
Recovering the CTR_DRBG state in 256 traces
Lauren De Meyer

KU Leuven, imec - COSIC
lauren.demeyer@esat.kuleuven.be

Abstract. The NIST CTR_DRBG specification prescribes a maximum size on each
random number request, limiting the number of encryptions in CTR mode with the
same key to 4 096. Jaffe’s attack on AES in CTR mode without knowledge of the
nonce from CHES 2007 requires 216 traces, which is safely above this recommendation.
In this work, we exhibit an attack that requires only 256 traces, which is well within
the NIST limits. We use simulated traces to investigate the success probability as a
function of the signal-to-noise ratio. We also demonstrate its success in practice by
attacking an AES-CTR implementation on a Cortex-M4 among others and recov-
ering both the key and nonce. Our traces and code are made openly available for
reproducibility.
Keywords: DPA · SCA · CPA · AES · CTR · PRNG · NIST · DRBG · DDLA

1 Introduction
Cryptographic implementations in embedded devices are vulnerable to side-channel attacks
(SCA) such as differential power analysis (DPA), which was first introduced by Kocher et al.
in 1999 [KJJ99]. In the following years, many variations of this attack have been proposed,
such as correlation power analysis (CPA) by Brier et al. [BCO04], mutual information
analysis (MIA) by Gierlichs et al. [GBTP08] and very recently, differential deep learning
analysis (DDLA) by Timon [Tim19].

The success of DPA and its variations lies in the ability to divide-and-conquer, because
the power consumption at some instants depends on a (constant) small part of the secret
combined with variable known data (e.g. plaintext bytes). In most cases, side-channel
attacks are performed under the assumption that the adversary knows the plaintext and/or
ciphertext, which allows him to hypothesize on and recover chunks of the secret key.

In some scenarios, this assumption does not hold. Consider for example a pseudo-
random number generator (PRNG) that is used for key generation or for the supply of
fresh randomness to masked implementations (to protect against SCA). In such cases,
neither the plaintext (i.e. the state of the PRNG) nor the ciphertext (i.e. the output of
the PRNG) are considered public. The adversary is then assumed to only have knowledge
of the power consumption or electromagnetic radiation emanating from the device.

At CHES 2007, Jaffe [Jaf07] presented an attack of AES in Counter mode (AES-
CTR) [Dwo01] in this adversary model. He showed that the sequential nature of the
counter mode enables one to attack AES-CTR with only knowledge of the power traces
and without knowledge of the initial counter (the nonce). Another line of works that
consider the same adversary model is that of blind side-channel attacks, originally by
Linge et al. [LDL14] and recently improved by Clavier et al. [CR17]. In these works, the
joint distribution of leakage points is exploited to extract keys without knowledge of the
plaintext or ciphertext.

In this work, we focus on the case of PRNGs. The NIST recommendations for random
number generation include one type of PRNG which is based on a cipher in CTR mode,

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2020, No. 1, pp. 37–65
DOI:10.13154/tches.v2020.i1.37-65

mailto:lauren.demeyer@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2020.i1.37-65

38 Recovering the CTR_DRBG state in 256 traces

denoted CTR_DRBG [BK15]. AES being an important standardized cipher, many PRNGs
naturally use AES-CTR at their core, which means they are vulnerable to Jaffe’s attack.
However, NIST recommends to limit the size of randomness requests to the CTR_DRBG
to 219 bits. Generating such a request thus takes at most 4 096 AES encryptions in
CTR mode. The NIST CTR_DRBG also calls an Update function, which changes the
PRNG state (nonce and key) between every request. Since Jaffe’s attack requires 216

encryption traces, it actually does not pose a threat to the NIST CTR_DRBG. In his
conclusion [Jaf07], he does allude to the possibility of using only 28 traces.

1.1 Contribution
In this work, we demonstrate an adaptation of Jaffe’s attack, which requires only 256
power measurements. We explain the methodology and investigate the success probability
of the attack as a function of the signal-to-noise ratio. Interestingly, our attack’s success
depends on the nonce it is trying to recover and we show that in some cases, using less
traces actually improves the success probability.

We demonstrate the feasibility of the attack on multiple real devices, essentially showing
that the NIST recommendation for the CTR_DRBG allows for too large requests. We
also explore blind SCA [CR17] as an alternative attack methodology and demonstrate the
recently introduced DDLA [Tim19] in a variation of the attack for misaligned traces.

In the context of masked implementations against SCA, PRNGs are usually required to
provide a constant stream of fresh randomness during the computation. Having that ran-
domness compromised would nullify the protection offered by the masking countermeasure.
To this day, very little research is publicly available on specific constructions for this PRNG.
The question of whether this PRNG should be protected against side-channel analysis
itself is largely avoided. We use our attack as a starting point for the discussion on how to
protect PRNGs against adversaries who only have access to side-channel information and
not the plaintexts/ciphertexts.

2 Preliminaries
In Section 2.1, we give a brief overview of AES and introduce our notation for the rest of
the paper. Section 2.2 describes the NIST recommendations for the CTR_DRBG.

2.1 AES
The Advanced Encryption Standard (AES) is a 128-bit block cipher based on a substitution-
permutation network. The master key can be 128, 192 or 256 bits long and the correspond-
ing number of rounds is respectively 10, 12 or 14. Each round i (except the last round)
consists of 4 transformations (AddRoundKey, SubBytes, ShiftRows and MixColumns),
which we explain briefly below. The 128-bit state is considered as a matrix of 4 by 4 bytes
(see Figure 1). Each round also receives a 128-bit round key Ki, which is derived from the
master key using the key schedule. The details of the key schedule are not relevant here.

!",$!",% !",& !",'(
!",' !",) !",* !",'+
!",(!",, !",'$!",'%
!",+ !",- !",'' !",')

!" =

Figure 1: AES state

Lauren De Meyer 39

AddRoundKey is a linear transformation, which performs a 128-bit exclusive or (⊕)
between the state Xi and the round key Ki:

Yi = Xi ⊕Ki

SubBytes is the only nonlinear transformation in the round function. It takes each of
the 16 bytes of the state and substitutes it for another:

Zi,j = S(Yi,j) = S(Xi,j ⊕Ki,j) j = 0 . . . 15

A typical DPA attack targets the output of this function and exploits the fact that X1,j (a
plaintext byte) is known and variable and K1,j (a master key byte) is unkown and fixed
over the acquired traces.

ShiftRows is simply a permutation of the state bytes, obtained by rotating row j of the
state matrix by j bytes to the left (see Figure 2).

/",$ /",% /",& /",'(
/",' /",) /",* /",'+
/",(/",, /",'$ /",'%
/",+ /",- /",'' /",')

/",$ /",% /",& /",'(
/",) /",* /",'+ /",'
/",'$ /",'% /",(/",,
/",') /",+ /",- /",''

/" = = 0"

Figure 2: AES ShiftRows

MixColumns is a linear transformation of the AES state, by multiplying each column of
the state with a matrix M in F28 . This is the last transformation of each round, except
the last round, where this step is skipped.

Xi+1,[4j...4j+3] = M × Ui,[4j...4j+3] j = 0 . . . 3

with M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


2.2 CTR-DRBG
The NIST publication SP 800-90A [BK15] describes recommendations for random number
generation using Deterministic Random Bit Generators (DRBG). One of these is based
on block ciphers in CTR mode and is therefore referred to as CTR_DRBG. For a
detailed description of the operation of the CTR_DRBG, we refer to [BK15]. A simplified
pseudocode of the functions relevant for this work is given in Algorithms 1 and 2.

Random Number Generation. In the context of this paper, it is important to know that
the internal state of the CTR_DRBG contains a Key and a value V , as shown in Figure 3.
The value of V at the beginning of a randomness request is what we refer to as the nonce
N . The value V is incremented by a counter after every use of the block cipher AES, as in
CTR mode. This is shown in Figure 3 on the right and in Algorithm 2. While the block
cipher performs in CTR mode, the output blocks are concatenated until the requested
output length is obtained.

40 Recovering the CTR_DRBG state in 256 traces

Figure 3: Operation of the NIST CTR_DRBG _Update function (left) and random bit
stream generation (right) [BK15]

Algorithm 1 NIST CTR_DRBG _Update (simplified)
Input: (Key,V), seed length
Output: (Key,V)

1: Init x = 0
2: while length(x) < seed length do
3: V = V + 1
4: x = x|AESKey(V)
5: end while
6: (Key,V) ← x

Updating the State. At the end the random bit generation in Algorithm 2, a new
key and value V are generated by the CTR_DRBG _Update function, which is shown
in Algorithm 1. This essentially means that performing a DPA attack across various
requests is not possible, because the secret key changes. Any DPA attack would have
to be performed during a single request to the DBRG (Algorithm 2 lines 2-5). However,
the maximum number of bits per request is limited [BK15, Table 3]. If the counter field
occupies at least 13 bits of the block, then the maximum number of bits per randomness
request is 219. In the case of AES, which has a block length of 16 bytes, this is equivalent
to 212 = 4 096 encryptions. If the counter field length (“ctr_len”) is smaller, the number of
performed encryptions in CTR mode is 2ctr_len − 4. Not specified here in these algorithms
is the reseed counter, which makes sure that the PRNG is reseeded when the number of
requests succeeds a threshold. According to the NIST specifications, this threshold must
be at most 249.

Algorithm 2 NIST CTR_DRBG _Generate (simplified)
Input: (Key,V), requested # bits
Output: x

1: Init x = 0
2: while length(x) < requested # bits do
3: V = V + 1
4: x = x|AESKey(V)
5: end while
6: Truncate x to requested # bits
7: (Key,V) ← CTR_DRBG _Update(Key,V)

Lauren De Meyer 41

Forward/Backward Secrecy. The concepts of forward and backward secrecy evaluate
the security of PRNGs when their state is compromised (i.e. known by an adversary).
The CTR_DRBG provides backward secrecy because recovering the state (key and nonce)
during one request does not allow an adversary to compute the previous states. The expla-
nation for this is simply that the current state is the result of an AES-CTR computation
with the previous (unkown) key (see Algorithm 1). On the other hand, as long as the
DRBG is not reseeded with a fresh seed, it does not provide forward secrecy, since the
knowledge of the current state allows one to perfectly predict the following states.

3 The Attack
In this attack, as in [Jaf07], we perform DPA on four rounds of AES-CTR. In the first
rounds, we assume a large part of the state is constant and we recover information about
a few variable bytes. By propagating them through the ShiftRows and MixColumns
transformations, we obtain enough information to perform DPA in the next round, until
finally, we can recover the entire round key in round four. In this work, we choose CPA as
our attack methodology.

Simulated traces. For the remainder of this section, we apply the steps of the attack
to simulated traces and explore the success rate as a function of the signal-to-noise ratio
(SNR). We will apply the attack to traces from real devices in Section 4. To generate the
simulated traces, we perform AES-CTR and after each round transformation, we collect
the Hamming weights of the 16 bytes of the state and add them to the trace. Each time
sample in a simulated trace thus corresponds to the Hamming weight of one state byte in
one round. We then add Gaussian noise to the trace with some standard deviation σ. The
variance σ2 is calculated as the variance of the collected Hamming weights divided by the
desired SNR. For example, the relationship between the actual Hamming weight and some
simulated leakages is shown in Figure 4. For each experiment, we add new noise to the
original Hamming weights and we measure the success as the proportion of correct bytes
recovered. We repeat each experiment ten times for each SNR.

Setup. The input to the first round is constructed by the addition of a counter T with
an unknown nonce N : X1 = N + T mod 2128. We assume for simplicity that the counter
starts at the least significant byte of the state. It is trivial to adapt the attack if this is
not the case. We thus assume that X1,15 = N15 + T mod 256, with N15 constant and
unknown and T the counter starting from 0. Further, since we will only use 256 traces,
we can consider the 14 most significant bytes completely constant: X1,j = Nj for j < 14.

Figure 4: Simulated leakages vs. actual Hamming weights for SNR=1.0

42 Recovering the CTR_DRBG state in 256 traces

Byte 14 is a special case, since it is not constant, but will only assume two values: N14
and (N14 + 1) mod 256. We visualize this in Figure 5, where white squares signify fixed
values, black squares are varying continuously and the byte in the grey square toggles at
most once in the set of traces.

!",$!",% !",& !","'
!"," !",(!",) !","*
!",' !",+ !","$!","%
!",* !",, !","" !","(

!" =

Figure 5: Input to the first round of AES

3.1 Round 1: one byte
The attack on the least significant byte corresponds exactly to that described in [Jaf07].
This is the most complex step in our attack, as it requires hypothesizing on 15 unknown
bits (i.e. complexity 215). We target the output of SubBytes:

Z1,15 = S(K1,15 ⊕X1,15) = S
(
K1,15 ⊕

(
(N15 + T) mod 256

))
As in [Jaf07], let N15 = N15,hi|N15,lo and K1,15 = K1,15,hi|K1,15,lo where hi denotes the
most significant bit and lo the other 7 bits and let b = N15,hi ⊕K1,15,hi. Then we can
write Z1,15 as

Z1,15 = S
(

(b� 7)⊕K1,15,lo ⊕
(
(N15,lo + T) mod 256

))
[Jaf07]

We then perform CPA, where we hypothesize on the 15 bits (b,K1,15,lo and N15,lo) and
compute the correlation between our Z1,15 and the traces. The winning hypothesis (with
the largest absolute correlation) does not tell us the most significant bits of K1,15 and N15,
but this is of no importance for the remainder of the attack. With these 15 bits, we know
Z1,15 completely.

Figure 6 shows the success rate of this step, which is 1.0 for reasonably low SNR levels.
Below the threshold of SNR=0.2, the success rate decreases dramatically and becomes 0.0
as of SNR=0.01.

Figure 6: Success Rate of Step 1 with 256 traces as function of the SNR.

Lauren De Meyer 43

3.2 Round 2: four bytes
Figure 7 depicts the AES state after the ShiftRows and MixColumns operations in terms
of variability. We will use the continuously changing byte Z1,15 to recover the first column
of the state after SubBytes.

!",$!",% !",& !","'
!",(!",) !","* !","
!","$!","% !",' !",+
!","(!",* !",, !",""

-',$ -',% -',& -',"'
-'," -',(-',) -',"*
-',' -',+ -',"$ -',"%
-',* -',, -',"" -',"(

Figure 7: AES state after the first Shiftrows (left) and MixColumns (right) transformations.

Consider for example the SubBytes output Z2,0:

Z2,0 = S(Y2,0) = S(K2,0 ⊕X2,0)
= S(K2,0 ⊕ 2Z1,0 ⊕ 3Z1,5 ⊕ 1Z1,10︸ ︷︷ ︸

constant & unknown

⊕ 1Z1,15︸ ︷︷ ︸
variable & known

) (1)

By treating K2,0⊕ 2Z1,0⊕ 3Z1,5⊕Z1,10 as one unkown 8-bit constant C2,0, we can recover
this constant using CPA with only 256 hypotheses and thus recover Z2,0. The same is true
for the other three bytes in the first column:

Z2,0 = S(C2,0 ⊕ 1Z1,15)
Z2,1 = S(C2,1 ⊕ 1Z1,15)
Z2,2 = S(C2,2 ⊕ 3Z1,15)
Z2,3 = S(C2,3 ⊕ 2Z1,15)

(2)

Figure 8: Pearson Correlation coefficients in Step 2 with SNR=1.0, with 256 traces as a
function of the time samples (left) and their maximum as a function of the number of
traces (right).

We note that performing CPA for Z2,0 and Z2,1 is identical, since in both cases the
S-box input is the sum of 1Z1,15 with a constant. Indeed, the example in Figure 8 shows
that there is not one but there are two prevailing hypotheses: 0xAC and 0x94. Since each
byte corresponds to only one time sample in the simulated traces, the correlation peaks
are very close to each other in Figure 8. The separation is more clear in real power traces.
If the S-box evaluations are not randomly shuffled, it is trivial to decide which constant
belongs to which state byte. In this case, C2,0 = 0x95 and C2,1 = 0xAC.

44 Recovering the CTR_DRBG state in 256 traces

Figure 9 shows the success rate of recovering all four bytes of the first column. Again,
the threshold for reaching 100% success lies at SNR=0.2. The cutoff is still quite steep,
with 0 success for SNR=0.001 and below.

Figure 9: Success Rate of the second step of the attack with 256 traces.

3.3 Round 3: sixteen bytes
The known bytes Z2,0 to Z2,3 are spread to all columns of the state by the ShiftRows
transformation as shown in Figure 10. The subsequent MixColumns operations will affect
the entire state. As shown by the grey squares in Figure 10, each column now has an
additional byte that is non-constant. Because we only have 256 traces and didn’t follow
the approach from [Jaf07], the grey bytes are also unknown. However, keep in mind that
the grey bytes only assume two distinct values throughout all the traces. The number of
traces for each depends on the carry of the addition X1,15 = (N15 + T) mod 256, which
makes X1,14 toggle from N14 to (N14 + 1) mod 256.

!",$!",% !",& !",'"
!",(!",) !",'* !",'
!",'$!",'% !"," !",+
!",'(!",* !",, !",''

Figure 10: AES state after the second ShiftRows transformation.

Best Case. Assume for simplicity that the least significant byte of the nonce N15 is 0x00.
In that case, X1,14 = N14 never toggles and all grey squares in Figure 10 are constant, just
like the white squares. This means that in each column, we can apply the same method as
we did in round 2. Each byte of the SubBytes output can be written as (2):

Z3,j = S(C3,j ⊕ fjZ2,kj
) (3)

where the factors fj are easily derived from MixColumns matrix M and kj refers to the
known byte (the black squares) in each column (see Appendix A). As in round 2, each
column again has two bytes for which the hypotheses are identical (when fj = 1) and
the correct constants can be derived by comparing the time samples where the maximum
correlation occurs.

Lauren De Meyer 45

Now, assume that the nonce is 0xFF and X1,14 toggles immediately, leading to the grey
squares in Figure 10 being identical in all but one of the traces. When performing the
same CPA, we now recover different constants C ′3,j , corresponding to when X1,14 = N14 +1
mod 256.

Average Case. In all other cases, the constants in the computation will be C3 for the
first portion of traces and C ′3 for the second portion, after X1,14 has toggled. Interestingly,
the same approach as before, with 256 traces, still works. The winning hypotheses are
those constants that occur most often in the set of traces. The traces that correspond to
the other (not-winning) constants act as noise. The attack is successfull if the 16 recovered
bytes are either C3 or C ′3, but not a mix of both. Clearly, this depends on the least
significant byte of the nonce (N15), since this byte decides when X1,14 toggles from N14 to
N14 + 1 and the constants from C3 to C ′3. This is demonstrated in Figure 13, where we
show the success rate for various values of N15.

Worst Case. The worst case scenario is when the toggle occurs approximately halfway,
i.e. when N15 ≈ 0x80. In that case, the constants C3,j and C ′3,j are in a close race (see
Figure 11, left). This results in recovering some bytes from C3 and some from C ′3, which is
a problem for the next and last stage of the attack. This is clearly reflected in the results
in Figure 13, since the success rate only converges to approximately 0.6 for nonce 0x80.
Figure 13 also shows the success rate of the attack with N15 = 0x80 when we use only
half of the traces, indicated by 0x80∗. This is a rare and interesting case, where using less
traces actually improves the performance of the attack, though, not surprising since we
know that the traces we are removing act as noise.

Figure 11: Pearson Correlation coefficients in Step 3 with N15 = 0x80 and SNR=1.0 with
256 traces (left) and 128 traces (right).

In Figure 12, we depict the maximum correlation coefficient for each hypothesis as a
function of the amount of traces used for the best and worst case. It demonstrates again
very clearly that with nonce N15 = 0x80, using more than 128 traces only deteriorates the
success of key recovery.

The attacker only knows the least significant 7 bits of the nonce, so is unable to
distinguish 0x80 from 0x00. However, seeing a close race as in Figure 11, left is a good
clue, especially if performing the CPA again with only half the traces results in a clear
winner (Figure 11, right).

Also in other cases, the knowledge of the 7 least significant nonce bits can be used
to calculate exactly how many traces to remove (either at the beginning or the end of
the acquired set) to have a pure subset of traces using only one constant. There are two
possible sets of traces, depending on whether the most significant bit of N15 is 0 or 1.
We can try out both possibilities and detect as in Figure 11, which option gives the best
results. We will demonstrate this in in the examples in Section 4.

46 Recovering the CTR_DRBG state in 256 traces

Figure 12: Maximum Correlation coefficients as a function of the number of traces in Step
3 with SNR = 1.0 and N15 = 0x00 (left) or N15 = 0x80 (right).

Figure 13: Success Rates of the third step of the attack for various nonces with 256 traces
(except 0x80∗ with 128 traces).

3.4 Round 4: recovering the round key

Whether the previous step recovered constants C3 or C ′3, we now know exactly the state
Z3 in most of the traces, which after propagation through ShiftRows and MixColumns
allows us to do a classic CPA in the next round and recover round key K4. As in § 3.3, the
success of this stage depends on the least significant byte of the nonce N15. This is shown
in Figure 15, although now, even the worst case can lead to a successful attack if the SNR
is sufficiently high (SNR ≥ 1). Removing part of the traces can still help to improve the
success probability. This is again indicated in Figure 14, right and in Figure 15 by 0x80∗.
From now on, we always perform the fourth step of the attack with the same selection
of traces as step 3. With the recovery of the round key K4, it is trivial to reverse the
key schedule and calculate the master key K1. Next, we can calculate the nonce N by
performing the AES rounds backward from the state Z3.

The success probabilities in Figures 9 to 15 were each obtained in experiments using
the correct information from the previous steps. They are thus actually conditional
probabilities, conditioned on the success of the previous step of the attack. Hence, by
multiplying these success rates, we obtain the success rate of the entire attack. This is
shown in Figure 16.

Lauren De Meyer 47

Figure 14: Maximum Correlation coefficients as a function of the number of traces in Step
4 with SNR=1.0 and N15 = 0x00 (left) or N15 = 0x80 (right).

Figure 15: Success Rates of the fourth step of the attack for various nonces with 256 traces
(except 0x80∗ with 128 traces).

3.5 Discussion
Jaffe’s Original Attack. In the original attack by Jaffe [Jaf07], the first step that recovers
Z1,15 by hypothesizing on 15 bits is identical. The difference with this paper is that Jaffe
uses 216 power traces and can therefore also recover Z1,14 with this approach. This requires
hypothesizing on 16 bits and is thus more complex. In our case, with only 256 traces, byte
Z1,14 is almost constant, hence we must follow a different approach. This way, we also
avoid the hypothesis on 16 bits. After retrieving Z1,14 and Z1,15, Jaffe selects a subset of
traces in which the remaining bytes Z1,0, . . . , Z1,13 are constant. In the second round of
encryption, the attack follows the same approach as described in § 3.2. With both Z1,15
and Z1,14 known, it is possible to recover the first two columns: Z2,0, . . . , Z2,7. Finally,
in round three, two bytes per column are known and variable, so the same approach as
in round two allows retrieval of the entire state Z3. The last step of the attack is again
analogous to ours.

More traces available? The NIST recommendations currently allow an adversary to
obtain up to 4 096 traces of AES-CTR, which is well above 256. What happens to the
attack success probability when we can actually use this full number of traces? A general
understanding in side-channel analysis is that increasing the number of traces always
increases the success probability of an attack. This is certainly also true for the first step
of the attack, since the least significant byte of the counter is not affected by a carry from

48 Recovering the CTR_DRBG state in 256 traces

Figure 16: Success Rates of the attack for various nonces with 256 traces (except 0x80∗

with 128 traces).

a previous byte. With up to 4 096= 212 encryptions in CTR-mode, the same can be said
for the second step of the attack, since a counter to 212 is not enough to invalidate the
assumption that three bytes in the first column are constant. In the third and fourth step
however, the success very much relies on the assumption that three bytes in each column
are (quasi-)constant, which means increasing the number of traces would only increase the
“noise”. However, having more than 256 traces available can certainly help, since one can
select from them the perfect subset of traces. For example, if the attacker suspects from
the first 256 traces that the least significant byte of the nonce is near 0x80, (s)he only
has to throw away the first 128 traces and use the next 256 traces to turn a worst case
scenario into a best case scenario (nonce 0x00). Similarly, with any other nonce N15 the
adversary can compute exactly how many traces to throw away (256−N15) to obtain the
subset with nonce 0x00. It is important that step 3 and 4 of the attack are still performed
with only 256 traces, in order for the assumptions on the white squares to hold.

Figure 17: Success Rate of the attack with 256 traces (best case) or 512 traces (any case)

Hence, if an adversary has 512 traces at his disposal, the success rate of the attack will
always follow the best case in Figure 16, or even a bit better, since the first two steps can
use the full amount of 512 traces (see Figure 17). We will illustrate this method in an
application in Appendix C.

Lauren De Meyer 49

The Rippling Carry. There is one more case we did not consider in the above description
of the attack. We mention it here, since it does not significantly affect the attack. In
Figure 5, we assume that the white squares are completely constant throughout a set of
256 traces and that only the grey square can toggle once. However, if X1,14 = 0xFF, its
toggling to 0x00, will actually create a non-zero carry which affects X1,13 and makes it
increment as well. If that byte is 0xFF as well, the carry propagates to the next byte, and
so on.

While this is something to keep an eye on when recovering the nonce N from X1, it
should not affect the first four steps of the attack. The toggling of any other byte from
one value to another will happen at the same time as the toggling of X1,14. Hence, the
situation in round 3 and 4 of the attack remains the same: a part of the traces corresponds
to one constant (C3) and another part uses constant C ′3.

Step two of the attack is affected if the carry ripples all the way to byte X1,10, which
affects the first column of the state in round 2. This would mean that N11 = N12 = N13 =
N14 = 0xFF and is thus a very special case.

4 Experimental Validation
To test our attack on a real device, we program a Cortex-M4 CPU with an AES-CTR
implementation. For this, we use the ChipWhisperer CW308T-STM32F3 target mounted
on the CW308 UFO board. The UFO board is connected to the ChipWhisperer-Lite board.
We use the ChipWhisperer Capture software for programming the device, communicating
with the device and for collecting power measurements. The clock frequency of the target
and sample rate of the scope are set to the ChipWhisperer defaults.

We collect exactly 256 traces of 12 000 samples each, consisting of approximately the
first four rounds of AES. The nonce and key are chosen randomly by the ChipWhisperer
Capture software. Thanks to the ChipWhisperer measurement setup, the traces are well
aligned. An example trace is shown in Figure 18. For efficiency, we will use only the
SubBytes region of each round in the corresponding steps of the attack.

Figure 18: Example trace of the first four rounds of AES-CTR on a Cortex-M4.

Round 1. In the first step of the attack, the winning hypothesis achieves almost double
the correlation of the others. We learn that (b,K1,15,lo, N15,lo) = (0, 0x57, 0x0D) (see
Figure 19). This means that (K1,15, N15) is either (0x57, 0x0D) or (0xD7, 0x8D). We
already have here an example of a possible worst-case scenario.

Round 2. In Round 2, we recover the constants C2 = [0x65, 0x22, 0x52, 0x52] (see
Figure 20).

50 Recovering the CTR_DRBG state in 256 traces

Figure 19: Pearson Correlation coefficients in Step 1, with 256 traces as a function of the
time samples (left) and their maximum as a function of the number of traces (right).

Figure 20: Pearson Correlation coefficients in Step 2 (bytes 0 and 1), with 256 traces as
a function of the time samples (left) and their maximum as a function of the number of
traces (right).

Round 3. In round 3, we start with the attack to recover constant C3,0. The result is
shown in Figure 21, left and gives a strong suspicion that the least significant byte of the
nonce is actually 0x8D, since we see a close race between two constants. This means that
the least significant key byte should be 0xD7.

Figure 21: Pearson Correlation coefficients in Step 3 with 256 traces (left) and 128 traces
(right) (byte 0).

If we perform the same attack with only half the traces (see Figure 21, right), we obtain
a clear winner. In Figure 22, we show the maximum correlation coefficients as a function
of the number of traces used. We thus suspect that N15 = 0x8D and continue the attack

Lauren De Meyer 51

with only half the traces. We recover the following constants in round 3:

C3 = [0x76, 0x23, 0x3D, 0xCE, 0x70, 0xB9, 0xCB, 0xA4, 0x46, 0x32, 0x6E, 0x84, 0xA0, 0x64, 0x68, 0x09]

Figure 22: Maximum Correlation coefficients as a function of the number of traces in Step
3 (byte 0).

Round 4. Finally, still using half the traces (see Figure 23), we recover the following
round key in Round 4:

K4 = [0x7B, 0xFF, 0x7A, 0xD7, 0x0D, 0x28, 0x2E, 0xE3, 0x00, 0x3E, 0xD1, 0x58, 0xCB, 0x87, 0x0B, 0xBB]

If we perform the Key Schedule backward, we find that the Master Key is

K1 = [0xCC, 0x8E, 0x0F, 0x06, 0x0D, 0xE8, 0x3E, 0x80, 0x24, 0xBE, 0x94, 0x73, 0xBD, 0x6E, 0x8E, 0xD7]

Looking at the least significant byte, we can now confirm that (K1,15, N15) = (0xD7, 0x8D)
and that we probably performed the attack correctly. Indeed, when we perform AES
backward from Z3, we obtain

X1 = [0xE6, 0x10, 0x3B, 0x22, 0x55, 0x62, 0x7E, 0xE6, 0xBE, 0x93, 0x18, 0xBD, 0x71, 0xB7, 0xBA, 0x8D]

which is equal to the nonce N , since we used the first half of the traces. Pay attention
when using the second half or when the majority of the traces use the constant C ′3. In
that case, we recover X1,14 = N14 + 1 mod 256.

Figure 23: Pearson Correlation coefficients in Step 4 (byte 0), with 128 traces as a function
of the time samples (left) and their maximum as a function of the number of traces (right)

52 Recovering the CTR_DRBG state in 256 traces

Device Behaviour. Now that we know the key and nonce, we can investigate the relation
between Hamming weights and their leakage on the Cortex-M4. In Figure 24, we plot
the Hamming weight of one point of interest (byte 15 in the first SubBytes) across 256
encryptions on the x-axis and the measurements of the corresponding sample in the power
traces on the y-axis. The corresponding trace sample is chosen as the time sample where
the power measurements have the largest Pearson correlation with this array of Hamming
weights. We also estimate the SNR at this time sample as

SNR = V ar(signal)
V ar(noise)

The signal is constructed by replacing each measurement with the average of all measure-
ments for that Hamming weight, as is done in [MOP07]. The noise is approximated by
subtracting these averages from the actual measurements. This way, we obtain SNR ≈ 2.18
at the time sample corresponding to state byte 15 after the S-box in the the first round.

Figure 24: Measured leakages vs. actual Hamming weights on the Cortex-M4.

Other devices. We additionally successfully performed the attack on an Arduino Uno
and the ChipWhisperer-lite XMEGA target. For the results, we refer to Appendices B
and C. The trace files and a JuPyter Notebook performing the above attack can be found
online1.

5 Discussion
5.1 The Worst Case Nonce
Figure 16 gives a bleak impression of the attack’s sensitivity to the least significant byte of
the nonce. However, the worst case scenario is not as bad as it seems.

Firstly, it does not imply the existence of a protection mechanism since biasing the
nonces towards 0x80 would only reduce the search space of the attacker.

Secondly, we have shown that removing part of the traces may improve the chance of
success. This trick is not limited to the worst case, as the attacker has knowledge of N15,lo

and can thus always compute the right number of traces to throw away. Without knowing
N15,hi, there are two possible ways to do it, but one will clearly improve results, while the
other will make them worse. However, depending on the amount of noise in the traces,
extra traces may still improve the performance. As stated in § 3, in the worst case, we
can say the attack requires 512 traces, which is still far less than 4 096. With 512 traces

1https://github.com/LaurenDM/AttackAESCTR

https://github.com/LaurenDM/AttackAESCTR

Lauren De Meyer 53

available, step 3 and 4 always achieve the best success rate and the dependency on the
nonce thus disappears.

Finally, PRNGs tend to be used for applications that need a continuous supply of
randomness. If the attacker really has access to at most 256 traces per PRNG request and
the worst case scenario occurs, the next PRNG request will have a different nonce. NIST
prescribes the PRNG to be reseeded after at most 248 requests. As soon as the adversary
manages to recover the key and nonce for one request, the internal state of the PRNG
is known and the future random outputs can be calculated as long as the PRNG is not
reseeded.

5.2 Variations on a theme: DDLA
In the original work of Jaffe [Jaf07], the attack was not performed using CPA, but rather
DPA as introduced in the original work of Kocher [KJJ99]. In this work, we opted for CPA,
but any similar SCA methodology can replace this. For example, recently, a non-profiled
SCA using deep learning (DDLA) was introduced by Timon [Tim19], which was shown to
be more resilient in case of misaligned traces.

The main idea of DDLA is to train a neural network for various key guesses. With each
training, the inputs to the network are the traces and the outputs are the corresponding
leakage hypotheses for a particular key guess. For the correct key guess, the network
accuracy during training is supposed to grow a lot faster than for wrong key guesses.
The use of a convolutional neural network in this method is more robust in the case of
misaligned traces. For more details on DDLA, we refer to [Tim19].

Application to AES-CTR. In the original paper, this methodology uses around 3 000
traces. With only 256 traces available, it is more likely that the network “memorizes” the
data and starts to overfit. Choosing a suitable network architecture is therefore a bit more
challenging in our case. We used the same traces as in Section 4, but as in [Tim19], created
a misalignment by shifting each trace by a random offset between -25 and 25. This is not
a large offset, but it is sufficient to make regular CPA fail. Our neural network starts from
the CNNexp from Timon [Tim19], but we use 8 filters of size 100 in the first convolutional
layer and we replace the second convolutional layer with a 10-neuron dense layer. We also
use the most significant bit of the S-box output in our hypotheses.

It is standard to randomly initialize a neural network’s weights. The initial weights
have some influence on the accuracy of the training, which is why training the network for
the same hypothesis twice can give different results in accuracy. Therefore, we noticed that,
when training the same network for different hypotheses and comparing their accuracies,
it is better to always use the same initial weights in the neural network.

Figure 25 shows the resulting accuracies for the first step of the attack. Even with only
256 traces, this methodology works. It takes a lot of computation time, since we need to
train the network 215 times, but it succeeds where regular CPA does not.

Distinguishing time samples. In the second step of the attack, it is important to know
the most defining time samples in the trace in order to distinguish the winning hypotheses
of two bytes in one column. For this purpose, we use the sensitivity analysis as described
in [Tim19, §3.2.2]. The results are shown in Figure 26 with the accuracies on the left and
the sensitivities on the right. They show clearly which of the two constants appears first
in the trace. The results correspond to those of Section 4.

We can thus conclude that other variants of DPA methods can be applied in the attack.
DDLA is a good choice if the traces are misaligned, but does take quite some computation
time.

54 Recovering the CTR_DRBG state in 256 traces

Figure 25: Performing the first step of the attack with DDLA, using 256 traces.

Figure 26: Performing the second step of the attack (byte 0 and 1) with DDLA, using 256
traces. Accuracies (left) and sensitivity analysis (right).

5.3 Blind SCA
An alternative approach to attack a CTR mode with unknown nonce is to use a blind
SCA as described at CHES 2017 by Clavier et al. [CR17]. This methodology stems from
the observation that the joint probability distribution of (HW (Xi,j), HW (Zi,j)) with
Zi,j = S(Xi,j ⊕ Ki,j) depends on the secret key Ki,j . In [CR17], this is exploited by
computing the maximum likelihood that the leakages observed for Xi,j and Zi,j occur in
the case of a specific key guess.

This method has as advantage that it does not even require the CTR mode as it does
not require specific knowledge on the plaintext X1. It can thus be applied to PRNGs
based on different modes of operation, but only to recover the key. However, we found
that the methodology is very sensitive to noise and less effective in this case than the ones
described in this paper and Jaffe’s [Jaf07]. We were not able to recover the secret key from
our devices running AES in CTR mode, using 4 096 traces.

Application to AES-CTR. Since not all plaintext bytes vary in CTR mode, it makes
more sense to apply the blind attack to the last round, where the ciphertext bytes are
constantly changing. We noticed a number of drawbacks to blind SCA compared to regular
CPA in this application. For example, the blind attack requires a precise estimation of the
location of the two points of interest: Xi,j , Zi,j corresponding to a byte Xi,j at the input of
AddRoundKey and Zi,j = S(Ki,j ⊕Xi,j) the byte at the output of SubBytes. Even if one
manages to pinpoint the correct samples in the traces, the attack also requires the leakages
at these points to be converted to Hamming weight estimations. In the work of [CR17],

Lauren De Meyer 55

this is done by estimating coefficients α and β such that the leakage is approximately
αHW + β. However, when we compare the measured leakages on a Cortex-M4 device
with the actual Hamming weights in Figure 24, we see that one easily estimates the wrong
Hamming weights from these.

In contrast, for a regular CPA attack, it suffices to identify only an approximate region
of interest, since the Pearson correlation coefficient can be computed for many time samples.
Moreover, it is not required to estimate the Hamming weights, since CPA can be applied
directly to the measurements obtained from the oscilloscope (no matter the leakage unit).
The same can thus be said for the CPA-based attack of this work.

Experiments. We tried a simplified attack, where the points of interest and α, β are
given to the adversary: We collected power measurements both from an Arduino Uno and
from a Cortex-M4. We computed the actual Hamming weight values using a simulation of
AES-CTR with the same nonce and key as was sent to the device. We determined the
points of interest in the real power traces by computing the correlation of the trace points
with the real Hamming weights. We then used the least squares method to determine the
coefficients α, β in the relationship between the real Hamming weights and the leakage
units of the trace. We used the maximum number of traces available according to the
NIST recommendations: 4 096. Even then, the blind SCA was only able to recover 11 of
the 16 key bytes on the Arduino Uno device and 8 bytes on the Cortex-M4. We show
figures for each key byte in Appendix D.

5.4 How (not) to use CTR mode
It is clear that the presence of the counter in CTR mode gives more information to the
adversary than in the case of for example CBC mode. However, the possibility of the
demonstrated attack does not imply that using a CTR mode-based PRNG is always a
bad idea. By following a few simple guidelines when using the CTR_DRBG, the attack
can be avoided. In this section we discuss some observations and recommendations for
the use of AES-CTR in a PRNG. As an example, we consider the context of masked
implementations against side-channel attacks, where online PRNGs are usually required
to provide a continuous stream of randomness. This is a very interesting use case for the
attack, since recovering the state of the CTR_DRBG once implies that the attacker can
derive any future PRNG output. The attacker can then compute all the masks used in the
masked implementation and perform a classic first-order DPA attack to recover the secret
key. It does not matter then whether the masked implementation is first-, second- or even
fifth-order secure. Recall that the CTR_DRBG does not provide forward secrecy as long
as it is not reseeded and the recommended maximum number of request between reseeds
is 248 [BK15], which allows for more than enough traces for a first-order attack.

While we keep this application in mind, the discussion is of course also relevant for any
other use of the CTR_DRBG, such as key generation or IV generation for protocols.

5.4.1 Observations

Hiding. A common hiding technique against side-channel attacks is to randomize the
order of the 16 S-box calculations during SubBytes. We saw in § 3.2 and § 3.3 that the
order of execution is important to distinguish two of the constants in each state column.
The hiding countermeasure therefore does not increase the number of traces required but
can increase the complexity of the attack by increasing the number of possibilities to try
in step 2 and step 3. However, it does not completely prevent our attack.

Hardware. Related to the shuffling of S-box calculations, a hardware PRNG implemen-
tation that performs all 16 S-boxes in parallel, does not allow to distinguish the two

56 Recovering the CTR_DRBG state in 256 traces

equal-hypothesis constants in each column. More importantly, when the 128-bit state is
being operated on in parallel, the signal-to-noise ratio is a lot smaller, since the leakage of
one byte (the signal) only corresponds to approximately one sixteenth of the measurement
(not including the noise) [MOP07]. Furthermore, in an unrolled implementation, it is
difficult to separate the power measurements of the 128-bit states of different rounds, even
if the device is sampled at a very high rate. In other words, the SNR of such a hardware
implementation would be much worse than for our software implementations and it is
unlikely that even a regular CPA attack (with knowledge of the plaintext) would succeed
with only 256 traces.

Real-world Crypto. Despite the NIST recommendations, we found two commercial
CTR_DRBG implementations which do put a proper limit on the request size. In
the open-source mbed TLS library [arm], we can see that the maximum number of re-
quested bytes per CTR_DRBG call is 1024, which is equivalent to only 64 encryptions
with AES-128 in CTR mode. Even more secure is a CTR_DRBG implementation by
Texas Instruments [Ins], which puts the limit at 211 bits, or equivalently only 16 AES-CTR
encryptions.

5.4.2 Recommendations

Types of counters. As previously mentioned, the attack is not prevented if the counter
field starts in a byte X1,j∗ other than the least significant byte X1,15. The first round
of the attack then simply recovers Z1,j∗ , which propagates to a different column in step
2, but does not change the overall approach or complexity. On the other hand, the
NIST document on modes of operation also suggests the possibility to use an LFSR as
incrementing function in AES-CTR, as long as its period is sufficiently long [Dwo01]. A
good choice of LFSR would update bits which are spread over the entire 128-bit AES
state, rather than just one byte, thereby preventing the divide-and-conquer approach that
enables targeting key bytes in side-channel attacks. In contrast with a normal incrementing
counter, it is thus possible for a CTR_DRBG based on an LFSR to resist our attack, even
if 4 096 traces are available.

Size of Requests. Each new request to the NIST CTR_DRBG results in the computation
of AES-CTR with a different nonce and key, because of the CTR_DRBG _Update function,
which is performed with every randomness request. Hence, when using such a PRNG for a
masked implementation, it would clearly be less secure to perform a single (large) request
for all the random bits needed in a masked AES than to perform multiple (small) requests,
such as one for each masked S-box evaluation separately. Even worse would of course be
to not follow the NIST recommendations and to keep using the same key across PRNG
requests.

Conclusion for masked implementations. Through this section, we also want to start
the discussion on whether PRNGs for masked implementations need their own side-
channel protection, a question which is often sidestepped due to its “chicken-and-egg”
character. Indeed, protecting a PRNG used for masked implementations against side-
channel attacks, would require its own fresh randomness source in return. However, by
keeping these observations and recommendations in mind and ensuring that the request
sizes are sufficiently limited, this attack against AES-CTR can be avoided. For other
modes of operations, it looks like also the blind SCA can be avoided on real devices if the
number of available traces is limited. Under the assumption that the state (nonce and
key) of the CTR_DRBG is not known to the side-channel adversary, it does not seem
like masking the PRNG is necessary. An investigation of other PRNG constructions and
attacks against them is an interesting direction for future research.

Lauren De Meyer 57

6 Conclusion
In this work, we demonstrated an attack on AES-CTR mode with unknown key and nonce
in only 256 traces, a significant improvement over the previous attack by Jaffe [Jaf07].
Most importantly, this number of traces shows that a CTR_DRBG following the NIST
specification can be vulnerable to this attack, as it currently allows adversaries to obtain
as much as 4 096 traces of a CTR_DRBG performing AES-CTR. We demonstrated
the feasibility of our attack on several real devices such as a Cortex-M4 and make our
implementations openly available for reproducability.

We explored alternative methods such as DDLA for misaligned traces and blind SCA,
which does not require the CTR-mode assumption.

We start the discussion on PRNGs for masked implementations (i.e. a PRNG for
which an adversary can only observe the power consumption), a topic for which very
little research is available. Using the observations from this attack, we can conclude that
masking should not be necessary for such a PRNG, provided its correct use such as limiting
the request size and updating the state between requests. The question remains on whether
a construction as large as AES-CTR is necessary in this adversary model. An investigation
of various PRNG constructions and their security in this context is an interesting direction
for future work.

Acknowledgements
The author would like to thank Josep Balash, Arthur Beckers, Begül Bilgin, Vincent
Rijmen and Lennert Wouters. The author is funded by a PhD fellowship of the Fund for
Scientific Research - Flanders (FWO).

References
[arm] arm. Mbed tls. https://tls.mbed.org/api/ctr__drbg_8h.html#

a5b787e6157d91055d7c07d40f519cf52.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, volume 3156
of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

[BK15] Elaine Barker and John Kelsey. Recommendations for random number gen-
eration using deterministic random bit generators. NIST SP 800-90A Rev. 1,
June 2015.

[CR17] Christophe Clavier and Léo Reynaud. Improved blind side-channel analysis
by exploitation of joint distributions of leakages. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
24–44. Springer, 2017.

[Dwo01] Morris Dworkin. Recommendation for block cipher modes of operation: Meth-
ods and techniques. NIST SP 800-38A, December 2001.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual informa-
tion analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic

https://tls.mbed.org/api/ctr__drbg_8h.html#a5b787e6157d91055d7c07d40f519cf52
https://tls.mbed.org/api/ctr__drbg_8h.html#a5b787e6157d91055d7c07d40f519cf52

58 Recovering the CTR_DRBG state in 256 traces

Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

[Ins] Texas Instruments. Random number generation using msp430fr59xx
and msp430fr69xx microcontrollers. http://www.ti.com/lit/an/slaa725/
slaa725.pdf.

[Jaf07] Joshua Jaffe. A first-order DPA attack against AES in counter mode with
unknown initial counter. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727
of Lecture Notes in Computer Science, pages 1–13. Springer, 2007.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[LDL14] Yanis Linge, Cécile Dumas, and Sophie Lambert-Lacroix. Using the joint
distributions of a cryptographic function in side channel analysis. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design - 5th
International Workshop, COSADE 2014, Paris, France, April 13-15, 2014.
Revised Selected Papers, volume 8622 of Lecture Notes in Computer Science,
pages 199–213. Springer, 2014.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–
131, 2019.

http://www.ti.com/lit/an/slaa725/slaa725.pdf
http://www.ti.com/lit/an/slaa725/slaa725.pdf

Lauren De Meyer 59

A Constants

Table 1: MixColumns constants fj and kj to use in step 3 of the attack (Eqn (3))
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fj 2 1 1 3 1 1 3 2 1 3 2 1 3 2 1 1
kj 0 0 0 0 3 3 3 3 2 2 2 2 1 1 1 1

B Application to Arduino Uno
Rounds 1 & 2. In the first step, we obtain (b,K1,15,lo, N15,lo) = (0, 0x3c, 0x34) (see
Figure 27).

Figure 27: Pearson Correlation coefficients in Step 1 with 256 traces.

This means that (K1,15, N15) is either (0x3c, 0x34) or (0xBc, 0xB4). Next, we find the
constants C2 = [0x94, 0xAC, 0x2F, 0x92] (see Figure 28).

Figure 28: Pearson Correlation coefficients in Step 2 (bytes 0 and 1) with 256 traces.

Round 3. In round 3, we immediately see that the current set of traces is sufficient (see
Figure 29) and we recover the following constants:

C3 = [0x38, 0xC6, 0x16, 0xD8, 0xE8, 0x54, 0x63, 0xE6, 0x50, 0xBF, 0xF5, 0x00, 0x11, 0x95, 0x98, 0x44]

At this point, we do not know whether this is C3 or C ′3. This depends on the most
significant bit of N15.

60 Recovering the CTR_DRBG state in 256 traces

Figure 29: Pearson Correlation coefficients in Step 3 (byte 0) with 256 traces.

Round 4. In the last step, we find the fourth round key:

K4 = [0x3D, 0x80, 0x47, 0x7D, 0x47, 0x16, 0xFE, 0x3E, 0x1E, 0x23, 0x7E, 0x44, 0x6D, 0x7A, 0x88, 0x3B]

which after reversing the key schedule gives us the master key:

K1 = [0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C]

Figure 30: Pearson Correlation coefficients in Step 4 (byte 0) with 256 traces.

Since K1,15 = 0x3C, we know that N15 = 0x34 and thus that we recovered C3 in step
3. Finally, we find the nonce:

N = [0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2, 0xE0, 0x37, 0x07, 0x34]

The entire attack thus succeeds with 256 traces. The relation between Hamming weight
and the measurements of the Arduino Uno is shown in Figure 31. We calculate that the
SNR at this point (byte 15 in the first SubBytes) is 5.21.

Lauren De Meyer 61

Figure 31: Measured leakages vs. actual Hamming weights on the Arduino Uno.

C Application to XMEGA
Rounds 1 & 2. We first find (b,K1,15,lo, N15,lo) = (1, 0x36, 0x0E) (see Figure 32), which
means that (K1,15, N15) is either (0x36, 0x8E) or (0xB6, 0x0E). Again, we could be close
to a worst-case scenario.

Figure 32: Pearson Correlation coefficients in Step 1 with 256 traces.

In step two, we recover C2 = [0x4B, 0x17, 0xAE, 0xB8] (see Figure 33).

Figure 33: Pearson Correlation coefficients in Step 2 (bytes 0 and 1) with 256 traces.

Round 3. In round 3, using the complete trace set, we do not get very clear results
(see Figure 34). It looks like a race between 0xB2 and 0xF6, but even their correlation

62 Recovering the CTR_DRBG state in 256 traces

coefficients are not significantly larger than the others.

Figure 34: Pearson Correlation coefficients in Step 3 (byte 0) with 256 traces.

In this section, we demonstrate how to use the availability of more traces to obtain
exactly 256 traces for any nonce. We therefore acquired 512 traces (indexed 0 to 511)
instead of 256. We know that the least significant byte of the nonce N15 is either 0x0E or
0x8E and the race in Figure 34 again makes us suspect that it is the latter. However, even
if it is not that obvious, we can try out both cases. In the first case, the optimal trace set
would be from trace number 256− 0xE =242 to 498. Otherwise, it would be better to use
traces 256 − 0x8E =114 to 370. Figure 35 shows both possibilities and confirms clearly
that N15 must be 0x8E.

Figure 35: Pearson Correlation coefficients in Step 3 (byte 0) with traces 242-498 (left)
and traces 114-370 (right).

Under this assumption and using traces 114 to 370, we obtain the following constants:

C ′3 = [0xB2, 0x18, 0x25, 0x33, 0x5A, 0x91, 0x31, 0x8F, 0x9C, 0x80, 0x46, 0x43, 0xEB, 0xBD, 0x04, 0x8F]

Pay attention that we are now intentionally targeting the traces after X1,14 toggles, so we
know we recovered C ′3 and not C3.

Round 4. In step 4, we obtain the fourth round key and thus also the master key:

K4 = [0x17, 0x40, 0x04, 0xFF, 0x6E, 0xC1, 0x0C, 0x17, 0x0C, 0x25, 0xF3, 0xD4, 0x2C, 0x9C, 0xD1, 0x0A]
K1 = [0x0D, 0xF7, 0xB8, 0xAF, 0x37, 0x40, 0xAC, 0xC4, 0x27, 0x37, 0xE6, 0x8B, 0x59, 0x38, 0x2A, 0x36]

When we reverse the AES rounds, we obtain X1.

X1 = [0x06, 0xA3, 0x0A, 0x52, 0x69, 0x0A, 0xC9, 0xA0, 0x91, 0x49, 0xE4, 0xAF, 0xFB, 0xC1, 0x8A, 0x8E]

Lauren De Meyer 63

Figure 36: Pearson Correlation coefficients in Step 4 with traces 114-370 (byte 0).

Note however that this is not the nonce N , since we used the set of traces after X1,14
toggles. We thus recovered X1,14 = N14 + 1 mod 256. The nonce is therefore:

N = [0x06, 0xA3, 0x0A, 0x52, 0x69, 0x0A, 0xC9, 0xA0, 0x91, 0x49, 0xE4, 0xAF, 0xFB, 0xC1, 0x89, 0x8E]

We plot some hamming weights and their measurements on the XMEGA in Figure 37.
The SNR at this point (byte 15 in the first SybBytes) is calculated to be approximately
4.03.

Figure 37: Measured leakages vs. actual Hamming weights on the XMEGA.

64 Recovering the CTR_DRBG state in 256 traces

D Results of Blind SCA
The results in Figures 38 and 39 depict for each byte, the likelihood computed for each
key guess in a blind SCA [CR17]. The correct key guess is indicated in red. Naturally, the
attack succeeds if the likelihood of the correct key byte succeeds the others.

(a) Byte 0 (b) Byte 1 (c) Byte 2 (d) Byte 3

(e) Byte 4 (f) Byte 5 (g) Byte 6 (h) Byte 7

(i) Byte 8 (j) Byte 9 (k) Byte 10 (l) Byte 11

(m) Byte 12 (n) Byte 13 (o) Byte 14 (p) Byte 15

Figure 38: Recovery of the 16 key bytes in the last round of AES-CTR on Arduino Uno
with blind SCA, using 4 096 traces. The red lines indicate the correct hypotheses.

Lauren De Meyer 65

(a) Byte 0 (b) Byte 1 (c) Byte 2 (d) Byte 3

(e) Byte 4 (f) Byte 5 (g) Byte 6 (h) Byte 7

(i) Byte 8 (j) Byte 9 (k) Byte 10 (l) Byte 11

(m) Byte 12 (n) Byte 13 (o) Byte 14 (p) Byte 15

Figure 39: Recovery of the 16 key bytes in the last round of AES-CTR on CortexM4 with
blind SCA, using 4 096 traces. The red lines indicate the correct hypotheses.

	Introduction
	Contribution

	Preliminaries
	AES
	CTR-DRBG

	The Attack
	Round 1: one byte
	Round 2: four bytes
	Round 3: sixteen bytes
	Round 4: recovering the round key
	Discussion

	Experimental Validation
	Discussion
	The Worst Case Nonce
	Variations on a theme: DDLA
	Blind SCA
	How (not) to use CTR mode

	Conclusion
	Constants
	Application to Arduino Uno
	Application to XMEGA
	Results of Blind SCA

