Lightweight Authenticated Encryption Mode of
Operation for Tweakable Block Ciphers

Yusuke Naito and Takeshi Sugawara

Mitsubishi Electric Corporation, Kamakura, Kaganawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co. jp
The University of Electro-Communications, Chofu, Tokyo, Japan
sugawara@uec.ac. jp

Abstract. The use of a small block length is a common strategy when designing
lightweight (tweakable) block ciphers (TBCs), and several 64-bit primitives have
been proposed. However, when such a 64-bit primitive is used for an authenticated
encryption with birthday-bound security, it has only 32-bit data complexity, which is
subject to practical attacks. To employ a short block length without compromising
security, we propose PFB, a lightweight TBC-based authenticated encryption with
associated data mode, which achieves beyond-birthday-bound security. For this
purpose, we extend iCOFB, which is originally defined with a tweakable random
function. Unlike iCOFB, the proposed method can be instantiated with a TBC using
a fixed tweak length and can handle variable-length data. Moreover, its security
bound is improved and independent of the data length; this improves the key lifetime,
particularly in lightweight blocks with a small size. The proposed method also covers
a broader class of feedback functions because of the generalization presented in our
proof. We evaluate the concrete hardware performances of PFB, which benefits
from the small block length and shows particularly good performances in threshold
implementation.

Keywords: Authenticated encryption - beyond-birthday-bound security - tweakable
block cipher - lightweight - threshold implementation

1 Introduction

Driven by a demand for secure connectivity in resource-constrained embedded devices,
lightweight cryptography has been actively studied in the last decade. Consequently, sev-
eral lightweight block ciphers have been proposed [BBIT15, BSST13, BJKT16, BCGT12,
GPPRI11, SIHT11, SMMK13], including PRESENT [BKL'07] and CLEFIA [SSAT07] stan-
dardized in ISO/IEC 29192-2.

A common strategy for designing a lightweight block cipher is to use a small block
length. For example, PRESENT [BKL*07] and PRINCE [BCG™12] support 64-bit block
length only. Many other algorithms, such as GIFT [BPP17] and SKINNY [BJK'16],
provide 64-bit options. The small block length contributes to a smaller memory footprint
and a shorter round number, which are crucial for a lightweight implementation.

Resource-constrained devices are frequently used in a hostile environment, in which
side-channel attack (SCA) [KJJ99] should be considered. Designers face an even more
challenging task of realizing an SCA-resistant implementation with limited resources.
Researchers have tackled this problem and proposed numerous lightweight and SCA-
resistant implementations [NRR06, PMK*11, MPL*11, BJK*16, GJCT17], including the
ones protected by threshold implementation (TT) [NRS11]. An advantage of a block cipher

Licensed under Creative Commons License CC-BY 4.0. [@)ev |
TACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,

Vol. 2020, No. 1, pp. 66-94

DOI:10.13154 /tches.v2020.i1.66-94

mailto:Naito.Yusuke@ce.MitsubishiElectric.co.jp
mailto:sugawara@uec.ac.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2020.i1.66-94

Yusuke Naito and Takeshi Sugawara 67

with a small block length (i.e., a small state size) becomes even larger with TI, where a
shared representation of the state multiplies the memory requirement.

To leverage the benefit of a lightweight block cipher for realizing both confidentiality
and integrity, lightweight modes of operation for authenticated encryption with associated
data (AEAD) have been actively studied in the past few years, promoted by the CAESAR
competition and NIST’s move toward standardizing lightweight cryptography [NIS18].
Until now, lightweight and block-cipher-based AEAD modes, such as COFB [CIMN17]
and SAEB [NMSS18], have been proposed. However, the short block length of lightweight
cryptography can be a challenge in terms of security. The lightweight AEAD modes have
security up to the so-called birthday bound. More specifically, the security is ensured up
to O(2%?) block-cipher calls when instantiated with a b-bit block cipher. With a 64-bit
block cipher, the security is ensured up to 232 block-cipher calls only. It is subject to a
practical attack, as demonstrated by the Sweet32 attack [BL16].

The use of an AEAD mode with beyond-birthday-bound (BBB) security is a solution
for avoiding the birthday problem. There are block-cipher-based AEAD modes with BBB
security, including CHM [Iwa06], CIP [Iwa08], and AEAD modes with CLRW2 [LST12]
or r-CLRW [LS13]. However, they are costly, compared to the lightweight AEAD modes,
as they require two or more independent universal hash functions. Another solution
is to construct a (dedicated) TBC-based AEAD mode. The TBC-based AEAD modes,
including TAE [LRWO02] (where the procedure of handling associated data is not defined),
©CB3 [KR11], OTR [Minl4], SCT [PS16], and ZAE [IMPS17], realize better efficiency
and security. Especially, TAE, ©CB3, and SCT have the smallest state in the category of
BBB-secure AEAD modes.

1.1 Motivation, Approach, and Problems

Our objective is to design a lightweight BBB-secure and nonce-based AEAD mode, thereby
employing a short block length without compromising security. For making the design
lightweight, we use the four criteria for lightweight AEAD mentioned in [NMSS18], which
are used in designing the block-cipher-based lightweight AEAD mode SAEB, as presented in
Table 1 (the design principle originates from Sponge-based schemes [BDPA07, BDPA11]):

e No extra state: The AEAD mode does not use any additional memory besides
the state and (twea)key registers within the (tweakable) block cipher that can be
updated in place.

o Inverse free: The AEAD mode does not use decryption call of the (tweakable)
block cipher.

o Linear only: The AEAD mode needs only linear operations besides the (tweakable)
block cipher.!

e Online: The AEAD mode scans the incoming message only once.

The use of a (dedicated) TBC is a promising approach for designing a lightweight
and BBB-secure AEAD mode; however, none of the previous TBC-based AEAD modes,
including TAE, ©CB3, and SCT, satisfy all the lightweight criteria (see Table 1).

Our approach involves designing a (dedicated) TBC-based AEAD mode by extending
the idea of iCOFB [CIMN17]. iCOFB shown in Figure 1 is a generalization of COFB by
using the tweakable random function (TRF) R having a b-bit output, an arbitrary-length
associated data (AD) A, a nonce N, and a set of a counter and domain separation bit
(i,4). In iCOFB, a TRF is called for each message/ciphertext block. Feedback functions p

1 Compared to the XOR-only condition in [NMSS18], we also accept linear operations that are similarly
lightweight.

68 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

Table 1: Lightweight criteria [NMSS18] and AEAD modes. BC indicates block cipher.
The “No extra state” column shows the number of extra bits if the criterion is not satisfied.

Lightweight criteria

AEAD Primitive Security No extra Inv. Linear Online Rate Parallel. Ref.
state free only
GCM BC 0(2%/2) 4b v — v <1 v [MV04]
COFB BC 0(2%/2) b/2 v v v 1 — [CIMN17]
SAEB BC 0(2b/2) v v v v 1/2 — [NMSS18]
TAE TBC 0(2%) b — v v 1 v [LRWO02]
©CB3 TBC 0(2%) b — v v 1 v [KR11]
OTR TBC o(2%) 2b v v v 1 v [Min14]
SCT TBC 0(2%) b v v — 1/2 v [PS16]
ZAE TBC 0(2%) 4b v v — 2/3 v [IMPS17]
PFB TBC 0(2%) v v v v 1 Ours

The rate of GCM is “< 1” because field multiplication for GHASH requires a negligible cost.
AD should be fed later to realize ©CB3 with b extra bits.

and p’ are used to map a pair of TRF output Y; and plaintext/ciphertext block M;/C; to
the next TRF input X;;; and a ciphertext/plaintext block C;/M;. p and p’ are defined

by the 2b x 2b binary matrices:
ooy (X _ (B B2 Y;
p(}/;.le) - < Ci > - <E271 E272) (Mz) 9
rv oy (Xivr) _ (Din Do) (Y
p¥i Gi) = < M;) \D21 D22) \C;

After consuming all the message blocks, a TRF is called once again to generate a tag T. It
has been proven that iCOFB has O(2°) security with p and p’ satisfying a certain criterion
(see Section 3.1).

As shown in Figure 1, iCOFB needs no extra state besides the ones within the underlying
TRF. In addition, iCOFB takes message/ciphertext blocks online and does not need TRF
inverse. Moreover, the functions p and p’ can be realized with linear operations only.
Therefore, iCOFB satisfies all requirements regarding TRF-based AEAD.

Three problems are faced when designing a TBC-based AEAD mode from iCOFB’s idea.
First, as AD is a part of a tweak, the underlying TRF should accept an arbitrary-length
tweak. On the contrary, lightweight TBCs, such as SKINNY, accept only fixed-length
tweaks. XT tweak extension [MI15] can solve the problem, but it is costly as it requires a
universal hash function accepting an arbitrary-length data. Second, iCOFB cannot handle
arbitrary-length message because the functions p and p’ accept b-bit blocks only. Third,
unlike conventional schemes such as ©CB3, iCOFB has worse security bound that depends
on the maximum message block length /may.2 That means a short key life for a large fmay
which results in an additional cost for rekeying or a shorter product lifetime.

(1)

1.2 Contribution

We design a (fixed tweak-length) TBC-based (and nonce-based) AEAD mode, called PFB
(Plaintext FeedBack), which solves the three above-mentioned problems and satisfies all the
lightweight criteria presented in Table 1. Moreover, the encryption/decryption procedures

2iCOFB’s security bound is O(£maxq/2°) wherein q is the total number of encryption queries and forgery
attempts. @CB3’s security bound is O(gp/2°) wherein gp is the number of forgery attempts.

Yusuke Naito and Takeshi Sugawara 69

Encryption
Ob - o
N,A(0,0) NA@LO % NARO % NA(3,1) X4
SN S
¢Y1 ¢Y2 ¢Y3
Ml Mz Ms
_________________ “« % S T
Decryption
Ob . .
N,A(0,0) NA@LO) % NARO) % NA(3,1) X4
vy R
\l/lYl Yz ¢Y3
Cl C2 C3
M, M, M, T

Figure 1: iCOFB. M;, My, M3 are b-bit plaintext blocks, C7,Cs, C3 are b-bit ciphertext
blocks, and T is a b-bit tag.

of PFB are efficient, i.e., rate-1.3

We address the first problem by designing an AD processing part with a CBC-style
(and Sponge-style) structure. In this part, a given AD is processed block-by-block by
using a fixed-tweak-length TBC and a feedback function 64(fz)(VVZ-7 A)=Vigi =AW,
which defines the next TBC input V;41 from a current AD block A; and the previous TBC
output block W;.

We design the encryption and decryption procedures by following iCOFB’s idea: plain-
text/ciphertext blocks are processed by iterating a combination of TBC and a feedback
function. With the aim of encrypting plaintext blocks parallelly, the PFB’s functions
feedback plaintext and are given by

(=)

which is a member of p and p’. For a generalization in the security proof, the feedback
functions are separated into the following parts:

8 (Yi, My) = X1 = M; 8DV, C) = Xip = Vi 0
YV M) = Ci = Yi & M, VOV, C) = My =Y 8 C,

In the encryption procedure, as a current plaintext block M; becomes the next TBC
input, the underlying TBC can be processed in parallel.* This feature is desirable for
communication between entities with asymmetric resources, e.g., a central server sends
encrypted commands to many resource-constrained nodes.

3 Notably, regarding parallelizability, only the encryption procedure in PFB is parallelizable. In Table 1,
GCM, TAE, ©CB3, OTR, SCT, and ZAE are parallelizable. Regarding misuse settings, we do not claim the
security of PFB in the nonce-misuse setting or releasing the unverified plaintext setting. In Table 1, only
SCT and ZAE have the nonce-misuse security.

4 The AD processing part is not parallelizable and a tag is defined using the last TBC output to
encrypt/decrypt the last plaintext/ciphertext block. The decryption of PFB is not parallelizable.

70 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

We address the second problem by incorporating one-zero padding and truncation into
the abovementioned functions 6£a)7 (5&6), 5£d), %(Fe)7 and %(Fd), which enable us to handle
arbitrary-length data. The modified functions are denoted by 6(®), §(¢) §(@ ~(€) and (4
and can handle data blocks of length < b unlike the feedback functions p and p’ of iCOFB.

To reduce a TBC call, padding is not performed for a full b-bit block data, and
therefore, there are distinct encryption/decryption queries that become identical after
one-zero padding. To avoid attacks by such data, PFB changes the corresponding tweak
values. Determining a proper rule is not a trivial task: several AEAD schemes are broken
by the flaws of the tweak rules [MI17] on PMACx, PMAC2x, and SIVx [LN17].

We address the third problem by providing a new security proof. By following the
research direction of generalizing a cryptographic scheme without specifying a structure,
such as the Stam’s compression function [Sta09] as a generalization of PGV [PGV93]
and Parazoa [AMP12] as a generalization of Sponge [BDPAO07], we only give sufficient
conditions on the generalized functions 6(®), §(¢), §(@) ~(€) and ~(4 regarding the inputs
and outputs. The key difference in the new generalized functions is that, unlike p and p/,
they support data blocks with length < b. We subsequently prove that the generalized
AEAD scheme, called GFB, satisfies the security bound of O(gp/2%) — the same level
of security as ©CB3. The generalized functions cover the PFB functions, and thus, the
security bound holds for PFB.

Finally, the benefit of PFB is evaluated through concrete hardware implementations.
In the implementations, PFB is instantiated with a lightweight TBC SKINNY-64-192. Its
performance is compared with that of the state-of-the-art block-cipher-based alternative
with the same level of security: SAEB instantiated with GIFT-128-128. For each AEAD,
we evaluate the performances with and without TI. We show that PFB benefits from the
small block length and shows particularly good performance in implementation with the
SCA countermeasure: it has the smallest circuit area compared to SAEB implementation
and the conventional implementations of Ascon [GWDE15]) and Ketje [ANR18].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we briefly review TBC and
AEAD. Then, we describe the design principle and definition of GFB in Section 3, followed
by its security result in Section 4. We describe the hardware implementations and their
performance comparison in Section 5.

1.4 Independent Concurrent Work

Iwata et al. independently and concurrently designed Romulus [IKMP19a, IKMP19b]
having several similarities to GFB, and submitted to the lightweight crypto standardization
process [NIS18].> We summarize the key differences between the two schemes:

1. Romulus-N processes AD blocks using both tweak and input-block spaces of the
underlying TBC, while GFB does not use tweak spaces.

2. The feedback function of GFB is more general than that of Romulus-N. Moreover, one
instantiation of the feedback function PFB ensures that the encryption is parallelizable,
while Romulus-N is not.

3. Romulus-M is secure under the nonce-misuse setting but is not online (GFB and
Romulus-N do not have such misuse resistance).

5We submitted the preliminary version of this paper to Cryptology ePrint archive [NS19] before the
NIST’s deadline [NIS18]. The Romulus team follows the proof of our preliminary work [NS19] to improve
Romulus’s security bound to O(gp/2°) [IKMP19a].

Yusuke Naito and Takeshi Sugawara 71

2 Preliminaries

2.1 Notation

Let ¢ be an empty string and {0,1}* be the set of all bit strings. For an integer i > 0,
let {0,1}% be the set of all i-bit strings, {0,1}° := {e}, and {0,1}=% := {0,1}} U {0,1}?> U
-+~ U{0,1}* be the set of all bit strings of length at most i, except for . Let 0° resp. 1° be
the bit string of i-bit zeros resp. ones. For an integer ¢ > 1, let [{] := {1,2,...,4} be the
set of positive integers less than or equal to ¢, and (7) := {0} U [¢]. For a non-empty set
T, T & T means that an element is chosen uniformly at random from 7 and is assigned
to T. The concatenation of two-bit strings X and Y is written as X||Y or XY when no
confusion is possible. For integers 0 < i < j and X € {0,1}7, let msb;(X) resp. Isb;(X)
be the most resp. least significant ¢ bits of X, and | X| be the number of bits of X, i.e.,
| X| = j. For integers i and j with 0 <4 < 27, let strj(¢) be the j-bit binary representation
of 7. For an integer b > 0 and a bit string X, we denote the parsing into fixed-length b-bit
strings as (X1, Xa,...,X;) < X, where if X # ¢, then X = X;[|Xo--- | X, |Xi| = b
forie[¢—1],and 0 < | X, < b;if X =¢, then £ =1 and X = X; = e. For an integer
b >0, let ozp, : ({e} U {0,1}=") — {0,1}® be a one-zero padding function: for a bit string
X € {e}U{0,1}=b, 0zp,(X) = X if | X| = b; ozp,(X) = X ||10°~ 11X if | X| < b.

2.2 Tweakable Block Cipher

A tweakable block cipher (TBC) is a set of permutations indexed by a key and a public input,
called tweak. Let K be the key space, TW be the tweak space, and b be the input/output-
block size. A TBC (encryption) is denoted by E : K x TW x {0,1}* — {0,1}*. A TBC
having a key K € K is denoted by Ex, and Ex having a tweak TW € TW is denoted by
ELW.

In this paper, a keyed TBC is assumed to be a secure tweakable-pseudo-random
permutation (TPRP), which is indistinguishable from a tweakable random permutation
(TRP). A tweakable permutation (TP) P : TW x {0,1}* — {0,1}" is a set of b-bit
permutations indexed by a tweak in TW. A TP having a tweak TW € TW is denoted
by PTW. Let Perm(TW, {0,1}°) be the set of all TPs with b-bit blocks and tweak space
TW. A TRP is defined as P <& Isgrrn(TW, {0,1}"). In the TPRP-security game, an
adversary A has access to either the target keyed TBC E‘K for K & K or a TRP
P& Isgrr/n(TW, {0,1}"). After the interaction, A returns a decision bit y € {0,1}. The

output of A with access to an oracle O is denoted by A®. For a TBC E, the TPRP-security
advantage function of an adversary A is defined as

AdvEP(A) = Pr [K & K AP = 1) - Pr [P & Perm(TW, {0,1}); A7 = 1],

Ex

where the probabilities are taken over K, P and A.
The maximum over all adversaries, running in time at most ¢ and making at most o

queries, is denoted by
Adv®P(0,t) := max AdvPP(A) .
Exk A E

K

2.3 Nonce-Based Authenticated Encryption with Associated Data

A nonce-based authenticated encryption with associated data (nAEAD) scheme based on
a keyed TBC EK, denoted by H[E K], is a pair of encryption and decryption algorithms
(H.Enc[EK],H.Dec[EK]). K, N, M,C,A and T are the sets of keys, nonces, plaintexts,
ciphertexts, associated data (AD), and tags of H[EK], respectively. In this paper, the key

72 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

space of H[E k] is equal to that of the underlying TBC. The encryption algorithm takes a
nonce N € N, AD A € A, and a plaintext M € M, and returns, deterministically, a pair of
a ciphertext C' € C and a tag T' € T. The decryption algorithm takes a tuple (N, A,C,T) €
N x AxCx T, and returns, deterministically, either the distinguished invalid (reject) symbol
L& M or aplaintext M € M. We require |ILEnc[Ex](N, A, M)| = [ILEnc[Ex](N, A, M")]
when these outputs are strings and |M| = |M’|. We also require that II[E] is correct:
V(K,N,A,M) € K x N x Ax M : IL.Dec[Eg](N, A, ILEnc[Ek](N, A, M)) = M. We
consider two security notions of nAEAD, privacy and authenticity. Hereafter, we call
queries to the encryption resp. decryption oracle “encryption queries” resp. “decryption
queries.”

Privacy

The privacy notion considers the indistinguishability between the encryption H.Enc[EK}
and a random-bit oracle $, in the nonce-respecting setting (all nonces in encryption queries
are distinct). $ has the same interface as H.Enc[E k], and for a query (N, A, M), returns a
random bit string of length |TI.Enc[Ex](N, A, M)|. In the privacy game, a nonce-respecting
adversary A interacts with either ILEnc[Ex] or $, and then returns a decision bit y € {0, 1}.
The privacy advantage function of an adversary A is defined as

Advpriv~ (A) — PI‘[K i ’C;AH‘EnC[FEVK] = 1] — PI‘[A$ = 1]
I[Exk]

)

where the probabilities are taken over K,$ and A.

The maximum over all adversaries, running in at most ¢ time and making encryption
queries of o¢ the total number of TBC calls invoked by all encryption queries, is denoted
by . .

AdvP"L (0g,t) == max AdvP"L (A) .
O[Ek] A H[Ek]

When an adversary is a computationally unbounded algorithm, the time ¢ is disregarded.

Authenticity

The authenticity notion considers the unforgeability in the nonce-respecting setting.
In the authenticity game, a nonce-respecting adversary A interacts with I[Ex] =
(IL.Enc[Ex], I1.Dec[Ex]), and aims to make a non-trivial decryption query whose response
is not L. The authenticity advantage of an adversary A is defined as

auth o $ 1~ A ILEnc[Ex],ILDec[Ex]
Ade[EK](A) =Pr[K «+ K;A forges] ,
where the probabilities are taken over K and A. We demand that A is nonce-respecting (all
nonces in encryption queries are distinct and the condition is not for decryption queries),
that A never asks a trivial decryption query (N, A, C,T), i.e., there is a prior encryption
query (N, A, M) with (C,T) = ILEnc[Ek]|(N, A, M), and that A never repeats a query.

ATLEnc[Ex] ILDeclEx] foroes means that A makes a decryption query whose response is not
1.

The maximum over all adversaries, running in at most ¢ time and making at most gg
encryption queries and gp decryption queries of ¢ the total number of TBC calls invoked
by all queries, is denoted by

auth L autjl
Ade[EK]((qg, qp,0),t) == max Ade[EK](A) .

When an adversary is a computationally unbounded algorithm, the time ¢ is disregarded.

Yusuke Naito and Takeshi Sugawara 73

3 PFB: Lightweight TBC-based nAEAD Mode of Opera-
tion

We design a TBC-based nAEAD scheme using the iCOFB design approach.

3.1 Brief Overview of iCOFB Design and Security

As mentioned in Section 1, iICOFB [CIMN17] has the structure of iterating a combination
of a TRF and the linear feedback function p/p’ defined in Eq. (1). The specification of
iCOFB is given in Figure 1.

To ensure the correctness of iCOFB, the feedback functions p/p’ with the following
conditions are used: Fjo is invertible; Dy, = FEq 1 + E172E2_7%E2,1; Do = E172E2_7%;
Dy = EiéEz,u Dy = E{gl

Regarding the security of iCOFB, they show the following theorem.

Theorem 1 [Security of iCOFB] If the feedback functions p/p’ satisfy the following condi-
tions: (A1) Es. is invertible; (A2) D1 o is invertible; (A3) D11 is invertible, then for
any adversary A making at most qp decryption queries of

qD(Emax + 1)

Advipcri(\;FB[R] (05) =0) AdviaéltOhFB[R] (Qg, 4D, q’DZmax) < 2b 3

where Lmax is the mazimum query length in blocks.

3.2 Design Principle and Specification of PFB

We design PFB (stands for Plaintext FeedBack), a TBC-based lightweight nAEAD mode,
by extending the idea of iCOFB with TBC. With the aim of performing the encryption
parallelly, we choose the feedback functions in Eq. (2) from the class of feedback functions
p/p’'. However, as mentioned in Section 1, we need to solve the following three problems.

e The first problem is that iCOFB requires a TRF that accepts arbitrary-length AD.

o The second problem is that the feedback functions p and p’ handle only b-bit data
blocks, i.e., iCOFB handles only plaintexts and ciphertexts of length multiple of b.

e The third problem is that the security of iCOFB depends on the data length £ay.

Hereafter, PFB is designed such that the above three problems are solved.

Hash Procedure (AD Processing)

To design a lightweight nAEAD scheme, PFB uses a fixed-tweak-length TBC, whereas
iCOFB uses a variable-tweak-length TRF to take variable-length AD. Hence, we define an
additional procedure of processing variable-length AD. In PFB, (arbitrary-length) AD is
partitioned into b-bit blocks (the length of the last block is < b), and then, the AD blocks
are processed by iterating a combination of a TBC and the following feedback function

5@ :{0,1}* x ({e} U {0,1}=b) — {0, 1}
Vi + 5(a)(Wi717Ai) = Wi_1 @ ozpy(As),

where A; € {e} U {0,1}=t is a current AD block, W;_; € {0,1}" is the previous TBC
output, and V; € {0,1}" is the next TBC input. The core procedure of the hash of PFB is
given on the left of Figure 2. This procedure can handle arbitrary-length AD, and thus,
the first problem is solved. Note that when AD is an empty string, the above procedure is
performed for A; = e.

74

Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

5O 1/®
Xi
J
Ex

L

Ml=b | Cl=b

Figure 2: Core procedures of PFB: §(®) §() §(@) ~(e) ~(d) A is an i-th AD block. M; is
an i-th plaintext block. C; is an i-th ciphertext block. Tweaks are omitted.

Encryption/Decryption Procedures

In PFB, a plaintext/ciphertext is partitioned into b-bit blocks, and as iCOFB, each block
is processed by a TBC and a feedback function.

The feedback function in the encryption is composed of the following two functions,
where 0 < [< b is an integer, M; € {0,1}! is a current plaintext block, Y; € {0,1}°
is the previous TBC output, X; 41 € {0,1}? is the next TBC input, and C; € {0, 1}
is the ciphertext block.

— 'yl(e) {0, 1} x {0, 1} — {0, 1} is defined as
Ci + 7 (msby(Y;), M;) := msby(Y;) @ M;.
— 60 :{0,1}" x {0,1}=t — {0,1}" is defined as

Xip1 09 (Y;, M;) = ozp, (M) & (OlMi‘

by a1, (V1)) -

The core procedure of the encryption of PFB is given in the center of Figure 2. Note
that plaintext blocks, except for the last block, are of [= b, and the last block is of
I <b.

The feedback function in the decryption is composed of the following two functions,
where 0 < | < b is an integer, C; € {0,1}! is a current ciphertext block, ¥; € {0,1}!
is the previous TBC output, X;.; € {0,1}" is the next TBC input, and M; € {0,1}!
is the plaintext block.

— 40,1} x {0,1}" — {0, 1} is defined as
M; + ’yl(d)(msbl(Yi), C;) :=msb(Y;) & C;.
— 6D :{0,1}° x {0,1}=0 — {0,1}" is defined as
Xip1 < 0D (Y;, Cy) =Y @ ozp, (Cy).

The core procedure of the decryption of PFB is given on the right of Figure 2. Note
that ciphertext blocks, except for the last block, are of [= b, and the last block is of
1 <b.

The above functions enable us to handle arbitrary-length plaintexts/ciphertexts, and thus,
the second problem is solved.

Yusuke Naito and Takeshi Sugawara 75

Tweak Function

Let £imax be the maximum block size of AD, plaintext, and ciphertext. In PFB, the following
tweak function is used:

o [T XN X (bmax) = TW,
with the following condition:

o B1: for any (i, N, j), (i', N',j') € [7] x N X (fmax) such that (i, N,j) # (i', N',j),
f(i,N,j) # f(@, N, 5").

Here, we assume that A includes the constant 0" for an integer n > 0. The first element
is used for distinguishing AD and plaintext/ciphertext, and whether the last block is a
full-bit one or not, which offers a distinct permutation between the hash procedure and
the encryption/decryption and which avoids a redundant TBC call when the last block
is a full-bit one. The second element is a nonce, which offers a distinct permutation for
each encryption (under the nonce-respecting setting), thereby removing the birthday term
regarding the number of queries. The third element is the current block number, which
offers a distinct permutation for each block, thereby removing the query length from the
security bound.

In our hardware implementation given in Section 5, for positive integers ¢t and n such
that n+3+1 < t, we define TW := {0,1}* and A/ := {0,1}", and use the following tweak
function:

f(i, N,) = (stra () [NIstre—3-n(5))- 3)

The function satisfies the condition B1.

Specification of PFB

The specification of PFB is given in Algorithm 1 and is shown in Figure 3, where ’yl(e),

’yl(d), 6@ 5 and 6@ are defined above; PFB.Hash is the hash procedure; PFB.Enc is the
encryption; and PFB.Dec is the decryption. The full specification, including the structures
of ’yl(e), fyl(d), 5(@ () and 6(9| is given in Algorithm 2 and Figure 6 in Appendix B.

4 Security of PFB

In this section, we provide the privacy and authenticity bounds of PFB and the security
proofs, which solve the third problem mentioned in Section 3.2. In our proof, with the
aim of covering a broader class of feedback functions, we generalize the functions §(%), §(¢)
8@ ~(e) and v(@) that require only sufficient conditions regarding inputs and outputs of
the functions.

4.1 GFB: Generalized PFB

The specification of GFB, a generalization of PFB, is given in Algorithm 3, where the

structures of the functions §(®), §(¢), §(& ~(€) and (9 are removed and the following

conditions regarding inputs and outputs are set. Considering GFB, the hash, encryption,

and decryption procedures are renamed as GFB.Hash, GFB.Enc, and GFB.Dec, respectively.
For the correctness of GFB, the following conditions are required.

« B2: for any non-negative integer [< b, Y € {0, 1}, 'yl(e)(Y, -) is bijective and 'yl(d)(K)
is the inverse of 71(6) (Y,"), ie., VM € {0,1}} : M = 'yl(d) (Y, yl(e)(Y, M)).

76 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

Algorithm 1 PFB
Encryption PFB.Enc[E]|(N, A, M)

1: X + PFB.Hash[E](A)

2: if A#eA|A] mod b=0 then z < 2; else z < 3

3: if M = ¢ then C < ¢; ¢ < 0; goto step 8

4 My,..., M, &M

5 fori=1,...,0do

6 i ERONY(X0); Gy (msbyag, (V3), My); Xiga = 60 (Y, M)
7. end for

8 if M #eAN|M| modb=0theny<+ z+2;else y<+ z+4

9: S < Xp41; T ¢ msb, (E{éy’N@(S)); C—Ci-|Ce

10: return (C,T)

Decryption PFB.Dec[Ex](N, A, C,T)
X, + PFB.Hash[E](A)
if A+#eA|A| modb=0 then x + 2; else x < 3
if C =¢ then M + ¢; ¢ + 0; goto step 8
Cr,....Ce & C
fori=1,....0do
Vi« BEEON(X); My A8 (msbycy (7), Ci); Ko < 6D(Y;, C)
end for
if C#eAN|C| modb=0theny<«+ z+2;elsey+ x+4
S ¢ Xega; T o msbe (ERPN0(8))5 M= Myl |10

10: if T =T then return M; else return L

Hash PFB.Hash[Ex](A)
1 An . Ay & A W 00 '
2 fori=1,...,a—1do V; + 5@ (Wi_y, A;); W; « ELMOD (1))
3 Vo = 6@ (Wo_1,A,); HV,
4: return H

« B3: M € {0,1}=0,Y € {0,1}", 6 (Y, M) = 5D (Y, 5] (msbyar (), M)).
For GFB to be secure, we require the following five conditions on ’yl(e), ’yl(d), 5@ 5@ §(d),

o B4: for any M € {0,1}=?, 'yl(]f}‘(-, M) is bijective.

« B5: for any C € {0,1}=, §(D (-, C) is bijective.
« B6: for any C,C’ € {0,1}=0 and Y, Y’ € {0, 1}?,
5 (Y, (8] (msbycy (V), €)) = 6 (v, ")
=C=C'ANY =Y)V(C#AC'AY £Y")

V(IC#AC'AY =Y'AN|IC|=bA|C| <))
V(IC#C'ANY =Y'AN|C] <bA|C'| =D).

o BT: for any A € {0,1}=b, 6(9)(-, A) is bijective.

Yusuke Naito and Takeshi Sugawara 77

(M=9)
S H-S
f(ylee) \l, i f(y,N,O)

L] | e,

msb i msb

(C=9)
H-S
| fy.NO) !

f(x,N,£-1)

!

LJE, LJE,
YZ—l
msb
A7
T=T

Figure 3: PFB/GFB. A4;,..., A, LA My, ..., M, AV (in the encryption algorithm)

and Cq,...,Cy Lo (in the decryption algorithm). If A # ¢ A |A] mod b = 0 then z < 2;
else x + 3. If C #eA|C| mod b=0 then y + z +2; else y + = + 4.

o B8: forany A, A’ € {e} U{0,1}=, W, W' € {0,1}?,

SOW,A) =6 D W, A) (A=A AW =W)V(A£AANW£W')V
(A£AANW =W AN|A|=bA|A| <D).

The condition B4 ensures that for a plaintext block M; and a TBC output Y;, if Y; is

uniformly distributed over {0,1}?, then so is the ciphertext block C; = 'YI(JZ)?:I(Y“ M;). The
condition B5 ensures that the internal state collision §(®)(Y;, M;) = §(D(Y/,C!) (between
the encryption and decryption) depends on the randomness of the TBC output Y;. Thus,
if the output is distributed over a set X', then the collision probability can be at most
1/]X|. Similarly, the condition B7 ensures that in the procedure of processing AD blocks,
the internal state collision §(®)(W;, 4;) = 8@ (W/, A}) depends on the randomness of
the TBC output W/. The conditions B5, B7 are used to upper bound the authenticity
advantage, as the internal-state collision offers a forgery attack. The condition B6 ensures
that in the encryption and decryption procedures, no trivial collision occurs on the
internal state values. Note that the conditions (C # C'A|C| =bA|C'| <bAY =Y")
and (C # C'N|Cl < bA|C'| =bAY =Y') in B6 tolerate (possibly trivial) internal-
state collisions but the first element of f eliminates the influence of the collisions. The
condition B8 is defined similarly.

78 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

4.2 Security Bounds and Proofs

The privacy and authenticity bounds of GFB are given in the following theorem.

Theorem 2 [Security of GFB] For GFB with the conditions B1-B8, we have

priv tprp
dVGFB[EK](Ug’ t) < AdVEK (og,t+ O(0¢))

auth < dp qp 'EBrp)
AdVGFB[EK]((QS7qD>U)7t) =97 _ 1/2b—7’ + 2b 1 + AdVEK (O'7t + O(O’))

As GFB includes PFB (see also Appendix A), the above theorem offers the following
corollary.

Corollary 1 [Security of PFBJ

priv tprp
AdVPFB[EK](JS’t) < AdvEK (oe,t+O(0¢)) ,

4D %95}
_ 1/2b—7— + 2b _

AdvaUth = ((qﬁ'; 4D, U)vt) < o7

tprp
PFB(Fx] 7 + AdvPP(o,t+ O(0)) .

Ex
The proof of Theorem 2 is given below.

4.3 Replacing the Keyed TBC Ex with a TRP P

The keyed TBC Ex for K < K is replaced with a TRP P <> Perm (7W, {0,1}%). By the
replacement, we have

priv priv tprp
AdvGFB[EK](Ug, t) < AdvGFB[ﬁ (og) + AdvEK (og,t+O(0¢)) (4)
Advatt = ((4e.qp.0).1) < AdVES = (4e,qp,0) + AdVEP (0,1 +0(0)) . (5)

Hereafter, the privacy and authenticity advantages of GFB[JB] are upper-bounded
in Sections 4.4 and 4.5 (the upper bounds are given in Eqgs. (6) and (7)), respectively,
where adversaries are computationally unbounded algorithms and the complexities are
solely measured by the numbers of queries. Without loss of generality, adversaries are
deterministic.

. priv

4.4 Upper Bounding AdVGFB[ﬁ](O'g)

The condition B1 of the tweak function f ensures that tweaks of P (producing ciphertexts
and tags) in GFB.Enc, which are defined by encryption queries, are all distinct. Hence, the
output blocks of P are chosen independently and uniformly at random from {0,1}". Note
that tweaks of P (processing AD blocks) in GFB.Hash might be repeated, but the repeated
tweaks do not affect the randomness of the output blocks due to the distinct tweaks in
GFB.Enc. Under condition B4, all ciphertext blocks C; defined by encryption queries are
independently and uniformly distributed over {0, 1}/l and thus are indistinguishable from
those defined by $. Hence, we have

priv _
Adv (o) =0 . (6)

4.5 Upper Bounding AdvaG”;g[Ig](qg, qp, o)

Without loss of generality, assume that an adversary A aborts after A forges. Let forge,
be an event that at the i-th decryption query, A forges (thus forge, occurs as long as

Yusuke Naito and Takeshi Sugawara 79

forge; V forge, V - -+ V forge;_; does not occur). We then have

9D
AdVaGuth[g](Q& gp,0) <Y Prlforge;] .
1=1

Next, Pr[forge,] is upper-bounded, where i € [¢p]|. Values/variables corresponding to
the i-th decryption query, except for the lengths a and ¢, are denoted using the superscript
of (d). The lengths a and ¢ are denoted by agq and ¢4, respectively. Similarly, for an
encryption query (N(©), A(©) M (€)) values/variables corresponding to the encryption query,
except for the lengths a and ¢, are denoted using the superscript of (e). The lengths a and
¢ are denoted by a. and /., respectively. In this analysis, we consider the following types
of decryption queries.

+ Type-1: For any previous encryption query (N, A() p(e)),

N© £ N@ v @ 2 gy g, £,

« Type-2: For some previous encryption query (N (), A(€) Af(e)),

N© = N@ A @ =y pp, =g,

Then,

Prforge;] = Pr[forge; A Type-1] + Pr[forge, A Type-2]
= Pr[forge, | Type-1] - Pr [Type-1] + Pr [forge; | Type-2] - Pr [Type-2]
< max {Pr [forge;| Type-1], Pr [forge;| Type-2]} .

In Section 4.6, Pr[forge;|Type-1] is analyzed, and in Section 4.7, Pr[forge,;|Type-2] is
analyzed. The upper bounds (8), (9) give

1 1
Priforge;] < 1/ to T
Thus, we have
Advauth _ (qE,Q’D O’) < qp - 1 I 1 — dp + 4D . (7)
GFB[P] = 2T —1/2b-7 261 2T —1/2b-7 261

4.6 Analysis of Pr [forge;| Type-1]

Under the Type-1 decryption query and the condition B1, the tweak f(y(d)7 N(d),fd), with
which the TRP defines the tag 7@ is distinct from all tweaks defined by the previous
encryption queries, as well as that from other tweaks defined by the i-th decryption query.
Hence, 7@ is uniformly distributed over {0,1}" and independent of the TRP outputs
defined by the previous encryption queries and of other TRP outputs defined by the
decryption query. Thus, we have

1
Pr [forge, | Type-1] < o (8)

80 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

4.7 Analysis of Pr[forge;| Type-2]

Pr {T(d) = T(d)‘S(d) £ S A Type—Z} and Pr [S(d) =5 ’Type—Q] are upper-bounded, be-
cause

Pr [forge;| Type-2] = Pr 7@ = 7@ A 5@ # 5

Type—2_

4+ Pr [T(d) — pld) 5 gd) — gle)

Type-2}

— Pr [T = 7@ ‘Type-2 AS@ 2 g@] . pr [S<d> £ 5

Type—2}

] -Pr [S(d) =5 Type—2}

~

+Pr {T(d) =7 ‘Type—2 A S = gle

< Pr [T@D = 7@ ‘Type—Z AS@ £ 5@] 4 pr [S(d) = 5@ Type-z]
The upper bounds (10), (13) give
Pr [forge,[Type-2] < — 4 1)
eI YPE Al = or Ty T 1

Upper Bounding Pr [T(d) = T |Type-2 A S(D £ S(e)]

For the Type-2 decryption query, by S@ £ §() and f(y(®), N £,) = f(y(D N@D ¢,)
(the tweaks are the same), the output of the last TRP call by the decryption query is
chosen uniformly at random from {0, l}b\{Pf(y(e)’N(e)’ee)(S(e))}. We thus have

20— 1

pd) — <d>‘ . @ 2 go)] < _
Pr [T = T [Type2 A S # 5| < o— o= (10)

Upper Bounding Pr [S(? = S(¢)|Type-2]

The conditions on Type-2 y(©) = y(d A ¢, = {4, are satisfied if and only if

(‘Agf? - ‘Affj :b) v (‘Af;j) <bA ‘Affj < b) and (11)
([M] = a2 =) v (0 < [pr| < b0 < [M) <b) v (MD = = &),
(12)

Here, if M = ¢, then £ = 0, My = ¢, and |My| = 0; if A = ¢, thena =1, A, = ¢ and
|A,| = 0. Let

1(AD, 4©€) = {i € [ad)| AL # AV} and 1(CD,0) = {i € [tal|) # ¢V}

be sets of distinct blocks obtained from (A®, A(€)) and (C(4), C(¢)), respectively, where
for a < i, A; := e. For convenience, we define I(C¥, C(©)) =0 if C(9) = C(¢) = ¢. Using
the observation and notations, Pr [S(d) =5 ’Type—2] is upper-bounded.

Before providing a detailed analysis, we show the sub-cases used in the analysis.

o In the first case, the ciphertexts are the same, i.e., [I(C®, C())| =0, and the AD
lengths are the same, i.e., a, = a4 (note that A, # A;). The analysis of this case
corresponds to that of py ;.

« In the second case, the ciphertexts are the same, i.e., [[(C(9, C(©))| = 0, while the
AD lengths are distinct, i.e., a. # aq (note that A. # A;). The analysis of this case
corresponds to that of py 2.

Yusuke Naito and Takeshi Sugawara 81

« In the third case, the ciphertexts are distinct, i.e., |[I(C(® C(©))| > 1. The analysis
of this case corresponds to that of ps.

A detailed analysis is given below.

Pr [5@ = 5

Type—2}

= Pr [S<d> = S A [I(C@D,0))] = o‘Type_z]

=P1

+Pr [0 = 5 A |1(CD,C)]| > 1[Type-2]

= pr + Pr [5 = 5©

Type-2 A [1(CD,C)| = 1] Pr [|1(CD,C)| = 1|Type-2]

=:p2
Regarding p;, under the condition B6, for Y, Y’ € {0,1}* and C € {0,1}=?,
3 (Y, g (msbycy (V), €)) = 6D (Y/,C) = ¥ =Y.
Hence, by |I(C4D,C(©)| =0, S = §(©) = H@ = H(®) is satisfied, and we thus have
p1 = Pr [H(d) — HO A I(CD, 00| = O’Type—Q}
=Pr [H(d) = H® Na, = ag A |I(CD,0))| = O‘Type—2}
+Pr [H<d> — H® nag # ag ANI(CD, 0| = o‘Type-z]

= Pr [HD = HO|Type-2 A g, = aq A [I(CD, C)] = 0

=pP1,1

Pr [a, = ad‘Type—2 AL,) = 0] - Pr[|1(CD, 0)| = o]Type-z}

+Pr [H(d> = H©

Type-2 A ap # aq A|I(CD,C©))| = 0}

=p1,2

-Pr [ae # ad‘Type—2 AI(CWD C@)| = 0] - Pr [|I(C(d), C©)| = O’Type—2]
< max {p1,1,p1,2} -Pr [|I(C(d)a C)| = O’TYPGQ]
Using these upper bounds, we have

Pr [s(@ — gle

Type-2| < max {p1,1,p12} - Pr [[1(CD,C)] = 0|Type-2]
o Pr[J1(CO,C)] > 1]Type-z}
< max {p1,17p1,2,p2} .

P11, P1,2, P2 are upper bounded below.

e p11=Pr [H(d) =H® |Type—2 Aae = ag A|I(CD, CO)| = 0] is upper-bounded. Let
i = max I(A, A©). Then, under the condition BS,

HE = g Vi(e) — Vi(d)-

If i =1, then
W = 510", A1) and V) = 5 (0", A1),

82 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

On the contrary, A(le) # Agd) is satisfied® and the condition B8 with the conditions
n (11) (thus the last condition in B8, A # A’ A|A| =bAW = W' A|A| < b, is
ignored) imply

V{9 = 5@ (b, A7) £ 6@ (0%, AY) = V.

Ifi > 2, then
e d a e e a) ”r d

By AZ(.d) # Age) and the condition B8 with the conditions in (11), to satisfy the
above equation, Wi@l #* Wi(f)l should be satisfied. As Wi(ii)l is chosen uniformly at
random from {0, 1}°\ {Wi(f)l} and (9 (-, Agd)> is bijective from the condition B7,
we have p; 1 < 1/(2° —1).

e p12=Pr [H(d) =H® ‘Type—2 Aae # ag A|I(CW, 0] = 0] is upper-bounded. Thus,
the following equation is considered.

5@ (Wéj)—l?Afz(i)) — g _ gl _ 5@ (e)—17A¢(zee)> .

By a. # aq, the tweaks corresponding to the TRP outputs W(d) , and W(°) _, are

distinct. Thus, W(d) 1 and W() ”, are independently chosen, and at least one of
them is chosen unlformly at random from {0,1}*. (Note that for z € {d, e}, if

ay = 1, then H® = §(@) (Ob,Agm)).) Under the condition B7, at least one of
§(a) (Wéfll,Agc?) and 6(%) (Wéfll,Agi)) are uniformly distributed over {0,1}°.
Hence, we have p; 2 < 1/2°.
o pp=Pr[S@ =g | Type-2 A [I(C@D, C®)| > 1] is upper bounded. Let i = max I(C®,C(©)).

Note that under the Type-2 decryption query, ¢, = £, is satisfied. Subsequently,
under the condition B6,

S(d) 5(6) o Xz(j-)l Xz(j-)l PN 5(d) <1/i(d)7ci(d)) _ 5(6) (Y'i(e)’Mi(e))’

where M-(e) = 4@ (msb (Y-(e))7C-(e)). C-(d) # Cl-(e) and the condition B6

|c““)| el
with (12) imply Y 75 Y, e) , and thus, we have X() =+ Xi(e). Hence,

py < Pr {5(6) (Yi(e)’Mi(e)) 5@ (v < (d) C(d))

‘Type—Q /\Xi(d) #+ Xl.e) A |](C(d)70(e))| >1

By Xi(d) # Xi(e), VY is chosen uniformly at random from {0,1}1’\{}/;.(6)}. As

3

§(d) (-, C’i(d)) is bijective from the condition B5, we have py < 1/(2° —1).
The above-mentioned upper bounds yield the following:

SNote that A =e A AW 26, A1) 2enA® =c or A1) £enal® 2e.

Type—2} <

Yusuke Naito and Takeshi Sugawara 83

5 Implementation

The performance of PFB is evaluated through concrete hardware implementations. For
the lightweight TBC, we use a variant of SKINNY having 64-bit block length and 192-bit
tweakey, i.e., SKINNY-64-192 [BJK'16]. Our focus is on the hardware implementations
as it is one of the most important targets for lightweight cryptography, and a significant
improvement is expected in threshold implementation, as will be discussed in Section 5.3.
Although evaluation in other platforms is beyond the scope of this paper, the proposed
method is expected to yield a good performance on microcontrollers similar to that of
SAEB designed with the same design criteria [NMSS18].

Comparison The hardware performance is compared with that of a state-of-the-art alter-
native having the same level of security: SAEB [NMSS18] instantiated with a lightweight
block cipher GIFT-128-128 [BPP™17]. Another possible option is to instantiate SAEB
with SKINNY-128-128 thereby aligning the primitives between the two modes of operation.
However, this comparison can favor the proposed method over SAEB, because a tweakable
block cipher is currently less efficient compared to a block cipher, as we will see in this
section, and thus, we selected GIFT over SKINNY.

Notation In the following, SKINNY-64-192 and GIFT-128-128 are simply referred to as
SKINNY and GIFT. In addition, a mode of operation M instantiated with a primitive P is
described as M[P].

Design Policy For a fair comparison, PFB[SKINNY] and SAEB[GIFT] are implemented
under the same design policy. They are designed as co-processors aiming at accelerating
the main time-consuming part of AD processing, encryption, and decryption. Meanwhile,
the co-processors expect an external controller for handling special cases such as padding
and final-block processing. To avoid a hidden cost, the designs hold a key, nonce, and tweak
during their lifetimes. In other words, there is no need for storing them in external registers
and feeding them multiple times. This policy affects the implementation of on-the-fly key
scheduling, as we will see in the next section. The circuit area has the highest priority in
optimization. The designs are described by a hardware description language (HDL) at the
register-transfer level (RTL). We do not make netlist-level optimization, except for the
scan flip-flops commonly used for compact implementations [MPLT11]; the standard cells
for scan flip-flops are explicitly instantiated in HDL. For SCA-protected implementations,
we consider TT secured up to the first-order attacks. The implementations have simple
register interfaces: they do not have a standard bus interface, such as the AXI bus.

5.1 PFB[SKINNY]

SKINNY uses three distinct 64-bit states, namely TK1, TK2, and TK3, for a tweakey
schedule. In this particular design, TK3 stores a 64-bit tweak. The remaining TK1 and
TK2 store a 128-bit secret key.

Figure 4 depicts the hardware architecture of PFB[SKINNY]. As shown in Figure 4,
PFB[SKINNY] is realized as a thin wrapper of the SKINNY implementation; the additional
components are 4-bit XOR, selector, and AND gate only.

The SKINNY implementation follows the conventional nibble-serial architecture [BJK T 16],
but the tweakey-schedule implementation is designed from scratch. The implementations
called the TK1, TK2, and TK3 arrays are based on a common architecture comprising
an array of scan flip-flops and integrated on-the-fly key scheduling [MPLT11], as shown in
Figure 4. However, the changes made by the on-the-fly key scheduling should be reverted
to begin the next TBC call without feeding the same key again. As SKINNY schedules

84 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

SKINNY
Tweakey array

TK1 i t TK1
e 4 ablad State array
TK2 input) TK2 array
--- 2-share Tl
Tweak input in P3 only

TK3 array

u:|3

g i

MixColumns
|

- 3-share Tl
PO " inP2and P3

9
State _:!’_.‘ }1_>| }T,‘ }1—.‘ il—‘
Amic 4 4 | array | 4 D" l c/im/T .
n L 1

q_?

TK2 array

TK1 array linear/ TK3 array
revert revert

1 My T AT

| byte perm. / revert | | byte perm. / revert | 43—->| byte perm. / revert / tweak update |

12

Figure 4: PFB[SKINNY] hardware architecture.

TK1, TK2, and TK3 by a nibble permutation and a nibble-wise linear transformation
for each round, we can obtain efficient inverse maps that revert the final tweakey state
to the initial one. Such inverse maps are integrated to the TK1, TK2, and TK3 arrays
along with forward on-the-fly scheduling.

Based on Eq. (3), the 64-bit tweak is given by id||N||ctr: a 3-bit number distinguishing
the operations id = str3(i), 45-bit nonce N, and a current block number realized by a
16-bit counter ctr = strig(j). id and ctr are updated for each TBC call. For an efficient
computation, the TK3 array integrates the circuit for (i) changing id and (ii) incrementing
and clearing the counter ctr. Using the above functionality, a user needs to feed id|| N||ctr
only once for a given nonce V.

A single SKINNY round uses 16 cycles, and thus, SKINNY comprising 40 rounds finishes
in 16 x 40 = 640 cycles. We need an additional cycle for updating a tweak stored in the
TK3 array for the next TBC call. Consequently, a 64-bit message or ciphertext block is
consumed in 641 cycles.

5.2 SAEB[GIFT]

Figure 5 depicts the hardware architecture of SAEB[GIFT]. The overall architecture is
based on the conventional design [NMSS18], but the shift registers for synchronization
are removed by considering the design policy. It is also realized as a thin wrapper of the
underlying GIFT implementation.

The GIFT implementation is based on the nibble-serial architecture [BPP*17], but the
key array is redesigned to efficiently revert the changes made by on-the-fly key scheduling.
Similar to SKINNY, GIFT has a linear key scheduling algorithm, and thus, we can obtain
an efficient inverse map that reverts the final key state to the initial one. The key array is
designed with a 32-bit datapath to efficiently integrate the inverse key-schedule map (the
function block labeled with “revert”), as shown in Figure 5.

The S-box is split into two stages, namely ¢g and f, for T1 following the conventional
work [GJC'17]. Consequently, a single GIFT round uses 33 cycles for 32 S-box look-ups and

Yusuke Naito and Takeshi Sugawara 85

B | 2-share Tl
in P3 only
K Key array
32 - 3-share Tl -
" in P2 and P3 Nibble selector >
ANIC=Z —-D_ D> CIMIT

Bit permutation

State array

T4 .oo >

4
(Bit permutation)

const_in :D

Figure 5: SAEB[GIFT] hardware architecture.

one pipeline latency. Consequently, the 40-round operation of GIFT requires 33 x40 = 1, 320
cycles.

5.3 Threshold Implementation

There is an option between protected and unprotected key/tweakey schedules. Conventional
attacks, such as differential power analysis (DPA) [KJJ99], cannot be used to attack the
key schedule that is independent of an attacker-controllable input, e.g., plaintext or
ciphertext. That is generally not true for TBCs, but SKINNY has the same property as
far as the attacker-controllable tweak is placed in TK3, which is scheduled independently
of TK1 and TK2. Consequently, some previous studies prioritized circuit area and
used unprotected key-schedule implementations [BJKT16, PMK™11, UHA17]. Meanwhile,
if we consider a profiling attack on the key/tweakey schedule, it is also reasonable to
choose a protected key-schedule implementation. Considering the cost-security trade-off,
we implement PFB[SKINNY] and SAEB[GIFT] with three profiles: (P1) the unprotected
implementation, (P2) TI with the unprotected key schedule, and (P3) TI with the
protected key schedule.

Table 2 summarizes the number of registers needed for the SKINNY and GIFT imple-
mentations for the different profiles. In (P1), both SKINNY and GIFT use 256 bits in total.
In (P2), on the other hand, SKINNY uses fewer registers, i.e., 384 bits, compared to 512
bits, because of the smaller block length. SKINNY still performs better in (P3) because
of efficient sharing of the key/tweakey schedule. As both GIFT and SKINNY have linear
key/tweakey schedules, they can be realized with only two shares. Moreover, there is no
need for protecting TK3 of SKINNY, which stores a public tweak. Consequently, SKINNY
and GIFT use 512 and 684 bits in (P3), respectively.

We use the formulae for the 3-share uniform S-boxes for SKINNY and GIFT from the
conventional work [BJK16] and [GJCT17], respectively. TT is implemented by duplicating
the state/key/tweakey arrays and replacing the decomposed S-boxes (f and g) with their
shared maps. Figure 4 and 5 show the boundaries of sharing for each profile.

86 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

Table 2: Number of registers for implementing SKINNY and GIFT in different profiles.

Target Profile TI/State TI/Key State Tweak/key Total

SKINNY (P1) — — 64 192 256
GIFT (P1) — — 128 128 256
SKINNY (P2) v — 192 192 384
GIFT (P2) v — 384 128 512
SKINNY (P3) v v 192 320 512
GIFT (P3) v v 384 256 640

Table 3: Breakdown of the post-synthesis circuit area of PFB[SKINNY] and SAEB[GIFT].

Target Component Circuit area [GE]
(P1) (P2) (P3)
PFB[SKINNY] Total 3,111 4,492 5,858
Total /SKINNY 2,956 4,284 5,649
Total /SKINNY /State array 532 1,757 1,757
Total /SKINNY /Tweakey array 2,062 2,062 3,419
SAEB[GIFT] Total 2,761 5,037 6,229
Total /GIFT 2,541 4,756 5,947
Total/GIFT/State array 975 2,925 2,925
Total/GIFT /Key array 1201 1,226 2,410

5.4 Performance Evaluation and Comparison

The designs are synthesized with the NanGate 45-nm standard cell library [Nan] using
Synopsys Design Compiler while preserving the module hierarchy. Table 3 details the
breakdown of the post-synthesis performances.

We first discuss the unprotected implementations (P1). The circuit areas of PFB[SKINNY]
and SAEBJ[GIFT] are 3,111 and 2,761 [GE], respectively. SKINNY and GIFT dominate
the circuit areas of PFB[SKINNY] and SAEB[GIFT]. The additional costs for the mode of
operations are limited. The sizes of the state and key arrays are almost proportional to
their register sizes, e.g., the 64-bit SKINNY state array (532 [GE]) is almost half the size
of the 128-bit GIFT state array (975 [GE]).

Although the PFB[SKINNY] implementation is larger than that of SAEB[GIFT] by 350
[GE], this is a positive result because (i) GIFT is known to have a superior performance
than SKINNY [BJK'16] and (ii) lightweight TBC is an emerging technology compared to
a lightweight block cipher. Note also that PFB[SKINNY] is twice as fast as SAEB[GIFT]:
PFB[SKINNY] and SAEB[GIFT] consume a 64-bit message/ciphertext block using 640 and
1,320 cycles, respectively. Moreover, PFB has parallelizable encryption, as discussed in
Section 3.

Table 4 presents a performance comparison with previous implementations. The
unprotected implementations of SAEB[GIFT] and PFB[SKINNY] are smaller than the
previous implementations of AES-based AEs (SAEB[AES128] [NMSS18], CLOC[AES128],
SILC[AES128], OTR[AES128] [BBM16]). The bit-serial Ascon implementation without an
interface has a smaller circuit area of 2,570 [GE] [GWDE15]; however, the implementation
needs an additional 128-bit key register to run another encryption/decryption with the
same key. If we add the size of the key register (640 [GE] for 5 [GE/bit]) to 2,570 [GE],
the Ascon implementation has a similar circuit size compared to that of PFB[SKINNY]. In
addition, the Ascon implementation with an interface including a 128-bit key register has
3,750 [GE].

Yusuke Naito and Takeshi Sugawara 87

Table 4: Performance comparison; latency is that of a single call of a primitive (block
cipher, tweakable block cipher, or permutation).

Target TI Area Latency Security Standard-cell Ref.
[GE] [cycles] [bits] library

PFB[SKINNY] (P1) — 3,111 641 64 NanGate 45-nm Ours
SAEB[GIFT] (P1) — 2,761 1,320 64 NanGate 45-nm Ours
SAEB[AES128] — 3,502 231 64 NanGate 45-nm [NMSS1§]
CLOC[AES128] — 4,310 210 64 STMicro. 90-nm [BBM16]
SILC[AES128] — 4,220 210 64 STMicro. 90-nm [BBM16]
OTR[AES128] — 6,770 210 64 STMicro. 90-nm [BBM16]
Ascon w/o IF — 2,570 3,072 128 UMC 90-nm [GWDEL15]
Ascon w/ IF — 3,750 3,072 128 UMC 90-nm [GWDE15]
Deoxys (Round*) — 11,936 14 128 UMC 180-nm [INPS16]
Ketje-JR — 5,447 16 96 NanGate 45-nm [ANR18]
PFB[SKINNY] (P2) v 4,492 641 64 NanGate 45-nm Ours
PFB[SKINNY] (P3) v 5,858 641 64 NanGate 45-nm Ours
SAEBI[GIFT] (P2) v 5,037 1,320 64 NanGate 45-nm Ours
SAEBJGIFT] (P3) v 6,229 1,320 64 NanGate 45-nm Ours
Ascon w/o IF v 7,970 3,072 128 UMC 90-nm [GWDEL15]
Ascon w/ IF v 9,190 3,072 128 UMC 90-nm [GWDE15]
Ketje-JR v 18,335 16 96 NanGate 45-nm [ANR18]

We then discuss the protected implementations. With (P2), the PFB[SKINNY] im-
plementation uses 4,492 [GE], which is smaller than that of SAEB[GIFT] (5,037 [GE]).
This is explained by the fewer registers summarized in Table 2. PFB[SKINNY] is still
advantageous with (P3): the circuit areas of PFB[SKINNY] and SAEB[GIFT] are 5,858 and
6,229 [GE], respectively. The protected PFB implementations are smaller than those of
Ascon [GWDE15]) and Ketje [ANR18] in conventional work, as presented in Table 4. This
can also be explained by the number of registers. The sponge-based AEs have a relatively
large state (384 bits for Ascon and 200 bits for Ketje-JR) that should be protected with
three shares.

In summary, the unprotected PFB[SKINNY] implementation is competitive against
the unprotected SAEB[GIFT] implementations and other conventional implementations.
The benefit of a small block length, enabled by PFB, becomes even larger with TI, where
the number of registers are multiplied as shown in Table 2. Consequently, the protected
PFB[SKINNY] implementation outperforms those of SAEB[GIFT], Ascon [GWDE15], and
Ketje [ANR18].

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and
suggestions.

References

[AMP12] Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family:
generalizing the sponge hash functions. Int. J. Inf. Sec., 11(3):149-165, 2012.

88 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

[ANR18]

[BBI*15]

[BBM16]

[BCG*12]

[BDPA07]

[BDPA11]

[BIK16]

[BKL*07]

[BL16]

[BPP+17]

[BSS+13]

[CIMN17]

[GIC*17]

Victor Arribas, Svetla Nikova, and Vincent Rijmen. Guards in Action: First-
Order SCA Secure Implementations of Ketje Without Additional Randomness.
In DSD 2018, pages 492-499. IEEE Computer Society, 2018.

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In ASTACRYPT 2015, volume 9453 of LNCS,
pages 411-436. Springer, 2015.

Subhadeep Banik, Andrey Bogdanov, and Kazuhiko Minematsu. Low-area
hardware implementations of CLOC, SILC and AES-OTR. In HOST 2016,
pages 71-74. IEEE Computer Society, 2016.

Julia Borghoff, Anne Canteaut, Tim Giineysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Sgren S. Thomsen, and Tolga Yalgin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In ASTACRYPT 2012, volume 7658 of LNCS, pages
208-225. Springer, 2012.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Sponge
Functions. In Fcrypt Hash Workshop 2007, 2007.

Guido Bertoni, Joan Daemen, Michagl Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In SAC 2011, volume 7118 of LNCS, pages 320-337. Springer, 2011.

Christof Beierle, Jérémy Jean, Stefan Ko6lbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO 2016, volume 9815 of LNCS, pages 123-153. Springer, 2016.

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, volume 4727
of LNCS, pages 450-466. Springer, 2007.

Karthikeyan Bhargavan and Gaétan Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN.
In CCS 2016, pages 456-467. ACM, 2016.

Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In CHES 2017, volume 10529
of LNCS, pages 321-345. Springer, 2017.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. TACR Cryptology ePrint Archive, 2013:404, 2013.

Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-Based Authenticated Encryption: How Small Can We Go? In
CHES 2017, volume 10529 of LNCS, pages 277-298. Springer, 2017.

Naina Gupta, Arpan Jati, Anupam Chattopadhyay, Somitra Kumar Sanadhya,
and Donghoon Chang. Threshold Implementations of GIFT: A Trade-off
Analysis. TACR Cryptology ePrint Archive, 2017:1040, 2017.

Yusuke Naito and Takeshi Sugawara 89

[GPPR11]

[GWDE15]

[IKMP19a]

[IKMP19b)]

[IMPS17]

[Twa06]

[Iwa0g]

[INPS16]

[KJJ99)

[KR11]

[LN17]

[LRW02]

[LS13]

[LST12]

[MI15]

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES 2011, volume 6917 of LNCS, pages 326-341.
Springer, 2011.

Hannes Gro8, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhéfer.
Suit up! - Made-to-Measure Hardware Implementations of ASCON. In DSD
2015, pages 645-652. IEEE Computer Society, 2015.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD
Algorithms. TACR Cryptology ePrint Archive, 2019:992, 2019.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Romulus v1.0, round 1 candidate of the lightweight crypto standardization
process, 2019.

Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In CRYPTO 2017, volume 10403 of LNCS, pages 34-65.
Springer, 2017.

Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday
Bound Security. In FSE 2006, volume 4047 of LNCS, pages 310-327. Springer,
2006.

Tetsu Iwata. Authenticated Encryption Mode for Beyond the Birthday Bound
Security. In AFRICACRYPT 2008, volume 5023 of LNCS, pages 125-142.
Springer, 2008.

Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1.41.
Submitted to the CAESAR competition. 2016.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO’99, volume 1666 of LNCS, pages 388-397. Springer, 1999.

Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In FSE 2011, volume 6733 of LNCS, pages 306-327.
Springer, 2011.

Eik List and Mridul Nandi. Revisiting Full-PRF-Secure PMAC and Using It
for Beyond-Birthday Authenticated Encryption. In CT-RSA 2017, volume
10159 of LNCS, pages 258-274. Springer, 2017.

Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block
Ciphers. In CRYPTO 2002, volume 2442 of LNCS, pages 31-46. Springer,
2002.

Rodolphe Lampe and Yannick Seurin. Tweakable Blockciphers with Asymp-
totically Optimal Security. In FSE 2013, volume 8424 of LNCS, pages 133-151.
Springer, 2013.

Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
Blockciphers with Beyond Birthday-Bound Security. In CRYPTO 2012,
volume 7417 of LNCS, pages 14-30. Springer, 2012.

Kazuhiko Minematsu and Tetsu Iwata. Tweak-Length Extension for Tweakable
Blockciphers. In IMACC 2015, volume 9496 of LNCS, pages 77-93. Springer,
2015.

90 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

[MI17]

[Min14]

[MPL*11]

[MV04]

[Nan]
[NIS18]

[NMSS18]

[NRROG]

[NRS11]

[NS19]

[PGV93]

[PMK*11]

[PS16]

[STH*11]

[SMMK13]

Kazuhiko Minematsu and Tetsu Iwata. Cryptanalysis of PMACx, PMAC2x,
and SIVx. TACR Trans. Symmetric Cryptol., 2017(2):162-176, 2017.

Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In FUROCRYPT 2014, volume 8441 of LNCS,
pages 275-292. Springer, 2014.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of
AES. In EUROCRYPT 2011, volume 6632 of LNCS, pages 69—-88. Springer,
2011.

David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In INDOCRYPT 2004, volume
3348 of LNCS, pages 343-355. Springer, 2004.

NanGate. NanGate FreePDK45 open cell library. http://www.nangate.com.

NIST. Submission requirements and evaluation criteria for the lightweight
cryptography standardization process. Available at https://csrc.nist.gov/
Projects/lightweight-cryptography, 2018.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB:
A Lightweight Blockcipher-Based AEAD Mode of Operation. JACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(2):192-217, 2018.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Im-
plementations Against Side-Channel Attacks and Glitches. In ICICS 2006,
volume 4307 of LNCS, pages 529-545. Springer, 2006.

Svetla Nikova, Vincent Rijmen, and Martin Schlaffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292-321, 2011.

Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption
mode of operation for tweakable block ciphers. TACR Cryptology ePrint
Archive, 2019:339, 2019.

Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach. In CRYPTO’93, volume 773 of LNCS,
pages 368-378. Springer, 1993.

Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-Channel Resistant Crypto for Less than 2, 300 GE.
J. Cryptology, 24(2):322-345, 2011.

Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated En-
cryption Modes for Tweakable Block Ciphers. In CRYPTO 2016, volume 9814
of LNCS, pages 33—63. Springer, 2016.

Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In
CHES 2011, volume 6917 of LNCS, pages 342-357. Springer, 2011.

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In SAC 2012,
volume 7707 of LNCS, pages 339-354. Springer, 2013.

http://www.nangate.com
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography

Yusuke Naito and Takeshi Sugawara 91

[SSAT07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-Bit Blockcipher CLEFIA (Extended Abstract). In FSE 2007, volume
4593 of LNCS, pages 181-195. Springer, 2007.

[Sta09] Martijn Stam. Blockcipher-Based Hashing Revisited. In F'SE 2009, volume
5665 of LNCS, pages 67-83. Springer, 2009.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward More Efficient DPA-
Resistant AES Hardware Architecture Based on Threshold Implementation.
In COSADE 2017, volume 10348 of LNCS, pages 50-64. Springer, 2017.

A PFB Functions 7%, ~?, §(), §®, 5 Satisfy B2-B8

We show that the functions of PFB given in Section 3.2 satisfy the conditions B2-B8. The

€)

functions v, ,'y(d) 5 5D are of the following forms:

M) (Y, M
(d)(

)=Y @M, where 0 <1 <b, and Y, M € {0,1}!
C)=Y &C, where 0 <1<b, and Y,C € {0,1}
(Y, M) = ozp, (M) & (olM‘|||sbb,|M|(Y)) , where Y € {0,11%, M € {0,1}=".
@D (Y,C) =Y @ ozp,(C), where Y € {0,1}*,C € {0,1}=°.
A) =

(W @ ozp,(A), where Y € {0,1}*, A € {e} U {0,1}=".

Condition B2
Clearly, for any Y € {0, 1}/, 'yl(e) (Y,-) is bijective and ’yl(d) (Y,-) is the inverse of ,yl(e) (Y,-).

Condition B3
Let M € {0,1}! and Y € {0,1}*. Subsequently,

sy, 'yl(e)(msbl(Y), M)) =Y @ ozp, (fy “(msby (Y M))
=Y ®ozp, (msb;(Y) & M)
= ozp, (M) ® (O [[Isby—(Y)) .
Hence, we have 6(9) (Y, M) = 5 (Y, fyl(e)(msbl(Y), M)).

Condition B4
Clearly, for any M € {0,1}!, %(e)(.’ M) is bijective.

Condition B5
Distinctly, for any C' € {0,1}=°, 6(9) (., C) is bijective.

Condition B6
The contraposition of the condition B6 is considered, i.e.,
(C=C"ANY #£Y")
VICA£C' ANY =Y ' AN|C] <bAIC| < D)
V(C#CAY =Y A|C] =bA|C'| =b) = 61 (Y, 7 (msbycy (V), C)) # 6 (Y, C").

92 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

For Y € {0,1}*,C € {0,1}=?, the functions are of the following forms:

6 (Y, 1{&) (msbicy (1), €)) = ozpy (7] (msby (¥), €)) & (01 Isby o (1))

= OZPb(m5b|C\(Y) e0)® (0'0‘ |||Sbb,|c|(Y))
=Y ® ozpb(C)7
SO, C") =Y @ ozp,(C').

Hence, the condition B6 is satisfied.
Condition B7

Evidently, for any A € {0,1}=°, §(®)(., A) is bijective.

Condition B8

The contraposition of the condition B8 is considered, i.e.,

(A=A AW £W)
VA#A AW =W AA| <bAJA| <b)
VIA£ A AW =W AA| =bA A =b) = 6D(W, A) # 6@ (W, A').

Clearly, the function §() (W, A) satisfies the condition BS.

B PFB

PFB is given in Algorithm 2 and shown in Figure 6.

Yusuke Naito and Takeshi Sugawara 93

Hash ——>v, VO H
f(1,011) f(1,0na-1) Va
oP L Ex . Ex
Woleﬁa W, W,
Ay Ay 0zpp(A,)
Enc (M=¢) (M=¢)
H=Xy o Xe1 X, —>S | H-S
fxND) fx,N.£-1) |, NG |, fy.N.6) - fyNO)
QE LY E, = LLE | =
Y Y_ P ms | ms
1 ée Ml “ M[-l : OZQ D b
C, o <M, T T
¢ H
Dec (C:/:S) . (C= 8)
HoXy o Xe1 X, s | H-S
f(x,N,1) f(x,N,&-1) |, f(X,N,&) f(y,N.€) . fNO)
- Ex lﬁﬁ L Ex L El L =
Yl Ye'l Yef msb | msb
E?%Ml g?ﬁ M1 I I,
G Cea (020 (msbic) T2T T=T
Cc, M,

Figure 6: PFB. Ay,..., A, LA My,..., M, & m (in the encryption algorithm) and

Ci,....Cy Lo (in the decryption algorithm). If A # e A |A] mod b = 0, then z + 2;
else, v + 3. If C # e A|C| mod b =0, then y + x + 2; else, y + = + 4.

94 Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

Algorithm 2 PFB
Encryption PFB.Enc[E|(N, A, M)

X, + PFB.Hash[Ex](A)
if A#eA|Al modb=0 then x + 2; else x < 3
if M =¢e then C « ¢; £ + 0; goto step 9
M, ..., My & M
fori=1,...,/do
Y; « B ND(X,); G = msbia, (V) ® M,
Xip1 < ozpy(M;) @ (0 lIsby,_ar,(Y7))
end for
if M#eAN|M| modb=0theny+ z+2;else y<+ z+4
S Xyyp1; T < msb, (E'{((y’N’e)(S)); C+ Cy|---|Ce
11: return (C,T)

—
=

Decryption PFB.Dec[Ex](N, A, C,T)
X, + PFB.Hash[E](A)
if A#eAJAl modb=0then z + 2; else x < 3
if C =¢ then M + ¢; ¢ + 0; goto step 8
Ci,...,Co & C
fori=1,....0do
Yi < E};(%N’Z)(Xi); M; <= msbc,| (Vi) © Ci; Xig1 < Yi © ozp, (Cy)
end for
if C#£eA|C| modb=0theny+ z+2;elsey+ z+4
S Xy 1; T < msb, (E{((y’N’e)(S)); M < M| - || M,

10: if T =7 then return M; else return L

Hash PFB.Hash[Ex](A)
1: Al,...,AagA;W()(—Ob })
2: fori=1,...;,a—1do V; < W;_1 ®ozp,(A;); W; + E{((l’o ’Z)(V;)
3: Vo Wy_1 @ozpy(4y); H+V,
4: return H

	Introduction
	Motivation, Approach, and Problems
	Contribution
	Organization
	Independent Concurrent Work

	Preliminaries
	Notation
	Tweakable Block Cipher
	Nonce-Based Authenticated Encryption with Associated Data

	PFB: Lightweight TBC-based nAEAD Mode of Operation
	Brief Overview of iCOFB Design and Security
	Design Principle and Specification of PFB

	Security of PFB
	GFB: Generalized PFB
	Security Bounds and Proofs
	Replacing the Keyed TBC EK with a TRP P"0365P
	Upper Bounding AdvprivGFB[P"0365P](E)
	Upper Bounding AdvauthGFB[P"0365P](qE, qD,)
	Analysis of Pr[forgei | Type-1]
	Analysis of Pr[forgei | Type-2]

	Implementation
	PFB[SKINNY]
	SAEB[GIFT]
	Threshold Implementation
	Performance Evaluation and Comparison

	PFB Functions (e)l,(d)l,(e),(d),(a) Satisfy B2-B8
	PFB

