
CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme

Léo Ducas (CWI), Eike Kiltz (Ruhr-Universität Bochum),
Tancrède Lepoint (SRI International), Vadim Lyubashevsky (IBM Research),

Peter Schwabe (Radboud University), Gregor Seiler (IBM Research),
Damien Stehlé (ENS de Lyon)

September 10, 2018



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Overview

Signature scheme submitted to the NIST PQC standardization process

One out of 5 lattice-based signature schemes

Public key size 1.5 KB, signature size 2.7 KB (recommended parameters)

Design based on “Fiat-Shamir with Aborts” technique [Lyu09]

Rejection sampling is used to sample signatures that do not reveal secret information

Signature compression as developped in [GLP12], [BG14] (> 50% smaller)

New: Compression of public key (60% smaller, 100 byte larger signature)

New: Hardness based on Module-LWE/SIS

New: Very efficient implementation



Principal Design Considerations

Easy to implement securely – No Gaussian sampling

Small total size of public key + signature

Among the smallest total size of all NIST submissions (Falcon is smaller)

Conservative parameter selection

Modular design

Use of Module-LWE/SIS allows to work over the same small ring for all security levels:
Arithmetic needs only be optimized once and for all



Choice of Ring

Strategy: Choose smallest ring dimension n that gives main advantages of Ring-LWE

Dimension n = 256 is enough to get sufficiently large set of small norm challenges

Fully splitting prime q allows for NTT-based multiplication (more about this later)

R = Z223−213+1[X ]/(X 256 + 1)



Choice of Ring

Strategy: Choose smallest ring dimension n that gives main advantages of Ring-LWE

Dimension n = 256 is enough to get sufficiently large set of small norm challenges

Fully splitting prime q allows for NTT-based multiplication (more about this later)

R = Z223−213+1[X ]/(X 256 + 1)



Simplified Scheme

Key generation:

A← R5×4

s1 ← S4
5 , s2 ← S5

5

t = As1 + s2

pk = (A, t), sk = (A, t, s1, s2)

Verification:

c ′ = H(High(

=w−cs2︷ ︸︸ ︷
Az− ct),M)

If ‖z‖∞ ≤ γ − β and c ′ = c, accept

Signing:

y← S4
γ

w = Ay

c = H(High(w),M) ∈ B60

z = y + cs1

If ‖z‖∞ > γ − β or ‖Low(w − cs2)‖∞ > γ − β, restart

sig = (z, c)



Public Key Compression

Verification:

c ′ = H(High(Az− ct),M)

If ‖z‖∞ ≤ γ − β and c ′ = c , accept

Decompose t = t1214 + t0 and put only t1 into public key (23→ 9 bits per coefficient)

For verification we need to compute

High(Az− ct) = High(Az− ct1214 − ct0)

Include carries from adding −ct0 in signature → High(Az− ct1214) can be corrected



Public Key Compression

Verification:

c ′ = H(High(Az− ct),M)

If ‖z‖∞ ≤ γ − β and c ′ = c , accept

Decompose t = t1214 + t0 and put only t1 into public key (23→ 9 bits per coefficient)

For verification we need to compute

High(Az− ct) = High(Az− ct1214 − ct0)

Include carries from adding −ct0 in signature → High(Az− ct1214) can be corrected



Security

Tight reduction, even in quantum random oracle model, from SelfTargetMSIS and
Module-LWE/SIS [KLS18]:

AdvSUF-CMA(A) ≤ AdvMLWE(B) + AdvSelfTargetMSIS(C ) + AdvMSIS(D) + 2−254

Given matrix A, find short vector y, challenge polynomial c and message
M such that

H

(
(I | A)

(
y
c

)
,M

)
= c

SelfTargetMSIS has non-tight reduction with standard forking lemma argument from
Module-SIS



Implementation

Reference and AVX2 optimized implementations on

https://github.com/pq-crystals/dilithium

Main Operations:

Polynomial multiplication in fixed ring R = Z223−213+1[X ](X 256 + 1)

Expansion of the SHAKE XOF

Independent sampling of polynomials: Allows for parallel use of SHAKE

https://github.com/pq-crystals/dilithium


Constant Time

Our implementations are fully protected against timing side channel attacks

In particular: No use of the C ’%’-operator

Note: Sampling of challenge polynomials is not constant-time and does not need to be



Speed of Reference Implementation

Key generation Signing Signing (average) Verification

Multiplication 89, 591 987, 666 1, 280, 053 143, 924
SHAKE 178, 487 314, 570 377, 068 161, 079

Modular Reduction 11, 944 120, 793 163, 017 10, 626
Rounding 6, 586 108, 412 137, 324 11, 821

Rejection Sampling 60, 740 76, 893 94, 607 28, 082
Addition 8, 008 58, 696 79, 498 10, 723
Packing 7, 114 17, 183 18, 856 8, 883

Total 381, 178 1, 778, 148 2, 260, 429 396, 043

Median cycles of 5000 executions on Intel Skylake i7-6600U processor



Advantages of NTT Multiplication

NTT-based multiplication allows for easy reuse of computation:

In Dilithium on average about 224 multiplications to sign a message

So, naively, 673 NTTs

But we only actually perform 172 NTTs

We immediately get a 4x speed-up in multiplication time from saving NTTs compared
to Karatsuba multiplication

Note: In our reference implementation NTTs still make up for the most time comsuming
operation



Advantages of NTT Multiplication

NTT-based multiplication allows for easy reuse of computation:

In Dilithium on average about 224 multiplications to sign a message

So, naively, 673 NTTs

But we only actually perform 172 NTTs

We immediately get a 4x speed-up in multiplication time from saving NTTs compared
to Karatsuba multiplication

Note: In our reference implementation NTTs still make up for the most time comsuming
operation



Advantages of NTT Multiplication

NTT-based multiplication allows for easy reuse of computation:

In Dilithium on average about 224 multiplications to sign a message

So, naively, 673 NTTs

But we only actually perform 172 NTTs

We immediately get a 4x speed-up in multiplication time from saving NTTs compared
to Karatsuba multiplication

Note: In our reference implementation NTTs still make up for the most time comsuming
operation



Advantages of NTT Multiplication

NTT-based multiplication allows for easy reuse of computation:

In Dilithium on average about 224 multiplications to sign a message

So, naively, 673 NTTs

But we only actually perform 172 NTTs

We immediately get a 4x speed-up in multiplication time from saving NTTs compared
to Karatsuba multiplication

Note: In our reference implementation NTTs still make up for the most time comsuming
operation



Advantages of NTT Multiplication

NTT-based multiplication allows for easy reuse of computation:

In Dilithium on average about 224 multiplications to sign a message

So, naively, 673 NTTs

But we only actually perform 172 NTTs

We immediately get a 4x speed-up in multiplication time from saving NTTs compared
to Karatsuba multiplication

Note: In our reference implementation NTTs still make up for the most time comsuming
operation



AVX2 optimized Implementation

Optimizations:

Vectorized NTT in assembly

4-way parallel SHAKE

Better public key and signature compression

Faster assembly modular reduction

About 3.5x faster signing compared to reference version

Recent update: > 40% faster compared to TCHES paper



AVX2 optimized Implementation

Optimizations:

Vectorized NTT in assembly

4-way parallel SHAKE

Better public key and signature compression

Faster assembly modular reduction

About 3.5x faster signing compared to reference version

Recent update: > 40% faster compared to TCHES paper



AVX2 optimized Implementation

Optimizations:

Vectorized NTT in assembly

4-way parallel SHAKE

Better public key and signature compression

Faster assembly modular reduction

About 3.5x faster signing compared to reference version

Recent update: > 40% faster compared to TCHES paper



New Fast Vectorized NTT Implementation

Prior state of the art: Double floating point arithmetic as in NewHope

Now: Fast approach with integer arithmetic and same Montgomery reduction strategy
as in reference implementation

Unfortunately not as fast as 16-bit NTT in Kyber because of missing instruction for high
product

Dilithium Floating point Kyber (16bit) Saber (16bit)

NTT 1, 382 2, 989 393 —
Inverse NTT 1, 292 3, 215 366 —

Full multiplication 4, 288 10, 042 1, 162 3, 810

Roughly 2x speed-up over floating point NTT



New Fast Vectorized NTT Implementation

Prior state of the art: Double floating point arithmetic as in NewHope

Now: Fast approach with integer arithmetic and same Montgomery reduction strategy
as in reference implementation

Unfortunately not as fast as 16-bit NTT in Kyber because of missing instruction for high
product

Dilithium Floating point Kyber (16bit) Saber (16bit)

NTT 1, 382 2, 989 393 —
Inverse NTT 1, 292 3, 215 366 —

Full multiplication 4, 288 10, 042 1, 162 3, 810

Roughly 2x speed-up over floating point NTT



New Fast Vectorized NTT Implementation

Prior state of the art: Double floating point arithmetic as in NewHope

Now: Fast approach with integer arithmetic and same Montgomery reduction strategy
as in reference implementation

Unfortunately not as fast as 16-bit NTT in Kyber because of missing instruction for high
product

Dilithium Floating point Kyber (16bit) Saber (16bit)

NTT 1, 382 2, 989 393 —
Inverse NTT 1, 292 3, 215 366 —

Full multiplication 4, 288 10, 042 1, 162 3, 810

Roughly 2x speed-up over floating point NTT



Speed of AVX2 optimized Implementation

Key generation Signing Signing (average) Verification

Multiplication 15, 794 155, 721 201, 347 25, 471
SHAKE 96, 779 170, 232 205, 847 90, 921

Modular reduction 1, 034 7, 902 10, 541 708
Rounding 728 7, 541 9, 904 2, 479

Rejection sampling 62, 272 67, 193 81, 278 27, 737
Addition 8, 028 46, 755 62, 453 8, 659
Packing 6, 997 16, 200 17, 526 8, 712

Total 199, 306 510, 298 635, 019 174, 951



Questions?



Module LWE (aka Generalized LWE)

Polynomial ring: R = Zq[X ]/(X n + 1)

It is hard to distinguish between uniform vector t ∈ Rk and t of the form

t =

t1
...
tk

 =

a1,1 . . . a1,l
...

. . .
...

ak,1 . . . ak,l


︸ ︷︷ ︸

uniform, public

s1,1
...

s1,l


︸ ︷︷ ︸

short

+

s2,1
...

s2,k


︸ ︷︷ ︸

short

Conservative parameters: Coefficients of si ,j are from {−5, . . . , 5}

s1 lives in a module over R of rank l

Ring-LWE is special case where l = 1 and s1 lies in the ring R

Plain LWE is special case when the dimension n of the ring is 1 so that R = Zq.

Security: Effective dimension over Zq is l · n



NTT Multiplication

Suppose ζ ∈ Zq is a primitive 8-th root of unity, i.e. ζ4 = −1.

Zq[X ]/(X 256 + 1)

Zq[X ]/(X 128 − ζ2) Zq[X ]/(X 128 + ζ2)

Zq[X ]/(X 64 − ζ) Zq[X ]/(X 64 + ζ) Zq[X ]/(X 64 − ζ3) Zq[X ]/(X 64 + ζ3)



Advantages of NTT Multiplication

Consider the matrix-vector product
w1

w2

w3

w4

w5

 =


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4
a5,1 a5,2 a5,3 a5,4



y1
y2
y3
y4



This needs 20 multiplications or 60 NTTs for full NTT-based multiplications

With NTT-based multiplication, the ai ,j can be directly sampled in their NTT
representation

Also only one inverse NTT per row necessary

We only need to compute 9 NTTs for the matrix-vector product


