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Abstract. Masking is a well loved and widely deployed countermeasure against
side channel attacks, in particular in software. Under certain assumptions (w.r.t.
independence and noise level), masking provably prevents attacks up to a certain
security order and leads to a predictable increase in the number of required leakages
for successful attacks beyond this order. The noise level in typical processors where
software masking is used may not be very high, thus low masking orders are not
sufficient for real world security. Higher order masking however comes at a great
cost, and therefore a number techniques have been published over the years that
make such implementations more efficient via parallelisation in the form of bit or
share slicing. We take two highly regarded schemes (ISW and Barthe et al.), and
some corresponding open source implementations that make use of share slicing,
and discuss their true security on an ARM Cortex-M0 and an ARM Cortex-M3
processor (both from the LPC series). We show that micro-architectural features of
the MO and M3 undermine the independence assumptions made in masking proofs
and thus their theoretical guarantees do not translate into practice (even worse it
seems unpredictable at which order leaks can be expected). Our results demonstrate
how difficult it is to link theoretical security proofs to practical real-world security
guarantees.
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1 Introduction

Nowadays, masking is arguably one of the most prevalent countermeasures against side
channel analysis. Technically speaking, a Boolean masking scheme splits the key-dependent
intermediate state x into a set of shares (a:(l), @ x(d)), where W @z @ .. @D = 2.
Ever since Ishai, Sahai and Wagner proposed the probing model and the ISW multiplication
scheme [ISW03], various new models/masking schemes/improvements have been proposed
e.g. [BBD'16, BBP*16, BDFT17]. The goal of these newer developments is to provide
better security and/or to save randomness.

Despite increasingly sophisticated leakage modelling and proof techniques that feature
in recent masking papers, it remains that in most cases, it is the abstract masking algorithm,
rather than its specific implementation, that gets the security proof. In other words, it
is up to the crypto-engineers to check whether their implementations have “faithfully”
reflected how the algorithm proceeds and whether their chosen platforms satisfy the
model assumption used in the security proof. The past 20 years of developments in
side channel analysis suggests that this is by no means a trivial task. In the early days,
dual-rail logic seemed to be a tempting solution for masking against power analysis in
hardware [TV04, PMO05]. However, the early propagation effect was shown to undermine
its resistance in practice [MOPO7]. Trichina’s masked AND-gate [Tri03] was designed as a
protected 2-input AND gate, yet glitches easily defeat such protection [MPGO05]. Thanks to
the “non-completeness” property, threshold implementations [NRRO6] remain secure even
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in the presence of glitches: however a number of effects including “coupling” [CBGT17,
CEM18, LBS19] may contribute to power consumption that unexpectedly re-combines the
secret shares.

On software platforms similar “security gaps” can be as devastating as on hardware
platforms. Unlike implementations in (custom designed) hardware, software implemen-
tations on commercial processors are restricted to work with a certain set of available
instructions. Whilst the instruction set is well defined, and the architectural behaviour is
clearly documented, more complex processors have a number of non-architectural registers
(e.g. buffers supplying the memory subsystem) and so called micro-architectural features
that are not transparent to the developer. Such micro-architectural features can lead to
unexpected leakage behaviours: e.g. a masked value still leaks from the buffer in the
memory subsystem several cycles after a store operation; or a shift operation which may
be implemented via a dedicated Barrel shifter that is always active.

In this paper we stress that crypto-engineers must be extremely cautious about the
security assumptions of higher order masking schemes on software platforms. To this end,
we analyze a software implementation of Barthe et al’s secure multiplication [BDF*17],
which is provably secure in a “bounded moment model”. Despite the fact that the authors
did NOT directly link this scheme with any specific software or hardware implementation,
due to its intrinsic parallel feature and good performance for higher-order masking [JS17], it
has become a prevalent choice for a few bit-sliced masking implementations [JS17, GJRS18].
However, these implementations stipulate that all shares of secret x should be stored within
one register (denoted as “share-slicing” in this paper), which is in fact a less-investigated
option in the previous studies of software masking [JS17]. In the context of “share slicing”,
the “independent leakage” assumption in the bounded moment model [BDF17] implies
that “there should be no joint leakage between bits within an operand” (we call such
leakage “bit-interaction”). Journault and Standaert implemented a 2/4-share version of
Barthe et al’s multiplication on ARM Cortex-M4 processor and found no evidence for
lower-order leakages [JS17]. However they conservatively phrase their security claim with
only half of the security order that the theoretical scheme provided.

Other previous studies cast doubt on the ability to avoid bit-interaction leakage. Levi,
Bellizia, and Standaert discovered that with appropriate experimental setups, a coupling
effect can be observed for a 2-share multiplication [LBS19]. In an entirely different
context McCann et al’s work provides strong evidence for the statistical significance of
bit-interaction terms for both the shift and multiplication instructions [MOW17] on an
MO and M4. Sasdrich, Bock, and Moradi also observed bit-interactions on an address
bus, which defeats a global table-based threshold implementation if all 3 shares appear
simultaneously in the table look-up operation [SBM18].

Our contributions. We demonstrate that the “independent leakage” assumption does
not hold on an ARM Cortex M0 and M3. Whilst “coupling” [LBS19] was recently offered
as an explanation in this context, we argue that at least in the case of the M0 and M3,
their micro-architectural behaviour is the (more likely) source.

Because the internal architecture of the M0/M3 implementation of the LPC series is
not documented, we explain our reasoning based on a (manual) simulation of a simple
Barrel shifter. Experiments (on an M0/M3) demonstrate that second order leakage terms
in the form of bit-interactions can be observed (even when the coupling effect modelled
by [LBS19] does not come into play). Unfortunately some of the instructions with strong
bit-interaction leakage terms are quite common among implementations of Barthe et al’s
multiplication.

Our experiments clearly show that the bit-interaction leakages are devastating for
share-sliced implementations of higher-order masking. We investigate a bit-sliced second-
order implementation of the ISW masking scheme (utilising share slicing) to find that
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the masked AND gate has first order leaks. Next we replace the ISW AND gate with an
implementation of Barthe et al. (using two as well as four shares) and find that also the
latter is completely vulnerable and does not deliver on the theoretical security claims: we
detect leaks on all orders lower than four, and it turns out that the second order leakage
is as informative as the fourth order leakage. This implies not only a theoretical order
reduction but one that leads to an attack that is better than the fourth order attack in
real terms.

2 Software masking: where are we now?

We focus on Boolean masking schemes in this paper. In a Boolean masking scheme, a
sensitive intermediate state z is represented by a d-variate set (z(), 2. 2(9) where

W @@ @ .. @@ = 2. We use capital letter A to represent the first encryption block,
whereas B, C, D, ... denote the following concurrent encryption blocks respectively. Ag-z)
stands for the i-th share of the j-th bit of block A.

Since the shared computation for any linear transformation is trivial, the differences
between various masking schemes lie in the non-linear transformations (a.k.a. the Sboxes).

Three popular solutions exist in literature:

1. Using table lookups [Mes01, PRO7]. According to the first d — 1 shares, a masked
Sbox is generated (beforehand or on-the-fly), so that the masked Sbox can be
simplified as a single table look-up.

2. Using bit slicing. Although protecting a whole Sbox can be difficult, there are various
schemes that protect a simple gadget, such as a 2-input AND gate [ISW03, Tri03,
BDF"17]. As the XOR operation has a trivial shared form, we can decompose the
Sbox into such gadgets and apply our side channel protection in a divide-and-conquer
manner. By default, this approach fits the customized hardware better, as the
proposed scheme is designed for 1-bit computing unit. In most software implementa-
tions, to avoid wasting the remaining bit-width that a commercial processor provides,
engineers usually deployed a bit-sliced version of these schemes, which will be further
discussed in detail.

3. Using finite field arithmetic. Instead of relying on “gate-level” protections, an
alternative solution would be extending the protected “gadget” to a larger field [RP10,
CPRR14]. This usually means the engineers can build Sboxes based on secure field
computations, which fits well for Sbox constructions based on finite fields (eg. the
AES Sbox). Note that even in this case, as field computation is hardly feasible for
the same bit-width of modern CPUs, in practice these schemes might still come with
some bit-slicing effort [GR17].

2.1 Bit-slicing

Biham proposed the bit-slicing technique for software implementations of DES in order to
take full advantage of the available bit-width [Bih97]. The core idea consists of “slicing”
the bits that share the same operation to one register, so that all the following bit-wise
operations (such as AND, XOR, OR, etc.) are performed in parallel on all bits at once.
For instance, for a block cipher in the ECB mode, we know for sure that all the same bits
from different blocks must share the same encryption operations. Thus, a register can be
packed as Table 1:

In the following discussion, we denote this type of bit-slicing as “block-wise” slicing.
Although “block-wise” slicing has little precondition, for an n-bit processor, it does require
at least n concurrent blocks to achieve its best performance. Besides, as each register only



Si Gao, Ben Marshall, Dan Page and Elisabeth Oswald 155

Table 1: Bit allocation for block-wise bit-slicing

Bit no 1 2 3 4
Stored bit A1 B1 Cl D1

represents 1-bit of the state, an AES-128 would need 128 32-bit words, which is clearly
out of the bound for general data registers in most CPUs. As a consequence, most of
the states must be stored in memory, which leaves a moderate pressure on the memory
footprint. For AES-like ciphers, as all the Sboxes in the round function are exactly the
same, we can also choose an “Sbox-wise” slicing as Table 2:

Table 2: Bit allocation for Sbox-wise bit-slicing

Bit no 1 2 | .. 16 17 118 | ... | 32
Stored bit Al Ag A121 Bl Bg 3121

As the first bits from all 16 Sboxes are slicing together here, it only takes [{¢] blocks
to fill up an register. For a 32-bit processor, 2 concurrent blocks can already ensure the
best possible throughput. Meanwhile, 8 32-bit words has much lower cost in terms of data
registers or memory usage.

2.2 Masking: the share allocation problem

The first question a crypto-engineer has to answer when implementing a bit-sliced masking
scheme, is how the shared bits should be stored in registers/memory. Since a d-share
masking scheme expands one block to d times its size, we need d times the memory space
compared to the unprotected version. Previously, the preferable solution was to keep
the same bit allocation as the unprotected version, while each share will take its own
register. In this paper, we called this strategy “bit-only-slicing”. A 2-share block-wise
“bit-only-slicing” implementation on a 32-bit processor can be written as Table 3:

Table 3: Block-wise bit-only-slicing:the first share

Bit no 1 2 3 4
Stored bit Aﬁ” Bgl) C’fl) Dgl)

Note that this type of implementation not only poses a pressure on the register/memory
cost, but also risks share-combining in the memory accesses. As each data share is stored
individually, loading/storing data shares sequentially might lead to transition leakage
caused by the memory buffers. Obviously, the other option would be packing multiple
shares into one register, which will be denoted as “share-slicing” in the following. A
2-share block-wise “bit-only-slicing” implementation is presented in Table 4: for one block
encryption, this type of implementation uses far less general-purpose registers than the
one in Table 3.

Table 4: Block-wise share-slicing

Bit no 1 2 3 4
Stored bit | AV | 4 | BM | B

Considering most masking schemes are designed as a serial procedure, splitting data
shares from one register and applying the required operation is not efficient at all. On the
other hand, bit-only-slicing complies with the sequential probing model, which acts as the
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foundation for many security proofs. As a consequence, until recently, bit-only-slicing was
indeed the dominant solution, while share-slicing was the unpopular and neglected option.
In fact, in many previous papers, “software bit-sliced implementations” usually imply bit-
only-slicing [BGGT14, dGPdLP ™17, GR17]. Goudarzi et al. evaluated the performance of
various bit-sliced masking multiplication schemes in ARMv7 assembly [GJRS18]: except for
Barthe et al.’s multiplication [BDF17], all other schemes were implemented with “bit-only-
slicing”. However, in 2017, Barthe et al. proposed the “bounded moment model” [BDF*17],
together with a multiplication gadget that is designed to run in a parallel environment
(Algorithm 1):

Algorithm 1 A 1-bit 2-share Barthe et al’s multiplication

Require: a = (a(l),a(g)) and b = (b(l),b(g))

Ensure: ¢ = (¢, c?) that satisfy ¢V @ c® = (aM & a@) A (b & b))
cxl—aANnbd

B {07 1}2

cyl<—z21dr

: 224 a® ROT(b,1)

Y2 —yl ® a2

: ¢ y2@® ROT(r,1)

: return c

N O Ut R W N

Note that ROT in Algorithm 1 means “rotating 1 position for all the shares”. Despite
the fact that the authors did not link their algorithm with any specific software or
hardware implementations, as the security claim is proved in a parallel model, the natural
implementation on software platforms is indeed, “share-slicing”. The 32-bit Thumb-2
instruction set (explained in Section 3.1) provides the “flexible operand 2”, which suggests
that shifting/rotation can possibly be done without costing any instruction cycles. As a
consequence, ROT in Algorithm 1 can be efficiently implemented with a rotation (for 32-
share multiplication) or a few shifts (for less shares). Both Goudarzi et al’s work [GJRS18]
and Journault and Standaert’s work [JS17] proves that this type of implementation does
gain a significant advantage in terms of efficiency.

2.3  Well-known threats

It can be easily forgotten that Barthe et al’s multiplication, when implemented in a share-
slicing software implementation, does not share the same assumption as most previous
software masking schemes. Technically speaking, the “independence assumption” used by
the bounded moment model, has only been extensively studied on hardware platforms. In
a share-slicing setup, the “independence assumption” must be interpreted as follows:

Assumption (Bit-wise independent assumption). For all bit-wise instructions used by
the encryption, their leakage functions must not exhibit joint leakages of bits within the
same operand (register).

In other words, the only permissible leakage functions for bit-wise operations consists
of linear combinations of their bits; no higher order term may occur.

The major threat listed in the literature for software masking, is the transition-based
leakage [BGG'14, dGPALP*17]. Balasch et al. proposed the “order-reduction” theorem,
which suggested engineers can take a conservative approach to avoid security threats,
by doubling the desired security order [BGGT14]. Although the authors did not make
it explicit, their security proof actually relies on the fact that the masking schemes
use “bit-only-slicing”. However, nowadays where “share-slicing” is considered to make
implementations more efficient, we must be aware that the results of [BGG™14] do not
cover “share-slicing”.
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To this end, it is worthwhile to check the validity of this assumption in practice. Clearly,
coupling is still an issue [LBS19], as it roots in lower-level physical circuits. However,
considering the enormous micro-architectural events happening inside our tiny “black-
boxes”, it would not be surprising if some of them lead to some unexpected leakages. After
all, are we being too optimistic to believe the leakage behaviour of software platforms
will resemble its hardware counter-part, even if we know the running circuits are entirely
different?

3 CPU Datapaths: Assumptions v.s. Reality

As previously stated, software developers are often required to treat a CPUs as a “black
box” in terms of how it executes the instructions they program. Further, we have also seen
that certain assumptions about how the CPU handles data are essential for the security of
bit-sliced cryptographic implementations.

Clearly it is a matter of some concern that the assumption on which the security of
a crypto-system depends cannot be verified due to the black-box nature of many CPUs
prior to implementing the system.

Most modern CPUs are implemented as data processing pipelines, where the execution
of instructions is spread over time into stages. This reduces the time taken to produce a
result for each stage, and means a CPU can be run at a higher clock rate, thus improving
its performance. The ARM MO and M3 CPUs, used for the experiments in Section 3.3
both use 3-stage pipelines. Pipelines are a well known artifact in side-channel analysis, and
care must be taken to make sure that operands which are assumed to be independent are
not operated on adjacently in the pipeline which would otherwise reduce the security level.

While pipeline depth and the function of each stage is often lightly documented, the
exact datapath structure inside the pipeline almost never is and can even change between
instantiations of the same CPU core. This makes it hard to discern if and how interaction
between adjacent bits of the same register occurs, even in instructions which explicitly
only operate in a bitwise fashion. It is this sort of interaction which must be avoided to
preserve the security level of bit-sliced masking schemes.

3.1 ARM Cortex-M family

The ARM Cortex-M family is a group of 32-bit RISC processors, firstly introduced back
in 2004 [Mar13]. Unlike the Cortex-A family (for supreme performance) and the Cortex-R
family (for reliable mission), the Cortex-M family aims at various micro-controller usage
in many energy-efficient systems. In this paper, we select two Cortex-M processors as our
targets: one Cortex MO (LPC 1114) and one Cortex M3 (LPC1313). Both processors were
manufactured by NXP. Technically, both processors have 16 32-bit registers, executing the
Thumb instruction set [ARMa, ARMb]. However, the Cortex-M0 implements the ARMv6-
M architecture, which predominantly supports 16-bit Thumb instructions (a.k.a. Thumb-
1) [ARMa]. The Cortex-M3, on the other hand, implements the ARMv7-M architecture,
which supports “a large number of 32-bit instructions that Thumb-2 technology introduced
into the Thumb instruction set” [ARMD)].

One important difference (for cryptographic developers at least), is that the Thumb-2
technology in ARMv7-M allows the “flexible operand 2”, which suggests one of the operand
can be shifted without costing extra clock cycles. In Cortex-MO, performing the same
operation must take at least one explicit shift instruction. The instruction set supports four
types of shifting: the logical shift left/right (LSL/LSR), the arithmetic shift right (ASR),
and the rotate-right (ROR). Note that for Cortex-MO0, the rotation number of ROR has to
be stored in a register instead of an immediate value. As our experiments run both on
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Cortex-MO and Cortex-M3, throughout this paper, our targeted masked implementation !
always uses 16-bit Thumb-1 instruction by default, despite the fact that on Cortex-M3
there might be more efficient options.

3.2 Specific Example: Barrel Shifters and ARM

Here, we look at how some implementations of an ALU can jepoardise the security of a
bit-sliced implementation.

It is understandable to assume that if a bitwise instruction is used, no two bits will
interact at a hardware level. However, this is not the case in a typical CPU design.
Implementing multiple different instructions in hardware requires that their results be
calculated simultaneously, and then the desired one selected, with the others ignored.
Similarly, the exact implementation of a hardware datapath can introduce unexpected
interactions which cannot be avoided, as they are intrinsic to the datapath circuit.

Figure 1: A simplified block diagram of the ARM ALU, showing the operand being fed to
a barrel shifter before reaching the ALU.

Whilst the exact architecture of the Cortex-M processor is not publicly accessible, most
public sources show a diagram as Figure 1 [Fur00]. Figure 1 shows a block diagram of how
this fits into the ARM ALU. As one input operand to the ALU can be rotated prior to
being fed to the rest of the ALU, such architecture explains the reason why Cortex-M3
processors can support the ‘flexible operand 2” feature. No clue has been given on whether
Cortex-MO follows the same diagram as Figure 1: however, as Cortex-MO also supports
shift instructions, there must be a shifter somewhere on the datapath 2.

In hardware, shift or rotation by a constant is simply a re-arrangement of wires and
requires no logical interaction of the bits. This is the impression given in lines 3 and 4
of Algorithm 1. Rotation or shifting by a variable amount (or, a constant amount using
hardware capable of variable amounts) however requires that result bits be sourced from
one of N different input bits. In the case of the ARM MO and M3, N = 32. To implement
this in a single processor clock cycle, a circuit construct known as a barrel shifter is used.
In a 32-bit barrel shifter, 5 multiplexing stages are used to select the correct output bit
from the inputs. We refer to bit I of the input word to the barrel shifter by B;, and the
bits of the shift amount by S;.

From Figure 2, we can see that in the first layer of the barrel shifter, any bit B; could
interact with bit B(;1)%32 based on bit Sy of the rotate amount if the logic path from the
operand sources (B;,B(;+1)%32) is shorter than the path to the multiplexor input-select

1 This only applies to the triggered part of the masked implementation. Compilers can decide which
instruction set to use for other non-critical parts of the program.

2If a barrel shifter is not placed before the ALU, it could possibly be parallel to the ALU or even
packed as a part of the ALU.
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B(i+16)%32

3
B(i+8)% 32

Iz
B(i+4)%32
I1
B(i+2)%32

I,

B(i+1)%32

B,

1

sl | s | osl21 | sB1 | sl |

Figure 2: Logic function for a single output bit of a 32-bit wide barrel shifter, as found
in the ARM ALU. An input word B, is rotated by an amount s to produce a result Out.
Note the intermediate nets I, at each stage of the circuit.

signal (Sp). This would cause the intermediate net I to transition. Likewise in layer 1, Iy
can interact with bit b;2)%32, and so on down to interactions between I3 and b(;116)%32-

These interactions are heavily dependent on the physical implementation of the barrel
shifter, and how the multiplexor input-select signals causes hamming distance leakage
between bits of the register. This hamming distance leakage can occur when the input
select signal to the multiplexor arrives later than the input signals, or otherwise changes
after the input signals have stabilised. This can be caused by the combination of two
effects: 1) when the input-select bits of the multiplexor glitch. 2) when the input-select
bits of the multiplexor do not glitch, but arrive later within the clock cycle than the input
bit values. These effects are shown for a single bit of the barrel shifter in Figure 3. Clearly,
this sort of behaviour can be expected to break the bit independence assumption stated in
Section 2.3.

3.3 Instruction-wise leakage analysis on bit-interaction

As we have discussed in the previous sections, due to various micro-architectural effects,
the leakage of a commercial processors can sometimes falsify the “bit-wise independent
assumption”. Unlike the physical coupling effect that “uniformly” exists for every instruction
that operating on the shared data, such micro-architectural level leakages strongly depend
on the specific instruction. To this end, we have performed TVLA-based [GGJRT11]
leakage analysis on several 16-bit Thumb-1 instructions on both our Cortex M0 (NXP
LPC1114) and M3 processors (NXP LPC1313). More specifically, for the fix group, the
32-bit operand is composed as 16 2-shared bits of Os (in other words, {a,a,b,b, ..., p,p},
where a, b, ..., p are 16 1-bit randomness). The random group is composed with all random
values as usual. Theoretically speaking, a fix-vs-random test here should reveal any leakage
that combines bit 2¢ and 2i + 1, which could increase the signal-to-noise radio (SNR)
compared to operating 1 bit with 2 shares and setting all other bits to constant?.

The target code snippet includes one target instruction, with 8 NOP-s (mov r8,r8)

3Strictly speaking, it still depends on the specific leakage model: however, in practice, we found this
approach provided a better SNR in most cases
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Figure 3: Timing diagram for a single output bit of a barrel shifter, corresponding to
figure 2. At time 1, on the rising edge of the clk signal, input bits B; and B;;1 toggle,
where B; remains constant and and B, 1 toggles. The toggling of B;;1 is propagated to
Iy, since the multiplexor select signal sg is still low. This value continues to propagate all
the way to Out; at time 6. However, the signal sy changes at time 3, due to differences
in path length to the multiplexor. This means that at time 4, the output of the first
multiplexor, Iy changes back to represent the value of B?. This difference in path lengths to
the multiplexor between B;, B;+1 and sg has hence leaked the hamming distance between
Bi and Bi+1-

before/after the target instruction. An example code snippet can be found in Figure 4.
All relevant registers (except for the one that stores the shared operand) have been cleared
to 0 beforehand, so that there will be no leakage from other sources. The target cores run
on two SCALE boards [Pag], where all the compiling flags are set to the default values
(details can be found the Github repository of the SCALE project). By default, SCALE
boards use 3.3 V power supply with a 100 ohm shunt resistor [Pag]: since the authors
of [LBS19] stated the coupling effect can be amplified with larger external resistors, one
may ask whether this setup causes significant coupling effect. We would like to argue
that in the following experiments, coupling effect is at least, not the only contributor to
the bit-interaction leakage: even if there is no external resistor, such leakage can still be
detected in our experiments. Interested readers can find the experimental results and
discussions in the Appendix.

Our target processors always run at 12 MHz, so the whole snippet takes around

Instruction test:
//rl= shared data, all other registers cleared

nop

//8 mnops

nop

Isls 13, rl,#1 //Target instruction
nop

e //8 mnops

nop

Figure 4: Instruction test code for Thumb-1 instruction LSL
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17 x 83.33ns = 1417ns. We have captured our traces with a Picoscope 2206B, running at
250MSa/s. To make sure the target leakage is captured, our traces contain 600 samples,
which also cover a short period after the target snippet. For each tested instruction, we
have captured 1 million traces for T-test.

TVLA of share-slicing: MOV on MO . TVLA of share-slicing: MOV on M3
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Figure 5: Instruction-wise leakage analysis: MOV/STRB

The top two figures in Figure 5 demonstrate the T statistics we got from testing the
MOV instruction on both M0 and M3. Apparently, the target instruction lies somewhere
around sample 150, which always shows a strong second-order leakage. MOV did not
show clear first order leakage on MO or M3, within 1 million traces. This suggests that the
“coupling” effect [LBS19] has not become the dominant factor yet. On the other hand, in
our experiments, many instructions did show some barely exploitable leakages, such as
STRB in the bottom of Figure 5. Explaining such leakage could be a difficult task: the
“coupling” effect [LBS19] could be one of the reasons, but all micro-architecture effects
may also contribute. Nonetheless, the magnitude difference suggests such leakage might
never be useful in practice, as the higher-order attacks seem to be much more efficient.

An intriguing phenomenon can be spotted from Figure 6. Unlike other instructions,
shift instructions (LSL/LSR) can sometimes create a much stronger bit interaction, which
leads to strong first-order leakage. Such leakage can even surpass the magnitude of the
second-order leakage, making it a perfect target for power analysis. Surprisingly, only one
of the shift instructions will leak this way: for our M3 core (NXP LPC1313), it is the left
shift (LSL) has a strong first-order leakage; on our M0 core (NXP LPC1114), it is the
other way around. Nonetheless, such leakage can possibly lead to devastating threats in
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Figure 6: Instruction-wise leakage analysis: LSL/LSR

practice: if the implementation accidentally uses the “leaking shift”, the security order can
be significantly reduced without investigating any external amplifying effort [LBS19]. We
suspect this phenomenon is caused by the “barrel shifter”, although we cannot confirm it
as both cores’ design codes are not publicly available.

Other tested instructions. In our experiments, we have tested 12 16-bit Thumb-1 in-
structions. Most of other instructions’ results, to some extent, resembles Figure 5. Some
of those involve subtle leakage behaviours that might root in the unused datapaths within
the ALU. Nonetheless, as these results are significantly weaker than Figure 6, we leave the
detailed investigation as future study. Due to the page limit, we report the rest of our
tests in the Appendix.

4 Studying the Concrete Impact of Bit-Interactions
4.1 A masked AES with share-slicing

A natural question to ask is whether bit-interaction leaks will lead to any real threat in
practice. Our previous sections seem to suggest it may bring severe security reductions, at
least for the “leaking shift”. However, strictly speaking, we still need to validate such an
effect in a complete masked cipher rather than some small and somewhat artificial code
snippets. The only publicly-available share-slicing example we found on Github is from
Virginia Tech [YYPT18]%: the underlying masking scheme is a 2-share one, with a 2-share
ISW multiplication as the basic non-linear gadget for the AES Sbox. The entire project is
written in C, which makes it fairly easy to adapt to any new platform.

4Github repository at: https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation
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Table 5: 2-share block-wise share-slicing
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Figure 7: 1st Order TVLA on the AES Shox part

Although not formally documented, this implementation stores both shares in the same
register (a.k.a. share-slicing). Block-wise share-slicing offers good flexibility: for the linear
transformations, as every bit in one register comes from exactly the same position within a
block, the computation code will always stay the same. For clarity, we provide the register
allocation for this implementation in Table 5.

Implementing the ISW multiplication [ISW03] is not trivial in this representation,
as the ISW multiplication is designed to operate sequentially on each share. The au-
thors [YYP'18] used a “bit-swap” table, which swaps the first and second share through a
table look-up. Obviously, any transition from this share-swapped state to the normal state
leads to exploitable leakage. Besides, sending all the shares to the address bus might also
cause problems on certain platforms [SBM18]. Since the ISW multiplication is also written
in C, the compiler will autonomously decide the detailed execution, which can easily lead
to shares recombination through register or bus transitions. As a consequence, it is indeed
expected to see some first order leakage, at least for the multiplication (or AND2) gadgets;
that is exactly what the standard first order T-test shows in practice. As we can see in
Figure 7 all 34 AND gates used in the bit-sliced AES Sbox produce significant leakages. We
suspect the majority of the leakages originate from the register/bus transitions happening
within the ISW multiplication. In that sense the security loss complies with the “order
reduction theorem” [BGGT14].

4.2 Share-slicing with Barthe et al.'s multiplication

As the ISW scheme is designed with a serial computation model in mind, one may
argue that the security flaw comes from the mismatch of the ISW multiplication and the
intrinsically parallel share-slicing implementation. Thanks of the flexibility of the Virginia
Tech implementation, it is easy to replace the ISW multiplication with Barthe et al’s
multiplication and to include a 4-share version to evaluate higher order leakage.

We wrote the code for both the 2-share and 4-share AND gates in Thumb-16 assembly:
we tried our best to resemble Goudarzi et al’s code [GR17], which contains ARM assembly
instructions that are not available on the Cortex M0. Note that Goudarzi et al’s code
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Triggered computation:
// 0 =a, rl =Db, r2=r

movs rd, r0 //rd=a

ands rd, rl //rd=a&b

eors rd, r2 //rd=(a&b)"r

// Generate Mask Oxeeeceecee

movs r5, #0xee

eors r5, r6 //rb=0xeeeeeceee
//rotation of b by 1

mov r8, r8 // Clear HD

Isls r6, rl, #1 // r6=b<<1

mov r8, r8 // Clear HD

//The following computation has been commented out
//ands r6, rb //r6=(b<<1)&0xeececececee
//1lsrs 7, rl, #3  //r7=(b>>3)

//bics r7, b

//eors r6, r7 //r6=(b<<<1)

/...

Figure 8: “Trimmed code” for 4-share Barthe et al’s multiplication

actually contains both shift left and shift right operations ®: the unrolled version uses LSR
(a.k.a right shift), whereas the rolled version uses LSL (a.k.a left shift).

To ensure that any leakage that we may encounter is related to bit-interactions rather
than transitions we would need to manually check the code for the potential existence of
transition based leaks. This task is much more complicated than it sounds at a first glance:
keeping track of all possible transitions in the micro-architecture is almost impossible for
external developers, considering the micro-architecture is not fully transparent. A possible
workaround is to focus only the shifting part (eg. line 4 in Algorithm 1) instead of the
whole multiplication. As our target in this paper is the bit-interaction leakage, in the
following experiments, we always examine the leakage for this particular “trimmed code”
for acquisitions (Figure 8). Two extra nop-s (“mov r8, r8”) haven been added to make
sure there is no transition-based leakage on data b.

As mentioned before, complex power simulators like ELMO [MOW17] can detect the
potential bit-interaction here. This is hardly surprising though: Table 9 in [MOW17]
explicitly explained that second order bit-interaction terms exist in ELMO’s power model.
Having said that, as the bit-interaction is relatively weaker than the other terms, the target
leakage can be easily buried by algorithmic noise. In our experiments, the default version
of ELMO cannot report such leakage within 1 million traces, unless the power model is
tweaked in a certain way. Due to the space limit, details about ELMO simulation will
be presented in the Appendix. In the following sections, our experiments only focus on
realistic acquisitions.

Our attack setup is fairly straightforward: for this block-wise bit-sliced implementation,
we set the first block as our plaintext and set all other blocks to random values. This
corresponds to the most practical yet challenging scenario: only 2 bits (or 4 bits in the
4-share version) are part of our attack target, all other bits are treated as noise. We chose
one of the multiplications close to the Sbox output as our target so that the key guesses

5Here we focus on the shift-s that involve the full shares. There is usually an opposite shift operating
on part of the shares, which can be slightly more complicated for security analysis.
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Figure 9: Attacking the 2-share version on M3

will have a complicated non-linear impact on the intermediate state. Before entering the
target AND, both inputs are refreshed to make sure their shared form are independent.
All traces were captured with a PicoScope 2206B scope running at 250 MSa/s, using the
same MO/MS3 cores in the last section. Unlike the previous work [LBS19], we did not try
any advanced distinguisher here: as the target intermediate state is only 1 bit and the
leakage sample is a univariate one, most distinguishers should be equivalent [MOS11]. In
the following experiments, we simply use the T-test based 1-bit DPA [MOPO07], as it can
share exactly the same code as our TVLA test.

4.3 Attacks on a 2-share masked implementation

The T-statistic values in Section 3.3 seem promising, and thus unsurprisingly it is possible
to reveal leaks also within the more realistic code snippet that we are now using. Unlike
in the previous experiments, only the lowest 2 bits are valid shares which are contributing
to exploitable leakage and thus we must deal with a low signal to noise ratio. In practice,
the attacker may consider a number of options, such as attacking the first few AND-s
within the Sbox or taking the following plaintext blocks into consideration. However, as
the purpose of this paper is verifying the “bit-wise independent assumption”, we are after
a certificational attack rather than the “best strategy”.

Figure 9 confirms the “leaking shift” does lead to successful attacks. More specifically,
in the first order, the correct key byte becomes one of the front runners after 400k traces,
although it has not got much distinguish margin until 850k. Meanwhile, the second order
attack clearly shows the correct key byte after 500k and leaves an adequate margin ever
since.
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Figure 10: Attacking the 4-share version on M3: each trace repeat 1000 times

4.4 Attacks on a 4-share masked implementation

Attacking a 4-share version requires considerably more traces than a 2-share version. A
well established workaround (that does not require improving the SNR of the setup) is
to average over traces (with the same input) to reduce the environmental noise, see e.g.
Journault and Standaert’s work [JS17]. We adopt this practice for this attack.

Figure 10 shows the attack results for the 4-share version on our M3 core, where each
trace is averaged over 1000 acquisitions. The red dash-dot line represents the correct key
guess while the grey lines represent 255 wrong key guesses. Clearly, the second order
attack becomes the most efficient one, which suggests for this specific shift (LSL on M3),
bit-interaction leakages reduce the security order.

Perhaps the most interesting point is that we can still observe exploitable 1st order
leakage. The existence of such leakage is clear evidence for bit-interaction leakage because
it cannot be explained via transitions between consecutive values (see also the “order
reduction theorem” [BGG™14], no transition in the 4-share version should produce first
order leakage). Thus, the first order leakage here must come from other logic re-combining
(Section 3.2) or physical re-combing (“coupling”). The fact that such leakage does not
exist for the “non-leaking shift” (LSR on M3) suggests it is unlikely that coupling is the
dominant factor here, as coupling should affect similarly all shift instructions. As we can
see in Figure 10, the divisor 2 might be an overly-optimistic expectation for the security
order reduction and therefore invalidates that theorem for share-slicing implementations,.

Remarks. It seems important to clarify the differences between our results and the results
reported in Journault and Standaert’s work [JS17]. Multiple factors can explain the
differences. Firstly, although we only show the leaking shifts in this section, the only
shift instruction may behave differently. Secondly, the implementation of the M0/M3
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architecture differs across different manufacturers, thus it is a priori unclear if a specific
MO0/MS3 has a leaking shift (or not). Thirdly, although both experiments use repetition
and averaging, we use 500k traces, where each trace is average among 1000 repetitions—
Journault and Standaert’s work used 120k traces where each one repeated 50 times. The
total number of traces in our experiment is significantly larger. Last but not least, the
experiments were conducted with different setups (i.e. different boards, measurement
equipment and configurations), thus it is possible that our setup captured the existing
leakage whereas the other setup did not.

We would also like to emphasise that our point with Figure 10 is about the comparison
of these trends, not on any concrete signal-to-noise (SNR) level. Considering we used
1000 repetitions in our experiments, if the attacker builds a similar measure setup as ours,
he or she cannot successfully attack the masked implementation until he or she uses a
challenging amount of traces (say 1000 times of the number of traces in Figure 10). The
goal of the repetition here is merely getting power traces with higher SNR so that the
evaluation can be finished in a reasonable time period. One can still argue a weaker version
of the “independent assumption” may still hold, i.e. “although there are bit-interactions,
such leakage is way too noisy to explore”. Nonetheless, new SNR-dependent security
assumptions are certainly out of the scope.

5 Share-slicing: pros and cons

Our work clearly demonstrates that the “bit-wise independence assumption” does not
necessarily hold in practice and perhaps even worse we have observed a more severe security
reduction than the “order-reduction theorem” suggests. To this end, a natural question to
ask would be, is “share-slicing” still a valid option on software implementations, or is it
something we should always avoid?

5.1 Advantages of Share slicing

Despite the possible security flaws, “share-slicing” is still a tempting option for efficient
implementations. Previous works [JS17, GJRS18] already demonstrated that Barthe et al’s
multiplication [BDFT17] is relatively efficient, in terms of both the required randomness
and executing cycles. Its advantage keeps increasing with the security order: if the number
of shares equals the bit-width of the processors, the ROT in Algorithm 1 can possibly
be replaced with a rotation instruction, which further saves some executing cycles. Of
course, this will not be applied to instruction sets like 16-bit Thumb-1, as the rotation
instruction in Thumb-1 forces the source and destination register to be the same (i.e.
causes transition-based leakage). For more advanced instruction sets, this will not be a
problem anymore.

An interesting property of “share-slicing” is that it also creates this “barrier of threats”:
as any linear transformation should “faithfully” perform only the bit-wise XOR-s, in
theory, they should be free from the transition-based leakage. In other words, if we
assume the “ bit-wise independent assumption” is well respected in XOR, a share-slicing
implementation would bound most threats within the masked multiplications. In a bit-
only-slicing implementation, however, as different shares are stored in different registers,
the linear transformation (especially the loading data share part) could also produce
order-reduced leakage . Although protecting any non-linear component is still a tricky task,
such “barrier of threats” might be desirable for professional programmers and engineers.
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5.2 Disadvantages of Share slicing

All our experiments have proved that the “bit-wise independence assumption” does NOT
always comply with current commercial processors. This puts a question mark on the
security of such schemes, as the security proofs rely heavily on this specific assumption.
Perhaps the most devastating effect is, unlike the transition-based leakage, for logic re-
combing (or coupling [LBS19]), that such security order reduction is not bounded by the
divisor 2 [BGGT14].

Although our experiments showed that the first-order leakage is much smaller, the
existence of such leakage makes the theoretical guarantees void and the practical security
level estimation a much harder task. To our knowledge, there is little quantitative
comparison between bit-interaction leakage and transition-based leakage, especially in
higher orders. If we simply assume the “order reduction theorem” has already captured all
possible transition-based leakage, for a 4-share version, using 4 registers to store 4 shares
seems a better idea. Of course, one can always argue that Barthe et al’s multiplication
can also be implemented in a bit-only-slicing manner. However, that is contradicted with
what the parallel bounded moment model suggested. Besides, most efficiency benefit will
also be lost if it fell back to the traditional bit-only-slicing.

6 Conclusion

Micro-architectural effects have become a concern for even medium complexity processors
such as the ARM Cortex M family. There are a variety of micro-architectural events
happening internally that are not exposed to the programmer, which contribute significantly
to the leakage behaviour of the processor and which do not align with assumptions made
masking proofs. The “trivial” software implementation of Barthe et al’s multiplication
[BDFT17] is a good example to highlight this mismatch: on a commercial processor, such
gadget requires all secret shares to be stored within one register (a.k.a. “share-slicing”)
but the bits must not interact with each other through the bit-wise instructions (eg. AND,
XOR, LSL, etc.). On the contrary, we argue that in the presence of barrel shifters, we
must expect bit-interaction leaks. Although the exact cause of such bit-interaction leakage
might be hard to pinpoint, we show that they are definitely not negligible on the NXP
LPC Cortex-M0/M3 processors. We further verify that such leakage can be exploited to
recover the secret key in a masked implementation, reducing the security order effectively
in practice. Unlike the transition-based leakage, such a reduction is not bounded by a
factor of 2 [BGG™14], which makes it difficult to provide any practical security estimation.

Intriguingly, our experiments accidentally reveal some internal features of the NXP
LPC series Cortex-M0 and M3 processors, as only one of the two shift instructions (LSL
and LSR) has significantly bit-interaction leakage. We leave the further investigation of
this phenomenal as an interesting open problem. As the bit-interaction leakage strongly
depends on the concrete implementation details of the target processor, examining more
processors leakage behaviour in this regard would also be an interesting topic for the future
study (although we doubt there will be any “golden rule” in the end).

Our work serves as (another) cautionary tale for software developers who have to
implement masking securely: it is imperative to verify the leakage characteristics of
instructions before considering implementation options for masked implementations. For
the MO (as manufactured by STM and the LPC variation by NXP), to some extent the M3
(LPC) there exists at least one attempt of such a characterisation [MOW17] that includes
information about transition and bit-wise interactions.
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A “De-coupling” experiment

In order to show that coupling effect is not the main contributor in our experiments, we
have conducted the same experiment in Section 3.3, without any external shunt resistor.
Removing resistor is in general a difficult task on a taped-out board: fortunately, the design
of the SCALE board leaves a jumper which can bypass the shunt resistor. According to
the authors’ theory, when there is no external resistor presented, the external coupling
effect should be minimised [LBS19]. As we can see in Figure 11, since the SCALE project
was designed with that resistor, the signal-to-noise ratio clearly favors the shunt resistor®.
Nonetheless, the leakage trends still resembles Figure 6: the 1st order leakage did not
vanish here, despite the fact that it took much more traces to detect it. We do NOT claim
coupling effort does not exist in our experiments: however, we believe it is safe to say the
coupling effort described in [LBS19] is hardly the one and only reason that we observe
such leakage in our experiments.
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Figure 11: Instruction-wise leakage analysis without external resistor: 2-share LSL on
M3/LSR on M0

B Leakage analysis on other instructions

In the following, we list the other 8 instructions we tested on M0/M3. The acquisition
setup is exactly the same as Section 3.3: the target data is 16 pair of 2-shares with the
same unshared bit, using 16-bit Thumb-1 instructions. The significant leakage in rotation
instruction “ROR” is expected: as Thumb-1 forces rotation to use the same source and
destination register, the bit-flips of this register gives the unshared value. We do not
claim we have a reasonable explanation for every phenomenon in Figure 12: they could
be caused by the measurement setup, physical effects or more subtle micro-architectural
effects. Further investigation of those effects would be an interesting topic for future work.

C ELMO evaluation

Figure 13 demonstrates the evaluation results using the power simulation ELMO [MOW17].
Considering the algorithm noise, here we have to use a tweaked version of ELMO: only the
bit-interaction term is kept in the power model; all the other terms are set to 0. Using the
original ELMO model should be able to detect the same effect, although the evaluation

6The SCALE project uses the typical SCA measurement setup in [CEM18], where the probe is
connected AFTER the resistor. [LBS19], on the other hand, places the probe BEFORE the resistor. They
are the same setups where there is no shunt resistor: however, where there is a shunt resistor, it is essential
to remember that the SNR in our setup is completely different than [LBS19]
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Figure 12: Instruction-wise leakage analysis: other instructions

can hardly be done in a reasonable time frame. Besides, setting all other terms to 0 also
erases whatever transition-based leakage there could be: although this is not reflecting
what is happening in practice, it certainly helps us to concentrate on the bit-interaction
effect. As we can see in Figure 13, the bit-interaction effect becomes detectable within 1

million traces.
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Figure 13: ELMO evaluation on the LSR-based 2-share multiplication

Meanwhile, Figure 13 also highlights the importance of the bit-slice strategy: the
“ELMO__normal” line represents the same setup as Section 3.3: if the unshared secret bit
is ¢, the 32-bit register should be filled with (a(*,a®,...,pM) p?)), where V) @ a(? =

.= pM @ p®? = ¢ “ELMO_ pressure”, on the other hand, stands for a pressure test
where the register filled with (¢, a®,...,a™,a®) |« @ a® = ¢. Clearly, Figure 13
suggests that “the pressure test” has much less algorithmic noise, which leads to more

efficient detections.

One can argue whether such “pressure test” might capture certain bit-interactions
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that do not affect security in practice (say the first a(") and second a(? might come from
different blocks, therefore their joint leakage is not really a threat.). Nonetheless, even if
the detected threat is not realistic, there is no doubt that this is still a violation of the
“independent assumption”. We believe when testing whether one can use share-slicing on a
processor, it makes more sense to consider this “pressure test”. The “2/4-share + other bits
randomness” option in Section 4.3 and the “2/4-share + other bits constant” option [JS17]
are perhaps, more realistic in terms of attacks. However, the low signal-to-noise ratio
makes it difficult to detect such violation, even in a simulation-based context. When
verifying the “independent assumption” on a new processor, we recommend to use such
“pressure test” instead of any realistic attack oriented setup (definitely not the one we used
in Section 4.3).
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