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Abstract. We describe how Pearson’s y>-test can be used as a natural complement
to Welch’s t-test for black box leakage detection. In particular, we show that by
using these two tests in combination, we can mitigate some of the limitations due to
the moment-based nature of existing detection techniques based on Welch’s t-test
(e.g., for the evaluation of higher-order masked implementations with insufficient
noise). We also show that Pearson’s x2-test is naturally suited to analyze threshold
implementations with information lying in multiple statistical moments, and can be
easily extended to a distinguisher for key recovery attacks. As a result, we believe
the proposed test and methodology are interesting complementary ingredients of the
side-channel evaluation toolbox, for black box leakage detection and non-profiled
attacks, and as a preliminary before more demanding advanced analyses.

Keywords: x2-test - t-test - SCA evaluation - SCA distinguisher - statistical moments

1 Introduction

Motivation. Welch’s t-test is commonly used in the side-channel community as a leakage
detection tool. In brief, the goal of leakage detection is to provide a qualitative answer to
the question: are side-channel measurements informative (i.e., reveal information about
the data manipulated, independent of whether this information is exploitable)? In its
most popular form — usually denoted as the Test Vector Leakage Assessment (TVLA)
methodology — it works by comparing the leakages of a cryptographic (e.g., block cipher)
implementation with fixed plaintexts (and key) to the leakages of the same implementation
with random plaintexts (and fixed key) [GJJR11b, CMG™]. If a significant difference
of means is observed between the leakages, it is concluded that the device leaks. As
shown by Schneider and Moradi, such a methodology can be extended to the analysis of
higher-order and/or multivariate leakages (by testing higher-order and/or mixed statistical
moments) [SM15].

Informally, the main advantages of leakage detection are its simplicity, its efficiency
(in time and data complexity) and its ability to be used with minimum implementation
knowledge. These advantages are due to two main factors, both coming with natural
drawbacks: (7) a reduction of the number of classes for which the leakages have to be
estimated (typically from 256 in the case of an 8-bit target sensitive variable to only
2 classes corresponding to the fixed and random inputs), and () a simple statistical
treatment based on the estimation and comparison of statistical moments.

As discussed in [DS16], the main drawback of the first factor (i.e., the reduction of the
number of classes) is a risk of false positives and false negatives. False positives correspond
to the detection of samples (or tuples of samples in the higher-order multivariate case)
that are not exploitable in a simple “divide and conquer” side-channel attack (e.g., because
these samples correspond to plaintext variations, or intermediate values in the middle
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rounds of a cipher that are hard to guess). False negatives correspond to cases where
the two classes of the TVLA methodology have too similar leakages for being detectable
(despite exploitable signal would be detected with more classes). Concretely though, these
risks vanish with the number of samples tested (i.e., the size of the leakage traces).

More critically, and as discussed in [Stal7], the main drawback of the second factor
(i-e., the use of a moment-based statistical treatment) is another risk of false negative
typically happening when moment-based side-channel attacks (e.g., higher-order DPAs
using a combination function or an estimation of moments to distinguish [PRB09, MS16])
become suboptimal compared to their counterparts using the full leakage distribution
(e.g., higher-order DPAs using a Gaussian mixture model [SVO'10]) or an approximation
thereof [SMSG16]. The latter risk becomes increasingly relevant (and difficult to anticipate)
as the number of shares and security order of a masked implementation increases. For
illustration, a masked implementation with more than 8 shares could require millions of
traces for a moment-based detection, despite being breakable with a single (noise-free)
trace [Stal7].

In order to mitigate this second drawback, one straightforward direction is to move
from a qualitative detection test to a quantitative information theoretic analysis of the
leakages [SMY09]. Yet, such an approach is more expensive (since it requires analyzing
multiple classes) and requires access to implementation details. Therefore, it also cancels the
interesting “separation of duties” between simple leakage detection tests used for preliminary
/ black box (qualitative) assessments, and complete (quantitative) information theoretic
evaluations used to predict/bound attack complexities [DZFL14, LPR™ 14, DFS15].

Our contribution. Motivated by this state-of-the-art, we describe how to extend leakage
detection in order to maintain an efficient (qualitative) analysis based on a limited number
of classes, while making it possible to detect problematic leakages that cannot be efficiently
spot by a moment-based analysis with Welch’s ¢-test for some specific cases.

For this purpose, we start by arguing that the y2-test is a natural candidate for various
reasons: (i) as Welch'’s t-test, it is conceptually simple and enables efficient implementations,
(ii) as Welch’s t-test, it directly allows evaluating the confidence in a detection test thanks
to p-values, (#i4) as Welch’s t-test, it can be used in a black box manner (i.e., without
knowing implementation details), and (iv) contrary to Welch’s t-test, it can capture
complex distributions with information lying in multiple statistical moments.

Next, we apply the proposed methodology to different settings: first univariate and
multivariate higher-order simulated leakages in order to gain understanding about the
proposed method, second univariate higher-order leakages corresponding to state-of-the-art
Threshold Implementations (TIs) [NRS11] in order to confirm its concrete relevance. We
additionally explain how to use the x2-test as a side-channel distinguisher, in order to
perform key recovery attacks, which sometimes improve the state-of-the-art.

Based on these experiments, our most important conclusion is that Welch’s ¢-test and
the y2-test are nicely complementary in the context of leakage detection. This can be
explained by observing that the aforementioned cases where leakage detection based on
Welch’s t-test is not sufficient typically happen in two contexts, namely: either when the
noise in a masked implementation is too low (and in particular, lower than required by
masking security proofs [DFS15]) — this is in fact exactly the scenario analyzed in [Stal7];
or when the information leakages are spread over several statistical moments due to physical
defaults such as glitches — this is what frequently happens in the analysis of Threshold
Implementations (TIs) (see for example [SM15, MS16]). As a result, running Welch’s
t-test and the y2-test naturally leads to better intuition about the type of leakages faced
by the evaluator, in particular regarding the main (independence and noise) hypotheses
required for masking. Typically, detection based on the y?-test requiring less samples than
detection based on Welch’s t-test should raise a warning flag. In this case, one can quite
safely conclude that the analysis of the leakages requires special care (e.g., because of a
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too low noise level or because of physical defaults such as glitches). Otherwise, one gains
confidence that the leakages observed are “simple” (i.e., that the noise level is sufficient
for masking to deliver its promises and that a single statistical moment captures most of
the exploitable information). Yet, the conclusion is admittedly less definitive because the
advantage of the ¢-test can then be due to its simpler nature, in particular in the context
of multivariate distributions where detection based on the x? statistic may suffer more
from the increase of the leakages’ dimensionality. The latter is a natural price to pay for
black box evaluation and non-profiled attack methods.

The combination of these tools therefore provides a useful preliminary assessment
of a masked implementation’s leakages, before carrying out more elaborate evaluations
and attacks.! This is particularly true in the context of univariate leakages where the
estimation the x? statistic is simple and leads to powerful detection and attacks.

Related works. In a paper from Asiacrypt 2013, Mather et al. initiated the use of tests
based on the estimation of the mutual information as an alternative to Welch’s ¢-test for
leakage detection [MOBW13]. The latter therefore has similar goals as to the proposed
x>2-test, yet with two drawbacks: () the mutual information does not have a simple
sampling distribution allowing the easy extraction of p-values (as with the y2-test); (i) the
mutual information is more expensive to compute (and may therefore require dedicated
hardware to perform large scale analyzes). Other references discussing the exploitation
of multiple statistical moments in leakage distributions include the works of Bruneau et
al. (about Taylor expansions for maximum likelihood side-channel attacks) [BGH'16]
and Cagli et al.(about the use of Kernel Discriminant Analysis (KDA) against masked
implementations) [CDP16]. Yet, they have quite different objectives than ours. Namely,
profiled attacks in the first case and dimensionality reduction in the second one. Besides,
other authors also used the y2-test in the context of side-channel analysis, for different
purposes than ours. For example, Thiebeauld et al. presented a pre-processing technique
to mitigate jitter and random delay countermeasures by compressing multiple points into
histograms in [TGWC17]. They used the x?-test to compare the generated histograms
as part of a distinguisher (rather than for evaluating the detection capabilities of the
x2-test). Linge et al. [LDL14] applied the x2-test (among other statistics) to compare
distributions generated by algorithmic models of the attacked cipher to the observed
distributions. Finally, Wagner et al. [WH17] used a x? analysis to identify points of
interest for a template attack. The method used is more different from our x2-test since
their function relies on the means of different classes making it moment-dependent rather
than distribution-dependent (as revealed in [WHZZ16, footnote on p. 8]).

2 Background
2.1 Welch’s t-test

Statistical tests generally provide a quantitative value (i.e., a confidence level) to accept
(or reject) an underlying hypothesis. In the following — considering two sets of samples —
we consider the null hypothesis as the case where the samples in both sets are drawn from
the same population (i.e., the two sets are not distinguishable).? Welch’s ¢-test, where the
test statistic follows a Student’s ¢ distribution, accepts (or rejects) the null hypothesis by
means of comparing the estimated means (averages) of the two populations.

INote that the noise condition of a masked implementation could also be verified by analyzing its shares’
leakages. Yet, the latter typically requires knowing (or controlling) the implementation’s randomness,
which is usually not possible in the black box evaluation scenario that is most relevant to leakage detection.

2We call this a qualitative test (despite it produces a quantitative value to accept (or reject) the
null hypothesis because it answers a binary question, and therefore it does not quantify the amount of
information leakage nor the actual security level of an implementation (measured as a number of traces
needed to perform a successful key recovery).
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Let us denote the two sets by Qg and Q;, and their corresponding cardinality, sample
mean and sample variance by ng, po, and so? (resp. ni, p1, and s12). To this end, the
t-test statistic and the degrees of freedom v are computed as

2
(ﬁ + i)
0~ M1 no ny
t = 7M ) v = 5 2" (1)
s0? + 512 502 512
no ny 0 n1
nofl + ’I’Llfl

Based on the two-tailed Welch’s ¢-test, the confidence level to accept the null hypothesis
is estimated by means of the Student’s ¢ probability density function as

B 00 B F(vJer) t2 *WTH
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where T'(.) denotes the gamma function. As a result, small p values (alternatively, large t
values) give evidence to reject the null hypothesis and conclude that the sets were drawn
from different populations. It is noteworthy that the degree of freedom is sometimes
ignored in the exploitation of Welch’s t-test for leakage detection, and a threshold of 4.5
for the ¢ statistic is frequently considered as a condition of detection [SM15, CRBT16,
CBR"16, BGNT14]. We refer to [ZDD"17] for a recent discussion on how to set this
threshold.

2.2 Leakage detection with Welch's t-test

Welch’s ¢-test has been frequently used in the areas of Side-Channel Analysis (SCA), both
as a distinguisher (e.g., classical Kocher DPA attack [KJJ99]) and as a detection tool. In
the popular context of the TVLA methodology [CDGT13, GJJR11a], the Device Under
Test (DUT) which contains a fixed key is supplied with fixed or random inputs (in a
non-deterministic order) and the measurements (or leakage traces) are collected for those
two classes. By splitting the traces into two sets Qfixed and Qrandom, Welch’s t-test can be
conducted independently for each sample point of the measured traces. The latter typically
allows assessing the leakage of an unprotected implementation (i.e., when information
lies in the first-order moments of the univariate distribution corresponding to the leakage
samples).

In order to extend the test so that it can detect higher-order dependencies (e.g., in
order to assess the leakage of a masked implementation), a pre-processing step tailored to
the target security order is needed. For example, for a second-order univariate analysis,
the traces should be mean-free squared (at each sample point of the measured traces
independently), for a third-order univariate analysis they should be standardized and
cubed, for a second-order multivariate analysis the samples should be mean-free multiplied,
etc. We refer to [SM15, MS16, RGV17] for more detailed information and efficient
implementation techniques to carry out such higher-order detections (which will be used
in our comparisons).

We note that the same test can be conducted using two different fixed inputs (which we
will refer to as a fixed vs. fixed test, in contrast with the fixed vs. random test originally
proposed). The authors in [DS16] discuss its advantages and conclude that well-chosen
fixed inputs can lead to successful leakage detections with lower data complexity.

2.3 Pearson’s x2-Test

Pearson’s y2-test of independence is used to evaluate the dependence between unpaired
observations on two variables. Its null hypothesis states that the occurrences of these
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Figure 1: The histograms of the two example trace sets.

observations are independent. In contrast to Welch’s t-test, this is not achieved by com-
paring estimated means (nor any specific statistical moment), but instead the observations
are stored in a contingency table and the frequencies of each cell of the table are used to
derive the test statistic which follows a x?2 distribution.

Let us denote the number of rows (resp. columns) of the contingency table as r (resp.
c), the frequency of the cell in the i-th row and j-th column as F; ;, and the total number

r—1c—1
of samples as N (i.e., sum of all cells > > Fj ;). The x>-test statistic  and the degrees
i=0 =0
of freedom v are computed as
r—1c—1 2
(Fij = Ei;)
v=) > e v=(r-1)-(c-1), (2)
i=0 j=0 td

where E; ; denotes the expected frequency for a given cell (¢, j) which can be derived as

(57) (£5)

E; ;= N . (3)

For the y2-test, the confidence level to accept the null hypothesis is estimated through
the x2 probability density function f as

p:/‘x’f(xﬂ))dw, f(z,v) = % x>0 | "

0 otherwise

where again I'(.) denotes the gamma function. As for Welch’s ¢-test, small p values give
evidence to reject the null hypothesis and conclude that for these scenarios the occurrences
of the observations are not independent.

Example. For a better understanding of the underlying concept of y2-test we give the
following example. Assume two sets, one with 120 and the other one with 100 samples.
Let us consider the histograms shown in Figure 1 as their corresponding frequency of
observations. Therefore, the following contingency table is made:

[(Fy [j=0]j=1]j=2];j=3] total |

t=10 24 59 28 9 120
1=1 23 o7 20 0 100
total 47 116 48 9 220
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The degrees of freedom v can be easily calculated with the number of rows and columns
v=(2-1)-(4-1)=3.
We then exemplarily calculate the expected frequency

(24+59428+9) (24 +23)  120-47
220 220

Calculating this for all cells results in the following table:

Eoo = ~ 25.64

[ By [[j=0]j=1[j=2[j=3]
i=0] 2564 | 63.27 | 26.18 | 4.91
=1 21.36 | 52.73 | 21.82 | 4.09

Using both tables, the portions of the x? value corresponding to each cell can be computed.
Again, exemplarily for cell i =0 and j = 0:

(24 — 25.64)2

2% 64 ~ 0.10

Summing up these portions for all cells results in the x? value as
0.104+0.29 +0.13+3.41 +0.13+0.35+ 0.15 + 4.09 = 8.64

Based on Equation (4) we can calculate the probability p ~ 0.0345 to accept the null hy-
pothesis, i.e., the occurrences of the observations in the aforementioned sets are dependent.

3 Methodology

In this section, we explore the applicability of Pearson’s y2-test in the scenarios of leakage
detection and key recovery. After explaining the concept for univariate leakages, we discuss
different strategies to extend the approach to the multivariate case.

3.1 Leakage detection with Pearson’s x2-Test

As described in Section 2.3, Pearson’s y2-test can be used to evaluate the dependence
of two variables. To utilize this test in the context of leakage detection, we propose the
following methodology.

3.1.1 Test procedure

In a typical leakage detection setting, the evaluator runs the DUT for different input classes
¢ C I, with 7 the set of possible inputs, observes physical leakages ¢ € £, and stores them
in several sets Q;, with 0 < j <r — 1 and 7 the number of input classes considered. In
the simplest (exhaustive) case, the number of classes corresponds to the number of inputs
|Z|, but any class can in principle be considered. Fixed vs. random (or fixed vs. fixed)
classes like in the TVLA methodology and Hamming weight classes like in Brier et al’s
Correlation Power Analysis (CPA) [BCOO04] are typical examples. For our description, we
assume that the evaluator measures multiple traces for each class and evaluates one point
of the traces as depicted in Figure 2. To assess the presence of side-channel information,
we propose to use Pearson’s y2-test and check the independence between the input classes
and the observed leakages. If the test concludes with enough evidence to reject the null
hypothesis, we can also conclude that the leakages are informative.?

3Up to the risks of false positive and false negatives mentioned in introduction when the number of
classes is lower than |Z|.
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Figure 2: Our proposed leakage detection methodology based on Pearson’s y2-test.

To perform the test, the evaluator first has to build the contingency table as described
in Section 2.3. Since each cell of the table should hold the frequency of occurrence of each
possible pair (4, £), the measurements are grouped based on the input and histograms are
created for the leakages. Each of these histograms represents one row of the contingency
table as depicted at the bottom of Figure 2. It is important to note that the bins of
each histogram should be the same in order to allow a fair comparison. In this simple
(univariate) case, the number of bins can be chosen as the number of discrete leakage
values output by the oscilloscope (e.g., 256 for an 8-bit sampling). Furthermore, columns
which only contain zeros need to be removed. These columns lead to an increase of the
degrees of freedom while not affecting the test statistic. Therefore, they can only impact
the efficiency of the detection negatively.

Next, the evaluator just needs to compute the p-value according to the formula from
Section 2.3, and compare it to a previously-chosen threshold « to decide if there is enough
evidence to reject the null hypothesis. This threshold « indicates the level of significance of
the test. If p < «, the null hypothesis is rejected which in our case means that informative
leakages are detected. The choice of this o depends on the goal of the evaluator: a low
threshold provides higher confidence that the leakage is informative, but requires more
measurements. In the original TVLA publications, the authors propose to use a threshold
of o = 107° which we also use for our simulations and experiments.
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3.1.2 Discussion and remarks

About the threshold. Tt should be noted that for Welch’s t-test, the p-value is usually not
explicitly computed. Instead, the test statistic [t| is compared to a threshold of 4.5 based
on the relation p = 2F(—4.5,v > 1000) < 107°. Such a relation is not easily found for the
test statistic of the x2-test (since the degrees of freedom depend only on the number of
rows and columns of the contingency table, they can change drastically between different
test scenarios). Therefore, we next base our comparisons on p-values.

About multiple comparisons. We also note that since in most evaluations the traces consists
of multiple sample points, the test procedure needs to be repeated for every point. As
a result, the evaluator will have a large number of p-values which need to be combined.
The most common solution to this problem (which has been used in many evaluation
scenarios [CBR 16, MW15, SM15]) is the min-p approach (i.e., comparing the minimum p-
value to the threshold). Recently a more sophisticated strategy was proposed in [ZDD*17].
However, since the problem of combining the p-values is universal to all statistical leakage
detection tests, we exclude this aspect from our analysis and in the following rely on the
common min-p approach.

About the selection of classes. Despite the y2-test naturally extents to multiple classes,
the following experiments will show that in most practically-relevant cases, the reduction
of the number of classes to two (e.g., fixed vs. random or fixed vs. fixed as in the
TVLA methodology) leads to the most efficient detections, for the reasons intuitively
pictured in introduction. Yet, it is worth observing that this extension to multiple classes
may come in handy when the evaluation has to be performed in a known plaintext
(rather than chosen plaintext) scenario, which makes the estimation of multiple classes
mandatory. We insist that we do not claim capturing such a scenario is impossible with
Welch’s t-test (which would require combining the results of multiple tests) or other tools
(e.g., information theoretic metrics such as a Signal-to-Noise Ratio (SNR) or the mutual
information [DFS15]).

Comparison with Welch’s t-test. Intuitively, the most significant difference between the
two tests is that while the ¢-test can only compare statistical moments (for two sets of
traces), the x2-test considers the full distributions. The latter is instrumental in avoiding
the drawbacks of a moment-based security evaluation mentioned in introduction. Hence,
this is the main potential advantage that we aim to analyze experimentally in the following
sections. Besides, the fact that exploiting multiple moments can lead to stronger attacks,
has also been previously demonstrated (e.g., in [SVOT10, SMSG16]). It motivates the
next extension of leakage detection based on the y2-test towards a distinguisher.

x? distinguisher. Following the general principle of a “partition-based DPA” [SGV09],
the x2-test can be extended to a distinguisher by splitting the traces into several classes
based on a key guess and assigning each key guess a confidence level by indicating whether
this partitioning leads to a confident rejection of the null hypothesis. The latter leads to
a simple DPA exploiting the full distribuition of the leakages, which is in principle very
similar to Gierlichs et al’s Mutual Information Analysis (MIA) [GBTPO08]. As mentioned
in introduction, a slight advantage is that it provides a confidence level for each key
candidate which may help interpreting the attack results. For the rest, and as for MIA, it
requires exploiting a lower number of classes than the number of key candidates (i.e., it
cannot work in a strictly generic manner [WOS14]).

3.2 Extension to multivariate detections and attacks

The above-described methodology works perfectly in a scenario where the information
occurs at one point in time. Such univariate higher-order leakages are commonly generated
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by masked hardware circuits that process all shares concurrently, as typically observed in
state-of-the-art TIs [SMG16, MW15, BGNT15, CBR*16, CRBT16]. By contrast, if each
share is manipulated in a different clock cycle (e.g., in serial software implementations
such as [RP10] and follow up works) information can only be recovered by exploiting a
tuple of leakage samples covering all the shares.

In this respect, we note as a preliminary that finding a leaking tuple in large traces of
masked implementations is a non-trivial task. Beside the naive exhaustive search which has
a complexity exponential in the number of shares, there are several publications related to
finding points of interest (POI) [RGV12, DS16, CDP16]. Our concern here is orthogonal.
Namely, we investigate the complexity of detecting information in a tuple of samples, and
(as in the univariate case — see the remark on multiple comparisons in the previous section)
we ignore the problem of comparing many tuples thanks to an exhaustive or advanced
analysis.

For Welch’s t-test the only solution allowing to deal with these tuples is to first pre-
process them in order to obtain a single sensitive sample on which a univariate evaluation
can again be performed. The following “normalized product combining function” is a
natural option for this purpose

d—1

t = H (Ztl - /’[’ti)7

=0

where /;, denotes a leakage sample at time ¢; where the share ¢ is manipulated, p, the
sample mean at this point, and ¢’ is the pre-processed (univariate) sample. It has been
shown that this function is optimal for a Hamming weight leakages [PRB09].%

By contrast, since the y2-test uses histograms rather than one specific statistical
moment, there are two strategies to process multivariate leakages spread over several
samples:

1. Pre-processing. Just as for the t-test, one solution is to combine the tuples into
one pre-processed sample and conduct a univariate test afterwards. However, since
the y2-test considers the whole distribution, it is not necessary to use a non-linear
combining function. Instead, it is sufficient to simply sum the samples (without
raising the result to any power). This linear combining is typically used for dimen-
sionality reduction with Principal Component Analysis (PCA) [APSQ06] or Linear
Discriminant Analysis [SA08]. Of course, non-linear combinations (e.g., with the
normalized product) or Kernel Discriminant Analysis [CDP16] are also an option
(e.g., in high-noise contexts where it is known to be optimal).

2. Multivariate estimation. Due to the distribution-based nature of the y2-test, the other
strategy is to directly build histograms for the multivariate distribution corresponding
to the tuples to evaluate.

Remark. As mentioned before, for univariate analyses the number of bins is limited to the
accuracy of the sampling facility (256 bins for an 8-bit oscilloscope - which may not even
all be filled in practice for low noise leakages). This picture changes significantly when
evaluating multivariate leakages. By linear pre-processing the maximum number of bins
extends to 256 - d, and by multivariate estimation to 256¢. Here again, it may happen that
not all the bins are filled (e.g., for low noise levels), which is the typical case where the
x2-test works best. But in general, it is necessary to limit the number of bins in order

4 An alternative is to first use a sum combining and then raise the resulting samples to a certain power.
While this is a priori less efficient, it may becomes more useful in the context of trading time and data
complexity for the detection of POIs [DS16]. However, as noted above this aspect is excluded from our
analysis.
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to avoid the memory complexity to explode. In the following, we limited it to 256 for
simplicity (formally, the only strict requirement to detect at order d is to have at least
d + 1 bins). We do not claim optimality for this choice, which is known to be a hard one
(e.g., see [BGPT11] for a discussion about a similar issue in the context of MIA).

In the next section, we use simulations to investigate the performance of each of these
multivariate approaches and give recommendations which of these should be used given a
specific testing scenario.

4 Simulated Experiments

In this section, we use simulations to evaluate the performance of our new leakage detection
methodology based on Pearson’s y2-test. It is analysed in both univariate and multivariate
leakage scenarios and compared to the ¢-test.

4.1 Univariate Simulations

To model the leakage of a masked hardware design in which the shares are processed in
parallel (i.e., the common target for univariate higher-order evaluations), we rely on the
common assumptions of a Hamming weight leakage function and additive Gaussian noise.
Furthermore, we assume a Boolean-masked variable X that is split into d shares X; with

d—1
@ X, = X. The leakage of these shares is summed and noise is added to the result as
=0

d-1

L=>Y w(X;)+Noo, (5)

=0

where w(.) denotes the Hamming weight and N , the Gaussian noise with a mean of zero
and standard deviation o. Since the x2-test uses histograms, we round the result (after the
addition of the noise) to the next integral value to emulate the effect, where the leakages
are sampled by an oscilloscope®. For our evaluations, we consider three SNRs to cover
different evaluation scenarios and examine the sensitivity of each test to increasing noise:

1. SNR; = 0.1, high noise with o1 = 4.4,
2. SNRy = 1.0, medium noise with o9 = 1.4,
3. SNR3 = 10.0, low noise with o3 = 0.4.

The samples are generated according to the fixed vs. random strategy in which we consider
two equally sized sets of samples Qrandom and Qfixed, Where the samples in Qrandom (resp.
Ofixed) are simulated using random (resp. fixed) input values. Each experiment is repeated
150 times and average is taken for better comparison. As a metric, we compute the
p-values for increasing number of samples and examine which test reaches the threshold of
p < 107° with the fewest number of samples. In the following, we use a subset of all cases
to highlight the differences between the two tests. The figures for the remaining SNRs and
orders are provided in Appendix B.

First, we evaluated the performance of the tests assuming an ideal leakage function as in
Equation (5). The results for an unprotected implementation and masked implementations
up to d = 4 are depicted in Figure 3 for SNRy; = 1.0. It is noticeable that the t-test
significantly outperforms the y2-test for d = 1,2. However, this differences becomes smaller

5We repeated the experiments with a larger quantization size and reached the same conclusions, as
both tests were affected similarly.
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Figure 3: Performance of the ( ) t-test and (blue) x2-test for simulated univariate

1st-, 2nd-, 3rd-, and 4th-order leakage with SNRy, = 1.0.

with increasing the number of shares and is completely reversed for d = 4, where the
x2-test reaches the threshold much earlier than the ¢-test. We expect that this advantage
of the x2-test over the t-test continues for even higher orders, making it an ideal evaluation
tool of masked hardware designs with many shares.

We also found that this advantage strongly depends on the SNR of the measurements.
Figure 4 depicts the case of d = 3 for the other settings SNR; = 0.1 and SNR3 = 10.0. A
decrease in the SNR, also results in a reduced superiority of the y2-test over the t-test
as shown in the left part of the figure. It is to be expected that the t-test will reach the
threshold faster again for even lower SNRs. For SNR3 = 10.0, a similar relation to the
performances of the tests can be observed. By reducing the standard deviation of the
noise, the difference between the tests increases in the favor of the y2-test.

The later experiments are quite consistent with an information theoretic analysis of
univariate leakages such as performed in [Stal7]. Namely, with low noise levels / large
SNRs, the leakage distribution is a Gaussian mixture for which the estimation of a single
statistical moment (as exploited by Welch’s t-test) becomes increasingly suboptimal as the
number of shares increases. It confirms that the y2-test can reveal useful intuition about
the tradeoff between the noise level and the number of shares of a masked implementation
in a black box manner.

Remark. As already mentioned, in most of our experiments, the x2-test with two input
classes outperformed the y2-test with nine input classes (i.e., one for each Hamming weight
of X) for practically-relevant p-values (p > 1072°). In this section, it was only for very
low noise scenarios and very small p-values (p < 107190) that the test with more input
classes became better. Therefore, we do not include the results in the figures.
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4.2 Multivariate Simulations

In software implementations and serialized hardware designs (e.g., in [MM13]), the shares
are not processed in parallel. Instead, each share leaks at a different point in time.
Therefore, we simulate the samples for these multivariate leakages as

L, = HW(X;) + Ny, 0<i<d (6)

separately for each share. As noted in Section 3, we rely on the normalized product as a
combining function for the ¢-test and evaluate three different strategies for the x2-test:

1. Normalized Product. We evaluate this non-linear pre-processing approach for both
tests. The samples for each share are combined as

d—1

L= H (Ltq - Mtz)

i=0
and the tests are conducted on the pre-processed samples L’.

2. Sum combining. We evaluate this linear pre-processing approach only for the x2-test,
since it would not be effective for the t-test which only compares the means. The
samples for each share are trivially summed as

d—1
L'=Y L.
=0

As noted before, this comes with the advantage that noise terms are not multiplied.

3. Multivariate Histograms. We build histograms directly for the leakage tuple
L, = (Lto;Ltlv e ,Ltd_l)
covering all shares.

The results for the tests up to d = 4 for SNRy = 1.0 are depicted in Figure 5 (a) - (¢).
It is noticeable that the t-test outperforms the x2-test for all cases and that the y2-test
suffers more from increasing the number of shares. The main reason for this phenomenon
is that contrary to the previous section, increasing the number of shares does not only
increase the security order but also the number of dimensions which may either increase
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the noise after re-combination or increase the complexity of the multivariate estimation
(which both hurt the y2-test more than the ¢-test). As a result, increasing the noise
standard deviation has the same impact as in the univariate case, but further amplified.
And therefore, the only context where the y?-test can improve over the t-test is when the
noise is very low. For example Figure 5 (d) shows the result of an analysis with 4 shares
and such a very low noise level, where the y2-test is significantly better than the t-test
(which is also one of the rare case where using multiple classes helps).

A similar intuition can be extracted from the combining functions. Namely, the
normalized product is the best option for non-negligible noises, and the sum combining
becomes better when the noise becomes very low. This change in effectiveness of the
normalized product and sum combining functions is in line with the results of [SVO™10],
where it is shown that for small noise standard deviations the normalized product performs
worse than the sum, while it becomes better than the sum for larger o. Interestingly, we
also see that the y2-test with multivariate histograms is not the best option in our case
(contrary to the use of the joint distribution in the profiled analysis of [SVO'10]).

So overall, these results outline similar but less definitive intuitions regarding the type
of leakages analyzed as in the previous section. Namely, for a given number of shares,
observing a better detection with the y2-test guarantees that the noise is too low. By
contrast the opposite situation is harder to interpret, since in theory it might be due to
both a large enough noise level or a hard to estimate distribution. In the latter case,
launching a worst-case (information theoretic) metric is therefore advisable in order to
gain a full understanding of the leakages.

5 Experiments

In this section, we compare our simulated results from the previous section with real
measurements. For the experiments we measured a threshold implementation of PRESENT
whose intermediate state is split into three Boolean shares as shown in Figure 6. The
nibbles of the shared state (x1,x2,z3) — after being XORed with the corresponding round
key nibble — are serially shifted through the state register into the S-box which is divided
into two functions G and F with registers in between. The output of the F function equals
the masked S-box output y1 ® y2 @ y3 = y := S(x), and the PlLayer is performed in parallel
in one clock cycle. We indeed have realized the uniform shared TT of the S-box based on
the details given in [PMK™11]. The cipher is implemented on the Xilinx Spartan-6 FPGA
of a SAKURA-G board [sak] and its power consumption curves (through the integrated
amplifier of the SAKURA board) were measured by means of a digital oscilloscope at a
sampling rate of 1 GS/s. It is noteworthy that the PRESENT TI core was being operated
at a frequency of around 160 MHz, and the masks for initial sharing have been provided
by an AES core in a counter mode. We further made sure that the masks follow a uniform
distribution.

To perform the different analyses in an efficient way, we first precomputed the histograms
for each point in time of the different populations. This reduces the amount of data needed
to process for different tests, so they can be performed in an efficient way. It is similar
to the approach Reparaz et al. followed in [RGV17] to compute t-statistics. Appendix A
shows the used C++ implementations of the ¢-test and the y2-test based on histograms.
Benchmarks of these functions confirmed that the x?-test can be executed with a similar
computational effort as a single order of the t-test. Both functions need approximately
2.8 us per point on a single core of an Intel i7-6600U CPU @2.6 GHz. When omitting the
calculation of the degree of freedom and the p value for the ¢-test the function only speeds
up by 0.4 us.
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Figure 6: 3-share PRESENT TT architecture used for the experiments.

5.1 Leakage Detection

We performed two experiments to evaluate the performance of the y2-test in comparison
to the t-test for leakage detection. First, we conducted the analysis on a set of fixed versus
random traces. Secondly, we performed the tests for different combinations of two fixed
plaintexts (out of eight) and when all eight fixed plaintexts are considered in the y>-test.
For the measurements, we also followed the scenario recommended in [SM15] to efficiently
randomize the order of giving either different fixed or random plaintexts.
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5.1.1 Fixed versus Random

To compare the x2-test and the t-test in the fixed-vs-random scenario, we measured
100,000,000 traces with the plaintext being randomly selected between random values and
a fixed plaintext. For the results shown in Figure 7 only 5,000,000 traces were used since
the higher order leakage are already detected. The underlying TT design was developed
to be first-order secure which is reassured by the p-value of the first order ¢-test staying
above the threshold of p = 107> (chosen to compare it to the commonly used threshold for
t-statistics of 4.5).

Taking the t-test into account, the main leakage lies in the third order. This is
also confirmed by the x2-test which has a very similar shape to the third order t-test.
However, with p ~ 10758 it gives a much higher confidence than the t-test with p ~= 10740,
Concerning the number of traces needed to exceed the threshold, the tests are also very
similar detecting the leakage after 100,000 and respectively 20,0000 traces. This behavior
is consistent with our simulations for univariate leakage of three shares (c.f. Figure 3),
and shows the advantage of x2-test over t-test.

It is noteworthy to highlight that this practical experiment shows how x2-test captures
all leakages lying in multiple statistical moments, although it is dominated by the most
informative moment (here by the 3rd-order leakage).

5.1.2 Fixed versus Fixed

The other leakage detection approach we tested is fixed versus fixed. For this we recorded
20,000,000 traces with eight different fixed plaintexts, i.e., with around 2,500,000 traces for
each fixed plaintext. For different combinations of two fixed plaintexts we calculated the
x2-test as well as 1st- to 3rd-order t-tests. We further calculated the y?-test with eight
categories utilizing all fixed plaintexts.

Figure 8 shows the results for five of such combinations. Different selections of two
fixed plaintexts lead to considerably various results. One of the x2-tests shows a similar
behavior as the fixed-vs-random test in the areas between 0ns and 500 ns but additionally
highlights a leakage in the middle of the trace. In general, different combinations (of fixed
plaintexts) highlight different areas of the trace.

The x2-test with all eight fixed plaintexts shows the leakage at the beginning of the
traces with a similar probability as the fixed-vs-random test but highlights also additional
areas with lower confidence. However, it needs considerably more traces compared the
fixed-vs-random test, i.e., 1,200,0000 traces versus 200,000 traces.

While the first and second order t-tests do not detect or only detect leakages with a
low confidence, the third order ¢-test detects nearly the same areas as the y2-test. The
same combinations of plaintexts highlight the same areas, but the y2-test in general gives
a higher confidence with, e.g., p ~ 1074 compared to p ~ 10732 considering the first part
of the trace.

Comparing the best combinations for each test in Figure 9, the x2-test with two fixed
plaintexts and the 3rd-order t-test detect the leakages using nearly the same amount of
traces. As mentioned in Section 4.1, x2-test with more classes also need more traces to give
a significant confidence. This also corresponds to our results with the eight fixed plaintext
x2-test which needs 1,100,000 traces to exceed the threshold. However, it achieves a higher
p-value than the 3-rd order t-test using 5,000,000 traces.

5.2 Attack

To examine the y2-test as a distinguisher, we performed an attack on the same implemen-
tation using the same traces collected for the fixed-vs-random tests of Section 5.1.1. In
other words, we used the half of the collected traces (i.e., 50,000,000 traces) associated
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Figure 7: Results of the fixed-vs-random test using x2-test, and 1st to 3rd order ¢-test,
using 5,000,000 traces.

with random plaintexts. Considering the underlying architecture of the implementa-
tion (see Figure 6), the state is shifted 4-bit-wise through the registers. Hence, we
have chosen the Hamming distance (HD) between two consecutive 4-bit S-box outputs
HD(S(z; @ ki) ® S(xi11 @ kiv1)) as the power model. For comparison purposes we also
considered 1st- to 3rd-order CPA attacks using the same power model.

We performed the attacks on the distance between the 10th and 11th S-box output and
plotted the results over the number of traces and over time for the entire 50,000,000 traces
in Figure 10. For the attack based on x2-test, the correct key is clearly distinguishable
after approximately 28,000,000 traces with steadily rising x? value. It also gives a high
confidence level p ~ 10710 for the correct key candidate. The exploited leakage appears for
about 48 ns, i.e., 6 clock cycles. This corresponds to the shift register architecture which
shifts all values in the state registers, so the predicted HD reoccurs during all clock cycles
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Figure 8: Results of the fixed-vs-fixed test using x?, and 1st- to 3rd-order t-test. The
colors represent different combinations of two fixed plaintexts.

after the calculation of the targeted S-box. The CPAs however are shown to be unable to
identify the correct key.

Note that for this experiment, we focused on a short window of the traces covering
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Figure 9: Comparison between 8- and 2-fixed plaintext y2-test and 1st- to 3rd-order t-tests
for the best combinations of two fixed plaintexts.

300ns corresponding to the first encryption round. We further — for simplicity — supposed
that the 10th key nibble is known and searched in a space of 2* to recover the 11th key
nibble. This scenario is common in serialized architecture while only for the first step of a
divide-and-conquer attack the entire 28 key space should be searched.

6 Conclusion and Future Work

We have shown how to use Pearson’s x2-test, a popular statistical hypothesis test, in the
context of side-channel analysis. Its application in leakage detection (as a complement to
Welch’s t-test) and in attacks (as a distinguisher) has been demonstrated. Supported by
simulation and practical experiments, we highlighted the advantages and disadvantages
of the x2-test compared to the publicly-known and commonly-applied ¢-test. We mainly
observe that the y2-test is sometimes able to outperform the ¢-test either if the noise level
is not sufficient or the leakage is such that its information is split over multiple statistical
moments. Therefore, the x?-test is able to detect flaws in insecure designs, which are
undetectable with evaluations based on t-test. We insist however that the x2-test alone is
not sufficient as an evaluation tool, as there are many cases in which it does not detect
existing leakage for a fixed number of measurement, while the ¢-test does. So both tests
reflect different implementation requirements (i.e., the security order for the t-test, the
noise level for the x2-test), and our results suggest that the y2-test in combination with
the t-test is a powerful evaluation tool.

When used as a distinguisher, it is a complement to MIA. It has all the advantages of
MIA (including not being limited to a certain statistical moment and relaxing the necessity
of a linearly-matching hypothetical power model) while being advantageous with respect to
lower complexity and being able to give a confidence level to the key candidates. In short,
the proposed methodology is shown to be useful as a novel ingredient to the side-channel
analysis toolbox.

One interesting aspect of future work is the problem of combining multiple p-values.
The x2-test might provide a better solution to this problem than the min-p approach,
since it can combine the histograms of multiple points in time into one test by an easy
concatenation. It is to be examined if this results in a more efficient test than the established
strategies. Another further aspect is the application of the x2-test in the search for POIs.
In the aforementioned solution [DS16], more sample points are summed than necessary
to trade time and data complexity. It would be interesting to see how the x2-test would
perform in such a scenario and if its beneficial properties can improve the search.
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A Code

A.1 t-test

#include<boost /math/distributions/students_t.hpp>

void calc_t(unsigned long *H[2], double xrange, double *t_ret, double x
t_dof_ret, double *t_p_ret)
{

double mean[2] = { 0.0, 0.0 };
double var[2] = { 0.0,
double n[2] = { 0.0, 0.

//only calculate for bins which are non—zero —> faster for real
measurements

vector<int> nonZeroBins;

for (int idx_bin = 0; idx_bin < number_of_ bins; idx_bin++)

bool isNonZero = false;
for (size t idx_category = 0; idx_category < number_ of categories;
idx_category++)

if (H[idx__category][idx_bin] != 0)
isNonZero = true;

}
if (isNonZero)
nonZeroBins. push back(idx_bin);

for (size_t idx__category = 0; idx_category < number_of_categories;
idx__category++)

for each (auto idx_bin in nonZeroBins)

mean[idx_category] += H[idx_category][idx_bin] * range[idx_bin];
n[idx_category] += H[idx_category][idx_bin];

}
mean [ idx__category] = mean[idx__category] / n[idx__category|;
for each (auto idx_bin in nonZeroBins)

double temp = (range[idx_bin] — mean[idx_category]) ;
var [idx_ category] += (tempxtemp)*H[idx category|[idx_ bin];

}

var [idx__category| = var[idx_category]| / n[idx_category];

}

//calculate t—wvalue

double mean_ diff = mean[0] — mean[1];

double variance_sum = (var[0] / n[0]) + (var[l] / n[1l]);
xt_ret = mean_diff / sqrt(variance_sum);

//calcualte degree of freedom
double denominator = ((var[0] / n[0])=*(var[0] / n[0])) / (n[0] — 1) + ((
var [1] / n[1])*(var[1] / n[1])) / (n[1] = 1);

xt_dof ret = (variance sum=xvariance_sum) / denominator;

boost :: math:: students__t_distribution<> t_dist (xt_dof_ret);
#t_p_ret = 2 % boost::math::cdf(t_dist, —fabs(xt_ret));

}

Listing 1: C++ Function for calculating t-statistics (uses Boost framework for cdf [boob])
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A2 x2-test

#include<boost /math/distributions/chi__squared .hpp>

void calc_ chi(unsigned long «H[number_of_ categories], double *chi_ret,

{

}

double xchi__dof_ret, double xchi_p_ret)

//find bins which are non—zero in at least one category

vector<int> nonZeroBins;

for (int idx_bin = 0; idx_bin < number_of_ bins; idx_bin++)

{
bool isNonZero = false;
for (size t idx_category = 0; idx_category < number_ of categories;
idx_category++)

if (H[idx__category][idx_bin] != 0)
isNonZero = true;

}
if (isNonZero)
nonZeroBins.push back(idx_bin);

}
//degrees of freedom
«chi__dof_ret = (double) (nonZeroBins. size () —1)*(number_of_categories —1);

//chi™2 wvalue

double sums_rows[number_ of categories];
double sums_ columns [number_of bins];
double N = 0.0;

//calculate sums for ezxpected values

for (size_t i = 0; i < number_of categories; i++)
sums_rows[i] = 0.0;

for (size_t i = 0; i < number_of bins; i++4)
sums_ columns[i] = 0.0;

for each (auto idx_bin in nonZeroBins)

for (size_t idx_category = 0; idx_category < number_of_ categories;
idx__category++)
{

sums_rows [idx_ category] += H[idx__category][idx_bin];
sums_ columns[idx_bin] += H[idx_category][idx_bin];
N += H[idx__category ]|[idx_bin];
}
}

double chi_temp = 0.0;
//calculate chi™2 wvalue
for each (auto idx_bin in nonZeroBins)

for (size t idx_category = 0; idx_category < number of categories;
idx_category++)

double E = (sums_rows[idx_category]| * sums_columns[idx_bin]) / N;
double temp = (H[idx_category][idx_bin] — E);
chi_temp 4+= (tempx*temp) / E;
}
}

xchi_ret = chi_temp;
boost ::math:: chi_squared_ distribution<> chi_dist (xchi_dof_ret);
«chi_p_ret = 1 — boost::math::cdf(chi_dist, chi_temp);

Listing 2: Function for calculating x2-statistics (uses Boost framework for cdf [booa))
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B Additional Figures
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Figure 11: Performance of the ( ) t-test and (blue) x2-test for simulated univariate

1st-, 2nd-, and 4th-order leakage with SNR; = 0.1.
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Figure 12: Performance of the ( ) t-test and (blue) x2-test for simulated univariate

1st-, 2nd-, and 4th-order leakage with SNR3 = 10.0.
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Figure 13: Performance of the ( ) t-test with normalized product, (green) x2-test
with normalized product, ( ) x2-test with sum combining, and (blue) y2-test with

multivariate histograms for simulated multivariate 2nd-, 3rd-, and 4th-order leakages with
SNR; =0.1.
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Figure 14: Performance of the ( ) t-test with normalized product, (green) x2-test
with normalized product, ( ) x2-test with sum combining, and (blue) y2-test with

multivariate histograms for simulated multivariate 2nd-, 3rd-, and 4th-order leakages with
SNRj3 = 10.0.
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