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Abstract. Logic locking has recently been proposed as a solution for protecting gate-
level semiconductor intellectual property (IP). However, numerous attacks have been
mounted on this technique, which either compromise the locking key or restore the
original circuit functionality. SAT attacks leverage golden IC information to rule out
all incorrect key classes, while bypass and removal attacks exploit the limited output
corruptibility and/or structural traces of SAT-resistant locking schemes. In this
paper, we propose a new lightweight locking technique: CAS-Lock (cascaded locking)
which nullifies both SAT and bypass attacks, while simultaneously maintaining non-
trivial output corruptibility. This property of CAS-Lock is in stark contrast to the
well-accepted notion that there is an inherent trade-off between output corruptibility
and SAT resistance. We theoretically and experimentally validate the SAT resistance
of CAS-Lock, and show that it reduces the attack to brute-force, regardless of its
construction. Further, we evaluate its resistance to recently proposed approximate
SAT attacks (i.e., AppSAT). We also propose a modified version of CAS-Lock
(mirrored CAS-Lock or M-CAS) to protect against removal attacks. M-CAS allows
a trade-off evaluation between removal attack and SAT attack resiliency, while
incurring minimal area overhead. We also show how M-CAS parameters such as the
implemented Boolean function and selected key can be tuned by the designer so that
a desired level of protection against all known attacks can be achieved.
Keywords: Logic locking; SAT attack

1 Introduction
Globalization of the semiconductor industry has led to the outsourcing of integrated circuit
(IC) fabrication to untrusted, off-shore foundries. As a result, semiconductor companies
as well as government agencies are now facing threats of IP piracy, counterfeiting, and
overproduction [TGF15]. Therefore, new techniques are required for combating these
issues of untrusted foundries. Towards this end, logic locking has emerged as a promising
solution. A majority of logic locking schemes insert extra key-gates into the netlist of the
circuit design. The locked circuit works correctly only when the correct key is provided.
However, recent work has shown that most of these locking techniques are vulnerable to
Boolean satisfiability (SAT) based attacks [SRM15]. In SAT attack, a set of distinguishing
input patterns (DIPs) are collected from the locked circuit to rule out incorrect keys that do
not satisfy the DIPs and the corresponding known-good responses from an unlocked IC. In
order to mitigate SAT attacks, several SAT-resistant countermeasures have been proposed
[YMRS16, XS16], which aim to limit the ability of the attack to rule out wrong keys,
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given the golden observations. However, they have been proven to be vulnerable to bypass
attacks [XSTF17], which exploit the low corruptibility of these locking schemes. In the
bypass attack, functionality of the locked circuit can be fully restored with a linear-sized
bypass circuitry. This avoids the difficulty of recovering the correct key and allows the
circuit to operate in a functionally correct manner even in the presence of an incorrect key.

To mitigate the threats from bypass attack and at the same time, ensure robustness
against SAT attack, we propose a new logic locking technique: CAS-Lock (Cascaded
Locking). In CAS-Lock, a logic block comprising of a cascade of key controlled AND/OR
gates is stitched into the original circuit. The block exponentially increases the complexity
of SAT attacks while simultaneously allowing the locked design to maintain non-trivial
output corruptibility for defeating bypass attacks. Note that this property contradicts
the results from recent literature, which show an unavoidable trade-off between output
corruptibility and SAT resistance. Specifically, we show that the CAS-Lock scheme is the
only locking technique proposed so far that can ensure SAT resistance with non-trivial
output corruptibility, and can remain secure under a black-box attack model, where the
attacker aims to recover the key using input-output observations. Our main contributions
in this paper can be summarized as follows:

• We adopt the merits of two SAT-resistant techniques: SARLock [YMRS16] and
Anti-SAT [XS16], and propose a more secure countermeasure – CAS-Lock – which is
simultaneously resistant against SAT and bypass attacks.

• We provide a proof to show that breaking CAS-Lock with SAT attack requires, at a
minimum, brute force through the entire input space of the circuit. We also show
that its non-trivial and tunable output corruptibility leads to high overheads for
bypass attack and incomplete bypass pattern extraction, as well as resistance against
approximate SAT (AppSAT) attacks. The newly proposed countermeasure is also
lightweight, as its overhead is only dependent on the number of inputs used.

• We also propose an extension to CAS-Lock (termed Mirrored-CAS or ‘M-CAS’)
to protect against removal attacks from white-box adversaries such as untrusted
foundries. We show that some trade-offs exist in this regard: strong resiliency to
removal (through increased output corruptibility) leads to reduced SAT resistance
(and vice-versa). We compare M-CAS to a recently proposed stripped functionality
logic locking (SFLL) technique [YSN+17] and show that it achieves similar SAT and
bypass resistance at reduced area overheads.

The rest of the paper is organized as follows. Section 2 reviews the background on logic
locking, attacks on logic locking, and several recent countermeasures. Section 3 introduces
CAS-Lock and its security properties. It also provides a series of proofs to show the SAT
attack resiliency against CAS-Lock. Section 4 describes a modified version of CAS-Lock
(M-CAS) that is required for preventing removal attacks. Section 5 provides a comparison
of CAS-Lock and M-CAS with other pre-existing logic locking techniques. Finally, Section
6 concludes the paper.

2 Background and Related Work
Logic locking (also referred to as logic encryption) locks a logic circuit by adding key-
controlled gates, and correct functionality of the circuit is ensured only when the correct key
is applied. An incorrect key leads to corrupted outputs, thereby preventing unauthorized
parties from making use of the locked circuit. In the case of an untrusted foundry, the
locking prevents them from engaging in overproduction or IC piracy. Note that logic
locking usually assumes that there is one master key per design, and the security of the
design is dependent on this single key. This is because there is only one mask set per
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design, from which many chips can be produced. However, there may be unique per-chip
keys related to public key protocols, that are used in conjunction with the master key to
unlock the design [AK07]. In this paper, we are mainly concerned with the master key
that is used to implement the gate-level locking mechanism.

In recent years, several techniques have been proposed to perform logic locking, based
on the position and impact of the inserted key gate logic; this includes techniques such as
random insertion [RKM10] and fault analysis-based key gate insertion [RZZ+15]. Unfortu-
nately, all these approaches have been shown to be vulnerable to SAT attacks [SRM15].

2.1 SAT Attacks on Logic Locking

In SAT attacks [SRM15], the threat model is as follows: an attacker is assumed to have
access to: 1) A locked netlist: This can be either obtained from a malicious foundry
or through reverse-engineering a chip from the open market [TJ09]. The netlist can be
simulated to derive the outputs for given inputs. 2) Unlocked IC : An unlocked ‘golden’
IC can be purchased from the open market or obtained through a malicious insider in
the design house. Such a chip can be used by the attacker to check whether the output
for a given key from the locked netlist is correct, i.e., he/she can perform chip-level
functional/structural tests to obtain golden responses. The goal of the attacker is to find
the correct key by inquiring the least number of input patterns from the unlocked IC.
Note that only combinational circuits (or sequential circuits with scan capabilities) are
considered in such attacks [SRM15].

Using the same threat model, test-based attacks have been developed, which use
automatic test pattern generation (ATPG) techniques [BA04] to generate a set of inputs
that can propagate the correct key to observable outputs in the circuit. The problem
of finding the correct key is modeled after the problem of generating patterns to detect
stuck-at faults in a circuit [RPSK12]. In SAT-based attacks, such propagations are not
required. Instead, the attacker constructs a ‘miter circuit’ with two copies of the locked
netlist, which are loaded with two different wrong keys, respectively. The miter helps in
finding a set of distinguishing input patterns (DIPs) for which the two circuits produce
different outputs; since the outputs are different, it is assured that at least one of the keys
chosen for the miter are wrong. Since the unlocked IC is available to the attacker, she can
then apply this DIP to the unlocked IC and decide which of the keys is incorrect. Further,
the known good input-output pair is also added as an additional constraint to the key
formulation. The algorithm then iteratively uses these DIPs (and the added constraints)
to guide a SAT solver to a correct key value, by ruling out all incorrect key classes. The
algorithm terminates when no more DIPs can be found and as a result, the remaining
key(s) is guaranteed to be the functionally correct key(s). The results in [SRM15] show
that the algorithm converges in a short time, when applied on a variety of logic locked
circuits.

2.2 SAT-Resistant Logic Locking

Various SAT-resistant techniques have been recently developed, most notably SARlock
[YMRS16] and Anti-SAT [XS16], to counter SAT attacks. Both of these techniques attach
additional logic to the circuit in order to reduce the ability of the DIPs to rule out wrong
keys. In other words, the attack is only able to rule out a negligible amount of the entire
key space in a single attack iteration, forcing it to take an exponential time to find the
correct key.
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2.2.1 SARLock

SARLock ensures that at most one incorrect key is ruled out by each DIP [YMRS16]. This
is realized with a comparator circuit that inverts the circuit output for only one input
pattern for a wrong key. Thus, the SAT attack algorithm is forced to observe at least
2N DIPs (where N is the number of inputs used for the SARLock logic) to rule out all
incorrect key classes. While SARLock renders SAT attack ineffective, it cannot protect
against attacks exploiting gate-level structural traces. In removal attack, an attacker can
analyze the netlist and then identify and remove the SARLock gates from the design.
The removal attack is feasiblee since the SARLock logic has an extremely low signal
probability on its output, which makes it distinct from other gates in the netlist. To
counter such vulnerabilities, the authors in [YMRS16] proposed a hybrid logic-locking
mechanism: SARLock + strong logic locking (SLL)[RPSK12]. This hybrid technique
combines SARLock with regular logic locking (i.e., insertion of XOR/XNOR/MUX key-
gates into the netlist), and also combines the two keys (SARLock key and SLL key) using
permutations.

2.2.2 Anti-SAT

Anti-SAT is another locking technique proposed to counter SAT attacks [XS16, XS18].
The Anti-SAT block is illustrated in Figure 1, which is composed of the logic blocks
B1 = gl1(X,Kl1) and B2 = gl2(X,Kl2). The blocks share a common input X but are
locked by two different keys Kl1 and Kl2. Circuit integration is done by stitching the
Anti-SAT output Y to a high observability net in the design (e.g., the primary output).
The two blocks gl1 and gl2 are designed to be complementary in nature. They can also
be denoted by g and ḡ. The output signal Y is generated by the logical AND of B1 and
B2. Similar to SARLock, a wrong key applied on Anti-SAT will enable Y = 1 for some
input pattern(s), and flip the correct outputs. Assuming the Boolean function g has N
inputs, the number of input patterns that make g evaluate to “1” is denoted as p. The
authors in [XS16] prove that the ability of the SAT attack to obtain the correct Anti-SAT
key is greatly limited if p is sufficiently close to 1 (or 2N − 1); this choice of Anti-SAT
logic, along with choosing the primary inputs as inputs to the Anti-SAT block, is termed
as ‘secure integration’. An Anti-SAT block satisfying p = 1 forces the conventional SAT
attack to enumerate the largest number of possible input patterns to reveal the correct
ones. They also note that natural candidates for g and ḡ that satisfy p = 1 can be AND
and NAND, respectively. ‘Random integration’ is also proposed, where random internal
signals of the circuit (instead of the primary inputs) are used as inputs to the Anti-SAT
block. The usage of ‘Random integration’ offers increased output corruptibility, albeit at
reduced SAT resistance, as not all input pattern combinations are possible at the input of
the Anti-SAT block.

Locked
CircuitIN

X
KI1

KI2

OUT

gI1(X, KI1)

gI2(X, KI2)

Y

(a)

X1

YXn

  
K1

Kn

Kn+1

 K2*n

(b)

Figure 1: (a) Integration of Anti-SAT into a circuit. (b) Anti-SAT implemented with
AND and NAND gates.
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2.2.3 Removal Attack on Anti-SAT

Although the Anti-SAT block can be integrated in the whole netlist, it has been shown
that an attacker can still identify the flip signal Y generated by the Anti-SAT block. This
is accomplished by analyzing the signal probability skew (SPS) of the g and ḡ blocks in the
circuit [YMSR17b]. In an SPS-based attack, the attacker computes the static probabilities
(P ) and skew (s = P − 0.5) of all the gates in the design. Due to the complementary
construction between g and ḡ, the Y signal in the Anti-SAT block demonstrates the highest
absolute difference in signal skew (ADS), i.e., ADS(Y ) = |s(g)− s(ḡ)|, of all the gates in
the design. As a result, the attacker could identify the AND gate with the Y signal and
remove all the gates in the transitive-fanin cone of this net. This would effectively remove
the entire Anti-SAT logic from the design. Additionally, the attacker could also set the
flip signal of the Anti-SAT block to 0 and then apply the conventional SAT attack if there
are additional key gates (e.g., XOR/XNOR) in the design.

2.2.4 AppSAT

A modified version of the original SAT attack (‘AppSAT’) that approximately de-obfuscates
a locked circuit was proposed in [SLM+17]. The motivation behind AppSAT is that hybrid
obfuscation schemes (e.g., SARLock + SLL) cause the original SAT attack algorithm to
get stuck in resolving the point function 1 (e.g., AntiSAT/SARLock). This leads to an
exponential number of iterations for the attack to rule out all incorrect keys. AppSAT, on
the other hand, forces the original SAT algorithm to terminate early, when the error rate
(i.e., number of patterns that are incorrect among a sampling of input-output patterns,
calculated periodically between iterations) settles below a given threshold. Further, multiple
distinguishing input patterns and their correct outputs are added as constraints in a single
iteration. Therefore, given a sufficient number of iterations/DIPs, AppSAT is able to
resolve the correct XOR/XNOR keys while not being impeded by the point function.
Therefore, the error rate of the key resolved by AppSAT is claimed to be approximately
2−n.

2.2.5 Bypass Attack

Bypass attack was proposed to exploit the low corruptibility of SAT resistant logic locking
schemes such as SAR-Lock and Anti-SAT [XSTF17]. In this technique, a miter is formed
between two copies of the circuit locked with two different wrong keys, in the same way
as SAT attacks. After this, the set of input patterns whose outputs disagree with each
other (i.e., distinguishing input pattern) are collected. These patterns are used to create a
bypass circuitry, which is then stitched back into the locked circuit, as shown in Figure 2.
As these limited set of input patterns are the only ones on which the circuit is corrupted,
the bypass circuitry corrects these errors on the original circuit and restores the circuit’s
functionality. The effectiveness of bypass attack is mainly dependent on the ability of the
miter circuit to find the DIPs, as well as the corruptibility of the SAT resistant scheme.
Lower corruptibility implies smaller bypass attack overhead, whereas high corruptibility
forces the attacker to create a large bypass circuit, which might not be feasible. For
example, there exists only one DIP for every wrong key in ‘secure integration’ Anti-SAT,
leading to a bypass circuit that only has to correct for one wrong input pattern. On the
other hand, ‘random integration’ Anti-SAT ensures a large number of DIPs per wrong key
but renders drastically reduced SAT resistance.

1A point function is a function which evaluates to 1 at a particular input, and 0 elsewhere
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Figure 2: (a) shows that for a locked netlist, a bypass circuit can be inserted to detect the
DIP for the wrong key Ki. (b) shows an example truth table for finding the two DIPs
with two wrong keys Ki and Kj for SARLock and Anti-SAT (Secure Integration).

2.2.6 Stripped Functionality Logic Locking (SFLL)

Stripped functionality logic locking (SFLL) is an approach that has been proposed to
combat SAT, bypass, and removal attacks [YSN+17]. In this approach, select logic cones of
the original design are modified, such that they are corrupted on a pre-defined set of input
patterns. A logic block is then stitched into the design (in a fashion similar to Anti-SAT or
SARLock), which corrects the errors in the original design once the correct key is provided.
The assumption is that even if the logic block that provides SAT resistance is removed,
the design is still non-functional. This is because the block is also required to correct
the injected errors in the design. A suggested choice for the logic block is a hamming
distance(HD)-based comparator, which computes the HD between the input and the key
and corrupts/corrects the circuit output if the HD is equal to a publicly known parameter h.
An overhead improvement to SFLL, that uses fault injection and failing pattern detection to
modify the original circuit, is proposed in [SNYS18]. A functional attack on SFLL (‘FALL’)
has been recently proposed in [SS18], where the logic that corrupts the original design
(which is also a HD comparator) is identified. After identification, the hard-coded key value
in the netlist, which drives the comparator and is supposed to be hidden after re-synthesis,
is extracted. The key is decoded by specifically exploiting the logical properties of the HD
comparator block, such as non-overlapping errors between two input pairs. Results showed
that as much as 81% of SFLL locked combinational benchmark circuits could be decoded
using FALL attack.

2.3 Other Countermeasures and Attacks
Yasin et al. have proposed to use one-way functions (such as AES) for combating SAT
attacks [YRSK16]. However, as the cipher and the original circuit are functionally and
structurally independent, it becomes trivial for the attacker to identify and circumvent the
AES block. To prevent similar vulnerabilities, Xie et al. proposed structural obfuscation
techniques to secure the Anti-SAT block against removal [XS16]. This is done by adding
MUX/XOR key gates into the design, so that the original circuit and the Anti-SAT block
are entangled with each other and structural traces are removed. Some approaches have
also been proposed to restrict or prevent scan access to a circuit, so that SAT attacks can be
rendered infeasible in the first place [KCK18]. However, these approaches follow a weaker
security notion i.e., they consider a much weaker adversary who cannot access the scan chain.
Further, there is no formal treatment of the security of such approaches. Logic locking
based on re-use of DFT test points has also been proposed [CMM+18]. Unfortunately, no
concrete security evaluation (in terms of SAT and/or structural attacks) has been provided
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for such approaches. The work in [KAHS19] proposes a locking mechanism based on the
insertion of routing blocks that are inherently hard for SAT solvers, similar to [YRSK16].
However, the technique makes use of lookup tables (LUTs), which are not compatible
with ASIC designs and are high in overhead. All locking approaches proposed so far also
assume the secrecy of the key, and do not take into account attacks such as invasive/direct
probing of the key (e.g., as they are being loaded from memory, or directly from fuses).
Such attacks require their own set of countermeasures, and are beyond the scope of this
paper.

3 CAS-Lock
3.1 Requirements for Attack-Resilient Logic Locking
Based on the numerous attacks discussed above, it can be concluded that any single
countermeasure against a certain attack is not secure enough. Therefore, to comprehensively
protect the locked circuit, all the aforementioned attacks need to be considered in unison
to formulate a new secure logic locking scheme.

In [XS16], Xie et al. thoroughly evaluated the security of the Anti-SAT block when
changing the p value (output-one count) of the g/ḡ function from 1 to 2N , where N is the
number of inputs used in the Anti-SAT block. It was found that by changing more AND
gates of the g/ḡ function in the AND-tree structure to OR gates (or conversely, changing
more of the OR gates in the OR-tree structure to AND gates) decreased the resiliency to
SAT attacks. However, we’ve found that for certain structures of the AND/NAND tree,
it is still possible to maximize SAT attack resistance (i.e., reduce it to brute force) even
when p 6= 1 or p 6= 2N − 1.

Before discussing these structures, we outline some requirements for an ideal Anti-SAT
block.

(1) Lightweight: The overhead (i.e., the number of gates in Anti-SAT) should be a
linear function of the number of circuit inputs [XS16]. Otherwise, if the overhead
increases exponentially with the number of inputs used or is large, it would not be a
feasible solution for industry to adopt.

(2) Strong resilience against bypass attack: There are two scenarios that can limit
the successful application of bypass attack: (a) The hardware overhead of the bypass
circuitry is prohibitively high; or (b) The number of output errors across all possible
input patterns for a wrong key is random, undetectable and hard to calculate as N
scales. For example, the baseline Anti-SAT (with p = 1) was always incorrect on
only one unique input pattern for a given wrong key, which made it easily defeated
by bypass attack [XSTF17].

(3) Strong resilience against SAT-based attacks: The attacker should be forced to
iterate through a very large number of input patterns to discover the correct key(s)
(i.e., near brute force2).

(4) Resistance to removal attacks: It should be difficult for the attacker to use
structural information to isolate and remove the Anti-SAT block from the locked
netlist (e.g., by using the signal probability skew attack proposed in [YMSR17b]).

As was shown in [XSTF17], there exists a trade-off between SAT and bypass attack
resistance. This is because a countermeasure is most robust against SAT attack if the
number of wrong keys that can be ruled out by each distinguishing input pattern is

2If the no. of inputs used is N , the number of input-output observations needed to prune all wrong
keys is 2N .
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minimized. Conversely, such low corruptibility facilitates bypass attack. To mitigate both
these attacks with one single countermeasure, we propose a more general constraint and
rewrite requirements (2) and (3) as: For any input pattern Xi, there exists at least
one wrong key WKi that can only be ruled out by this input pattern, and the
number of corrupted outputs for a given wrong key is neither constant nor
unique across all possible keys. The first half of the new constraint implies that there
should exist unique wrong key(s) for any input pattern. Therefore, to rule out all possible
wrong keys, the attacker is forced to iterate through all possible input patterns. The
second half of the constraint relates to bypass attack difficulty. If the circuit is incorrect
on a random (and large) number of input patterns for any given wrong key, the bypass
overhead can be unpredictable (and large). Further, if the output errors are not unique
across different wrong keys, it becomes hard to detect and correct all of them.

3.2 CAS-Lock Analysis
To fulfill these requirements, we propose a new countermeasure called CAS-Lock, which is
shown in Figure 3. It can be seen that CAS-Lock adopts a structure similar to Anti-SAT,
where the outputs of two complementary Boolean functions gcas and ḡcas are ANDed
together to produce the output (Y ). The difference lies in the structure of the logic gates
implementing g and ḡ, where instead of a tree structure, we adopt a daisy-chained or
cascaded structure for the AND/OR gates.

gcas

Y

തgcas

𝐼𝑁0 ⊕𝐾0

𝐼𝑁𝑛−1 ⊕𝐾𝑛−1

𝐼𝑁0 ⊕𝐾𝑛

𝐼𝑁𝑛−1 ⊕𝐾2𝑛−1

Figure 3: One possible instantiation of CAS-Lock (Note that g and ḡ are still symmetric
and complementary.)

It can be noted that for input length N , the gate count of CAS-Lock is the same as
that of Anti-SAT i.e., ≈ 2 · (N − 1). This satisfies Requirement (1) listed above (i.e.,
the overhead increases linearly with input size). Requirement (2), which relates to
bypass attack resistance, is ensured as the number of unique wrong keys is controllable
by changing the location and number of OR/AND gates in gcas and ḡcas. Further, the
number and location of incorrect input/output patterns for a given wrong key can only be
resolved by brute force (i.e., by evaluating the CAS-Lock structure for all possible patterns
or by iterative SAT solving). This becomes prohibitive for large N . Requirement (3)
is fulfilled as CAS-Lock ensures the existence of at least one unique wrong key for every
possible input pattern. A proof of this property, along with some precursor lemmas, is
given below. For the proof, we show the existence of 2N wrong keys, each of which can
only be eliminated by a unique DIP. More importantly, we show that regardless of the
output-one count (p) of gcas, such keys always exist in CAS-Lock (Lemma 1). This is due
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to its logical behavior, whereby a certain number of input patterns cause gcas to output
logic 1 and ḡcas to output logic 0 (Lemma 2). Since there are an odd number of such
patterns (shown by Lemma 3), gcas and ḡcas both evaluate to 1 (and thus, produce an
incorrect output) only on one unique input pattern when one of the 2N wrong keys is
applied. Note that requirement (4), i.e., resistance to removal attack, will be considered in
Section 3.5.

Following the notation in [XS16], we denote the n-bit inputs to the CAS-Lock component
with X and the 2n-bit key with K. |X| refers to the size of the inputs used in CAS-Lock,
and |K| refers to the key size of 2n. Similar to [XS18], X is assumed to be directly
connected to the primary inputs IN3. We also define L = X⊕K, i.e., XOR or XNOR of
the inputs with the key, as shown in Figure 1.

Lemma 1. Given the countermeasure built with Boolean functions gcas and ḡcas, there
exists 2N wrong keys, each of which can only be ruled out by a unique input pattern Xi.
Thus, to rule out all the wrong keys, the attacker has to iterate through all possible 2N

input patterns (i.e., brute force through the entire input space).

Proof. Lemma 1 is true if we can find at least one unique wrong key that can only be
ruled out by a specific input pattern Xi.

Based on the design scheme of CAS-Lock, we denote a correct 2n-bit key as K=<
CK1

i , CK
2
i >, where CK1

i and CK2
i are fed into Boolean functions gcas and ḡcas, respec-

tively. Then, for any input pattern Xi, we have:

Yi = gcas(Xi ⊕ CK1
i ) ∧ ḡcas(Xi ⊕ CK2

i ) = 0 (1)

Therefore, for the correct key, the output Yi of the AntiSAT block is always zero and
the circuit output is never inverted.

L gcas(L) തgcas(L)

0000...000 0 1

0000...001 0 1

0000...010 0 1

… 0 1

Lmin 1 0

… 1 0

1111...110 1 0

1111...111 1 0

𝑁 −𝑚𝑖𝑛 = 𝑝

𝐿0

𝐿𝑁

𝐿1

𝐿2

Figure 4: A truth table for gcas and ḡcas, where Lmin stands for the smallest input pattern
that makes the Boolean function gcas equal to 1.

As shown in Figure 4, there always exists the smallest input pattern Lmin where,
for ∀Li < Lmin, we have gcas(Li) = 04. In other words, if we count the input patterns
incrementally from 0000 . . . 000 to 1111 . . . 111 and observe the corresponding output of
function gcas, Lmin is the smallest input pattern that makes gcas = 1. For example, if gcas

is built with all AND gates, then Lmin = 1111 . . . 111. Thus, we now have the expression

3X could also be connected to random internal wires instead of IN. However, this reduces SAT
resistance, as shown in [XS16] and as such, is not considered.

4This is proven in Lemma 2
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in Eqn. 2, where (Lmin − 1)⊕ 1 = Lmin
5. These two scenarios are highlighted in green in

Figure 5(a), where the output Yi is always zero.

gcas(Lmin) = ḡcas(Lmin − 1) = 1
ḡcas(Lmin) = gcas(Lmin − 1) = 0 (2)

Now, let us assume a wrong key WKj =< WK1
j ,WK2

j > that satisfies Eqn. 3.

WK1
j ⊕ CK1

i = 000 . . . 00
WK2

j ⊕ CK2
i = 000 . . . 01 (3)

𝑿𝒊 𝑿𝒊⊕𝑪𝑲𝒊
𝟏 𝑿𝒊⊕𝑪𝑲𝒊

𝟐 𝐠cas (𝑿𝒊⊕𝑪𝑲𝒊
𝟏) ത𝐠cas(𝑿𝒊⊕𝑪𝑲𝒊

𝟐) 𝒀𝒊

0000...000 0000...000 0000...000 0 1 0

0000...001 0000...001 0000...001 0 1 0

… … … 0 1 0

……….......0 ……….......0 ……….......0 0 1 0

……….......1 ……….......1 ……….......1 1 0 0

… … … 1 0 0

1111...110 1111...110 1111...110 1 0 0

1111...111 1111...111 1111...111 1 0 0

(a)

(b) 𝑿𝒊 𝑿𝒊⊕𝑾𝑲𝒋
𝟏 𝑿𝒊⊕𝑾𝑲𝒋

𝟐 𝐠cas(𝑿𝒊⊕𝑾𝑲𝒋
𝟏) ത𝐠cas(𝑿𝒊⊕𝑾𝑲𝒋

𝟐) 𝒀𝒊

0000...000 0000...000 0000...001 0 1 0

0000...001 0000...001 0000...000 0 1 0

… … … 0 1 0

……….......0 ……….......0 ……….......1 0 0 0

……….......1 ……….......1 ……….......0 1 1 1

… … … 1 0 0

1111...110 1111...110 1111...111 1 0 0

1111...111 1111...111 1111...110 1 0 0

↔

↔
↔

Lmin− 1

Lmin

Lmin− 1

Lmin

𝑿𝒊⊕𝑾𝑲𝒋
𝟐 =

𝑿𝒊⊕𝑪𝑲𝒊
𝟐⊕𝟎𝟎𝟎…𝟎𝟎𝟏

↔
↔

↔

↔

Figure 5: Example Truth Table for gcas and ḡcas, where the wrong key WKj can only be
ruled out by applying the input pattern Lmin.

Such a wrong key causes the outputs of ḡcas(Lmin − 1) and ḡcas(Lmin) (in fact, any
two consecutive patterns) to be swapped, as shown in Figure 5(b). Assuming that the
least significant bit (LSB) of Lmin is 16, we now have the scenario highlighted in red in
Figure 5(b), at the input patterns Lmin − 1 and Lmin, which can be written as:

gcas(Xi ⊕WK1
j ) = gcas(Lmin) = 1

ḡcas(Xi ⊕WK2
j ) = ḡcas(Lmin) = 1 (4)

In other words, the output Yi = gcas(Xi ⊕WK1
j ) ∧ ḡcas(Xi ⊕WK2

j ) for input Xi is 1
when the wrong key WKj =< WK1

j ,WK2
j > is applied. Moreover, for the wrong key

WKj =< WK1
j ,WK2

j > that satisfies Equation 3, the Y output of CAS-Lock will be 0

5This is proven in Lemma 3
6In Lemma 3, we prove that the input pattern Lmin is an odd number, which implies that its LSB

must always be 1.
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Figure 6: Input vectors Li and Li+1 applied to gcas

for all other input patterns that are not equal to Xi. In other words, the corruptibility
of the circuit given WKj is only 1, and this incorrect key can only be ruled
out by applying input pattern Xi and no other input pattern. Since there are 2n

correct keys in CAS-Lock, there are 2n wrong keys with this property. This is because
such wrong keys are obtained by flipping the least significant bit (LSB) of the 2n correct
keys, as shown in Equation 3. Therefore, to rule out all 2n such incorrect keys that satisfy
Equation 3 from the total key space of 22n, the attacker has to apply at least 2n input
patterns (i.e., brute force through the entire input space of the circuit).

Lemma 2. For a Boolean function gcas that is built with the cascaded tree structure, there
exists the smallest input pattern Lmin, for which gcas(Lmin) = 1. Then ∀Li, if Li ≥ Lmin,
we have gcas(Li) = 1.

Proof. Lemma 2 can be proven if we can show that ∀Li(Li < 1111 . . . 111) that makes
gcas(Li) = 1, we have gcas(Li+1) = 1, where Li+1 = Li + 1.

We start by introducing a generic CAS-Lock structure shown in Figure 6, where the
gate at index k (denoted by GATEk) is an AND gate. The logic cone before the AND
gate is denoted by gup

cas, and the logic cone after it is denoted by gdown
cas . Therefore, we

would have:
gcas = gdown

cas (gup
cas(l0i , . . . , lk−1

i ) ∧ lki , lk+1
i , . . . , ln−1

i )

Note that gup
cas and gdown

cas can be any cascaded combination of AND’s and OR’s.
In Figure 6(a), we can see that the input pattern Li is applied on gcas while in Figure

6(b), the pattern Li+1 is applied on the same gcas. For Li, bit l0i is the least significant bit
(LSB) and ln−1

i is the most significant bit (MSB). Similarly, for Li+1, bit l0i+1 is the LSB
and ln−1

i+1 is the MSB. For both input vectors Li and Li+1, let us assume that the bits at
index k are the left-most bits (i.e., towards the MSB) that are not equal to each other (i.e.,
lki 6= lki+1). Figure 7 shows an example of this, with two vectors for Li, Li+1 and k = 2. At
k = 2, we have lki 6= lki+1 as:

• lki = 0

• lki+1 = 1
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Index 6 5 4 3 2 1 0

𝐿𝑖 1 0 0 1 0 1 1

𝐿𝑖+1 1 0 0 1 1 0 0

𝑘

Figure 7: Example of Li and Li+1 input vectors

Since Li+1 = Li + 1 (i.e., they are consecutive input vectors), there are now two
implications.

1. The bits after index k i.e., {ln−1
i ... lk+1

i } and {ln−1
i+1 ... lk+1

i+1 } will always be equal
to each other. For example, in Figure 7, the vectors marked in green (from index 6
to 3) are the same in Li as well as Li+1.

2. For the bits that are at indices < k, we can see that they are always going to be
the inverse of each other. In Figure 7, the bits marked in red at indices 1 and 0 are
flipped across Li and Li+1.

Note that this trend is true for any two consecutive input vectors Li and Li+1, and
also for any value of k.

Now, in Figure 6 (a) and (b), we can see that lki = 0 and lki+1 = 1, since k, as we
defined above, is the left-most index (i.e., towards the MSB) on which the bits are different.
Figure 6 (a) shows that the inputs to the logic cone gup

cas are all 1’s. This will cause the
output of logic cone gup

cas to be 1, regardless of how many AND’s and OR’s are there in
gup

cas. Therefore, the output of the AND gate in Figure 6 (a) (i.e., GATEk) will be 0. Since
the definition of Li,min (i.e., Lmin at index i) requires gcas(Li) = 1, the input bits to
gdown

cas will have to ‘cancel out’ the effect of the 0 output of GATEk so that gcas(Li) = 1.
Thus, in some sense, the inputs to gdown

cas (lki to ln−1
i ), along with the gdown

cas logic, serve as
‘controlling values’, forcing the output of the logic cone to 1.

For Li+1, the opposite of Li happens. In Figure 6 (b), we see that the input bits to
gup

cas produce an output of 0, after which the output of GATEk will also be 0. Since the
Boolean logic in gdown

cas is the same for Li and Li+1 and so are the inputs to gdown
cas , the

output of gcas(Li+1) will also be forced to 1. From these observations, we can conclude
that the output of GATEk is always the same for Li and Li+1. Further, since gcas(Li) = 1,
the logic in gdown

cas will always force the output of gcas to be 1 for both Li and Li+1.
While we used the example of an AND gate for GATEk, it is straight-forward to prove
the same if GATEk is an OR gate. Further, the proof also implies that if gcas(Li) = 1
and thus gcas(Li + 1) = 1, gcas(Li + 2) = 1 and gcas(Li + 3) = 1 and so on (since the
relationship holds for arbitrary i and can be shown by proof of induction). Hence, Lemma
2 is proven.

Lemma 3. The total number of input patterns that make the Boolean function gcas equal
to 1 (i.e., p) is an odd number.

Proof. From Lemma 2, we saw that there always exists the smallest input pattern Lmin,
for which all input vectors greater than Lmin cause the output of Boolean function gcas to
be 1. We also know that the LSB l0i for an input pattern Li is 0 (if Li is an even number)
or 1 (if Li is odd). Therefore, to prove Lemma 3, we just need to show that the LSB of
Lmin is always 1. Alternatively, following proof by contradiction, Lemma 3 is also true if
we can prove that the LSB of Lmin can never be 0.

First, we begin the proof by assuming that l0min = 0 (i.e., Lmin is an even number).
Therefore, the output of GATE0 shown in Figure 8 will be 0 if GATE0 = AND, and 1 if
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Figure 9: Four cases for GATE0, the top bit is l0min and the bottom bit is l1min.

GATE0 = OR and l1i = 1. All of the possibilities for GATE0 are shown in Figure 9 with
l0min = 0. In cases (a) (b) and (c), the output of GATE0 is 0. Since gcas(Lmin) = 1 (by
the definition of Lmin), the gates and inputs in gcone

cas must compensate for the 0 output
from GATE0 and make the output gcas(Lmin) = 1. Thus, the inputs l2min to ln−1

min and
gcone

cas control the output to 1, regardless of the output of GATE0. In case (d), the 1 output
from GATE0 would contribute to making gcas(Lmin) = 1.

𝒍𝒎𝒊𝒏
𝟏
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𝒏−𝟏

𝒍𝒎𝒊𝒏
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𝐺𝐴𝑇𝐸0
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Figure 8: Lmin with l0min = 0 applied to gcas.

Since the definition of Lmin requires it to be the smallest input pattern that can ensure
gcas = 1, the cases (b) and (d) are ruled out because they are not the smallest values that
can generate the same outputs of GATE0. For example, the input pattern {l1minl

0
min} = 01

is smaller than {l1minl
0
min} = 10 (the pattern in (b)), but can generate 0 as well in case

(b). By excluding (b) and (d), we can see that if the l0min = 0, then:

1. The output of GATE0 is always 0, regardless of whether GATE0 is an AND gate
(case (a)) or an OR gate (case (c)).

2. Both l0min and l1min must be 0 to ensure the definition of Lmin, i.e., the smallest
pattern that results in gcas = 1 .

Note that if l0min = l1min = 0 and the output of GATE0 = 0, this output of GATE0
would not contribute to make gcas(Lmin) = 1. Thus, there must exist OR gate(s) in gcone

cas ,
and one or more of the bits from l2min...l

n−1
min must be 1. This would result in Lmin to

be patterns such as 0110010...00 or 100000...00, where at least one of the bits at index
> 2 would be 1, while l0min = l1min = 0. However, this presents a contradiction with the
definition of Lmin (i.e., it should be the smallest input pattern that causes gcas = 1).
This is because we can always find another assignment for Lmin that is smaller than
the Lmin pattern we assumed above (where l0min = l1min = 0). For example, if assuming
Lmin = 0110010..100 with l0min = 0, we can find another value 0110010..011 smaller than
this assumed Lmin, which will also set gcas = 1.

Thus, due to the contradiction we achieved in the definition of Lmin when l0min = 0, it
must be true that l0min = 1.

3.3 Bypass Attack Analysis
The above proofs show why CAS-lock is resistant to SAT attacks. To fulfill requirement
(2) for attack-resilient logic locking, we must also determine resistance to bypass attack.
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In order to perform a bypass attack, a miter circuit is first formed with two copies of
the locked circuit7. We denote the output of the two locked circuit copies with YA and
YB. The first copy is locked under wrong key KA and the second under wrong key KB.
Primary inputs I are fed into both copies. The miter output Ymiter can be expressed as:

Ymiter = YA(I,KA)⊕ YB(I,KB) (5)

The miter is then fed to a SAT solver (to solve for Ymiter = 1) and the disagreeing
patterns I are collected to construct the bypass circuit.

gcas

YA
തgcas

gcas

YB

തgcas

𝑃 𝐼0 = 0.5
𝑃 𝐾0, 𝐴 = 0.5

𝑃 𝐼𝑁−1 = 0.5
𝑃 𝐾𝑁−1,𝐴 = 0.5

0.5

0.5

0.5

0.5

0.5

0.25

0.125

0.0625

0.53125

1 − 0.53125
= 0.46875

തgcas

0.249

0.249

Ymiter

Circuit  Copy A  w/ 𝐾𝐴

Circuit  Copy B w/ 𝐾𝐵

𝑰, (𝐾𝑁,𝐴 , … , 𝐾2𝑁−1,𝐴)

𝑰, (𝐾0,𝐵 , … , 𝐾𝑁−1,𝐵)

𝑰, (𝐾𝑁,𝐵 , … , 𝐾2𝑁−1,𝐵)

Figure 10: Miter circuit used for bypass attack and corresponding probabilities of logic-1
at various nets.

CAS-Lock is able to thwart bypass attack as the number of input patterns I to bypass
can be prohibitively large for large p values (i.e., close to 2N/2) and a large input size
|I|. The maximum corruptibility (at p ≈ 2N/2) is attained with a cascade of AND gates
and one OR gate at the output of gcas. The OR gate at the output ensures gcas = 1 for
almost half the entire input space. In addition to the high corruptibility, bypass attack
is also thwarted when the miter in Equation 5 is unable to discover the input patterns
I to bypass. This scenario arises when YA(I,KA) = 1 and YB(I,KB) = 1, leading to
Ymiter = 0. In other words, both KA and KB produce the same wrong output but the
miter can only detect input patterns I when YA(I,KA) 6= YB(I,KB). Effective bypass
resistance is ensured when large p values are used and, thus, a large number of such
undetectable patterns are generated.

To see how p affects bypass resistance, we evaluate the probability of getting YA(I,KA) =
1 and YB(I,KB) = 1 as p is varied. As an example, we consider the miter circuit in Figure
10, where YA is the output of the CAS-Lock circuit locked under the key KA, and YB is
the output of CAS-Lock under key KB. For this gcas logic (where the last gate in the
cascade is an OR gate), we get p = 17, which is equivalent to a probability of 17

25 = 0.53125.
Consequently, this gives us a probability of YA = 1 and YB = 1 (i.e., the probability of
being unable to detect a corrupted input pattern) as 0.249 ∗ 0.249 = 0.062. Similarly, for a
gcas logic composed of all ANDs (which gives us p = 1, or probability of 1

25 = 0.03215),
7For simplicity, we consider a standalone CAS-Lock block as the locked circuit
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Figure 11: SAT Attack Time and Number of Iterations for CAS-Lock and Anti-SAT
Structures with Varying Output-One Count

the probability of YA = 1 and YB = 1 becomes 0.0303 ∗ 0.0303 = 0.00092. Thus, larger p
values (till ≈ 2N/2) tend towards a higher probability of bypass attack failure.

This probability of bypass failure (Pfail) can also be generally expressed as:

Pfail = P (YA = 1) · P (YB = 1)
= pr · (1− pr) · pr · (1− pr)
= pr2 · (1− pr)2

Here, the probability of getting logic 1 at the output of gcas is expressed as pr = p
2N . From

the expression and the example above, we can see that as pr increases (towards ≈ 0.5),
the probability of getting 1 at the outputs of both YA and YB increases, thus leading to
bypass attack error.

3.4 Experimental Evaluation of CAS-Lock

3.4.1 Resistance Against SAT Attack

To experimentally evaluate resistance against SAT attacks, we used the tool provided in
[SRM15] on variations of CAS-Lock. The results from the experiment (Figure 11) show
that regardless of p (output-one count of gcas/ḡcas), the number of iterations required to
break CAS-Lock is always 2N − 1. In these experiments, we used N = 8, |K| = 2 ∗N = 16
and varied p by changing between AND’s and OR’s in gcas/ḡcas

8. We can see that the
number of SAT iterations required to break CAS-Lock is always 28 − 1 = 255. In the same
figure, we can also see that the number of iterations required to break AntiSAT varies with
p, while CAS-Lock’s SAT resistance is maximized regardless of p. Although we performed
this analysis on standalone CAS-Lock structures, the SAT attack runtime is expected to be
even longer when the block is stitched into a circuit, as the size of the overall CNF formula
increases. Further, increasing N and K to larger values will make SAT attacks infeasible
(e.g., when N = 128/K = 256, number of SAT iterations would be 2128 − 1 = 3.4e+ 38).

8Remember that when p = 1 or p = 28 − 1 = 255, CAS-Lock reduces to Anti-SAT in secure integration
mode with g as AND and g′ as NAND (or vice-versa).
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3.4.2 Resistance Against Bypass Attack

As mentioned before, CAS-Lock can ensure protection against bypass attack if (a) there
are random (and often large) number of patterns to bypass for any given wrong key
and (b) it is very likely that for any given wrong key, some erroneous patterns remain
undetected. In order to verify these properties, we generated several variants of CAS-Lock
and evaluated the number of times CAS-Lock evaluated to 1 for a sample of wrong keys.
In these experiments, we set N = 12 and thus, K = 2N = 24. When p = 1 or p = 2N − 1,
CAS-Lock reduces to Anti-SAT. Therefore, any given wrong key Ki′, there is one (and
only one) input pattern which ‘triggers’ the block. In other words, the error count or
number of input patterns for which the output is flipped, denoted by ε, is equal to 1
for all K ′ wrong keys across all input patterns. On the other hand, for CAS-Lock with
p = 1857, we obtained εK1′ = 1857, εK2′ = 191, εK3′ = 65, εK4′ = 63 and so on. In bypass
attack, any two random keys are chosen to form a miter and all resulting ‘distinguishing
patterns’ are chosen for bypass. If K1′ and K2′ were chosen and all patterns for K2′
overlapped with K1′ (i.e., for these set of patterns, both K1′ and K2′ produce errors), the
miter would only discover 1857− 191 = 1666 patterns for correction. Thus, the resulting
bypassed circuit would be erroneous. Further, this would translate to 38, 319 gates for
the bypass circuitry (assuming N = 12, NDIP = 1666 and Nout = 1), when following the
equation given in [XSTF17] for converting between number of DIPs and bypass circuitry
gate count. Of course, re-synthesis would be able to reduce this overhead, but it would
not be viable to do such ‘retroactive correction of logical errors’ for a large number of
input patterns. This problem would also be substantially aggravated as N increases. For
example, when N = 16 and p = 34043, we obtained εK1′ = 31493, εK2′ = 1275 and so on.

3.5 Analysis of Removal and AppSAT Attacks
Most of the attacks on logic obfuscation can be categorized into two types.

• Black-box attack: Attacks such as SAT or AppSAT rely on a black-box model of
the original design. While the attacker does have possession of the netlist, he/she is
able to attack the circuit without any analysis of the netlist/structure of the design
or how the logic blocks have been integrated at the gate-level. Rather, the locked
circuit is fed into the solver as a CNF formula, its input/output behavior is analyzed
and correct key assignments are returned.

• White-box attack: Attacks such as removal specifically target the implementation
of the locking technique at the netlist-level. Structural metrics such as signal
probability skew and fan-in analysis are computed to identify the gates implementing
the locking and subsequently remove them.

While CAS-Lock provides security against black-box attacks such as SAT and bypass,
it also needs to be resilient against white-box attacks such as removal. Unfortunately,
CAS-Lock, by itself, is prone to removal in the same way as Anti-SAT, especially when
low or high p values are used [YMSR17b] [YMSR17a]. This is because an attacker can
identify the block in the design netlist using signal probability skew (SPS) [YMSR17b],
as mentioned in Section 2.2.3. To prevent such attacks, it is necessary to hide CAS-Lock
so that, to an attacker, the block becomes indistinguishable from other logic cones in the
design and cannot be removed while keeping the original design intact. If the attacker is
a reverse engineer in the supply chain, this hiding of the CAS-Lock logic block can be
efficiently implemented using camouflaging [RSSK13][LSM+17][SSTF19]. The key idea
would be to conceal the identity of the gates in the CAS-Lock block, so that signal
probability/skew values or any structural metrics cannot be correctly computed by the
attacker. Therefore, the AND/OR gates in the original design as well as CAS-Lock could
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be replaced by camo-cells. Due to this, the reverse engineer would be limited to a black-box
attack, which CAS-Lock is resilient against.

While camouflaging coupled with CAS-Lock would ensure maximum resiliency against
black-box attacks such as SAT and removal, it would not be effective in the case of an
untrusted foundry. This is because foundry assistance is required in order to build the
camo cells, due to which their identity is already known to the foundry. Therefore, the
foundry would be able to mount white-box attacks such as removal. In order to protect the
design against such adversaries, it is necessary to insert additional key gates (XOR, XNOR,
MUX, AND, OR etc.) into the CAS-Lock block in a non-symmetric fashion [YMRS16]
[XS16]. This would ensure that the SPS-based trait of the CAS-Lock block would be
hidden (i.e., the net Y will not necessarily have the highest SPS difference value). As a
result, an attacker will not be able to identify and isolate the CAS-Lock block, unless
he or she knows the key values for the key gates. Note that the security achieved with
such obfuscation will depend on how many candidate nets can be isolated by the attacker.
Without key gate insertion, there will always be a single candidate (the CAS-Lock output
net). With obfuscation, there should be many such candidate nets (or none) in the design,
which would make it hard for the attacker to perform CAS-Lock removal.

After performing random XOR/XNOR insertion into CAS-Lock (hereafter referred to
as ‘obfuscated CAS-Lock’), we performed a set of experiments to evaluate if there was
any change in its resistance to SAT and AppSAT attacks. While SAT resistance remained
the same (2N − 1 iterations to resolve the correct key), we noticed that AppSAT (with
the default parameters in [SLM+17]) was able to find the correct key assignments to the
obfuscated CAS-Lock in a few iterations. In our experiments, we generated 100 random
CAS-Lock structures (with N = 16), obfuscated with 32 random XOR key gates. In
50 of those structures, AppSAT was able to return the correct key. We also generated
100 Anti-SAT blocks, obfuscated them with random XOR gates and attacked them with
AppSAT as well. In these experiments, AppSAT managed to successfully attack 51 out
of 100 structures. Therefore, roughly half the time, AppSAT was able to obtain the full
secret key for obfuscated CAS-Lock as well as Anti-SAT structures. On the other hand, for
standalone CAS-Lock, AppSAT was only able to find the correct key 5 out of 100 times.

The above phenomenon happens because random XOR/XNOR insertion into the
CAS-Lock/AntiSAT structure increases its output corruptibility. During its constraint
addition phase, AppSAT is thus able to add in more distinguishing patterns (i.e., multiple
DIPs in one iteration). This allows the attack to use these DIPs to rule out a significantly
large portion of the wrong key space (including the relatively low output corruptibility
keyspace of CAS-Lock/Anti-SAT). Note that AppSAT attack success is also increased
when standalone CAS-Lock constructions with very high output corruptibility are used
(e.g., a cascade of AND’s with OR at the end, which ensures that almost half the input
space is corrupted). While AppSAT attack success is not 100% guaranteed, a success rate
of almost ∼ 50% indicates a significant vulnerability. Therefore, XOR/XNOR insertion to
protect CAS-Lock against removal attacks is not a fool-proof solution. It is recommended
that whenever standalone or obfuscated CAS-Lock is employed, the structure be tested
against AppSAT to make sure that the correct key cannot be easily recovered.

4 Mirrored CAS-Lock (M-CAS)
In order to protect against removal attacks without the need for XOR/XNOR-based
obfuscation, we propose a modification of the original netlist before the insertion of CAS-
Lock. The key idea is that even if CAS-Lock is removed using attacks such as SPS,
the attacker would be left with a non-functional design. A similar idea was proposed in
[SAFT16], where gate-level modifications were made to the netlist during the design phase
and corrected later on using post-fabrication edit. Instead of the need for edit, we mirror
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Figure 12: Mirrored CAS-Lock.

the CAS-Lock structure in the original design. An illustration of this concept is shown in
Figure 12. The original design is first locked using CAS-Lock with the secret key Ksecret

hardcoded into the netlist. During re-synthesis, the Ksecret key values can be propagated
to the design using sweep (a common constant propagation routine in most logic synthesis
algorithms). Therefore, it would not be possible to inspect the netlist and obtain Ksecret.
Note that this is similar to a fundamental assumption in all logic encryption techniques
i.e., re-synthesis should make it hard to simply inspect the key gate/design and decide the
key bit (e.g., XOR corresponding to key-bit 0 or XNOR corresponding to 1) [PM15].

After integrating the first CAS-Lock, the design is again locked with a second CAS-Lock
structure that is identical to the first one. However, in the second structure, KCAS is
assigned as the key input (i.e., one of the primary inputs). Correct functionality of the
circuit is achieved as follows:

Yout = Yorig ⊕ CASLock(Ksecret)⊕ CASLock(KCAS)
= Yorig ⊕ CASLock(Ksecret)⊕ CASLock(Ksecret)
= Yorig ⊕ F

Yout = Yorig

In the above expressions, we can see that the locked function Yout equals the original
function Yorig only when KCAS = Ksecret. Security against removal is achieved as removal
of the first CAS-Lock with key KCAS does not guarantee correct functionality; the second
CAS-Lock with key Ksecret, that is embedded inside the original circuit, must also be
removed.

4.1 M-CAS Security Analysis
While M-CAS provides protection against removal attacks, it leads to an unavoidable
decrease in SAT resistance9. In order to understand why this happens, we first consider an
example CAS-Lock structure shown in Figure 13. In this construction, the last AND gate
in the cascade is changed to an OR. For any correct key (XK), gcas and ḡcas are always
complementary. Therefore, the CAS-Lock trigger signal Y is always zero and the output is
never inverted. However, when the wrong key is provided for gcas, ḡcas or both, Y will be
triggered. In Figure 13 (last column), we can see that for nearly half the input patterns,
Y = 1. Therefore, if we choose this particular wrong key for M-CAS, the error count for
the original circuit will be 2N

2 − 1. When the second CAS-Lock block (with the key inputs)
is added, the error count for any given wrong key will vary from 1 to 2 · ( 2N

2 − 1) (when

9Note that M-CAS is still resistant to bypass attacks, for the same reasons as those mentioned in
Section 3.4.2 for CAS-Lock
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Figure 13: CAS-Lock with Maximum Output Corruptibility

the wrong key introduces 2N

2 − 1 errors along with the 2N

2 − 1 errors from the corrupted
original circuit).

While this high corruptibility is desirable to effectively prevent black-box usage, it
also leads to a much faster SAT attack. Figure 14 shows a sample truth table, where the
original function Y is corrupted on a number of input patterns due to M-CAS. As seen in
the figure, these errors carry onto all of the wrong keys, where they either persist (colored
in red) or are muted (colored in grey) due to the additional error from the wrong keys. If
the SAT solver happens to pick DIPs such as those colored in blue (‘Desirable DIP for
attack’), it will be able to rule out all the incorrect keys and converge onto the correct
key(s) in a single iteration. While this is not guaranteed to always happen, it becomes
more likely as the output corruptibility in the original design increases. For structures
such as those in Figure 13, the probability would be ≈ 2N /2

2N ≈ 50% (since almost half
the input space for every wrong key is corrupted). Thus, the inherent trade-off between
corruptibility and SAT attack resistance (which did not exist in CAS-Lock) returns in
M-CAS. Picking a high corruptibility key for the original design leads to reduced SAT
resistance (and vice-versa).

4.1.1 Analysis of re-synthesis

As with regular logic locking, M-CAS relies on re-synthesis to ensure that the CAS-Lock
logic block with the hard-coded Ksecret (as shown in Figure 12) is not trivially bypassed
or removed. The logic block corrupts the functionality of the locked logic cone, with the
circuit being unlocked only when KCAS = Ksecret. Re-synthesis is required so that the
attacker cannot (1) deduce the hard-coded Ksecret by simply observing the gates in the
netlist, or (2) nullify the logic block by removal. Re-synthesis helps in transforming the
netlist in the following ways.

• Bubble push: Logical inversions in the CAS-Lock block and the original design
logic cone are propagated to different parts of the netlist, where they result in the
transformation of pre-existing gates (due to DeMorgan’s Law).

• Technology mapping: During re-synthesis, the logic synthesis tool maps gates in the
netlist to various other gates available in a standard cell library, to meet area, timing
and/or power constraints. This also has the direct impact of changing gates in the
locked logic cone, and thus altering the logical structure of the gate-level netlist.
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Figure 14: Truth table example for effect of M-CAS

An example of a re-synthesized logic block, locked with CAS-Lock and Ksecret, is shown in
Figure 15. From an attacker’s perspective, two removal attack strategies can be pursued:

• The attacker could remove all gates in the transitive fan-in of the output of the
CAS-Lock block (marked by a red cross in Figure 15). However, this would not be
possible as re-synthesis (which involves a combination of bubble push, technology
mapping and other logic optimization techniques) would create shared logic between
the original logic cone and the CAS-Lock logic cone with Ksecret. For example,
multiple gates in the two separate logic cones can be mapped to a single gate. This
can also be visualized with the cone overlap shown in Figure 15. Any attempt to
remove the transitive fan-in of CAS-Lock would also remove the logic belonging to
the original design logic cone.

• The attacker could also simply set the output of the CAS-Lock block (shown with a
red cross in Figure 15) to 0. In theory, this should de-activate CAS-Lock and restore
the original circuit functionality. However, due to re-synthesis (and specifically,
bubble pushing), the unlocking value is not guaranteed to be 0. In fact, for the
circuit shown on the right in Figure 15, the cross marked net actually had to be
set to 1 to unlock the circuit, implying that re-synthesis had altered the unlocking
value for this net. Further, as also explained in [XS18], it is not necessary to directly
stitch the CAS-Lock output directly to the circuit output. Instead, high observability
internal circuit nodes could be utilized without any significant drop in SAT or bypass
resistance. This would make it harder to look at the immediate periphery of the
locked output pin, and isolate a single net for attack.

4.2 Key selection for M-CAS
Unfortunately, while it would be ideal to assess the exact error count (i.e., number of
flipped input-output pairs) for every choice of Ksecret, this would entail evaluating the
entire truth table for all 2N combinations of the circuit. Since we are mainly concerned
with ‘excessive’ error count (max. of 2N/2 = 2N−1), we can set a desired threshold and
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Figure 15: Gate-level netlist obtained after re-synthesis of a logic cone integrated with
CAS-Lock with Ksecret

use any model counting tool (#SAT)10 or iterative SAT solving to see if the error count
for any key exceeds the threshold. Further, we know that any construction of CAS-Lock is
going to be better, in terms of lower output corruptibility, than the one shown in Figure
13, where the last gate in the AND (OR) cascade is an OR (AND) gate. This is because it
has the highest output corruptibility (maximum p or output-1 count).

In addition, the structure selected for M-CAS also gives us some hints about what
kind of key can be chosen to ensure an appropriate level of output corruptibility. For
example, in Figure 13, if we set the OR gate key bits Kg

2 = K ḡ
2 while setting Kg

1 = K ḡ
1

and Kg
0 6= K ḡ

0 , the output corruptibility would be 1
23 . Conversely, if we set Kg

2 6= K ḡ
2 ,

we would get the results shown in the last column of Figure 13, where the error rate is
2N−1−1

2N = 3
23 . Therefore, by making the OR key gate bits in gcas equal to the OR key gate

bits in ḡcas while perturbing a few of the AND gate keys, we can roughly select Ksecret,
whose exact corruptibility can then be verified using a model counter.

In order to get more fine-grained control over output corruptibility, we can use the
following heuristics:

• For higher output corruptibility, replace AND gates with OR gates towards the end
of a cascade of AND’s (i.e., near the output Y ). For lower corruptibility, use OR’s
towards the start of the cascade (i.e., near the PI’s). Likewise, if we have a cascade
of OR’s, replace the OR gates with AND’s.

• For each OR gate in the AND cascade, make sure the respective key bit in gcas

and ḡcas are not equal. This will cause the output-1 count of CAS-Lock (i.e.,
corruptibility) to go up. Alternatively, set the OR key bits to be equal to lower the
output-1 count.

After these techniques are used to select a CAS-Lock structure and key, we can then
use a model counter to determine the exact output corruptibility (since it is guaranteed to
be low). Note that while the key selection guideline can help to select an appropriate key,
it introduces another vulnerability; if re-synthesis does not change the netlist sufficiently,
it could help the attacker to observe the structure in the netlist and deduce key candidates.
In that case, inverter pairs can be inserted into the netlist to perform ‘bubble pushing’ and
some of the XOR/XNOR gates can be flipped (i.e., XOR ⇐⇒ XNOR). In our experiments,
we noticed that synthesis tools such as Design Compiler merged gates from the original
design and CAS-Lock, and masked the identity of the CAS-Lock gates (e.g., by replacing
them with multi-input gates and/or other complex gates such as AOI, OAI etc.). This

10Model counting or sharp-SAT/#SAT is the problem of counting the total number of satisfying
assignments to a Boolean formula, usually expressed in conjunctive normal form (CNF) [BHvM09]. While
#SAT is known to be much harder than SAT, there are efficient solvers that use extensions of well known
DPLL heuristics to find/approximate the model count efficiently [MMBH12][Thu06].
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would make the task of deciding key bits by observing the CAS-Lock structure to be much
harder.

4.3 Comparison to SFLL
A similar approach to M-CAS was also proposed in [YSN+17], where a modified version
of the original circuit was locked with a hamming distance (HD)-based logic block. This
approach is termed SFLL-HD. The HD block receives the circuit inputs (of length N) and
key inputs (also of length N), and flips the output whenever the HD between the input
and the key is h. The original circuit is modified in such a way that, on application of the
correct key, all the errors introduced in the original circuit are corrected. If the incorrect
key is applied, the circuit is corrupted on anywhere from 1 input pattern to 2 ·

(
N
h

)
input

patterns (where,
(

N
h

)
errors are introduced by the wrong key, and

(
N
h

)
additional errors

are introduced due to the modification of the original circuit). Therefore, the mode of
operation of M-CAS is similar to SFLL-HD, and both are resilient to removal attacks.
However, there are some important differences:

• SFLL-HD allows the designer to set the output corruptibility of the original design
from 1 to

(
N

N/2
)
(when h = N/2). In contrast, M-CAS can achieve a much higher

maximum output corruptibility of 2N−1. However, note that output corruptibility
and SAT resistance are inversely related, and a high output corruptibility significantly
speeds up the SAT attack (as well as AppSAT).

• M-CAS (and CAS-Lock) allow fine-tuning of the output corruptibility, as there are
two modes of control: (1) the design of gcas and ḡcas, and (2) the choice of key Ksecret

selected in M-CAS. In contrast, output corruptibility can only vary in discrete ranges
from

(
N
1
)
to 2 ·

(
N

N/2
)
in SFLL-HD.

• M-CAS only requires 2X instances of CAS-Lock. On the other hand, SFLL-HD
requires a HD calculation logic, comprised of (i) N XOR’s to compute bit-wise
difference between the input and the key, (ii) N − 1 full adders to add the result of
input ⊕ key, (iii) XNORs for comparing the XOR sum to the hamming distance
parameter h and (iv) AND gates to finally decide if HD(input,key) = h. Therefore,
M-CAS is expected to be slightly lower in overhead than SFLL-HD. This is also
experimentally confirmed in Section 4.4.

• A functional analysis-based attack has also been recently proposed against SFLL
[SS18]. In the ‘FALL’ attack, the hard-coded key value in the modified logic cone of
the design is decoded. This is done by developing a set of functional properties of the
hamming distance logic, and deducing key values that satisfy these properties. First,
the attack identifies potential gates in the design that are part of the comparator
logic (i.e., logic that compares the input to the key - this is also present in M-CAS in
the form of the XOR/XNOR of the input with the key). However, straightforward
removal of these gates is not possible, as the design has been re-synthesized. This is
also the case in M-CAS. After the candidate gates and their support set have been
identified, three specific properties of the HD logic (which are used based on the
range of the hamming distance) are exploited to deduce the key value: unateness,
non-overlapping errors and sliding window. These properties help the attacker to
intelligently guess the correct key bits, based on the applied input pattern and
response from the HD logic. For example, when HD=1, the attacker first finds two
input patterns such that the hamming distance between them is 2, and their outputs
match. Since the HD between the hard-coded key and the input patterns must be 1
(as HD was set to 1), any bits that are the same in the two input patterns are the
correct key bits. Further bits are decoded by extending this observation.
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Table 1: SAT and AppSAT resistance of various M-CAS locked logic cones, along with
area, power and delay comparisons to SFLL.
Benchmark |K| # Error

Patterns
# Added
Gates

SAT
Iterations

SAT Time
(Hrs)

AppSAT
Success

Area (µm2) Delay (ns) Power (µW )
SFLL M-CAS % Diff SFLL M-CAS % Diff SFLL M-CAS % Diff

c432 64 22701 580 28182 13.2 No 1926.95 904.81 72.19 3.07 3.17 -3.21 110.80 85.27 26.05
c1908 64 19409 556 N/A Timeout No 1771.61 825.03 72.91 2.95 3.32 -11.80 48.57 21.36 77.84
c5315 64 53123 566 N/A Timeout No 2015.64 986.00 68.61 3.08 2.93 4.99 53.57 26.05 69.14
c7552 64 53153 550 N/A Timeout No 2451.62 1448.73 51.43 3.24 3.17 2.18 48.95 22.44 74.28
sqrt 56 12413 489 N/A Timeout No 3937.90 3095.03 23.97 16.74 17.00 -1.54 52.17 23.65 75.23
k2 64 32535 534 N/A Timeout No 2380.76 1405.08 51.54 3.11 3.08 0.97 52.27 24.61 71.96
seq 64 24463 554 N/A Timeout No 2138.60 1151.66 59.99 3.01 3.03 -0.66 47.97 20.88 78.7

Thus, in SFLL, the parameter h (the hamming distance) and input patterns applied
to the comparator logic are sufficient to exploit the relationship between the key
and the inputs, and deduce the key bits. In contrast, if two or more input patterns
are found whose errors overlap in M-CAS, the hard-coded key cannot be directly
deduced from the patterns in the same way. Further, the Boolean functions gcas/ḡcas

- which can vary depending on the designer-chosen level of corruptibility - must first
be identified. However, the design has been re-synthesized and gcas/ḡcas cannot be
readily identified from the netlist.

4.4 M-CAS Experimental Analysis
In order to assess overhead, we locked the logic cone of a set of benchmark circuits, from
the MCNC and EPFL set [Yan91, AGDM15], using M-CAS. For each benchmark, we
selected the CAS-Lock structure and Ksecret such that the output corruptibility given
Ksecret was at least 10, 000 input patterns and less than 100, 000. The number of patterns
was determined using the dSharp model counter [MMBH12]. For our tested benchmark
circuits, it only took a few seconds to find the number of the patterns listed in Table 1. The
input length N used was the total number of primary inputs of the logic cone if it was less
than 32. Otherwise, we randomly chose N = 32 primary inputs. For area/delay evaluation,
we synthesized the locked netlists using Synopsys Design Compiler and a generic 90 nm
library [SCW+07].

After performing locking, we used the SAT and AppSAT attack platforms from [SRM15]
and [SLM+17] respectively, to evaluate the security of M-CAS for logic cones from various
benchmarks. The time-out for SAT was set to 20 hours, and AppSAT was used with the
default parameters (as mentioned in [SLM+17]). The results are shown in Table 1. We can
see that for most of the benchmarks, the SAT attack fails to find the correct key within
the allotted time. For C432, SAT attack manages to converge on the correct key. However,
larger key sizes and lower error rate in the original design should drastically decrease SAT
attack success probability. AppSAT fails on all the benchmarks, as it relies on random
patterns to generate additional constraints. Since the errors are sparsely distributed across
the entire input space of the circuit, random patterns are unable to ‘cover’ these errors,
leading to pre-mature termination and a wrong key.

We can also see that the number of gates required to implement M-CAS, shown in
the Table as ‘# Added Gates’ and calculated using GateCount(Logic Cone + M-CAS)
- GateCount(Logic Cone), is more or less similar across various benchmarks. This is
because the number of gates in M-CAS, much like CAS-Lock, mostly depends on N and
is independent of the original circuit size. However, gates of CAS-Lock (Ksecret) can be
shared with the original design, due to which we see slight differences in the number of
added gates across various benchmarks. In Table 1, we can also see the average area,
delay and power difference between M-CAS and SFLL-HD (where HD = 4). In all cases,
M-CAS is more economical, as SFLL requires a more elaborate circuit (composed of full
adders) for the HD calculation, as discussed in Section 4.3. Across all the benchmarks, we
can see that there is, on average, an area saving of 57.23% for M-CAS, which becomes
especially significant if a large number of logic cones are locked in a circuit. We also
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obtained the delay and power difference between M-CAS and SFLL-HD. The negative
delay difference in Table 1 indicates slightly better SFLL-HD timing performance for some
benchmarks (e.g., c432, c1908, sqrt and seq). From the last column in Table 1, we can see
that M-CAS fares better in terms of power consumption. This is expected as M-CAS can
be implemented with fewer gates than SFLL-HD, resulting in lower leakage and dynamic
power consumption. Thus, when area, power and timing are considered together, we can
see that M-CAS performs better. This is because the percentage difference in area and
power is much higher than the percentage difference in timing. In other words, M-CAS
saves more area and power than it loses out on timing to SFLL-HD.

Figure 16 shows how the number of SAT iterations required to break M-CAS varies with
the model count (i.e., the number of patterns for which the original circuit is corrupted) for
the apex2 benchmark. In this experiment, the number of inputs used was N = 10, and we
generated 5000 instances of M-CAS, by varying Ksecret as well as the CAS-Lock structure
(by changing AND’s ↔ OR’s). Note that each point in Figure 16 is a separate circuit with
varying model counts, on which SAT attack was conducted. Given N = 10, the maximum
number of SAT iterations is 210− 1 = 1023 and the maximum output corruptibility for the
modified original design can be 2N−1 = 29 = 512 (analogous to 50% Hamming Distance)11.
We can see that when the model count is either low (i.e., 1) or high (1023), the number of
SAT iterations is equal to brute force (i.e., 1023). However, when the model count is varied
between these ranges, we can see a sharp decline in SAT resistance (< 400 iterations). In
Figure 11, we saw that regardless of the corruptibility of CAS-Lock, the number of SAT
iterations was always maximum (i.e., equal to 2N − 1). However, for M-CAS, we can
see a sharp decline in SAT resistance as the output corruptibility of the original circuit is
varied. Thus, by adopting M-CAS, we are inevitably sacrificing SAT attack resistance for
removal attack resistance.

Also, given the same model count, we can observe some variability in SAT iterations
in Figure 16. This is due to the inherent randomness of the SAT solver (e.g., random
restarts of the underlying DPLL engine). In any case, as the model count (and thus, output
corruptibility) of the original circuit is varied between 1 and 2N , the SAT attack requires far
less iterations to resolve the correct key. In addition, very high corruptibility (e.g., Model
Count = 511) leads to a higher success probability for SAT attack. This is evidenced in
Figure 16, where we can see that only a few instances of designs with output corruptibility
equal to ≈ 511 requires a high number of SAT iterations (e.g., ≈ 500 iterations). Most
instances in that corruptibility range terminate in less than 100 iterations.

5 Discussion
Table 2 shows how each logic locking technique performs in the face of four known attacks.
In the table, Low refers to the fact that a given attack has low (and almost zero) success
probability against a given countermeasure. In other words, the countermeasure is robust
against the given attack. Medium implies that the attack has a non-negligible success
probability and could be successful under some circumstances. For example, M-CAS
configured with sufficiently high output corruptibility leads to a higher SAT attack success
rate. High means that the countermeasure is extremely vulnerable to the attack.

From the table, we can see that CAS-Lock is well-protected against black-box attacks
such as SAT, AppSAT and Bypass. Here, black-box refers to oracle-guided attacks i.e., the
attacker uses input-output responses from an unlocked IC to find satisfying assignments.

11Model count when the last gate in the AND tree is an OR gate is 512. A model count in the range
512 < N < 1023 cannot be produced with any combination of ANDs and ORs in M-CAS. However, with
all ORs in the cascade, we can produce a model count of 1023, which is why there is one data point when
N=1023. Thus, valid values for model count are 1 < N < 512 and N = 1023, which is why the figure
appears truncated between 512 ≤ N < 1023
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Figure 16: Model Count (i.e., number of incorrect input patterns in the original circuit)
vs SAT Iteration for apex2 Logic Cone with N = 10.

Table 2: A comparison of various logic locking techniques, attacks and countermeasures.
‘Low’ means that the attack is not successful on the countermeasure i.e., it is reduced to
brute force in the input or key length, or is inapplicable, ‘Medium’ implies that the attack
works with limited success, while ‘High’ implies that the countermeasure is extremely
vulnerable to the attack.

Unlike white box attacks, there is no need to compute structural metrics or analyze the
gate-level implementation. Therefore, CAS-Lock, coupled with camouflaging (as mentioned
in Section 3.5), is sufficient against adversaries such as reverse engineers in the supply chain,
who would be forced to take a black-box approach. However, CAS-Lock needs to be fortified
with M-CAS to protect against white-box adversaries. This includes untrusted foundries
who have a full view of the netlist and gate identities. Similar to MCAS, SFLL-HD is also
suitable in the scenario of untrusted foundries.

From the comparisons, we can also see that bypass attack success is linked to output
corruptibility. Schemes such as AntiSAT (SI) and SARLock which have extremely low
output corruptibility are highly susceptible to bypass attacks. Conversely, SLL, CAS-
Lock and similar schemes which can be configured for high output corruptibility are
harder to compromise using bypass. Another observation from the comparisons is that
output corruptibility is a fundamental limitation for both M-CAS and SFLL, i.e., high
corruptibility leads to lower SAT resistance. However, a sufficient level of corruptibility is
also desired. This is because a design with little corruptibility is approximately equivalent
to the original, which might be good enough for counterfeiters.
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6 Conclusion
In this paper, we presented CAS-Lock, a new logic locking scheme which simultaneously
combats bypass and SAT attacks, while maintaining non-trivial output corruptibility. We
also showed that it can be used as a secure logic locking scheme under a black box attack
model. Thorough proofs as well as simulation-based demonstrations were provided to
validate CAS-Lock. We also proposed M-CAS, an extension to CAS-Lock, which modifies
the original design in order to prevent removal attacks against white-box adversaries such
as untrusted foundries. We also evaluated the trade-off between SAT resistance and output
corruptibility for M-CAS.
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