
SITM: See-In-The-Middle
Side-Channel Assisted Middle Round Differential Cryptanalysis on

SPN Block Ciphers

Shivam Bhasin1, Jakub Breier2, Xiaolu Hou3, Dirmanto Jap1, Romain
Poussier1 and Siang Meng Sim4

1 Temasek Laboratories, NTU Singapore
2 School of Computer Science and Engineering, NTU Singapore

3 School of Computing, NUS Singapore
4 DSO National Laboratories, Singapore

{sbhasin,djap,rpoussier}@ntu.edu.sg, jbreier@jbreier.com,
ho0001lu@e.ntu.edu.sg, ssiangme@dso.org.sg

Abstract. Side-channel analysis constitutes a powerful attack vector against crypto-
graphic implementations. Techniques such as power and electromagnetic side-channel
analysis have been extensively studied to provide an efficient way to recover the secret
key used in cryptographic algorithms. To protect against such attacks, countermea-
sure designers have developed protection methods, such as masking and hiding, to
make the attacks harder. However, due to significant overheads, these protections
are sometimes deployed only at the beginning and the end of encryption, which are
the main targets for side-channel attacks.
In this paper, we present a methodology for side-channel assisted differential crypt-
analysis attack to target middle rounds of block cipher implementations. Such method
presents a powerful attack vector against designs that normally only protect the
beginning and end rounds of ciphers. We generalize the attack to SPN based ciphers
and calculate the effort the attacker needs to recover the secret key. We provide
experimental results on 8-bit and 32-bit microcontrollers. We provide case studies
on state-of-the-art symmetric block ciphers, such as AES, SKINNY, and PRESENT.
Furthermore, we show how to attack shuffling-protected implementations.
Keywords: Side-channel analysis, middle rounds attack, substitution-permutation
network (SPN), differential cryptanalysis.

1 Introduction
Over the past two decades, side-channel analysis (SCA) has become one of the most studied
physical attack methods against cryptographic implementations. There are various methods,
ranging from observing the timing of the algorithm [Koc96], the power consumption [KJJ99]
or the electromagnetic emanation of the device [AARR02], or even capturing the acoustic
signals coming from the device during the encryption [ST04].

Recently, the power of side-channel was combined with differential cryptanalysis to
break bit-permutation based block ciphers like PRESENT and GIFT. This method is
called “SCADPA” (Side-Channel Assisted Differential Plaintext Attack [BJB18, BJHB19]).
The adversary inserts a difference through plaintext and learns the differential at the
output of the first Sbox through side-channel, allowing trivial recovery of secret key.
In [BJB18, BJHB19], SCADPA exploited the simplistic nature of bit permutation in
PRESENT and GIFT to recover the Sbox differentials in the first round of the cipher.
However, as stated by the authors, SCADPA is limited to bit permutation ciphers and

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2020, No. 1, pp. 95–122
DOI:10.13154/tches.v2020.i1.95-122

mailto:sbhasin@ntu.edu.sg,djap@ntu.edu.sg,rpoussier@ntu.edu.sg
mailto:jbreier@jbreier.com
mailto:ho0001lu@e.ntu.edu.sg
mailto:ssiangme@dso.org.sg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2020.i1.95-122


96 SITM: See-In-The-Middle

cannot be applied to more complex diffusion functions like MixColumns in AES. Another
drawback of SCADPA is that it applies to initial rounds of the cipher only.

In this paper, we revisit the idea of SCADPA in a general setting and develop an attack
methodology which applies across a wider class of Substitution-Permutation Network
(SPN) ciphers. Moreover, the developed methodology is designed to target deeper rounds
of the cipher as well. We call the proposed attack See-in-the-Middle (SITM), owing to the
observability of differentials in middle rounds.

SITM can also defeat certain countermeasures like shuffling as shown later. Masking
the whole cipher acts as a general countermeasure against all side-channel based attacks
including SITM. However, in practice, applying masking to all rounds might be costly due
to area/performance constraints. The overhead stands out for several lightweight ciphers
where number of rounds can be over 50. As a compromise, designers would mask only
few rounds and use no countermeasures or lightweight countermeasures like shuffling in
middle rounds [SP06, THM07]. We extend the SITM methodology to break middle round
shuffling as well as determine the minimum numbers of round, if not all, to be masked in
order to avoid such attacks.

1.1 Our Contribution
The key contributions in this works are as follows:
• We generalize SCADPA in form of SITM to a wider class of block ciphers, targeting
different diffusion functions and deeper round exploitation. As shown later, our
attack can target block cipher as deep as the 12th round. This, to our knowledge, is
the first side-channel based attack in a unprofiled setting which targets the encryption
process at such deep rounds, unlike usual first and last round exploits.

• We provide a general methodology for launching SITM on SPN-based block ciphers.
• We practically evaluate our methodology on 8-bit AVR and 32-bit ARM microcon-
trollers and provide case studies on AES, SKINNY, and PRESENT. We note that
these attacks can be easily extended to other ciphers with similar structure, such as
GIFT, RECTANGLE, and MIDORI.

• We propose a deeper round attack on AES targeting the 4th round with only 227.5

plaintexts.
• We propose a method to determine minimum number of rounds to mask to mitigate
SITM.

• We demonstrate with practical experiments that SITM can attack middle rounds
protected with shuffling countermeasure, even at low SNR.

Organization. The rest of this paper is structured as follows: In Section 2, the basics
of SPN construction and side-channel attacks are discussed. Section 3 highlights the
considered attack model. In Section 4, the generic SITM attack is presented. In Section 5,
we present the experimental setup and practical validations of the considered attack model.
Based on the practical results, in Section 6, we elaborate the attack on various block
ciphers. We propose a framework to estimate the number of rounds to be masked to protect
against SITM in Section 7. Demonstration of SITM to target middle round shuffling is
described in Section 8. Finally, in Section 9, we conclude the paper. Deeper round attack
on AES and further optimization to the attack methodology is discussed in Appendix A.

2 Background
In this section, we will first describe the construction of SPN based ciphers. Then, we will
explain the principles of side-channel analysis attacks. Finally, we will discuss the related
work.



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 97

2.1 Substitution-Permutation Network
A Substitution-Permutation Network (SPN) is a cipher design that employs series of
mathematical operations, together satisfying confusion and diffusion properties defined
by Shannon [Sha49]. Some of the most popular modern symmetric block ciphers, such as
AES [Pub01] or PRESENT [BKL+07], are SPN-based. Typically, SPN cipher consists of a
set of operations that are performed in iterative manner to produce the final ciphertext.
The number of iteration is commonly referred as rounds and this set of operations is
collectively referred as round function. A round function normally consists of (1) addition
of round key, derived from a secret master key using a key schedule, to introduce secrecy to
the encryption; (2) a non-linear substitution layer, which can be partitioned into multiple
substitution boxes (Sboxes), to create confusion; and (3) a linear permutation layer, which
is commonly represented by some diffusion matrix or bit permutation, to create diffusion.

2.2 Side Channel Attacks
In general, for side-channel attacks, there are several main attack categories [KJJ99]:
• Simple Side-Channel Attacks (SSCA) – In this type of attack, the attacker normally

requires one or few side-channel traces. Such attacks are popular against public key
cryptography where computation is performed bit-wise on the secret key and executes
different set of operations depending on the value of the bit, thus observable directly
in side-channel measurement. In the following, we use such techniques for basic
reverse engineering of the execution of cryptographic algorithm on microcontroller, to
identify basic operations like confusion (for example, identifying load instruction from
the memory, which indicates Sbox lookup) or diffusion or identifying intermediate
value processed by the device.
• Differential Side-Channel Attacks (DSCA) – This type of attack involves statistical
analysis, and normally requires more side-channel traces T . The attacker then
constructs the hypothetical leakage value based on assumed leakage model on the
hypothetical intermediate value (L(f(x, k))), where f(x, k) is computed with known
input and secret key k. Common examples of L are Hamming weight and Hamming
distance. To distinguish the correct key hypothesis, the attacker uses statistical
distinguisher D (like correlation) with the collected traces (D(L(f(x, k)), T )). The
hypothesis k∗ with the best score returned by the distinguisher can be deemed as
the correct secret key.

• Side-Channel Assisted Differential Plaintext Attack (SCADPA) – SCADPA was
recently introduced in [BJB18] to attack bit permutation based cipher like PRESENT.
SCADPA, as the name suggest, is an attack technique based on differential cryptanal-
ysis, further assisted by side-channel information. SCADPA is differential in nature.
An adversary encrypts two chosen plaintext and measures the side-channel trace
(T1, T2). After measuring the traces, the attacker calculates the difference trace of
the pair (T1 − T2), and then observes the significant peaks in this trace to determine
whether a particular value have changed in the observed operations in targeted
rounds. The observed difference pattern, combined with differential cryptanalysis,
could then lead to secret key recovery. In [BJB18], authors exploited the property of
bit permutation layer to recover value at the output of Sbox in first round, leading
to secret key recovery in a simple manner. As the difference is observed in the earlier
rounds, the attack complexity remains fairly low, allowing easy key recovery.

2.3 Related Works
The combination of chosen plaintext and side-channel attacks has been exploited at several
instances. Schramm et al. proposed a chosen plaintext side-channel based collision attack



98 SITM: See-In-The-Middle

on DES [SWP03]. The attack detects collision in internal values at the initial rounds,
leading to key recovery. Later, side-channel based reverse engineering of secret AES-
like ciphers [CIW13] was built upon it. Typically, chosen plaintext is also proposed for
amplifying side-channel leakage either in power [VCS10] or timing [KSWH98]. Public key
cryptography [dBLW02] and hash functions (HMAC [GWL+15]) have also seen application
of such attacks.

Considering attack in middle rounds, few works have appeared in the literature.
In [HP06], Handschuh and Preneel showed how to combine differential cryptanalysis,
using 219 chosen plaintexts applied to the first 4 masked rounds of the cipher with power
side-channel attacks to extract the secret key from unmasked values, even when these
already depend on the secret key bits. In [BK07], they showed impossible and multi-set
collision attack, which exploit the inner round of masked AES up to 4 rounds. In [KLL10],
they showed that DES with any reduced masked rounds is not secure against collision
based side-channel attacks and differential cryptanalysis with chosen plaintext (the attack
was conducted up to 7 rounds masked). All these work are based on collision side-channel
model, which might be hard to realize in practice, specially with the newer technology
where Signal to Noise Ratio (SNR) is fairly low. Algebraic SCA (ASCA [RS09, GS14])
and soft-analytical SCA (SASCA [VCGS14, GS14]) are two other attacks which can apply
to middle rounds. While ASCA is extremely sensitive to SNR variation, SASCA can be
very demanding in terms of profiling. Exploitation at middle rounds were also proposed in
context of fault attacks [DFL11].

Breier et al. [BJB18] proposed a side-channel based differential attack on lightweight
ciphers with bit permutation based diffusion. The attack exploited the simple structure
of bit permutation allowing direct retrieval of intermediate value through side-channel
observation. Recently, Reparaz et al. [RG17] proposed a chosen plaintext attack on DES
third round. The attack follows a two-step approach where first step is a classical DPA
on second round key followed by a differential cryptanalysis for first round key recovery,
exploiting weak diffusion properties of DES.

SITM follows the same line of work as [BJB18, RG17], exploiting the properties of
underlying diffusion function. It is a side-channel assisted differential cryptanlysis attack.
However, both the previous attacks apply on a very specific cipher. SCADPA in particular
was limited to first round of bit permutation based ciphers and was claimed not applicable
on cipher with complex diffusion functions like in AES. On the contrary, proposed SITM is
a generic attack targeting a wide class of block ciphers, allowing exploitation in deeper
rounds.

Table 1 summarizes the different attacks characteristics. We emphasize that as opposed
to SASCA, SITM does not require the profiling of every single operation. Moreover, while
both SITM and ASCA require to identify points of interest, this procedure is less intensive
for SITM as only few operations are targeted. In addition, ASCA only works for very
high SNR (>4 [VCGS14]) and seems hard to adapt in a shuffling setting, which in case of
SITM is feasible.

We would like to emphasize that while there have been works focusing on attacking
middle rounds of particular ciphers ([KLL10, RG17]), this is the first work generalizing
middle round side-channel attacks for all SPN ciphers.

Finally, as our setting assumes that the first rounds are protected with masking,
our method naturally competes against higher order DPA. A discussion regarding such
comparison is provided in Appendix C.

3 Attack Model
The proposed attack assumes the following adversary model:
• The attack targets software implementation on a microcontroller, where sub-operations



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 99

Table 1: Comparison of various side-channel attacks and their applicability to middle
rounds.

Attack Targets Middle Round SNR Senstivity Profiling Needed
DSCA 7 Low 7

Collison Based 3 High 7
ASCA 3 Very High 7
SASCA 3 Low 3
SITM 3 Low 7

are executed sequentially. The attack is performed in gray-box model (typical in
side-channel analysis), where exact details of implementation are not known. The
adversary knows (or deduces) some basic parameters like implemented algorithm,
implementation style (round-based, bit-sliced, . . .), etc.

• The adversary can query encryptions with chosen plaintext and fixed unknown key.
• As the proposed attack exploits side-channel leakage, it assumes observable side-
channel leakage. More precisely, the adversary can observe through side-channel,
if a particular intermediate value has changed between two different encryptions.
Optionally, the attacker is expected to get clear side-channel measurement by applying
techniques like averaging, denoising, filtering etc.

Although SCADPA [BJB18] also considered a similar attack model, it exploited proper-
ties of bit permutation to infer value of the differential. Since SCADPA uses precise value
of the differential for the key recovery, the attack complexity remains fairly low. However,
as stated before, SCADPA cannot be applied on ciphers with diffusion function other than
bit permutation.

While it is a general recommendation that all rounds of the cipher must be protected
(masked) against side-channel attacks, tight implementation constraints can sometimes force
the designers to oversee these recommendations. Designers might implement side-channel
countermeasures in corner rounds only, which are the prime target of typical side-channel
attacks, while implementing no or low-cost countermeasures like shuffling in middle rounds.
For example, a partially protected implementation of AES [THM07] applying masking
and shuffling in first two and last two rounds was proposed on a 32-bit microcontroller.
6 rounds (3-8) out of 10 for this implementation are unprotected. The overhead of this
implementation was reported 13× to 24× compared to unprotected reference, depending on
the configuration. This would give some gain over an implementation where the remaining
6 rounds are also masked. In [SP06], authors propose to protect the first three and the
last three rounds of AES with higher order masking. The gain of using unprotected
middle rounds grows linearly as the number of rounds in cipher increases, which is the
case of several lightweight ciphers, such as Skinny (56 rounds) and GIFT (48 rounds). If
the first two and the last two rounds are masked in this case, around 92% of the cipher
remain unmasked giving significant speed-ups. Certain cipher constructions can lead
to enormous overheads when applying countermeasures as compared to AES, further
motivating protection of corner rounds only [NJJ+18].

Later in this paper, we reinstate the fact that masking corner rounds can still be
vulnerable to side-channel attacks and demonstrate a practical exploit. We attack an
implementation where corner rounds are heavily protected with masking and shuffling,
while inner rounds are only protected by shuffling. The proposed SITM exploits such
scenarios. As shown later, SITM can be applied to deeper rounds (4 for AES, 7 for certain
lightweight ciphers), thus making such protected implementations vulnerable.

Hardware implementations with round based architecture that normally leak in
Hamming distance model, can also leak in Hamming weight model, although with low
SNR [BGHD13]. Thus assuming the same attack model, theoretically, SITM can also be
adapted for parallel hardware implementation with low SNR, however, we do not see the



100 SITM: See-In-The-Middle

practical interest of having a hardware implementation with asymmetric rounds (protected
rounds followed by unprotected). Thus, we keep hardware as out of scope for SITM.

4 Attack Methodology
4.1 Preliminary and Notations
In this section, we give some definition and common notations that will be used for the
rest of the paper.

The encryption process of a block cipher is as follows: given a secret master key K, it
is fed into the key schedule of the cipher to generate the round keys Ki. While the n-bit
plaintext PT is loaded into the cipher state S0. In each round i, the state Si−1 is updated
using the round function to arrive at the next state Si. After r rounds, the final state Sr

is then output as the ciphertext CT . Conventionally, like AES, a whitening key is added
to the final state Sr before outputting it as ciphertext.

PT
input−−−→ S0

Round 1−−−−−→ S1
Round 2−−−−−→ S2 → · · · → Sr−1

Round r−−−−−→ Sr
output−−−−→ CT

A cipher state is often divided into several d-bit cells, where d divides n. When d = 4
(resp. d = 8), we also call each individual cell si a nibble (resp. byte). The substitution
layer typically applies an identical d-bit Sbox S to every cell of the state, expressed as
S(si), to create non-linearity. The permutation layer then takes groups of m state cells
and applies a linear transformation. In most cases, the subset of cells can be seen as
an m-tuple input vector u ∈ (Fd

2)m to the linear transformation, expressed as an m×m
matrix M , and the resultant cells as an output vector v = Mu.

Definition 1. The branch number B of an m×m diffusion matrix M is defined as

B(M) = min
wt(u)6=0

(wt(u) + wt(Mu)),

where wt(u) denotes the number of non-zero components in the vector u. If B(M) = m+ 1,
it is a Maximum Distance Separable (MDS) matrix.

Given two n-bit strings x, y ∈ Fn
2 , the XOR difference (or simply difference) between

x and y is the bit-wise XOR of x and y, denoted as ∆ = x ⊕ y. For brevity’s sake, the
“difference in X”, also denoted as ∆X, refers to the XOR difference between a pair of
binary strings X and X ′.

In differential cryptanalysis, we analyse how the difference propagates from one state
to the next, and a connected sequence of differential propagation, i.e. ∆S0

Round 1−−−−−→
∆S1 → · · · → ∆Sr−1

Round r−−−−−→ ∆Sr, is referred as the differential characteristics. When
we do not specify the values of the difference but treating it as some non-zero difference
(so-called truncated difference), the sequence of truncated differential mapping is denoted
as differential pattern.

Definition 2. Let ∆i,∆o ∈ Fd
2 be the input and output differences of d-bit Sbox S; we

define the differential probability from ∆i to ∆o under S (differential transition) as

Pr(∆i
S−→ ∆o) = ]{x ∈ Fd

2 | S(x)⊕ S(x⊕∆i) = ∆o}
2d

,

where ]{·} denotes to the cardinality of the set. The maximal differential probability
(MDP) of S is defined as

MDP (S) = max
∆i 6=0, ∆o 6=0

Pr(∆i
S−→ ∆o),



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 101

and the lowest differential probability (LDP) of S as

LDP (S) = min
Pr(∆i→∆o)6=0

Pr(∆i
S−→ ∆o).

The MDP is a familiar terminology as cryptographic primitive designers often use it to
bound the differential probability of their primitives, arguing that “any r-round differential
characteristic is upper bounded by some probability, if this probability is low enough, then
the attacker cannot exploit this property”. However, since we are performing cryptanalysis,
we reverse the mentality: “any valid differential characteristic is lower bounded by certain
probability, if this probability is high enough, then the attacker could launch an attack”.
Therefore, we will use the LDP of an Sbox to estimate the amount of resources needed to
launch an attack.

Given some valid differential transition through an Sbox, ∆i
S−→ ∆o, the possible input

values (not difference) x to the Sbox are those that satisfy the following equation

S(x)⊕ S(x⊕∆i) = ∆o. (1)

Naturally, the solutions come in pairs, if x satisfies Equation (1), then so does x⊕∆i.
Lastly, we call a cell or an Sbox “active” if there is a non-zero difference. We informally

describe a differential pattern in some state as small when there is low number of active
cells.

4.2 SITM Overview
The main idea of SITM attack is to choose plaintext pairs with differential pattern that
could potentially converge to a smaller differential pattern through the round functions.
Next, the attacker observes the differential pattern in the middle rounds through side-
channel (like power consumption of EM emanation), to detect if such convergent pattern
occurs. Lastly, when such encryption pair is found, with a smaller intermediate differential
pattern, the attacker can exhaust the possible differential values to deduce the set of
potential key candidates, which is often significantly smaller than the entire key space.

The attack methodology can be broken down into the following steps:
1. Find a target differential pattern for the attack.
2. Query plaintexts with the input differential pattern, and through side-channel, find

a plaintext pair that has the target differential pattern.
3. Perform (partial) key-recovery using this plaintext pair.
4. Repeat Step 1-3 until the entire round key, or even the master key, is recovered.

Step 1: Find a target differential pattern. For the ease of distinguishing the target
differential pattern from others through side-channel observation (Step 2) and exhaust the
possible differential values (Step 3), we find our target differential pattern based on the
following criteria:
(C1) Have a small differential pattern, say a single active cell, in some intermediate state.
(C2) From this small differential pattern, propagate backward to the point where the

differential probability does not go below our lowest acceptable probability threshold.
(C3) From the same intermediate differential pattern, propagate forward to the point

where we can still distinguish that it originated from our small differential pattern
and not some random differential pattern.

The lowest acceptable probability threshold is dependent on the maximum number of
plaintexts that we can query encryption and observe leakage, which we will elaborate in
the following step.



102 SITM: See-In-The-Middle

Step 2: Query plaintexts with the input differential pattern and find a pair with target
differential pattern. As the convergence occurs by chance, the adversary needs sufficient
data to find a pair with the desired differential convergence. Suppose that the differential
probability of the convergence is 2−x, we need approximately 20.5x+0.5 chosen plaintexts1

to have an expectation of 1 plaintext pair with the desired differential pattern. If we
require the difference to be of specific values, then we will need 2x+1 chosen plaintexts.

To observe the differential pattern, the adversary collects side-channel measurements
during the encryption operation. The difference trace is computed for each pair of plaintexts
and the changed intermediate values are noted. If for a given plaintext pair, the differential
pattern is observed to converge as desired, the pair is used for the key recovery step else
discarded.

Step 3: Perform (partial) key-recovery. As the details of the key-recovery attack varies
from ciphers, we will leave the discussion to Section 6.
SITM is a generic attack that can be applied to any block cipher (for example SPN, Feistel
network) given a converging differential pattern can be observed. For demonstration
purposes, we only focus on SPN.

5 Practical Validation of the Attack Model
In order to validate the attack model, we have conducted the experiments on AES software
implementations on two different targets. The AES is implemented in assembly on 8-bit
AVR ATmega328p microcontroller mounted on Arduino UNO board, and implemented with
constant time C code on 32-bit ARM Cortex M3 microcontroller on Arduino DUE board.
To obtain better SNR, the side-channel traces were collected using electromagnetic (EM)
measurement with Langer near field RF-U 5-2 probe. The measurements are captured
on a Lecroy 610Zi oscilloscope synchronized with a trigger in the design (the trigger
encapsulated the first three rounds of AES). Individual sub-operations within a round were
identifiable by visual inspection i.e. SSCA, which allows us to localize different rounds and
different sub-operations with in a round like 16 sboxes in AES SubBytes. Each trace was
measured at a sampling rate of 5 GSam/s and averaged 1000 times. While no averaging
or averaging as few as 10 times was enough in some cases (for example AVR), we kept
the experimental settings to 1000 averaging for better illustration. To illustrate how the
traces look like, we chose specific plaintext pair (with known key) which the difference
converges to a single byte in round 2 and observe the trace in round 3.

5.1 8-bit AVR Microcontroller
In this experiment, the traces corresponding to both chosen plaintexts were collected, such
that the difference is in exactly 1 byte in the second round. By SSCA, we can estimate
the location of various operations, thereafter look for peaks in difference trace to check
affected bytes. The difference trace is shown in Figure 1. As described earlier, the 4 bytes
difference in the plaintexts converge to 1 byte difference in the second round (byte 0 here),
resulting in 1 observable peak in the plot. This difference then propagate to 4 bytes due
to MixColumns operation, leading to 4 peaks in the difference trace during third round.

5.2 32-bit ARM Microcontroller
We equally validated the attacker model on a 32-bit ARM Cortex M3, which is a modern
processor, with 3-stages of pipelines and running at 86 MHz. In Figure 2, the difference

1With 2y chosen plaintexts, we can construct about 22y−1 pairwise differences. Since we expect 1
differential convergence in 2x differential pairs, working backwards we need y = 0.5x + 0.5.



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 103

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·104

−5

0

5
·10−2

SBox round 3SBox round 2

Time samples

A
m
p
li
tu

d
e
(m

V
)

Figure 1: Differential power trace showing leakage at Sbox in round 2 and round 3 of
AES-128 on 8-bit AVR microcontroller. Highlighted parts show how 1 byte difference
propagates into 4 bytes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

−5

0

5

·10−4

SBox round 3SBox round 2

Time samples

A
m
p
li
tu

d
e
(m

V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

−5

0

5

·10−4

SBox round 3SBox round 2

Time samples

A
m
p
li
tu

d
e
(m

V
)

(a) (b)

Figure 2: Differential power trace showing leakage at Sbox in round 2 and round 3 of
AES-128 on 32-bit ARM microcontroller. Highlighted parts show how (a) difference in the
first byte and (b) difference in the second byte propagates into 4 bytes.

can be observed in byte 0 (top), byte 1 (bottom). This is corresponding to two different
plaintext pair chosen based on the previously proposed attack. The two plaintext pair
result in single byte difference at byte 0 and 1 respectively. With some difference in signal
to noise ratio, the attacker model seems to work perfectly on both the attack targets.

6 Application of SITM to Ciphers
In the following, we describe how SITM can be applied to various block ciphers. The
attack complexities are summarized in Table 2.

Table 2: Summary of attack complexities on various ciphers

Cipher Block Key Target Data Memory Time Ref.
size size depth (chosen P T s) (bytes)

AES

128
128 3 213.73 210 O(211.5)

Sect. 6.1192 3,4 214.73 210 O(211.5)
256 3,4 214.73 210 O(211.5)

128
128 4 227.5 212 O(226.5)

Sect. A.2192 4,5 228.5 212 O(226.5)
256 4,5 228.5 212 O(226.5)

SKINNY

64
64 7,8 213.02 29.58 O(210)

Sect. 6.2

128 7-10 214.02 29.60 O(210)
192 7-12 214.61 29.61 O(210)

128
128 7,8 225.17 219.58 O(222)
256 7-10 226 219.58 O(222)
384 7-12 226.58 219.59 O(222)

PRESENT 64 80 3,4 212.32 29 O(29) Sect. 6.3
128 3,4 213 29.02 O(29)



104 SITM: See-In-The-Middle

6.1 AES and Other AES-like Ciphers
Our attack is applicable to all versions of AES, namely AES-128, AES-196 and AES-256.
As convention, the bytes in the cipher state are labeled column-wise from left to right as
follows: 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
The AES round function consists of: AddRoundKey bit-wise XOR the round key bits

to the state, SubBytes apply 8-bit Sbox to every cell in the state, ShiftRows left-rotate
of the 2nd, 3rd and last row of the state by 1, 2 and 3 respectively, and MixColumns
apply an MDS diffusion matrix to every column of the state. We omit the description of
the AES key schedule as it is not needed for our attack.

An example target differential pattern for AES is given in Figure 3, where Si denote
the state at the end of the round i.

Convergence Diffusion Side-channel
Observation

S0 S1 S2 S3

Figure 3: AES differential pattern. Active cells are coloured in red.

As one can see that if we perform side-channel observation in round 4, we would expect
to see the entire state S3 to be active, but such differential pattern occurs with very high
probability even if the 4 active bytes in S0 do not converge to 1 byte in S1. On the other
hand, it is very distinctive to know if a convergence occurs when we observe the active
bytes in round 3. In fact, the position of the active column gives us insight on the position
of the single active byte in S1:

s0 active in S1 ←→ s0, s1, s2, s3 active in S2,

s3 active in S1 ←→ s4, s5, s6, s7 active in S2,

s2 active in S1 ←→ s8, s9, s10, s11 active in S2,

s1 active in S1 ←→ s12, s13, s14, s15 active in S2.

Assuming that the differential values before the round 1 MixColumns is uniformly
distributed, and since this 32-bit permutation is completely linear, any differential charac-
teristic in S1 comes from exactly one of the (28− 1)4 possible 4-byte differences. Therefore,
the convergence probability for any particular differential characteristic is close to 2−32.
As there are 28 − 1 possible differential values for the active byte in S1, and the active
byte can be at any position in the first column, the differential probability of convergence
to occur in round 1 is 2−22. Therefore, we need an estimation of 211.5 plaintexts, where
we vary the values at s0, s5, s10, s15 while fixing other bytes constant, to find a desired
differential pattern.

Through side-channel observation in round 3, we can know the position of the single
active byte in S1 based on the position of the active column. Once we have a pair of
plaintexts with the target differential pattern, we can guess the differential value of the
single active byte in S1. For each guess, we compute backwards and solve for solutions for
Equation (1) and obtain the possible round key values at s0, s5, s10, s15 by XORing the
solutions to the plaintext value.

Since the majority of the valid differential transitions occurs with probability 2−7 (there
are 32,130 of them, and remaining 255 valid transitions occurs with probability 2−6) we are



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 105

Convergence Diffusion Diffusion Side-channel
Observation

S0 S1 S2 S3

Figure 4: MIDORI differential pattern for 4-round attack. Active cells are in red.

expecting, for most of the time, 2 solutions for each byte when the differential transition
is valid; While for the other half of the time, the transition is invalid and there is no
solution for the given input and output difference pair. Therefore, we expect around 28

key candidates. For each key candidate, we run the encryption again with a different pair
of plaintexts that should converge under that key candidate. This requires another 29

chosen plaintexts. As the chance of false positive is 2−24 (having 3 inactive bytes in the
active column in S1), it is likely that only the correct partial round key remains2.

We performed 10,000 iterations of the experimental test and found that we need an
average of 2572 (≈ 211.33) plaintexts to find the first convergence; And from this pair of
plaintexts with the target differential pattern, it gave us an average of 268 (≈ 28.07) key
candidates. The empirical result is rather close to our estimations.

For AES-128, we repeat the attack on the 4 different diagonals in S0 to recover the
entire first round key, which is also the full 128-bit master key. Thus, the attack requires
4 × (211.5 + 29) = 213.73 plaintexts, memory space to store the 4-byte key candidates
4 × 28 = 210 bytes, time complexity of O(211.5) and side-channel observation at round
3. For AES-192 and AES-256, after recovering the first round key, we can repeat the
attack recover the second round key by choosing plaintexts that has pairwise differential
pattern beginning from S1 and observe the leakage at round 4. Thus, the attack requires
8 × (211.5 + 29) = 214.73, memory space of 210 bytes, time complexity of O(211.5) and
side-channel observation at round 3 and 4.

Our attack can easily be applied to other AES-like ciphers like MIDORI, both 64-bit
and 128-bit versions. We provide an example differential pattern that can be used for our
attack in Figure 4 without further elaboration. In comparison to AES, due to the slower
diffusion, we can deploy a deeper round side-channel observation at round 4 of MIDORI.

6.2 SKINNY

SKINNY was first proposed at CRYPTO 2016 and till date it is one of the most competitive
lightweight encryption primitives. It is a tweakable block cipher with a total of 6 variants,
with n-bit block size and t-bit tweakey size, where n = 64 or 128 and t = n, 2n or 3n. Our
attack is applicable to all the variants.

Following the indexing used by the designers (which is different from AES), the cells
(4-bit nibble for SKINNY-64 or 8-bit byte for SKINNY-128) in the SKINNY state are
labeled row-wise from top to bottom as follows:

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

 .
One round of SKINNY, the round function consists of: SubCells apply Sbox to every

cell in the state, AddConstants add round constants to the state, AddRoundTweakey
2In comparison with Piret and Quisquater’s differential fault attack technique [PQ03], they used

fault injection and partially decrypts known ciphertexts to some internal states, while we merely make
observations, guess the difference of the internal states and decrypt back to the plaintexts. Thus, our
technique is rather different and less invasive.



106 SITM: See-In-The-Middle

bit-wise XOR the key bits to the upper half of the state, ShiftRows right-rotate of
the 2nd, 3rd and last row of the state by 1, 2 and 3 respectively, and MixColumns
row-wise XORs the rows of the state. More specifically, we have {R0, R1, R2, R3} ←
{R0⊕R2⊕R3, R0, R1⊕R2, R0⊕R2}, where Ri is the (i+ 1)-th row of the state.

Unlike AES, the non-linear layer (Sboxes) comes before the round key addition, and
there is no whitening key. In addition, only the upper half of the state is updated by the
round key. Naturally, we can denote the cells of the round key as follows:

rk0 rk1 rk2 rk3
rk4 rk5 rk6 rk7
− − − −
− − − −

 .
The SKINNY key schedule is inspired by the tweakey framework introduced by Jean et

al. at ASIACRYPT 2014. For the sake of brevity, we refer readers to [JNP14] for more
information on tweakey construction. Very briefly, the tweakey is arranged into 1, 2 or
3 tweakey states, denoted as TKi, for t = n, 2n and 3n respectively. The key schedule
extracts the upper half of the tweakey state(s), bit-wise XOR them together for t = 2n
and 3n to form the round key. After which, the extracted cells of TK2 and TK3 are
updated by some linear-feedback shift register (LFSR), L2 and L3 respectively. Finally, all
the tweakey state cells are updated by the same cell permutation ρ(i). The only feature
of ρ that we need to know is that it sends the lower half to the upper half so it will be
extracted as the round key in the following round. Having said that, the round keys can
be expressed as follows:

rkr
i = TK1j for t = n

rkr
i = TK1j ⊕ L

b r
2 c

2 (TK2j) for t = 2n

rkr
i = TK1j ⊕ L

b r
2 c

2 (TK2j)⊕ Lb
r
2 c

3 (TK3j) for t = 3n

where rkr is the round key for round r.
Expressing the cells of S1 in terms of the plaintext cells pi and first round key cells rki,

we get

S1 =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15



=


p′0 ⊕ p′10 ⊕ p′13 ⊕ rk0 p′1 ⊕ p′11 ⊕ p′14 ⊕ rk1 p′2 ⊕ p′8 ⊕ p′15 ⊕ rk2 p′3 ⊕ p′9 ⊕ p′12 ⊕ rk3

p′0 ⊕ rk0 p′1 ⊕ rk1 p′2 ⊕ rk2 p′3 ⊕ rk3
p′7 ⊕ p′8 ⊕ rk7 p′4 ⊕ p′9 ⊕ rk4 p′5 ⊕ p′10 ⊕ rk5 p′6 ⊕ p′11 ⊕ rk6
p′0 ⊕ p′10 ⊕ rk0 p′1 ⊕ p′11 ⊕ rk1 p′2 ⊕ p′8 ⊕ rk2 p′3 ⊕ p′9 ⊕ rk3

 ,
where p′i = S(pi) denotes the value after applying the Sbox. As all p′i’s are known, our
goal is to find the possible values of si in S1 and hence the round key values rki.

For the SKINNY Sboxes, Table 3 shows the tally of differential transitions with various
probability of the 4-bit and 8-bit Sboxes. From there, we can easily see that the MDP of
both 4-bit and 8-bit Sbox is 2−2, and the LDP (denote as 2−t) of the 4-bit (resp. 8-bit)
Sbox is 2−3 (resp. 2−7).

Figure 5 depicts the differential pattern that we use for our attack. Since the non-linear
layer (SubCells) comes before the key addition (AddRoundTweakey), we can always select
plaintext pairs where the difference in S0 converges to 3 active cells in S1 with probability
1. For instance, we can select the values in the blue cells of the plaintext pairs such



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 107

Table 3: Tally of various differential probability of the 4-bit and 8-bit SKINNY Sbox. I.e.
]{(∆i,∆o) ∈ Fd

2 × Fd
2 | Pr(∆i

S−→ ∆o) = 2x}.

Sbox 2−7 2−6 2−5.4 2−5 2−4.4 2−4 2−3.7 2−3.4 2−3.2 2−3 2−2.7 2−2.4 2−2

4-bit - - - - - - - - - 72 - - 24
8-bit 2688 5006 64 2828 78 652 2 18 2 101 2 4 23

Con. Con. Dif. Dif. Dif. Dif. S.C.
Obs.

S0 S1 S2 S3 S4 S5 S6

Figure 5: SKINNY differential pattern. Active cells are coloured in red. The blue and
green cells in PT are chosen such that the difference will always converge to the 3 active
cells in S1. Grey cells may or may not be active.

that after the SubCells all 3 cells have the same difference. During the MixColumns, the
differences will cancel out and only a single active cell in the second row remains.

In round 2, the probability of a particular convergence is at least 2−3t, but unlike
AES where we take any two plaintexts to form a differential, we select the plaintext in
pairs with the 7-cell difference converging to 3-cell difference in round 1. Thus, we need
approximately 23t+1 plaintexts to find one pair with the target differential pattern.

Because of the non-optimal diffusion, we can observe the leakage at much deeper round,
as far as in round 7, where we expect to see exactly 3 active columns3. If the convergence
did not occur in round 2, it is very likely that we will observe all columns to be active.

Once we find a pair of encryptions with our target differential pattern, we guess the
differential value of the single active cell in S2. As the MixColumns is a simple row-wise
XORing, the output difference ∆o of the 3 active Sboxes in round 2 is the same. Solving
Equation (1) yields us the possible values of si. Since we know the plaintext values pi, we
can easily compute the possible key values of rk1, rk3, rk5. We can rotate the differential
pattern horizontally and repeat the attack to collect key candidates for the entire first
round key.

For SKINNY-64-64, we need 210 chosen plaintexts for each iteration of the attack.
In the extreme case where each cell has 4 solutions (through solving Equation (1)), we
have at most 28 partial key candidates in each iteration of the attack. Thus, we need
another 29 plaintexts to filter the wrong partial round key candidates. Next, we repeat the
attack by rotating the differential pattern 4 times to recover the first round key (32 bits).
Next, we shift the entire attack one round deeper and launch the attack again to recover
the second round key to obtain the full 64-bit master key. Therefore, the attack requires
approximately 8× (210 + 29) = 213.58 chosen plaintexts, memory space to store 3-nibble
(4-bit) key candidates 1.5× 29 = 29.58 bytes, time complexity of O(210) and side-channel
observation at round 7 and 8.

We performed 10,000 iterations of the experimental test and found that we need
an average of 216 (≈ 28.75) plaintexts to find the first convergence; And from this pair
of plaintexts with the target differential pattern, it gave us an average of 41 (≈ 25.36)
key candidates. This is not surprising as our estimations are very conservative and this
empirical result shows that in practice the attack could be much more efficient.

For SKINNY-128-128, we need 222 chosen plaintexts for each iteration of the attack.
With at most 218 partial key candidates, we need another 219 plaintext pairs to filter the
wrong partial round key candidates. Similar to SKINNY-64-64, we launch the attack

3In case where the attacker’s capabilities are insufficient to observe change in multiple columns, she
can move to some of the earlier rounds where only one column is active.



108 SITM: See-In-The-Middle

8 times to recover first 2 round keys which corresponds to the full 128-bit master key.
Therefore, the attack requires 8× (222 + 219) = 225.17 chosen plaintexts, memory space
to store the 3-byte key candidates 3× 218 = 219.58 bytes, time complexity of O(222) and
side-channel observation at round 7 and 8.

Similarly, we performed 10,000 iterations of the experimental test and found that we
need an average of 217.03 plaintexts to find the first convergence. And from this pair of
plaintexts with the target differential pattern, it gave us an average of 213.34 key candidates.
Once again, the empirical result shows that in practice the attack could be much more
efficient.

For larger tweakey variants, notice that the round key is the XOR-sum of 2 or 3 tweakey
states, thus we need to collect 2 (resp. 3) round key values of the same cell to recover the
values in TKi. That is, for SKINNY-n-2n, we want to solving the following system of
linear equations

rkx
i = TK1j ⊕ TK2j

rkx+2
i = TK1j ⊕ L2(TK2j).

where x = 1, 2. And for SKINNY-n-3n, we have

rkx
i = TK1j ⊕ TK2j ⊕ TK3j

rkx+2
i = TK1j ⊕ L2(TK2j)⊕ L3(TK3j)

rkx+4
i = TK1j ⊕ L2

2(TK2j)⊕ L2
3(TK3j),

where x = 1, 2.
This means that for tweakey size t = 2n and t = 3n, we need to recover 4 and 6

round keys respectively. Therefore, for block size n = 64, we need 214.58 and 215.17 chosen
plaintexts respectively. While for n = 128, we need 226.17 and 226.75 chosen plaintexts
respectively. The increment in memory usage is negligible as we can free the storage space
for the key candidates after every iteration of the attack.

6.3 PRESENT and Other Bit Permutation Based Ciphers
PRESENT is a lightweight block cipher, published in CHES 2007. It is one of the first block
ciphers that uses bit permutation instead of a diffusion matrix as the permutation layer.

The PRESENT round function consists of: addRoundKey bit-wise XOR the key bits
to the state, sBoxlayer apply 4-bit Sbox to every nibble in the state, and pLayer bit-wise
permute the entire state.

There are 2 variants of PRESENT, PRESENT-80 and PRESENT-128 with key length 80
and 128 bits respectively. For PRESENT-80, the key bits are represented as k79k78 . . . k0.
After extracting the 64 leftmost bits as the round key rk63rk62 . . . rk0 = k79k78 . . . k16, the
key state is updated with a 61 bit left rotation, apply an Sbox on the 4 leftmost bits and
addition of round constant c,

1. k79k78 . . . k0 ← k18k17 . . . k19

2. k79k78k77k76 ← S(k79k78k77k76)
3. k19k18k17k16k15 ← k19k18k17k16k15 ⊕ c

For PRESENT-128, the key schedule is quite similar. The key bits are represented as
k127k126 . . . k0. After extracting the 64 leftmost bits as the round key rk63rk62 . . . rk0 =
k127k126 . . . k64, the key state is updated with a 61 bit left rotation, apply two Sboxs on



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 109

Table 4: Differential transition of PRESENT Sbox where HW (∆o) = 1.

∆i ∆o

(hexadecimal) (hexadecimal)
3, 5, 7∗, b, d, f∗ 1
6, 7, 9, a, c, d∗, e 2
3, 5, 9∗, b, d, f∗ 4
6, 7, 9, a, b∗, c, e 8

∆i with ∗ has differential probability 2−2, otherwise 2−3.

the 8 leftmost bits and addition of round constant c,

1 k127k126 . . . k0 ← k66k65 . . . k67

2. k127k126k125k124 ← S(k127k126k125k124)
3. k123k122k121k120 ← S(k123k122k121k120)
4. k66k65k64k63k62 ← k66k65k64k63k62 ⊕ c

Unlike ciphers with diffusion matrix, bit permutation based ciphers like PRESENT [BKL+07],
RECTANGLE [ZBL+15] and GIFT [BPP+17] rely on their Sboxes for diffusion. To analyze
the differential pattern, we have to look at the difference at the bit level, i.e. the number
of active bits. Since we want convergence to occur, we are interested in the differential
transitions where the output difference ∆o has Hamming weight 1. Table 4 shows the
list of the input differences ∆i that can potentially go to some Hamming weight 1 output
difference.

For our attack, we chose the differential transitions ∆i = 0xf→ ∆o ∈ {0x1, 0x4} for
convergence.

In Figure 6 we present several desirable differential patterns that we can use. For
convenience of our discussion, we denote the i-th Sbox in round r as Sr

i−1. Starting with
input difference (in red) in the 16 least significant bits, each of these 4 active Sboxes in
round 1 could potentially have output difference 0x1 (in blue) or 0x4 (in yellow). If
all 4 active Sboxes have the same output difference, all the 4 active bits will go to a
same Sbox (blue or yellow) in round 2, which could potentially converge again to output
difference 0x1 or 0x4. When we observe a single active Sbox in round 3, we know that
the convergence occurs. In addition, if S3

0 or S3
8 (in purple) is active, we know that all the

Sboxes S1
0 , S

1
1 , S

1
2 , S

1
3 have the same output difference 0x1. On the other hand, if S3

2 or
S3

10 (in green) is active, then the output difference was 0x4.
Each of these differential pattern occurs with probability 2−10, but since any of these

4 differential patterns can be used for the attack, the probability of getting one such
differential pattern is 2−8. Thus, with 29 chosen plaintexts we are likely to find one such
differential pattern.

Based on the position of the active Sbox in round 3, we deduce the output differential
value of all the 4 active Sboxes in round 1 to be either 0x1 or 0x4. Next, together with
the plaintext difference we solve Equation (1) and XORing the solutions to the plaintext
to get 28 key candidates. Just like the previous attacks, we run the encryption for another
29 chosen plaintexts to find the correct partial round key.

Next, we can repeat the attack with input difference at {S1
4 , S

1
5 , S

1
6 , S

1
7}, {S1

8 , S
1
9 , S

1
10, S

1
11},

and {S1
12, S

1
13, S

1
14, S

1
15} to recover the entire first round key.

For PRESENT-80, the first round key contains 64 bits of the master key {k79k78 . . . k16},
the remaining 16 unknown bits are {k15 . . . k0}. We can go one round deeper and repeat
the attack with input difference at {S2

12, S
2
13, S

2
14, S

2
15} to recover another 13 key bits

{k15, . . . , k3}, and simply exhaustively guess the remaining 3 unknown bits. In summary,
the attack requires 5× (29 + 29) = 212.32 chosen plaintexts, memory space to store 16-bit
key candidates 2× 28 = 29 bytes, time complexity of O(29) and side-channel observation
at round 3 and 4.



110 SITM: See-In-The-Middle

S1
0

S2
0

S3
0

S4
0

S1
1

S2
1

S3
1

S4
1

S1
2

S2
2

S3
2

S4
2

S1
3

S2
3

S3
3

S4
3

S1
4

S2
4

S3
4

S4
4

S1
5

S2
5

S3
5

S4
5

S1
6

S2
6

S3
6

S4
6

S1
7

S2
7

S3
7

S4
7

S1
8

S2
8

S3
8

S4
8

S1
9

S2
9

S3
9

S4
9

S1
10

S2
10

S3
10

S4
10

S1
11

S2
11

S3
11

S4
11

S1
12

S2
12

S3
12

S4
12

S1
13

S2
13

S3
13

S4
13

S1
14

S2
14

S3
14

S4
14

S1
15

S2
15

S3
15

S4
15

S1
0S1

1S1
2S1

3

S2
0S2

8

S3
0S3

8 S3
2S3

10

S4
0S4

2S4
4S4

6S4
8S4

10S4
12S4

14

Figure 6: PRESENT differential patterns. Input differences are in red and the round 1
convergence goes to either the blue or yellow pattern. The round 2 convergence then goes
to exactly one of the purple (if comes from blue path) or green (if comes from yellow path)
paths.

For PRESENT-128, after recovering the first round key, we obtain 64 out of 128 bits
of the master key. Next, we repeat the entire attack at one round deeper to recover
the second round key which contains another 61 bit of the master key {k66, . . . , k3}, and
simply exhaustively guess the remaining 3 unknown bits. In summary, the attack requires
8× (29 + 29) = 213 chosen plaintexts, memory space to store 16-bit key candidates plus
the first round key 2× 28 + 8 = 29.02 bytes, time complexity of O(29) and side-channel
observation at round 3 and 4.

We performed 10,000 iterations of the experimental test and found that we need an
average of 257 (≈ 29.01) plaintexts to find the first convergence; And from this pair of
plaintexts with the target differential pattern, we obtain exactly 28 key candidates. The
empirical result is very close to our estimation.

Our attack can also be applied to other bit permutation based ciphers like RECTANGLE
and GIFT.

7 Number of Rounds to Mask to Mitigate SITM
In this section, we provide a framework for estimating the number of rounds to be masked
in a conservative manner. Recall in Section 4.2, (C2) states that the attacker can propagate
backward as long as the differential probability is larger than the acceptable probability
threshold. Suppose the threshold is 2−n where n is the block size, we denote bp the number
of rounds to guarantee the differential probability is at most 2−n4. In the forward direction,
(C3) states that the attack can propagate forward as long as one can distinguish if the
differential pattern originates from some target intermediate differential pattern. Here, we
denote the minimum number of rounds achieve full diffusion as fd. Therefore, the number
of rounds to be masked (at both ends of the cipher) is simply bp + fd.

4Under the assumption that the adversary has limited chosen plaintexts or observation of traces, one
could choose a higher probability threshold, at his/her own discretion, to reduce the number of rounds to
be masked.



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 111

Table 5: Number of rounds to be masked for various ciphers.

Cipher Block Key ] of
bp fd

Rounds to % of
size size rounds be masked masking

AES 128
128 10

4 2
10 100%

192 12 12 100%
256 14 12 85.7%

SKINNY

64
64 32

8 6
28 87.5%

128 36 28 77.8%
192 40 28 70%

128
128 40

15 6
40 100%

256 48 42 87.5%
384 56 42 75%

PRESENT 64 80/128 31 16 3 31 100%

Table 5 summarizes the number of rounds to be masked for various ciphers. For brevity
sake, we detail how bp, fd are derived in the Appendix B. For instance, for AES, any
4-round differential characteristic has probability at most 2−150 (bp = 4), and a single bit
difference will propagate to the entire state in 2 rounds (fd = 2). Therefore, for AES-128
and AES-192, the entire cipher should be masked, and for AES-256 the masking can be
saved for the middle 2 rounds. It can be thus seen that majority of the cipher rounds, if
not whole, must be masked and protecting only corner rounds is largely insufficient. Note
that this is a quick and conservative estimation, it does not imply that the existence of an
attack if lesser number of rounds is masked.

8 SITM on Middle Round Shuffling
Shuffling countermeasures randomize the order of operations. In the following, we show
how to adapt SITM against shuffling. We start by describing shuffling and discussing the
implications on the attack. We then show our method to tackle a shuffled implementation
and show results on simulated traces. We finally validate the method against a real shuffled
implementation of the AES.

8.1 Description and Discussion
Shuffled AES implementation: We assume that at the beginning of every AES execution,
a random permutation P of 16 elements is randomly selected among the 16! ' 244

possible ones. The Sbox computations are then reordered according to P , and we denote
by P (0), ..., P (15) the associated new Sbox ordering. That is, when considering only
the 16 time samples of each Sbox computation, the leakage index i corresponds to the
manipulation of the byte sP (i).

Leakage traces: In the following, we assume a leakage model of the form L(x) = L(x)+B,
where L denotes the deterministic part of the leakage and B corresponds to a Gaussian
noise with some variance σ2. For a trace Tr, we denote by Tr(i) the leakage corresponding
to the i-th byte manipulation. That is, Tr(i) = L(sP (i)) = L(sP (i)) +Bi.

Attacking the AES: As for the unprotected AES, the goal is to identify whether a
convergence happened in S1. As detecting a correct convergence is the condition required
for the complete attack to succeed, we only focus on this. As shown in Figure 3, we
perform two AES executions and obtain two traces Tr0 and Tr1 where the plaintexts only
differ in the diagonal (in red), corresponding to the indices s0, s5, s10, and s15 in S0. We
recall that a convergence consists of a single active byte in the first column of S1, thus
leading to a single active column in S2. The goal of the SCA part is to detect this event.



112 SITM: See-In-The-Middle

If there is no convergence, we expect multiple columns of S2 to be active. We assume that
the first two rounds are protected with (e.g.) masking, and thus use the 3rd round (S2) to
detect the convergence. Furthermore, as false positives would make the attack to fail, we
must detect convergences with certainty.

Handling shuffled noisy traces: In the unprotected case, handling synchronized noisy
traces is quite straightforward. Indeed, it is sufficient to do some averaging to detect a
collision within the traces, using a threshold value. However, as we now assume that all
the rounds are protected with shuffling, we do not know if the same time sample of two
distinct traces corresponds to the same Sbox or not. Subsequently, all the 16 Sboxes
have to be taken into account simultaneously, which makes the detection more difficult
for two main reasons. First, this will add algorithmic noise. Second, as the leakage
functions corresponding to two different time sample for real leakages might differ, a
collision occurring at two different indices is hard to detect. Yet, we show in the next
subsection a method to detect convergences with high confidence.

8.2 Simulated Traces and Analysis

Detection method: In order to detect collisions without false positive, we process the
traces by using a statistical method. We emphasize that while the following method might
not be statistically optimal, it gives satisfying results, especially considering our unprofiled
setting. Finding a more optimal criteria, potentially in a (different) profiled setting could
be an interesting research direction. From two traces Tr0 and Tr1, we denote by Ds the
sample-wise differential vector, computed as follow:
Ds = (Tr0(0)− Tr1(0), T r0(1)− Tr1(1), ..., T r0(15)− Tr1(15)). Note that Ds only com-
putes differences between the same time samples, in order to handle the case (likely for
real traces) where the leakage function differs for each time sample. If a collision occurs at
some time sample, there are more chances for

∣∣∣∑j D
s(j)

∣∣∣ to be lower than if there is no
collision. If a convergence has occurred, this will happen if, by chance, at least one of the
indices of the two shuffling permutations used for both Tr0 and Tr1 are the same for any
of the 12 non-active bytes in S2. Indeed, this would cause the same non-active byte to be
processed at the same time sample. From this observation, we compute a discriminant δ:

1. Collect N traces pairs (Tri
0, T r

i
1), i ∈ [0, N − 1], having the same differential pattern

as in Figure 3. All pairs have the same diagonal difference in order to produce the
same convergence pattern. However, two different pairs have a different non-diagonal
difference. The goal of varying the non-diagonal terms for two different pairs is to
reduce the algorithmic noise.

2. For each trace pair indices i, compute its sample-wise differential vector Ds
i =

(Tri
0(0)− Tri

1(0), T ri
0(1)− Tri

1(1), ..., T ri
0(15)− Tri

1(15)).
3. For each differential vector Ds

i , compute its absolute sum Σi =
∣∣∣∑15

j=0D
s
i (j)

∣∣∣.
4. Compute the average discriminant δ =

∑N−1
i=0

Σi

N .

Intuitively, since there are more chances for
∣∣∣∑j D

s(j)
∣∣∣ to be lower if there is a collision,

and since there are on average more collisions if there is a convergence, we expect δ to be
lower in the case of convergence than in the case of no convergence. Increasing the value
of N will improve this phenomenon for two reasons. First, it increases the chance that
some of the 12 non-active bytes in S2 might be processed at the same time sample for
some pairs. Secondly, it reduces the algorithmic noise introduced when the bytes are not
processed at the same time sample (which is the case most of the time).



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 113

0 20 40 60 80 1000

0.1

0.2

0.3

δ

Pr
ob

ab
ili
ty

0 20 40 60 80 1000

0.1

0.2

0.3

δ

δ convergence
δ no convergence

Figure 7: Distribution of δ when there is no convergence (plain) and when there is
convergence (dashed). Left: N = 200. Right: N = 2000. SNR = 0.296

Simulated results: In order to show the performance of our detection method, we look
at a simulated setting. We simulated the leakages corresponding to a shuffled AES
implementation by setting L as being the same leakage function as the 8-bit Atmel device
described in Section 5, computed using linear regression [SLP05]. The corresponding signal
is equal to 29.6325. we simulate the noise using a Gaussian distribution with variance
σ2 = 100, thus leading to SNR of 0.296.

The result of our method is illustrated in Figure 7, which shows the distribution of δ
computed for different value of N . The dashed (resp. plain) distribution corresponds to
the case where a (resp. no) convergence occurred. The left (resp. right) figure has been
computed using N = 200 (resp. N = 2000). As we can see, the two distributions are
clearly different for both cases. However, the region where the two distributions overlap
indicates a value of δ that does not allow stating if a convergence occurred with certainty.
Interestingly, any low enough value that only belongs to the dashed distribution necessarily
corresponds to a convergence. This validates the fact that our methods can be used to
accurately detects the convergence event. Note that, as expected, increasing N allows
better detection. Intuitively, increasing N can be seen as increasing the number of traces
that are used for averaging in the unprotected scenario. Indeed, there is a difference
between the plaintext complexity and the trace complexity of the attack. The later one
must take into account the ability to properly detect a convergence without false positive,
even for the unprotected case.

8.3 Experiments with Real Traces
We now validate the previous method against real traces of a shuffled AES implementation.
We first describe the implementation and the experimental setup. To validate the method,
we then perform the same analysis as for the simulated setting. As this analysis require
the knowledge of the real key, we finally show a concrete unprofiled attack scenario.

Setup and implementation: The practical experiments are conducted using a similar
setup as the one described previously in Section 5. The AES with shuffling countermeasure
is implemented in C on AVR ATmega328p board. For the shuffling part, we use the
permutation generation and double indexing, as described in [VMKS12]. For this setup,
the estimated SNRs related to the 3rd round Sboxes (without shuffling) is around 0.5.

Analysis: As a first experiment, we aim at showing that the distribution of the discriminant
δ is indeed different depending on if a convergence occurred or not. For that purpose, we
generate two sets of traces. The first one (resp. second one) consists of Np = 300 plaintext
pairs that produce a convergence (resp. do not produce a convergence). As the SNR is



114 SITM: See-In-The-Middle

0 10 20 30 40 50 600

0.2

0.4

δ

Pr
ob

ab
ili
ty

δ convergence
δ no convergence

Figure 8: Distribution of δ when there is no convergence (plain) and when there is
convergence (dashed) for real shuffled traces, using N = 1000 repetitions and 300 samples
for each distribution.

a bit higher than for the simulations, we set the repetition value N to be equal to 1000.
We thus acquired a total of 300× 1000 = 300000 pairs of traces for each set. Note that
the ability to generates such sets requires the knowledge of the actual master key, and
is thus not feasible in a non-profiled setting. For this experiment, we additionally used
the knowledge of the used permutation to trivially find the 16 points of interest using a
correlation method.

The results are displayed in Figure 8, which shows the corresponding experimental
distribution of δ. The dashed (resp. plain) distribution corresponds to the case where a
(resp. no) convergence occurred. As we can see, the two distributions are indeed clearly
different, which indicate that a convergence detection is feasible. More specifically, we see
that a value of δ < 27 is never achieved when there is no convergence, while still likely in
the case of a convergence. While 300 samples for each case is not enough to accurately
estimate the distributions, it is enough to highlight the difference and to justify the validity
of the approach.

Unprofiled attack: We now move to the case of a real attacker in an unprofiled manner.
Obviously, the behavior of δ according to the distribution of Figure 8 is not known to the
adversary as it would require a profiling phase to be computed. Yet, we show below how
to perform the attack in a fully unprofiled setting.

The first problem is the identification of the point of interests in the third round in an
unprofiled manner. Yet, the 16 shuffled points of interest of the 3rd round can still easily be
found using the SNR as a detection technique. For that purpose, we set the first plaintext
byte as varying, and the 15 remaining ones as fixed. As a result, the variation of the whole
state in the third round only depends on the first plaintext byte. Consequently, computing
the SNR by grouping the traces according to that value allows finding the corresponding
points of interest. The result of this POI detection is displayed in Figure 9, which has been
done using 100000 traces. We can clearly see 16 distinct SNR peaks, corresponding to the
16 shuffled Sboxes. Note that the SNR obtained by this method is obviously lower than the
actual one (0.5), due to the shuffling countermeasure introducing algorithmic noise. More
specifically, we can see that the obtained SNR is around 0.03. Note that when multiplied
by 16, it is roughly equals to 0.5, which corresponds to the SNR without shuffling.

Now that the 16 points of interest are found, we move to the actual attack. For that
purpose, we speeded up the process by using a 4-time averaging with the same permutation
for each trace. While such averaging is not possible in a real shuffling setting, we only
used it to artificially increase the SNR to ease the attack. The corresponding new SNR
without shuffling is increase up to 1.5, and the actual SNR with shuffling (as in Figure 9)
is equal to 0.09. We acquired Np = 2000 (averaged) trace sets using a repetition value of
N = 1000, thus leading to a total of 2000000 traces. Note that the attack would still be
feasible with the raw traces, at the cost of a higher repetition value N . We denote the



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 115

0 500 1,000 1,500 2,000 2,5000

1

2

3

4 ·10−2

Time samples

SN
R

Figure 9: SNR result over the different time samples for the real shuffled AES traces,
when only varying the first plaintext byte.

corresponding plaintexts by Mi,j , i ∈ [0, 1999], j ∈ [0, 999]. For a fix value i, we have the
diagonal of Mi,j which is fixed ∀j ∈ [0, 999], and the non-diagonal bytes that are varying.
For a fix value j, the non diagonal of Mi,j is constant ∀i ∈ [0, 1999], while the diagonal is
varying. This is illustrated by Figure 10. As a result, we obtained

(2000
2
)

= 1999000 pairs
of plaintext diagonals that are to be tested for convergence. Among these pairs, 4 of them
correspond to a convergence (obviously, this is not known to the attacker). The goal of
the attacker is to correctly find 2 pairs in order to fully recover the key. For each pair, the
attacker uses the corresponding repetition of N = 1000 to compute the discriminant δ. As
we know that δ tends to be lower when a convergence occurred, we ranked the 1999000
pairs in increasing order of value δ. The pairs corresponding to actual convergences were
ranked 1, 20, 237 and 2006. As a strategy to find two correct pairs, the adversary can
test all the N combination of pairs with the lowest δ, requiring a complexity of

(
N
2
)
. This

would be achieved in at most
(20

2
)

= 190 trials, thus validating the attack. Overall, the full
attack on the 32 bits of the key required a plaintext complexity of ' 212, with a repetition
N = 1000, leading to a trace complexity of ' 222. As the attack needs specific plaintexts
for each 32-bit portion of the key, the trace complexity of a full key is multiplied by 4.

Mi,j1 ⊕Mi,j2 Mi0,j ⊕Mi1,j

Figure 10: Illustration of the different plaintext values used for the real traces, viewed as
4× 4 matrices of bytes. A red (resp. white) square indicates a non-zero (resp. zero) value.

9 Conclusion
In this work, we have presented SITM, a new attack methodology for side-channel attacks,
motivated by recently proposed SCADPA, in combination with differential cryptanalysis
method. This attack could be generalized to SPN structure to target the middle rounds of
a block cipher (up to 12 rounds for case of SKINNY due to its simple diffusion function).
Here, we show the practical applicability of the attack based on experiment validation
on 8-bit and 32-bit microcontroller. We then present case study on state-of-the-art block
ciphers, namely AES, SKINNY, and PRESENT. Next, deeper round attacks targeting AES
and PRESENT are presented, as well as further optimizations based on stronger leakage
model. SITM is also shown to defeat lightweight countermeasures like shuffling in the
middle rounds, even at low SNR. In this respect, finding a more optimal criteria than the
proposed one for the attack against shuffling could be an interesting research direction.
With shown middle round attacks, protecting corner rounds is not a sufficient solutions.
Additionally a framework to estimate minimum rounds to protect is proposed.



116 SITM: See-In-The-Middle

Acknowledgments
The authors acknowledge the support from the Singapore National Research Foundation
(“SOCure” grant NRF2018NCR-NCR002-0001 – www.green-ic.org/socure).

References
[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi.

The EM side—channel (s). In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 29–45. Springer, 2002.

[BGHD13] Shivam Bhasin, Sylvain Guilley, Annelie Heuser, and Jean-Luc Danger. From
cryptography to hardware: analyzing and protecting embedded Xilinx BRAM
for cryptographic applications. Journal of Cryptographic Engineering, 3(4):213–
225, 2013.

[BJB18] Jakub Breier, Dirmanto Jap, and Shivam Bhasin. SCADPA: Side-channel
assisted differential-plaintext attack on bit permutation based ciphers. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1129–1134. IEEE, 2018.

[BJHB19] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. On Side
Channel Vulnerabilities of Bit Permutations in Cryptographic Algorithms.
IEEE Transactions on Information Forensics and Security, 2019.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

[BK07] Alex Biryukov and Dmitry Khovratovich. Two new techniques of side-channel
cryptanalysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727
of Lecture Notes in Computer Science, pages 195–208. Springer, 2007.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In CHES, volume 4727, pages
450–466. Springer, 2007.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present. Cryptographic
Hardware and Embedded Systems-CHES, pages 25–28, 2017.

[CIW13] Christophe Clavier, Quentin Isorez, and Antoine Wurcker. Complete SCARE
of AES-Like Block Ciphers by Chosen Plaintext Collision Power Analysis. In
INDOCRYPT, volume 8250, pages 116–135. Springer, 2013.

[dBLW02] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A DPA Attack against
the Modular Reduction within a CRT Implementation of RSA. In CHES,
volume 2523, pages 228–243. Springer, 2002.



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 117

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on AES. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 274–291.
Springer, 2011.

[GS14] Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA
with Enumeration: Which One Beats the Other and When? In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 291–312. Springer, 2014.

[GWL+15] Limin Guo, Lihui Wang, Dan Liu, Weijun Shan, Zhimin Zhang, Qing Li, and
Jun Yu. A chosen-plaintext differential power analysis attack on HMAC-SM3.
In Computational Intelligence and Security (CIS), 2015 11th International
Conference on, pages 350–353. IEEE, 2015.

[HP06] Helena Handschuh and Bart Preneel. Blind differential cryptanalysis for
enhanced power attacks. In Eli Biham and Amr M. Youssef, editors, Selected
Areas in Cryptography, 13th International Workshop, SAC 2006, Montreal,
Canada, August 17-18, 2006 Revised Selected Papers, volume 4356 of Lecture
Notes in Computer Science, pages 163–173. Springer, 2006.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ci-
phers: The TWEAKEY framework. In Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014, Proceedings, Part II [JNP14], pages 274–288.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in cryptology - CRYPTO’99, pages 789–789. Springer, 1999.

[KLL10] Jongsung Kim, Yuseop Lee, and Sangjin Lee. DES with any reduced masked
rounds is not secure against side-channel attacks. Computers & Mathematics
with Applications, 60(2):347–354, 2010.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference,
pages 104–113. Springer, 1996.

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. Computer Security - ESORICS 98, pages
97–110, 1998.

[NJJ+18] Zakaria Najm, Dirmanto Jap, Bernhard Jungk, Stjepan Picek, and Shivam
Bhasin. On comparing side-channel properties of AES and ChaCha20 on
microcontrollers. In 2018 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), pages 552–555. IEEE, 2018.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-
nique against SPN structures, with application to the AES and KHAZAD.
In Cryptographic Hardware and Embedded Systems - CHES 2003, 5th Inter-
national Workshop, Cologne, Germany, September 8-10, 2003, Proceedings,
pages 77–88, 2003.

[Pub01] NIST FIPS Pub. 197: Advanced encryption standard (AES). Federal infor-
mation processing standards publication, 197(441):0311, 2001.



118 SITM: See-In-The-Middle

[RG17] Oscar Reparaz and Benedikt Gierlichs. A first-order chosen-plaintext DPA
attack on the third round of DES. In Thomas Eisenbarth and Yannick Teglia,
editors, Smart Card Research and Advanced Applications - 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November 13-15, 2017,
Revised Selected Papers, volume 10728 of Lecture Notes in Computer Science,
pages 42–50. Springer, 2017.

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel
attacks. In International Conference on Information Security and Cryptology,
pages 393–410. Springer, 2009.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, Oct 1949.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer, 2005.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In
Cryptographers’ track at the RSA conference, pages 208–225. Springer, 2006.

[ST04] Adi Shamir and Eran Tromer. Acoustic cryptanalysis. presentation available
from http://www. wisdom. weizmann. ac. il/ tromer, 2004.

[SVCO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order DPA. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 112–129. Springer, 2010.

[SWP03] Kai Schramm, Thomas Wollinger, and Christof Paar. A new class of collision
attacks and its application to DES. In FSE, volume 2887, pages 206–222.
Springer, 2003.

[THM07] Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting AES
software implementations on 32-bit processors against power analysis. In
International Conference on Applied Cryptography and Network Security,
pages 141–157. Springer, 2007.

[VCGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 282–296. Springer,
2014.

[VCS10] Nicolas Veyrat-Charvillon and François-Xavier Standaert. Adaptive chosen-
message side-channel attacks. In ACNS, volume 6123, pages 186–199. Springer,
2010.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 740–757. Springer, 2012.



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 119

[Wan08] Meiqin Wang. Differential cryptanalysis of reduced-round PRESENT. In
Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008, First
International Conference on Cryptology in Africa, Casablanca, Morocco, June
11-14, 2008. Proceedings, volume 5023 of Lecture Notes in Computer Science,
pages 40–49. Springer, 2008.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Science China Information Sciences, 58(12):1–
15, 2015.

A Other Attack Models
We present deeper round attacks on AES and PRESENT in the following and discuss about
attack under precise leakage models.

A.1 Further Optimizations with Precise Leakage Models
The previously presented analysis is developed on a difference-based leakage model, which
is also practically validated on two different microcontrollers. Under the current model,
the adversary can only learn, if a target intermediate value has changed between two
executions when the plaintexts changes.

This attack can be further improved if we consider a stronger adversary capable of
acquiring better side-channel measurements. In other words, if the adversary can extract
more information from side-channel measurement like value or Hamming weight (HW)
of the output difference, the analysis can be largely simplified. Naturally, if the value or
HW of ∆o is known, the satisfying candidates for Equation (1) will converge faster to
a solution, reducing the attack complexity. This can be clearly observed in [BJHB19],
where authors could learn the value of the ∆o, as a result needing only ∼ 24 encryptions
compared to ∼ 211 in our attack. Please note that authors in [BJHB19] were also working
with the difference model, however, this was converted to value model due to properties of
bit permutations.

A.2 Deeper Round Attack on AES

In Section 6.1, we presented key-recovery attack on various variant of AES by collecting the
side-channel measurements during round 3 of the encryption operation, and progressively
going deeper into the rounds to recover the entire master key. While it seems like 3 rounds
is the deepest we can go, as the AES round function achieves full diffusion in merely 2
rounds, we show that this is not necessary the case.

Recall that the diffusion matrix of AES is MDS, meaning the sum of non-zero compo-
nents in the input and output vectors is at least 5. By exploiting the case where the bound is
tight, we call it the “pessimal diffusion”, we are able to perform key-recover attack through
side-channel observation on round 4. Table 6 shows the list of representatives of pessimal
diffusion of AES diffusion matrix where the input vector has 2 non-zero components and the
output vector has 3 non-zero components. Any of these 2-to-3 non-zero components map-
ping can be represented by one of these representatives through some rotation and non-zero
scalar multiplication. For example, {0x3e, 0x00, 0x00, 0x3e} → {0x42, 0x00, 0x7c, 0x3e}
is simply a left-rotation of the first representative multiplied by scalar factor 0x3e. In short,
given the value of 1 of the 2 non-zero components of the input vector, there are 4 possible
values for the other non-zero component that would result in 3 non-zero components in
the output vector.



120 SITM: See-In-The-Middle

Table 6: Representatives of pessimal diffusion of AES diffusion matrix.

Input vector Output vector
(hexadecimal) (hexadecimal)
01 01 00 00 01 03 00 02
01 03 00 00 07 07 02 00
01 8d 00 00 8e 00 8c 8e
01 f7 00 00 00 f4 f6 f4

Input vector Output vector
(hexadecimal) (hexadecimal)
01 00 02 00 00 07 05 01
01 00 03 00 01 04 07 00
01 00 8d 00 8f 8d 00 8e
01 00 f6 00 f4 00 f6 f5

When one of such pessimal diffusions occurs, there are only 3 active bytes in S2 which
will propagate to exactly 3 active columns in S3. Thus, we can observe in round 4 for
exactly 3 active columns to and deduce that both the convergence in round 1 and pessimal
diffusion in round 2 occurred.

Figure 11 depicts an example differential pattern for our attack where we vary the
values of the bytes in two diagonals, {s0, s5, s10, s15} and {s1, s6, s11, s12}, of S0 while
keeping the other bytes constant. The 2 active bytes in S1 need be in the same diagonal,
i.e. {s0, s15}, {s1, s12}, {s2, s13} or {s3, s14}, so that they will be in the same column after
the ShiftRows operation.

Convergence Pessimal
diffusion

Diffusion Side-channel
Observation

S0 S1 S2 S3

Figure 11: AES differential pattern for 4-round attack. Active bytes are in red, blue or
green, where blue bytes in PT converge to a single blue byte in S1, similarly for the green
bytes.

The key-recovery attack is pretty much the same drill as before with slight modification.
Since we have 8 active bytes in S0, given a particular differential characteristic the
convergence occurs with probability 2−64. As there are 28 − 1 possible differential values
for each of s0 and s15, and the active byte in the first column of S1 (in blue) can be at any
of the 4 positions in the column, thus the differential probability of a convergence occurring
in round 1 is approximately 2−46. Suppose the 2 active bytes are in the correct positions,
in round 2, there are 4 in 28 − 1 chances that a pessimal diffusion occurs. Therefore, the
probability of finding such differential pattern is 2−52 and we need approximately 226.5

chosen plaintexts.
When we find a plaintext pairs with exactly 3 active columns in S3, it is highly likely

that convergence occurred in round 1 and pessimal diffusion occurred in round 2. In
addition, the 2 active bytes in S1 are at one of the 4 sets of positions. For each set of
positions, we exhaust the 28 − 1 possible pairs of values and deduce the key candidate.
In total, there are approximately 210 possible key candidates. We then need another 211

chosen plaintexts to find the correct partial round key. Finally, we repeat the attack on
the other 2 diagonals to recover the entire round key. In summary, recovering the first
round key of AES requires 2× (226.5 + 211) = 227.5 chosen plaintexts, memory space to
store the 32-bit key candidates 4× 210 = 212 bytes and time complexity of O(226.5). For
AES-192 and AES-256, we simply repeat the attack targeting one round deeper to find
the second round key to recover the entire key.

A.3 Deeper Round Attack on PRESENT

In Section 6.3, we presented key-recovery attack on PRESENT through side-channel ob-
servation at round 3. If the adversary is capable of measuring the change in individual



S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim 121

Sboxes, she can go one more round deeper and observe leakage at round 4, see Figure 6.
If the active Sboxes fall in exactly one of these subsets {S4

0 , S
4
4 , S

4
8 , S

4
12} (in gray) or

{S4
2 , S

4
6 , S

4
10, S

4
14} (in light-gray), it is very likely that the convergence occurs. The only

difference is that she is unable to tell if all the output differences in round 1 are 0x1 or
0x4 and the number of key candidates doubles. Nevertheless, the attack complexity is
still relatively small.

B Deriving bp and fd

Recall that we denote bp the number of rounds to guarantee any bp-round differential
characteristics has differential probability at most 2−n, where n is the block size, and fd

the minimum number of rounds to achieve full diffusion.

AES. There exists 3-round differential characteristics with 9 active Sboxes as seen in
Figure 11, such a valid characteristic has differential probability not lower than 2−63. Thus,
we have bp = 4 for AES as there are at least 25 active Sboxes in any 4-round differential
characteristic has differential probability not more than 2−150. The optimal diffusion
property of AES ensures full diffusion in 2 rounds, thus fd = 2.

SKINNY. Since the Sboxes of SKINNY-64 (n = 64) and SKINNY-128 (n = 128) has
MDP= 2−2, we need at least 32 and 64 active Sboxes resprectively. As presented
in [BJK+16], there are at least 36 and 66 active Sboxes for 8-round and 15-round differen-
tial characteristic, thus we set bp to be 8 and 15 respectively. Independent of the Sbox
dimension, the diffusion layer of SKINNY [BJK+16] guarantees full diffusion in 6 rounds,
thus fd = 6.

PRESENT. In [Wan08], Wang showed that there exists iterative differential characteristic
with 2 active Sboxes per round. Conservatively, we need 16 rounds to have at least 32
active Sboxes and differential probability at most 2−64, thus bp = 16. The bit permutation
of PRESENT maps 4 output bits of an Sbox to 4 Sboxes in different groups [BKL+07],
achieving full diffusion in 3 rounds, thus fd = 3.

C DPA on Corner Rounds vs SCADPA
We recall that we investigate a scenario where the first and last rounds are heavily protected
with masking using n shares, leaving the middle rounds either unprotected or protected
by lightweight countermeasures like shuffling. As an alternative to attacking the middle
rounds like in SCADPA, an adversary can simply apply a n-order DPA on the first round.
A natural question is thus whether it is better to use our method or a higher order DPA.
While answering this question is not trivial, we provide a qualitative comparison. In
the case of a higher order first round DPA, the adversary would first need to find the
corresponding combination of n time samples that provide leakages on each share. As
we consider an unprofiled setting, this is a complicated task whose complexity increases
exponentially for the naïve methods. Yet, we now assume that these points of interest are
given to the adversary and only look at the trace complexity. In this respect, the Figure
8 of [SVCO+10] shows an estimation of the trace complexity required by an adversary
attacking the masking countermeasure. More precisely, using Hamming weight simulated
leakages, it shows the number of traces required to achieve a 90% success rate depending
on the number of shares n and the noise level σ2, which we now use as a reference. In
our attack against real shuffled traces, the SNR was equal to 0.09 (artificially increased).
Assuming a Hamming weight model, this corresponds to a noise level equal to 2

0.09 = 22
in [SVCO+10]. Achieving a 90% success rate with such noise level would require more than
104 for first order masking, 106 for second order and 108 for third order. We emphasize that



122 SITM: See-In-The-Middle

the estimations of [SVCO+10] are generated using simulated Hamming weight leakages.
As a result, an unprofiled attack would likely require more traces than the numbers we
reported above. These numbers show that the trace complexity against the first order
masking is close to our method when there is no shuffling. As a result, our method against
unprotected middle round would be more efficient than applying a 3rd order attack against
a 3-share masking. In the case of shuffled middle round, we see that the trace complexity
of our method is close to a 3rd order attack, showing that our method would be more
efficient than applying a 4th order attack against a 4-share masking.


	Introduction
	Our Contribution

	Background
	Substitution-Permutation Network
	Side Channel Attacks
	Related Works

	Attack Model
	Attack Methodology
	Preliminary and Notations
	SITM Overview

	Practical Validation of the Attack Model
	8-bit AVR Microcontroller
	32-bit ARM Microcontroller

	Application of SITM to Ciphers
	AES and Other AES-like Ciphers
	SKINNY
	PRESENT and Other Bit Permutation Based Ciphers

	Number of Rounds to Mask to Mitigate SITM
	SITM on Middle Round Shuffling
	Description and Discussion
	Simulated Traces and Analysis
	Experiments with Real Traces

	Conclusion
	Other Attack Models
	Further Optimizations with Precise Leakage Models
	Deeper Round Attack on AES
	Deeper Round Attack on PRESENT

	Deriving bp and fd
	DPA on Corner Rounds vs SCADPA

