

Iter. New base New Dist
element vector

0 B = {x0, ..., x13} [3 4 4 7 7 6 6]
1 t0 = x4 + x13 [3 3 3 6 6 6 6]
2 t1 = x8 + x9 [3 3 3 5 5 5 5]
3 t2 = x10 + t1 [3 3 3 4 4 4 4]
4 t3 = x3 + t0 [3 2 2 3 4 4 4]
5 t4 = x5 + x6 [3 2 2 2 3 3 4]
6 t5 = t2 + t4 [3 2 2 1 2 2 4]
7 y3 = t3 + t5 [3 2 2 0 2 2 4]
8 t7 = x2 + t3 [3 1 1 0 2 2 4]
9 y1 = x1 + t7 [3 0 1 0 2 2 4]

Iter. New base New Dist
element vector

10 y2 = x5 + t7 [3 0 0 0 2 2 4]
11 t10 = x7 + t5 [3 0 0 0 1 1 4]
12 y4 = t0 + t10 [3 0 0 0 0 1 4]
13 y5 = x13 + t10 [3 0 0 0 0 0 4]
14 t13 = x0 + x1 [2 0 0 0 0 0 3]
15 t14 = x2 + x13 [1 0 0 0 0 0 3]
16 y0 = t13 + t14 [0 0 0 0 0 0 3]
17 t16 = x11 + x12 [0 0 0 0 0 0 2]
18 t17 = t4 + y5 [0 0 0 0 0 0 1]
19 y6 = t16 + t17 [0 0 0 0 0 0 0]

and density. Their results indicate that this new heuristic will be well suited for matrices
that have a high density.

3.4 Masoleh, Taha and Ashmawy’s algorithms [RTA18]

In [RTA18], Masoleh, Taha and Ashmawy have proposed three alternatives to the BP
algorithm: Improved-BP, Shortest-Dist-First and Focused-Search.

In Improved-BP, they start from the BP algorithm, but used a different tie-breaker. If
there is a tie in one iteration of BP algorithm, instead of relying on the Euclidean-norm of
the distances, the Improved-BP algorithm performs a local exhaustive search by testing
all the best results in the next iteration to determine the best pair.

In Shortest-Dist-First (SDF), the algorithm selects the best pair by choosing a gate
that maximises the number of pre-emptive gates (pre-emptive gates refer to targets that
are at distance one away, thus, gates that we can directly add into the Base according
to Remark 1). In the case that none can be found, it will look for a gate that maximises
the number of targets at Dist[i] = 2 and so on; i.e. they try to select a gate such that it
reduces the distance of as many “nearest” targets as possible.

In Focused-Search, the algorithm combines the criteria in SDF and the tie-breaking
method from their Improved-BP algorithm. In [RTA18], they have implemented on some
matrices and showed that this algorithm outperformed the other heuristics (BP, Improved-
BP, SDF). However, we would like to emphasize that the matrices that the authors have
tested on are very small: 20× 8, 8× 10 and 8× 8.

4 New Heuristics

In this section, we propose new algorithms for finding optimised linear circuits. Our
implementations can be downloaded from the following address: https://github.com/
thomaspeyrin/XORreduce.

https://github.com/thomaspeyrin/XORreduce
https://github.com/thomaspeyrin/XORreduce


Quan Quan Tan and Thomas Peyrin 209

4.1 Random-Normal-BP (RNBP)
In [BP10], Boyar and Peralta have experimented on several tie-breaking techniques for their
algorithm. Instead of having the Norm as the tie-breaker, they have also tried Random.
Under Random, it considers the sum of the distance to targets and whenever there is a
possible new base vector with the same sum with the current selection, with probability
1
2 , it will apply the Norm criterion to determine if we should swap or remain with the
selected choice. As this results in a non-deterministic algorithm, the algorithm is repeated
for a total of three times and the best circuit is then selected. However, this results in
an uneven spread of probabilities among all the “equally good” candidates for the next
gate according to the criteria. For instance, if there are 4 equally good candidates, the
first, second, third and fourth candidates will have probabilities of 1

8 ,
1
8 ,

1
4 and 1

2 of being
chosen respectively.

We propose first a simple variation of the BP algorithm: Randomised-Normal-BP
(RNBP)2. After several runs of the BP algorithm, we noticed a high number of ties even
after the Norm tie-breaker has been used. Since those possible new bases passed the criteria
with the Norm tie-breaker, we treat these bases to be equally good. Unlike the “Random”
used in [BP10], we decided to add a simple randomisation process to choose the next base,
giving each possible candidate after the Norm tie-breaker an equal probability of being
selected. This algorithm shows the effectiveness of a randomised algorithm. The results
obtained experimentally show that by randomising the choices and using the algorithm
multiple times, we often produce a circuit that has a lower XOR count than itself without
randomisation. This produces a better measurement of how good the criterion is as it
transcends the order of computation of all possible choices. In the case of AES, RNBP
is able to yield a 95 XOR circuit for the MDS matrix, beating the current record by 2
XORs [KLSW17]. In Section 5, we can see that RNBP is faring better than BP.

For reference, an algorithmic description of our RNBP strategy can be found in
Appendix A.1.

4.2 A1 & A2 algorithms
In this section, we propose two new non-deterministic algorithms, called A1 and A2, that
are also based on the general BP strategy. Similarly to the Shortest-Dist-First (SDF)
algorithm [RTA18], our rationale is to aim at reaching the targets that are the nearest
(targets with the minimum Dist value that is non-zero). However, the main difference with
SDF is that A1 and A2 are less restrictive: we do not look for a new base element that
can reduce the distance of as many nearest targets as possible, instead, we just choose a
gate that can minimise at least one of the nearest targets. We called this step the filtering
step. We want to have this filtration to filter out gates that only minimise targets that are
further away. After the filtration, we will use the criteria with Norm tie-breaker in BP
subsequently to rank the gates that pass the filter in order to reach a common path among
all the targets. For example, suppose if at step k we have a Dist = [3 4 5 6 7] and we
have three possible gates tka , tkb

and tkc that will result in the following changes to Dist:

tka : Dist = [2 3 5 6 7]
tkb

: Dist = [2 4 5 6 7]
tkc : Dist = [3 3 4 5 6]

respectively, then tka
is favoured over tkb

and tkc
as it reduces the nearest target, and

between the tka and tkb
, it reduces the distance to the highest number of targets.

2Following the terminology from [RTA18], Normal-BP as the BP algorithm with the “Norm” tie-breaking
is used, we added a “Randomised” process.



210 Improved Heuristics for Short Linear Programs

Let us provide our motivation for trying this strategy. In general, targets that are
further away tend to contribute more to the reduction of the sum of distance due to their
high Hamming Weight and thus, they have a higher probability to contain similar terms
with other high Hamming Weight targets. This causes the BP’s criteria of using the sum
of distances to favour a move that reduces the distance to targets with high Hamming
Weight. Hence, the common path is constructed to reach the higher Hamming Weight
targets while not paying much attention to the ones with lower Hamming Weight. However,
we want the targets that are the nearest to be taken into account as well when computing
the common path. Thus, by doing this arrangement of criteria, we can avoid situations
where targets with large Hamming Weight are dominating the common path.

For algorithm A1, the selection for the next gate is performed as follows:

1. Filtering. It must reduce the distance of at least one of the nearest targets

2. Selection. Among the ones that pass the filter, select the one which minimises the
sum of distances

3. Tie-breaker. The Euclidean Norm will be used as a tie-breaker for the above
criteria

4. Randomisation. If the tie-breaker does not resolve the tie, with equal probability,
we will randomly pick one of the remaining candidates after the tie-breaking process

In algorithm A2, we skip step 3 (tie-breaking) from algorithm A1. This provides more
randomisation when compared to algorithm A1.

An illustration using the same matrix example as in Table 1 is shown in Table 3. This
example is crafted to illustrate the strength of A1 and A2 as compared to the BP algorithm.
The matrix M is crafted in a way that the targets share many common input signals.
Ideally, we would like to approach the one that is the nearest among the set of all targets
(that is, y1 in the case of M) and approach the rest of the targets by making those small
gaps. The differences in selecting their next new base element can be seen from the very
first iteration for BP and A1 in Table 2 and Table 3 respectively. The former tends to
be greedier (in terms of distance reduction) in choosing the gate with inputs {x4, x13}
which reduces the distance vector by 4. However, the targets that gained a reduction are
the ones with the highest Hamming Weights too. The latter chose to reach the nearest
target first (while keeping the overall distance in check) which resulted in the choice of the
gate with inputs {x2, x13}. We can see that for this particular matrix M , A1’s approach
managed to achieve a smaller circuit.

For reference, an algorithmic description of our A1 and A2 heuristics can be found in
Appendix A.2 and A.3.

4.3 Local Optimisation
We describe in this section some local optimisation techniques (LocalOpt) aiming at
reducing XOR count further after a circuit of the matrix has been formed. Unlike BP
algorithm where it finds the common path by choosing a gate that minimises the sum
of distances, A1 and A2 (and also SDF) choose the one that is the nearest first, which
often creates a ‘walk’ around the targets instead of many branches from the common path.
Thus, many gates are only used once. This enables us to do some swapping operations
with the resulting circuit from global optimisation without involving too many variables.
After some swapping, there may be some repeated gates. Thus, by clearing these repeated
gates, we are able to reduce the XOR count further.

While our aim is to reduce the XOR count, the depth might also be improved by
LocalOpt for some circuits. Since the time taken to do the LocalOpt is insignificant when



Quan Quan Tan and Thomas Peyrin 211

Table 3: Computations sequence when applying A1 algorithm to matrix M . B refers to
the initialized base elements, xi refers to the input signals ∀i ∈ {0, ..., 13}, yj refers to the
targets ∀j ∈ {0, ..., 6} and tk refers to the temporary intermediate gates ∀k ∈ N

Iter. New base New dist.
element

0 B = {x0, ..., x13} [3 4 4 7 7 6 6]
1 t0 = x2 + x13 [2 3 3 7 7 6 6]
2 t1 = x1 + t0 [1 2 3 7 7 6 6]
3 y0 = x0 + t1 [0 2 3 7 7 6 6]
4 t3 = x3 + x4 [01 2 6 7 6 6]
5 y1 = t1 + t3 [0 0 2 6 7 6 6]
6 t5 = x5 + t3 [0 0 1 5 7 6 6]
7 y2 = t0 + t5 [0 0 0 5 7 6 6]
8 t7 = x9 + x13 [0 0 0 4 6 5 5]
9 t8 = x10 + t7 [0 0 0 3 5 4 4]

Iter. New base New dist.
element

10 t9 = x8 + t8 [0 0 0 2 4 3 3]
11 t10 = x6 + t9 [0 0 0 1 3 2 3]
12 y3 = t5 + t10 [0 0 0 0 2 2 3]
13 t12 = x7 + y3 [0 0 0 0 1 1 3]
14 y4 = x3 + t12 [0 0 0 0 0 1 3]
15 y5 = t3 + t12 [0 0 0 0 0 0 3]
16 t15 = x11 + t9 [0 0 0 0 0 0 2]
17 t16 = x12 + t15 [0 0 0 0 0 0 1]
18 y6 = x7 + t16 [0 0 0 0 0 0 0]

compared to that of the global optimisation algorithms, we propose that LocalOpt is to
be used concurrently with the Yosys synthesis tool [Wol] on the circuits produced by the
global optimisation algorithms, in order to maximise the potential for savings. Since Yosys
tool is also very fast as compared to the global optimisation, we can actually implement
Yosys first then LocalOpt and vice versa and take the best circuit among the two.

We have two LocalOpt techniques: swapping orders to rearrange parts of a circuit and
a local exhaustive search to try out all the various permutations and choose the tree that
has the most savings.

4.3.1 Swapping orders

This method helps to identify and rearrange special parts of the circuit such that some
repeated gates may appear. This rearrangement may also cause the depth of some gates
and possibly the depth of the entire circuit to be reduced.

We first identify gates that are used only once for the computation of a value, then we
can perform the following operation. Suppose that a part of the circuit is composed of:

...
a = b⊕ c
d = a⊕ e
f = b⊕ e

...

where a is only used in the evaluation of d (i.e. a is only used once). Let depth(k) represent
the depth of a value k in the circuit. If depth(e) < max{depth(b), depth(c)}, then we may



212 Improved Heuristics for Short Linear Programs

rewrite the above gates sequence as follows:

...
a = e⊕ argmin{depth(b), depth(c)}
d = a⊕ argmax{depth(b), depth(c)}

f = b⊕ e
...

If depth(b) < depth(c), then the depth of both a and d will be reduced. Therefore, the
other parts of the circuits may see a depth reduction as well. We can observe that this helps
to save an XOR gate as well: now the gate a and f are doing the exact same operation.
Thus, we will check the depth of the new a and f and eliminate the one that has a larger
delay and swap the orders if necessary to maintain the order of the circuit.

4.3.2 Local exhaustive search

As a full exhaustive search is infeasible due to the large search space, we propose to perform
local exhaustive searches to identify possible opportunities to reduce the number of XOR
gates. To describe a circuit, we can use a tree representation for it. Each gate can be
represented as a binary tree with three nodes. The parent (and in this case, the root) of
the tree will be the output value and the two child nodes are the input values. Starting
from any intermediate or target values as the root of the binary tree, we can form the
binary tree recursively until all the leaf nodes are the input variables.

For each intermediate and target value in the circuit, we extract the sub-part of the
circuit (a binary tree) that leads to this value. We permute to obtain all the possible
configurations of binary trees with the same root and leaf nodes. Then, we check all
possible configurations to see if there is any tree that could reduce the number of gates
required as compared to the one in the circuit. If there is such a tree, we will do a
substitution.

For example, if part of the circuit is

...
t1 = x0 ⊕ x1

t2 = x0 ⊕ x2

t3 = x2 ⊕ t1
t4 = x3 ⊕ t2

...

then all the possible computation trees with gate t3 as the root are shown in Figure 1.
The tree on the left is the original circuit whereas the others are the possible alternatives
that do the exact same computations. Assuming t1 is only used in the computation of
gate t3, then the middle tree in Figure 1 will be the most efficient since t2 has already
been computed in the circuit and we can remove t1 from it. Although the tree on the right
in Figure 1 does not need t1 (and therefore, we are able to remove t1 too), at the same
time it creates an additional node tk, thus we will not have any savings overall. Due to
the large permutation tree that we may encounter, we limit the number of leaf nodes of
each tree to be 5. That is, start from the root, we start looking for the child nodes for
each level recursively until we have at most 5 leaf nodes, regardless whether we have yet
reached the input values or not.



Quan Quan Tan and Thomas Peyrin 213

t3

x2t1

x1x0

t3

x1t2

x2x0

t3

x0tk

x2x1

Figure 1: Computation trees of gate t3

5 Results
Heuristics used for comparison. In this section, we will compare our results against
various state-of-the-art algorithms. This includes the BP algorithm, as well as a randomised
version of the Paar1 (RPaar1) and the SDF algorithm (RSDF). Similar to the random
procedure added in RNBP, whenever we have a tie, a gate will be randomly selected. We
did not implement the Focused-Search algorithm as it is extremely time-consuming for
matrices that are larger. Since the search space of Focused-Search and SDF algorithms
are a subset of that of RSDF, implementing RSDF may be a better comparison of how
well the criteria actually performs in a randomised environment.

Implementation. All of the implementations (except RPaar1 and Paar1) are written in
C++. As for RPaar1 and Paar1, they are written in Python. The reason for choosing a
different language is that RPaar1 and Paar1 are extremely fast, thus we do not require the
efficiency from writing in C++. Furthermore, we have no intention to compare the speed
of these two algorithms with the other ones. Thus, we choose Python to have a quick
and accurate implementation. For the BP algorithm, we use the implementation that is
provided in the GitHub repository stated in [KLSW17]. As for RNBP, SDF, A1 and A2,
we implemented them with several changes from the code for BP. All implementations were
benchmarked on AMD EPYC 7401 24-Core Processor model with 96 CPUs and 60GB of
RAM. The implementations were run on a cluster of 90 cores, with one core per matrix.

Test set. We have tested the algorithms on a smaller scale of the benchmark set used
in [VSP18]. The benchmark set consists of random square matrices categorised by their
size and density. For our test set, we have chosen a smaller subset: we have chosen 10
matrices from each size (ranging from 15× 15 to 20× 20) and density, ρ (ranging from 0.1
to 0.9). In total, we have 540 matrices for our benchmark subset. We have also tested the
algorithms on the 16× 16 and 32× 32 matrices from [DL18].

Computational effort. Due to the non-deterministic nature of our algorithms, we run
the matrices with different algorithms with a fixed time based on the size and density. We
chose the amount of computational effort such that at least nine out of ten matrices in each
category (size and density) will reach a stable state for all the algorithms implemented on
it. We define stable state (or a result is stabilised) as a situation where the algorithm did
not yield any improvements in terms of the number of XOR count for the last half of the
time allocated. For instance, the ten matrices with size 15× 15 with ρ = 0.5 were allocated
a computational effort of 2000 seconds. This means that for at least nine of the matrices,
no further improvement is observed in the last 1000 seconds for each algorithm. The circuit
with the lowest XOR count yielded by each algorithm is then used for comparison.



214 Improved Heuristics for Short Linear Programs

LocalOpt & Yosys. We further optimised the circuits using Yosys synthesis tool and
LocalOpt in the two possible orders (Yosys first, then LocalOpt, and vice versa). The
circuit (with the lowest XOR count) among the two is then taken as the best circuit. We
will term the circuit before this optimisation step as BLOY and the circuit after this step
as ALOY.

5.1 Benchmark-subset
XOR count. The general trend of the average XOR count difference of the best ALOY
circuits found by the different algorithms can be seen in Figures 2, 3, 4 and 5. The time
allowed for each size/density can be found in Table 9 of Appendix B. In Table 4, the
percentage of the smallest circuit yielded per size is shown. The ones in round bracket are
the percentages for BLOY circuits.

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

0
1
2
3
4
5
6

Figure 2: Average XOR count difference
of the best ALOY circuits found by BP
and A1

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

0
1
2
3
4
5
6

Figure 3: Average XOR count difference
of the best ALOY circuits found by BP
and A2

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

1.0
0.5

0.0
0.5
1.0
1.5
2.0

Figure 4: Average XOR count difference
of the best ALOY circuits found by RSDF
and A1

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

0.5
0.0
0.5
1.0
1.5
2.0
2.5

Figure 5: Average XOR count difference
of the best ALOY circuits found by RSDF
and A2

When the sizes of the matrices are small (i.e. 15× 15), and if the density is small (0.1
to 0.2), all tested algorithms performed about the same. This is due to the fact that these
problems have low branching, and thus low complexity. When the density is about 0.3
to 0.6, A1 and A2 performed better than the rest and when density is around 0.8 to 0.9,
RSDF performed better as compared to the rest.



Quan Quan Tan and Thomas Peyrin 215

As the sizes of the matrices get larger, the distinction between each algorithm is clear.
For size 20× 20, when the density is small (0.1 to 0.2), all algorithms performed about the
same. But when the density is around 0.3 to 0.9, algorithms A1 and A2 performed the
best among all algorithms, producing circuits with the lowest XOR count.

Table 4: Percentage of best circuits (XOR counts) produced by various algorithms for
various square matrix sizes. The brackets contain the percentage of the BLOY circuits.
The best percentages for both ALOY and BLOY circuits are highlighted in bold

Matrix BP Paar1 RPaar1 SDF RNBP A1 A2
Size [BP10] [PR97] [RTA18] Sec. 4.1 Sec. 4.2 Sec. 4.2

15 25.56 14.44 14.44 70.00 38.89 58.89 66.67
(20.00) (14.44) (14.44) (66.67) (33.33) (56.67) (66.67)

16 21.11 8.89 10.00 61.11 28.89 53.33 73.33
(18.89) (8.89) (10.00) (65.56) (32.22) (54.44) (77.78)

17 17.78 11.11 11.11 62.22 26.67 53.33 72.22
(16.67) (11.11) (11.11) (58.89) (26.67) (52.22) (74.44)

18 15.56 8.89 11.11 41.11 31.11 52.22 85.56
(13.33) (8.89) (11.11) (36.66) (25.56) (52.22) (83.33)

19 14.44 11.11 11.11 32.22 26.67 54.44 74.44
(13.33) (11.11) (11.11) (31.11) (27.78) (48.89) (80.00)

20 12.22 11.11 11.11 25.56 23.33 58.89 87.78
(12.22) (10.00) (11.11) (23.33) (23.33) (58.89) (90.00)

Depth Although the depths of the circuits generated by algorithms A1 and A2 are not
as low as the BP algorithm, the depth of the circuits are generally better than that of the
RSDF algorithm. Table 5 shows the percentage of best ALOY circuits (depth) produced
by the various algorithms. Again, the ones in round bracket are the percentages for BLOY
circuits. Note: we acknowledge that Paar1 and RandomPaar1 produce circuits with good
depth levels (Paar1 yielded > 90% of the best depth for each size). However, the results
for the two algorithms are omitted from Table 5 for the other algorithms to compare.

Table 5: Percentage of best ALOY circuits (Depth) produced by various algorithms for
various square matrix sizes. The brackets contain the percentage of the BLOY circuits.
The best percentages for both ALOY and BLOY circuits are highlighted in bold

Matrix BP RSDF RNBP A1 A2
Size [BP10] [RTA18] Sec. 4.1 Sec. 4.2 Sec. 4.2

15 78.89 (70.00) 25.56 (16.67) 52.22 (34.44) 36.67 (14.44) 30.00 (18.89)
16 85.56 (74.44) 21.11 (16.67) 55.56 (31.11) 26.67 (18.89) 30.00 (26.67)
17 82.22 (80.00) 20.00 (14.44) 51.11 (36.67) 28.89 (15.56) 30.00 (23.33)
18 85.56 (76.67) 27.78 (17.78) 56.67 (41.11) 24.44 (17.78) 30.00 (16.67)
19 77.78 (74.44) 23.33 (11.11) 47.78 (34.44) 26.67 (11.11) 35.56 (14.44)
20 84.44 (73.33) 17.78 (12.22) 48.89 (25.56) 25.56 (10.00) 28.89 (15.56)



216 Improved Heuristics for Short Linear Programs

Time to stability. On average, RSDF took the longest time to reach stability, followed
by A2, A1 and then RNBP. Taking RNBP time as the base, RSDF, A2 and A1 required
approximately 6.8, 3.2 and 1.7 more time in order to reach convergence. Some of the graphs
for the convergence to stability are shown in Appendix C. The average time taken for the
best circuit to form in each category is also shown in Appendix D. The time complexity
for all the algorithms is dominated by the computation of Dist vector. Roughly speaking,
it is positively related to the Hamming weight of the targets as well as the number of
elements in Base. Since RSDF (also, A1 and A2), attempts to reach the nearest targets
first, the Hamming Weight of the further targets remains large as the size of the Base
increases, causing the time required for most of the runs to be longer than that of BP.

5.2 Matrices from [DL18]
We applied the algorithms on the matrices from [DL18]. We compared the results across
using RNBP, RSDF, A1 and A2 with the columns “Ours”, “Yosys”, “BP” and “Paar2”
from Table 5 of [DL18]. The results are summarised in Table 6 and Table 7 for 16× 16 and
32×32 matrices respectively. The columns “Yosys” and “Ours” can be found in the column
“Const.” as the first and second entry respectively as Duval and Leurent constructed the
matrices by choosing optimal paths in order to minimise the number of XOR required.
After they have constructed such a circuit, they implemented Yosys synthesis tool [Wol] to
further optimise it.

Computational effort. For 16 × 16 matrices, we allowed 15000 seconds for it to run.
Within the time limit, all twelve matrices have reached stability. For 32 × 32 matrices,
we allowed a total of 432000 seconds (5 days) of running time, however, not all of them
reached a stable state.

Global optimisation comparison. Comparing across various global optimisation algo-
rithms (RNBP, A1, A2, RSDF, BP and Paar2), the number of best (BLOY) circuits (in
terms of XOR count) achieved for these algorithms are 14, 5, 18, 2, 4 and 0 out of 24
matrices respectively.

Overall improvements. Despite the fact that these matrices are constructed specially for
their optimised implementation, we are still able to improve 7 out of the 24 matrices. For
the remaining 17 matrices, we have also achieved good results: 9 matrices with the same
number of XOR gates as the construction and 8 matrices with a difference of at most 3
XOR.

5.3 The AES diffusion matrix
We have also applied the various algorithms on the AES MDS matrix. The algorithms
were given a total of five days to run. As the AES InvMixColumn has a high density,
we are unable to run it directly, thus, we used a decomposition from [DR02] and ran
the algorithms on the two decomposed matrices. The results can be seen in Table 8. As
compared to the previous AES record of 97 XORs [KLSW17], algorithm A2 has produced
another even smaller circuit with 94 XORs. With a longer running time, A1 has also
achieved a circuit with 94 XOR. A verification has shown that the circuits with 94 XOR
yielded by A1 and A2 are not in the search space of RNBP.

Recent Works Two independent results [BFI19,Max19] have been published in IWSEC
2019 and ePrint after our submission to TCHES, in which the authors managed to achieve
similar results for AES MixColumn matrix. More precisely, [BFI19] uses a method to



Quan Quan Tan and Thomas Peyrin 217

Table 6: Circuit cost (XOR/Depth) of matrices of size 16× 16 from [DL18] using several
optimisation tools

Matrix Instantiation Const. BP Paar2 RSDF RNBP A1 A2
(α, β, γ) [BP10] [PR97] [RTA18] [DL18] Sec. 4.1 Sec. 4.2 Sec. 4.2

M9,3
4,5 (A4,−,−) 35/5∗^ 38/7^ 45/5^ 36/7† 37/5† 39/7† 37/7†

39/5^ 38/8 38/7 39/9 38/8

M9,3
4,5 (A−1

4 ,−,−)
36/5∗^ 40/4^ 46/4^ 38/6† 39/5† 38/5† 35/6†

39/5^ 39/9 39/7 38/6 36/6

M8,3
4,6 (A4,−,−) 35/5∗^ 38/7^ 45/5^ 37/7† 38/7† 39/7† 38/5†

35/5^ 39/8 38/8 39/10 38/6

M8,3
4,6 (A−1

4 ,−,−)
35/5∗^ 40/4^ 46/4^ 36/8† 38/7† 38/5† 35/6†

35/6^ 37/9 39/7 38/5 36/6

M8,3
4,5 (A−1

4 , A4, A
−2
4 )

36/6∗^ 40/6^ 47/4^ 40/10† 39/7† 38/7† 38/7†

36/6^ 40/17 39/7 39/11 39/9

M9,4
4,4 (A4,−,−) 39/4∗^ 41/9^ 47/5^ 41/10† 40/7† 39/6† 39/6†

40/4^ 42/14 40/10 39/9 39/9

M9,3
4,4 (A−1

4 , A4, A
−2
4 )

40/4∗^ 40/7^ 43/4^ 40/8† 39/6† 41/8† 41/7†

40/4^ 40/10 39/7 42/10 41/7

M8,4
4,4 (A4,−,−) 38/4∗^ 40/7^ 43/5^ 41/7† 39/6† 40/5† 39/5†

38/4^ 41/10 39/8 40/7 40/7

M8,4′

4,4 (A4,−,−) 38/4∗^ 43/6^ 41/4^ 38/6† 41/5† 39/6† 38/4†

38/4^ 40/6 42/6 41/7 40/6

M8,4′′

4,4 (A4,−,−) 37/4∗^ 40/5^ 43/5^ 40/7† 40/5† 40/5† 39/5†

37/4^ 41/12 40/6 40/6 39/7

M9,5
4,3 (A4,−,−) 41/3∗^ 40/4^ 43/4^ 41/5† 40/4† 41/6† 40/4†

41/3^ 43/7 40/5 41/7 40/5

M9,5
4,3 (A−1

4 ,−,−)
41/3∗^ 43/5^ 44/3^ 44/7† 41/5† 41/5† 40/4†

41/3^ 44/10 41/6 41/7 40/6

^ obtained from [DL18]
∗ obtained after applying Yosys synthesis tool [Wol]
† ALOY circuits

avoid the problem of selecting only the first candidate lexicographically in the loop in the
code given by [KLSW17]: they randomly generated two permutation matrices P and Q
which help to shuffle the rows and columns for the targeted matrix M . The experiment is
then repeated multiple times and the best result is kept. With this method, they have
obtained an AES MixColumn circuit of 95 XORs after around 4 hours of computation. In
the Random-Normal-BP algorithm in Section 4.1, we will see that we can actually achieve
the same effect by just storing all the possible base candidates and randomly output one
of them. A circuit of 95 XOR gates for AES MixColumn can be easily obtained just after
a few minutes of running the algorithm. In [Max19], Maximov found a 92 XORs circuit
for AES. Although he provided a lower XOR count for the AES diffusion matrix, we note
that no general algorithm applying to all matrices has been described in [Max19]. The
improvement comes from an interesting trick that was accomplished using hand-analysis
(by fixing and blocking certain gates) in order to later force the XOR reduction search to
a very specific subspace.



218 Improved Heuristics for Short Linear Programs

Table 7: Circuit cost (XOR/Depth) of matrices of size 32× 32 from [DL18] using several
optimisation tools

Matrix Instantiation Const. BP Paar2 RSDF RNBP A1 A2
(α, β, γ) [DL18] [BP10] [PR97] [RTA18] Sec. 4.1 Sec. 4.2 Sec. 4.2

M9,3
4,5 (A8,−,−) 67/5∗^ 74/5^ 88/4^ 74/7† 67/5† 77/5† 69/5†

75/5^ 82/12 69/6 79/9 70/6

M9,3
4,5 (A−1

8 ,−,−)
67/5∗^ 71/6^ 89/5^ 79/9† 69/5† 78/6† 68/5†

75/5^ 89/15 69/6 80/7 68/7

M8,3
4,6 (A8,−,−) 67/5∗^ 74/5^ 88/4^ 71/8† 67/5† 76/5† 69/5†

67/5^ 85/18 68/6 79/8 71/8

M8,3
4,6 (A−1

8 ,−,−)
67/5∗^ 71/6^ 89/5^ 78/7† 69/5† 78/6† 68/6†

67/5^ 85/15 69/6 80/7 68/7

M8,3
4,5 (A−1

8 , A8, A
−2
8 )

68/5∗^ 75/6^ 77/4^ 81/6† 68/5† 68/5† 68/5†

68/5^ 84/16 75/6 74/8 71/6

M9,4
4,4 (A8,−,−) 76/4∗^ 77/6^ 92/4^ 84/6† 76/4† 76/6† 76/6†

76/4^ 89/14 76/6 76/7 77/7

M9,3
4,4 (A−1

8 , A8, A
2
8)

76/4∗^ 76/6^ 83/6^ 79/7† 75/6† 76/6† 76/6†

76/4^ 85/16 75/8 78/8 76/8

M8,4
4,4 (A8,−,−) 70/4∗^ 72/5^ 74/4^ 77/8† 70/6† 70/6† 70/6†

70/4^ 90/17 70/6 70/7 70/7

M8,4′

4,4 (A8,−,−) 70/4∗^ 81/7^ 79/5^ 76/6† 76/5† 72/6† 71/6†

70/4^ 89/10 79/6 75/8 74/6

M8,4′′

4,4 (A8,−,−) 69/4∗^ 72/6^ 85/5^ 77/7† 69/4† 76/4† 70/5†

69/4^ 90/14 70/6 77/6 70/6

M9,5
4,3 (A8,−,−) 77/3∗^ 76/7^ 86/4^ 82/6† 76/4† 76/5† 76/6†

77/3^ 87/10 76/6 77/7 76/6

M9,5
4,3 (A−1

8 ,−,−)
77/3∗^ 79/5^ 86/4^ 85/8† 77/4† 77/6† 77/4†

77/3^ 91/14 77/6 77/7 77/5

^ obtained from [DL18]
∗ obtained after applying Yosys synthesis tool [Wol]
† ALOY circuits

Table 8: AES diffusion matrix circuit cost (XOR/Depth) with several algorithms. The
values in bracket are the BLOY values.

Matrix BP RSDF RNBP A1 A2
[BP10] [RTA18] Sec. 4.1 Sec. 4.2 Sec. 4.2

AES 97 102/6 95/6 95/6 94/6
MixCol [KLSW17] (103/10) (95/7) (95/9) (94/10)

AES 155 162/11 153/10 153/10 152/9
InvMixCol (155) (162/19) (153/12) (153/12) (152/12)



Quan Quan Tan and Thomas Peyrin 219

6 Conclusion and Future Works

In this work, we have presented new algorithms for global optimisation of linear circuits.
With the introduction of randomisation in the algorithms, our heuristics performed better
on average as compared to various state-of-the-art heuristics. Especially in the case of
AES, we can see an improvement of 3 XORs as compared to the previous record attained
by [KLSW17]. While the matrices we have shown in this paper are square matrices, this
can be applied to non-square matrices as well. Algorithms A1 and A2 can be implemented
efficiently to a size of 32× 32 if ρ is approximately 0.3 or less.

We have also proposed two local optimisation techniques, LocalOpt, to reduce a few
more XORs from an already built circuit and we recommend the use of LocalOpt along
with Yosys to obtain the best circuit.

Future works: Large matrices. While algorithms A1 and A2 yield better linear circuits
than algorithms BP and RNBP in most of the cases, they are also slower than them (A1
and A2 are, however, faster than RSDF). Most of the time is spent on the exhaustive
computation of the Dist vector. As a result, these heuristics are infeasible for very large
matrices with high density. It seems like A1 and A2 can go up to approximately 32× 32
with a bias of 0.3. But anything with a large bias seems to be very computationally
heavy. For further research, it would be interesting to focus on finding a good global
optimisation algorithm for larger matrices (so far only Paar’s algorithms can easily handle
large matrices). Alternatively, if the cost of computing the Dist vector can be reduced,
then A1 and A2 could also be used to evaluate larger matrices.

Local Optimisation. Local optimisation exploits the knowledge of an efficient circuit
and attempts to optimise it locally even further. Currently, LocalOpt is still in a very
rudimentary stage and with just a few rules that we have implemented, we can see a portion
of matrices being optimised further. Possible further research may actually look into other
techniques of reducing XOR count or an integration of global and local optimisation to
maximise the potential of both optimisation methods or having more techniques to reduce
the XOR/depth of circuits.

Comments on KECCAK. One may think that the above algorithms can be applied to
KECCAK’s Theta (linear) layer. However, we do not think there is any other savings
beyond the trivial ones. In the Theta layer of KECCAK, we view the structure of the
primitive as a three-dimensional cuboid as in [BDPA11]. To state briefly, each bit is
XORed with all the bits on its left column and the column to the front-right (we refer
to [BDPA11] for a detailed description). The Theta layer can also be viewed naturally
as a 1600× 1600 matrix. The trivial savings are to pre-compute the XOR sum for each
KECCAK column first. Then, in order to compute the output of each bit, we then use
two XOR operations: one to XOR the two involved columns together, and one to XOR
that value to the target state bit. We verified our intuition using Paar1 algorithm, which
yielded the same circuit count as described.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments. The
authors are supported by Temasek Laboratories, Singapore.



220 Improved Heuristics for Short Linear Programs

References
[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav

Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-latency Block Cipher for Pervasive Computing Applications
(Full version). IACR Cryptology ePrint Archive, 2012:529, 2012.

[BDPA11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Cryptographic Sponge
Functions, Submission to NIST (Round 3). http://sponge.noekeon.org/
CSF-0.1.pdf, 2011.

[BFI19] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More Results on Short-
est Linear Programs. In Nuttapong Attrapadung and Takeshi Yagi, editors,
Advances in Information and Computer Security - 14th International Workshop
on Security, IWSEC 2019, Tokyo, Japan, August 28-30, 2019, Proceedings,
volume 11689 of Lecture Notes in Computer Science, pages 109–128. Springer,
2019.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and its Low-Latency Variant MANTIS. IACR Cryp-
tology ePrint Archive, 2016:660, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BM10] Robert K. Brayton and Alan Mishchenko. {ABC:} An Academic Industrial-
Strength Verification Tool. In Tayssir Touili, Byron Cook, and Paul B. Jackson,
editors, Computer Aided Verification, 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture
Notes in Computer Science, pages 24–40. Springer, 2010.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the Shortest Linear
Straight-Line Program for Computing Linear Forms. In Edward Ochmanski
and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science
2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August
25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer Science,
pages 168–179. Springer, 2008.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic Minimization Techniques
with Applications to Cryptology. J. Cryptology, 26(2):280–312, 2013.

[BP10] Joan Boyar and René Peralta. A New Combinational Logic Minimization
Technique with Applications to Cryptology. In Paola Festa, editor, Experimental
Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards Reaching

http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf


Quan Quan Tan and Thomas Peyrin 221

the Limit of Lightweight Encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017.

[Can05] David Canright. A Very Compact S-Box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005,
7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science, pages 441–455.
Springer, 2005.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2009.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS Matrices with Lightweight Circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[GPPR12] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. IACR Cryptology ePrint Archive, 2012:600, 2012.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimizing
Implementations of Lightweight Building Blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
Linear Straight-Line Programs for MDS Matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017.

[Max19] Alexander Maximov. AES MixColumn with 92 XOR gates. IACR Cryptology
ePrint Archive, 2019:833, 2019.

[ME19] Alexander Maximov and Patrik Ekdahl. New Circuit Minimization Techniques
for Smaller and Faster AES SBoxes. Cryptology ePrint Archive, Report
2019/802, 2019. https://eprint.iacr.org/2019/802.

[PR97] Christof Paar and Martin Rosner. Comparison of arithmetic architectures for
Reed-Solomon decoders in reconfigurable hardware. In 5th IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM ’97), 16-18 April
1997, Napa Valley, CA, USA, pages 219–225. IEEE Computer Society, 1997.

[RTA18] Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy. Smashing
the Implementation Records of AES S-box. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):298–336, 2018.

[Sto16] Ko Stoffelen. Optimizing S-Box Implementations for Several Criteria Using
SAT Solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 140–160. Springer, 2016.

https://eprint.iacr.org/2019/802


222 Improved Heuristics for Short Linear Programs

[VSP18] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper
bounds for the expected circuit complexity of dense systems of linear equations
over GF(2). Inf. Process. Lett., 137:1–5, 2018.

[Wol] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/


Quan Quan Tan and Thomas Peyrin 223

A Algorithmic descriptions

A.1 Randomised-Normal-BP (RNBP)

Algorithm 1: RNBP Algorithm
1 Input: M , a (n×m) binary matrix
2 Output: Program that evaluates M
3 Initialisation
4 Program← {};
5 PC ← 0; // Program counter
6 Targets[i]←M.GET_ROW (i);
7 Base← {x0, x2, ..., xn−1};
8 Dist[i]← HW (Targets[i])− 1; // Initial distance equals Hamming Weight of the row minus one
9 Main Loop

10 while Dist.GET_SUM() > 0 do
11 B ← Base.GET_LEN();
12 if ∃ a s.t. Dist[a] = 1 then
13 // Pre-emptive gate found
14 for i ∈ {0...B − 1} do
15 for j ∈ {i+ 1...B − 1} do
16 if Target[a] = xi ⊕ xj then
17 Program[PC]← ya = xi ⊕ xj ;
18 Base.ADD(ya);
19 end
20 end
21 end
22 else
23 bestDist←∞;
24 bestNorm← −∞;
25 bestBases← {};
26 for i ∈ {0...B − 1} do
27 for j ∈ {i+ 1...B − 1} do
28 tryBase← xi ⊕ xj ;
29 Dist.UPDATE({tryBase} ∪Base);
30 tryDist← Dist.GET_SUM();
31 tryNorm← ‖Dist‖;
32 if tryDist < bestDist or (tryDist = bestDist and tryNorm > bestNorm) then
33 bestDist← tryDist;
34 bestNorm← tryNorm;
35 bestBases.ERASE_ALL();
36 bestBases.ADD({xi, xj});
37 else if tryDist = bestDist and tryNorm = bestNorm then
38 bestBases.ADD({xi, xj});
39 end
40 end
41 end
42 best_elem← bestBases.RAND_ELEM();
43 Program[PC]← tP C = best_elem[0]⊕ best_elem[1];
44 Base.ADD(tP C);
45 end
46 PC ← PC + 1;
47 Dist.UPDATE(Base);
48 end
49 return Program;



224 Improved Heuristics for Short Linear Programs

A.2 A1 heuristic

Algorithm 2: A1 Algorithm
1 Input: M , a (n×m) binary matrix
2 Output: Program that evaluates M
3 Initialisation
4 Program← {};
5 PC ← 0; // Program counter
6 Targets[i]←M.GET_ROW (i);
7 Base← {x0, x2, ..., xn−1};
8 Dist[i]← HW (Targets[i])− 1; // Initial distance equals Hamming Weight of the row minus one
9 Main Loop

10 while Dist.GET_SUM() > 0 do
11 B ← Base.GET_LEN();
12 if ∃ a s.t. Dist[a] = 1 then
13 // Pre-emptive gate found
14 for i ∈ {0...B − 1} do
15 for j ∈ {i+ 1...B − 1} do
16 if Target[a] = xi ⊕ xj then
17 Program[PC]← ya = xi ⊕ xj ;
18 Base.ADD(ya);
19 end
20 end
21 end
22 else
23 bestDist←∞;
24 bestNorm← −∞;
25 bestBases← {};
26 for i ∈ {0...B − 1} do
27 for j ∈ {i+ 1...B − 1} do
28 near_tar ← {c : c = argmin{ Dist[k] ∀ k ∈ {0...m− 1}}}; // set of indices of the

nearest targets
29 tryBase← xi ⊕ xj ;
30 OldDist← Dist;
31 Dist.UPDATE({tryBase} ∪Base);
32 // filtering
33 if OldDist[c] = Dist[c] for all c ∈ near_tar then
34 continue; // reject
35 end
36 tryDist← Dist.GET_SUM();
37 tryNorm← ‖Dist‖;
38 if tryDist < bestDist or (tryDist = bestDist and tryNorm > bestNorm) then
39 // Selection with tie breaker
40 bestDist← tryDist;
41 bestNorm← tryNorm;
42 bestBases.ERASE_ALL();
43 bestBases.ADD({xi, xj});
44 else if tryDist = bestDist and tryNorm = bestNorm then
45 bestBases.ADD({xi, xj});
46 end
47 end
48 end
49 best_elem← bestBases.RAND_ELEM(); // randomisation
50 Program[PC]← tP C = best_elem[0]⊕ best_elem[1];
51 Base.ADD(tP C);
52 end
53 PC ← PC + 1;
54 Dist.UPDATE(Base);
55 end
56 return Program;



Quan Quan Tan and Thomas Peyrin 225

A.3 A2 heuristic

Algorithm 3: A2 Algorithm
1 Input: M , a (n×m) binary matrix
2 Output: Program that evaluates M
3 Initialisation
4 Program← {};
5 PC ← 0; // Program counter
6 Targets[i]←M.GET_ROW (i);
7 Base← {x0, x2, ..., xn−1};
8 Dist[i]← HW (Targets[i])− 1; // Initial distance equals Hamming Weight of the row minus one
9 Main Loop

10 while Dist.GET_SUM() > 0 do
11 B ← Base.GET_LEN();
12 if ∃ a s.t. Dist[a] = 1 then
13 // Pre-emptive gate found
14 for i ∈ {0...B − 1} do
15 for j ∈ {i+ 1...B − 1} do
16 if Target[a] = xi ⊕ xj then
17 Program[PC]← ya = xi ⊕ xj ;
18 Base.ADD(ya);
19 end
20 end
21 end
22 else
23 bestDist←∞;
24 bestBases← {};
25 for i ∈ {0...B − 1} do
26 for j ∈ {i+ 1...B − 1} do
27 near_tar ← {c : c = argmin{ Dist[k] ∀ k ∈ {0...m− 1}}}; // set of indices of the

nearest targets
28 tryBase← xi ⊕ xj ;
29 OldDist← Dist;
30 Dist.UPDATE({tryBase} ∪Base);
31 // filtering
32 if OldDist[c] = Dist[c] for all c ∈ near_tar then
33 continue; // reject
34 end
35 tryDist← Dist.GET_SUM();
36 if tryDist < bestDist then
37 // Selection with tie breaker
38 bestDist← tryDist;
39 bestBases.ERASE_ALL();
40 bestBases.ADD({xi, xj});
41 else if tryDist = bestDist then
42 bestBases.ADD({xi, xj});
43 end
44 end
45 end
46 best_elem← bestBases.RAND_ELEM(); // randomisation
47 Program[PC]← tP C = best_elem[0]⊕ best_elem[1];
48 Base.ADD(tP C);
49 end
50 PC ← PC + 1;
51 Dist.UPDATE(Base);
52 end
53 return Program;



226 Improved Heuristics for Short Linear Programs

B Time allowed for each category in Benchmark-subset

Table 9: Time allowed for different sizes and densities for RNBP, A1, A2 and RSDF

Size Density Time(s)

15

0.1 20
0.2 1000
0.3 2000
0.4 2000
0.5 2000
0.6 2000
0.7 3000
0.8 2000
0.9 500

Size Density Time(s)

16

0.1 20
0.2 1500
0.3 3000
0.4 8000
0.5 10000
0.6 8000
0.7 4000
0.8 3000
0.9 1500

Size Density Time(s)

17

0.1 20
0.2 1500
0.3 6000
0.4 25000
0.5 40000
0.6 45000
0.7 14000
0.8 6000
0.9 1000

Size Density Time(s)

18

0.1 20
0.2 5000
0.3 5000
0.4 90000
0.5 40000
0.6 100000
0.7 100000
0.8 25000
0.9 1500

Size Density Time(s)

19

0.1 20
0.2 7000
0.3 30000
0.4 110000
0.5 180000
0.6 100000
0.7 25000
0.8 30000
0.9 2000

Size Density Time(s)

20

0.1 20
0.2 60000
0.3 50000
0.4 150000
0.5 190000
0.6 240000
0.7 60000
0.8 60000
0.9 2500

Note: As RPaar1 is extremely efficient, we allowed each matrix to have a total of 10,000
runs.



Quan Quan Tan and Thomas Peyrin 227

C Convergent rate of 20 × 20 matrices

Figure 6: Convergent rates of 20× 20 matrices with ρ values from 0.2 to 0.9

0 5000 10000 15000 20000 25000 30000
Time (in seconds)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

XO
R 

co
un

t

BPrand
A1
A2
SDF

(a) ρ = 0.2

0 5000 10000 15000 20000 25000
Time (in seconds)

50

52

54

56

58

60

62

64

66

XO
R 

co
un

t

BPrand
A1
A2
SDF

(b) ρ = 0.3

0 10000 20000 30000 40000 50000 60000 70000
Time (in seconds)

60

62

64

66

68

70

72

74

76

78

XO
R 

co
un

t

BPrand
A1
A2
SDF

(c) ρ = 0.4

0 20000 40000 60000 80000
Time (in seconds)

66

68

70

72

74

76

78

80

XO
R 

co
un

t

BPrand
A1
A2
SDF

(d) ρ = 0.5



228 Improved Heuristics for Short Linear Programs

0 20000 40000 60000 80000 100000 120000
Time (in seconds)

68

70

72

74

76

78

80

XO
R 

co
un

t

BPrand
A1
A2
SDF

(e) ρ = 0.6

0 5000 10000 15000 20000 25000 30000
Time (in seconds)

64

66

68

70

72

74

76

78

80

XO
R 

co
un

t

BPrand
A1
A2
SDF

(f) ρ = 0.7

0 5000 10000 15000 20000 25000 30000
Time (in seconds)

52

54

56

58

60

62

64

66

68

XO
R 

co
un

t

BPrand
A1
A2
SDF

(g) ρ = 0.8

0 200 400 600 800 1000 1200
Time (in seconds)

40

42

44

46

48

50

52

XO
R 

co
un

t

BPrand
A1
A2
SDF

(h) ρ = 0.9



Quan Quan Tan and Thomas Peyrin 229

D Average time taken to stability

Figure 7: Average time taken to stability of 15× 15 to 20× 20 matrices. For every matrix,
the time taken until the best circuit is formed is recorded. The average, standard deviation,
minimum and maximum time (of ten matrices in each category) are shown below

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

0

500

1000

1500

2000

tim
e

RNBP
A1
A2
RSDF

(a) 15 × 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

−1000

0

1000

2000

3000

4000

5000

tim
e

RNBP
A1
A2
RSDF

(b) 16 × 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

0

10000

20000

30000

tim
e

RNBP
A1
A2
RSDF

(c) 17 × 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

0

20000

40000

60000

80000

tim
e

RNBP
A1
A2
RSDF

(d) 18 × 18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

0

20000

40000

60000

80000

tim
e

RNBP
A1
A2
RSDF

(e) 19 × 19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density of matrices

−25000

0

25000

50000

75000

100000

125000

150000

175000

tim
e

RNBP
A1
A2
RSDF

(f) 20 × 20



230 Improved Heuristics for Short Linear Programs

E AES circuit with 94 XORs
To avoid confusion, we use the same notations as in [BP10] to describe the circuit where
{x0, x1, ..., x31} refers to the inputs, {ti : i ∈ Z} refers to the intermediate steps and
{y0, y1, ..., y31} refers to the targets.

t0 = x8 + x16
t1 = x7 + x31
t2 = x23 + t0

y15 = t1 + t2
t4 = x16 + x24
t5 = x15 + t4

y23 = t1 + t5
t7 = x1 + x25
t8 = x0 + t0

y24 = t7 + t8
t10 = x10 + x18
t11 = x17 + t10
y9 = t7 + t11
t13 = x3 + x27
t14 = x2 + t13
y26 = t10 + t14
t16 = x1 + x9
t17 = x8 + t16
y0 = t4 + t17
t19 = x18 + x26
t20 = x25 + t19
y17 = t16 + t20
t22 = x11 + x19
t23 = x2 + t19
y10 = t22 + t23
t25 = x11 + t10
t26 = x3 + t25
y2 = x26 + t26
t28 = x27 + y10
y18 = t25 + t28
t30 = x26 + t16
t31 = y9 + t23

y1 = t30 + t31
t33 = x2 + t30
y25 = x17 + t33
t35 = x17 + t4
t36 = x1 + t35
y16 = y24 + t36
t38 = x0 + t16
y8 = t36 + t38
t40 = x0 + x8
t41 = x31 + t40
t42 = x15 + t41
y7 = x23 + t42
t44 = y15 + t41
y31 = t5 + t44
t46 = x14 + x22
t47 = x21 + x29
t48 = x5 + t46
y13 = t47 + t48
t50 = t1 + t46
t51 = x30 + t42
y6 = t50 + t51
t53 = x6 + x14
t54 = t47 + t53
y5 = x13 + t54
t56 = y6 + t53
y14 = t44 + t56
t58 = x0 + x24
t59 = x6 + t50
y30 = t58 + t59
t61 = x22 + x30
t62 = t44 + y30

y22 = t61 + t62
t64 = x5 + x29
t65 = t61 + t64
y21 = x13 + t65
t67 = t46 + t65
y29 = y5 + t67
t69 = x4 + x12
t70 = x28 + t4
t71 = t47 + t69
y20 = t70 + t71
t73 = x20 + t13
t74 = x11 + t70
y19 = t73 + t74
t76 = t58 + t64
t77 = t69 + t76
y28 = x20 + t77
t79 = x12 + t0
t80 = x19 + t79
y11 = t73 + t80
t82 = t40 + t69
t83 = t28 + t82
y3 = t23 + t83
t85 = x3 + y19
t86 = y11 + t85
y27 = t82 + t86
t88 = y28 + t79
t89 = x13 + t88
t90 = x21 + t89
y4 = y20 + t90
t92 = x28 + t90
y12 = t76 + t92


	Introduction
	Preliminaries
	State-of-the-art Heuristics
	Paar's Algorithm DBLP:conf/fccm/PaarR97
	BP algorithm DBLP:conf/wea/BoyarP10
	BP algorithm for dense matrices DBLP:journals/ipl/ViscontiSP18
	Masoleh, Taha and Ashmawy's algorithms DBLP:journals/tches/Reyhani-Masoleh18

	New Heuristics
	Random-Normal-BP (RNBP)
	A1 & A2 algorithms
	Local Optimisation

	Results
	Benchmark-subset
	Matrices from DBLP:journals/tosc/DuvalL18
	The AES diffusion matrix

	Conclusion and Future Works
	Algorithmic descriptions
	Randomised-Normal-BP (RNBP)
	A1 heuristic
	A2 heuristic

	Time allowed for each category in Benchmark-subset
	Convergent rate of 2020 matrices
	Average time taken to stability
	AES circuit with 94 XORs

