
Leakage Detection with the χ2-Test
Amir Moradi1, Bastian Richter1, Tobias Schneider2

and François-Xavier Standaert2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium

Abstract. We describe how Pearson’s χ2-test can be used as a natural complement
to Welch’s t-test for black box leakage detection. In particular, we show that by
using these two tests in combination, we can mitigate some of the limitations due to
the moment-based nature of existing detection techniques based on Welch’s t-test
(e.g., for the evaluation of higher-order masked implementations with insufficient
noise). We also show that Pearson’s χ2-test is naturally suited to analyze threshold
implementations with information lying in multiple statistical moments, and can be
easily extended to a distinguisher for key recovery attacks. As a result, we believe
the proposed test and methodology are interesting complementary ingredients of the
side-channel evaluation toolbox, for black box leakage detection and non-profiled
attacks, and as a preliminary before more demanding advanced analyses.
Keywords: χ2-test · t-test · SCA evaluation · SCA distinguisher · statistical moments

1 Introduction
Motivation. Welch’s t-test is commonly used in the side-channel community as a leakage
detection tool. In brief, the goal of leakage detection is to provide a qualitative answer to
the question: are side-channel measurements informative (i.e., reveal information about
the data manipulated, independent of whether this information is exploitable)? In its
most popular form – usually denoted as the Test Vector Leakage Assessment (TVLA)
methodology – it works by comparing the leakages of a cryptographic (e.g., block cipher)
implementation with fixed plaintexts (and key) to the leakages of the same implementation
with random plaintexts (and fixed key) [GJJR11b, CMG+]. If a significant difference
of means is observed between the leakages, it is concluded that the device leaks. As
shown by Schneider and Moradi, such a methodology can be extended to the analysis of
higher-order and/or multivariate leakages (by testing higher-order and/or mixed statistical
moments) [SM15].

Informally, the main advantages of leakage detection are its simplicity, its efficiency
(in time and data complexity) and its ability to be used with minimum implementation
knowledge. These advantages are due to two main factors, both coming with natural
drawbacks: (i) a reduction of the number of classes for which the leakages have to be
estimated (typically from 256 in the case of an 8-bit target sensitive variable to only
2 classes corresponding to the fixed and random inputs), and (ii) a simple statistical
treatment based on the estimation and comparison of statistical moments.

As discussed in [DS16], the main drawback of the first factor (i.e., the reduction of the
number of classes) is a risk of false positives and false negatives. False positives correspond
to the detection of samples (or tuples of samples in the higher-order multivariate case)
that are not exploitable in a simple “divide and conquer” side-channel attack (e.g., because
these samples correspond to plaintext variations, or intermediate values in the middle

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 1, pp. 209–237
DOI:10.13154/tches.v2018.i1.209-237

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i1.209-237

210 Leakage Detection with the χ2-Test

rounds of a cipher that are hard to guess). False negatives correspond to cases where
the two classes of the TVLA methodology have too similar leakages for being detectable
(despite exploitable signal would be detected with more classes). Concretely though, these
risks vanish with the number of samples tested (i.e., the size of the leakage traces).

More critically, and as discussed in [Sta17], the main drawback of the second factor
(i.e., the use of a moment-based statistical treatment) is another risk of false negative
typically happening when moment-based side-channel attacks (e.g., higher-order DPAs
using a combination function or an estimation of moments to distinguish [PRB09, MS16])
become suboptimal compared to their counterparts using the full leakage distribution
(e.g., higher-order DPAs using a Gaussian mixture model [SVO+10]) or an approximation
thereof [SMSG16]. The latter risk becomes increasingly relevant (and difficult to anticipate)
as the number of shares and security order of a masked implementation increases. For
illustration, a masked implementation with more than 8 shares could require millions of
traces for a moment-based detection, despite being breakable with a single (noise-free)
trace [Sta17].

In order to mitigate this second drawback, one straightforward direction is to move
from a qualitative detection test to a quantitative information theoretic analysis of the
leakages [SMY09]. Yet, such an approach is more expensive (since it requires analyzing
multiple classes) and requires access to implementation details. Therefore, it also cancels the
interesting “separation of duties” between simple leakage detection tests used for preliminary
/ black box (qualitative) assessments, and complete (quantitative) information theoretic
evaluations used to predict/bound attack complexities [DZFL14, LPR+14, DFS15].

Our contribution. Motivated by this state-of-the-art, we describe how to extend leakage
detection in order to maintain an efficient (qualitative) analysis based on a limited number
of classes, while making it possible to detect problematic leakages that cannot be efficiently
spot by a moment-based analysis with Welch’s t-test for some specific cases.

For this purpose, we start by arguing that the χ2-test is a natural candidate for various
reasons: (i) as Welch’s t-test, it is conceptually simple and enables efficient implementations,
(ii) as Welch’s t-test, it directly allows evaluating the confidence in a detection test thanks
to p-values, (iii) as Welch’s t-test, it can be used in a black box manner (i.e., without
knowing implementation details), and (iv) contrary to Welch’s t-test, it can capture
complex distributions with information lying in multiple statistical moments.

Next, we apply the proposed methodology to different settings: first univariate and
multivariate higher-order simulated leakages in order to gain understanding about the
proposed method, second univariate higher-order leakages corresponding to state-of-the-art
Threshold Implementations (TIs) [NRS11] in order to confirm its concrete relevance. We
additionally explain how to use the χ2-test as a side-channel distinguisher, in order to
perform key recovery attacks, which sometimes improve the state-of-the-art.

Based on these experiments, our most important conclusion is that Welch’s t-test and
the χ2-test are nicely complementary in the context of leakage detection. This can be
explained by observing that the aforementioned cases where leakage detection based on
Welch’s t-test is not sufficient typically happen in two contexts, namely: either when the
noise in a masked implementation is too low (and in particular, lower than required by
masking security proofs [DFS15]) – this is in fact exactly the scenario analyzed in [Sta17];
or when the information leakages are spread over several statistical moments due to physical
defaults such as glitches – this is what frequently happens in the analysis of Threshold
Implementations (TIs) (see for example [SM15, MS16]). As a result, running Welch’s
t-test and the χ2-test naturally leads to better intuition about the type of leakages faced
by the evaluator, in particular regarding the main (independence and noise) hypotheses
required for masking. Typically, detection based on the χ2-test requiring less samples than
detection based on Welch’s t-test should raise a warning flag. In this case, one can quite
safely conclude that the analysis of the leakages requires special care (e.g., because of a

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 211

too low noise level or because of physical defaults such as glitches). Otherwise, one gains
confidence that the leakages observed are “simple” (i.e., that the noise level is sufficient
for masking to deliver its promises and that a single statistical moment captures most of
the exploitable information). Yet, the conclusion is admittedly less definitive because the
advantage of the t-test can then be due to its simpler nature, in particular in the context
of multivariate distributions where detection based on the χ2 statistic may suffer more
from the increase of the leakages’ dimensionality. The latter is a natural price to pay for
black box evaluation and non-profiled attack methods.

The combination of these tools therefore provides a useful preliminary assessment
of a masked implementation’s leakages, before carrying out more elaborate evaluations
and attacks.1 This is particularly true in the context of univariate leakages where the
estimation the χ2 statistic is simple and leads to powerful detection and attacks.

Related works. In a paper from Asiacrypt 2013, Mather et al. initiated the use of tests
based on the estimation of the mutual information as an alternative to Welch’s t-test for
leakage detection [MOBW13]. The latter therefore has similar goals as to the proposed
χ2-test, yet with two drawbacks: (i) the mutual information does not have a simple
sampling distribution allowing the easy extraction of p-values (as with the χ2-test); (ii) the
mutual information is more expensive to compute (and may therefore require dedicated
hardware to perform large scale analyzes). Other references discussing the exploitation
of multiple statistical moments in leakage distributions include the works of Bruneau et
al. (about Taylor expansions for maximum likelihood side-channel attacks) [BGH+16]
and Cagli et al.(about the use of Kernel Discriminant Analysis (KDA) against masked
implementations) [CDP16]. Yet, they have quite different objectives than ours. Namely,
profiled attacks in the first case and dimensionality reduction in the second one. Besides,
other authors also used the χ2-test in the context of side-channel analysis, for different
purposes than ours. For example, Thiebeauld et al. presented a pre-processing technique
to mitigate jitter and random delay countermeasures by compressing multiple points into
histograms in [TGWC17]. They used the χ2-test to compare the generated histograms
as part of a distinguisher (rather than for evaluating the detection capabilities of the
χ2-test). Linge et al. [LDL14] applied the χ2-test (among other statistics) to compare
distributions generated by algorithmic models of the attacked cipher to the observed
distributions. Finally, Wagner et al. [WH17] used a χ2 analysis to identify points of
interest for a template attack. The method used is more different from our χ2-test since
their function relies on the means of different classes making it moment-dependent rather
than distribution-dependent (as revealed in [WHZZ16, footnote on p. 8]).

2 Background
2.1 Welch’s t-test
Statistical tests generally provide a quantitative value (i.e., a confidence level) to accept
(or reject) an underlying hypothesis. In the following – considering two sets of samples –
we consider the null hypothesis as the case where the samples in both sets are drawn from
the same population (i.e., the two sets are not distinguishable).2 Welch’s t-test, where the
test statistic follows a Student’s t distribution, accepts (or rejects) the null hypothesis by
means of comparing the estimated means (averages) of the two populations.

1Note that the noise condition of a masked implementation could also be verified by analyzing its shares’
leakages. Yet, the latter typically requires knowing (or controlling) the implementation’s randomness,
which is usually not possible in the black box evaluation scenario that is most relevant to leakage detection.

2We call this a qualitative test (despite it produces a quantitative value to accept (or reject) the
null hypothesis because it answers a binary question, and therefore it does not quantify the amount of
information leakage nor the actual security level of an implementation (measured as a number of traces
needed to perform a successful key recovery).

212 Leakage Detection with the χ2-Test

Let us denote the two sets by Q0 and Q1, and their corresponding cardinality, sample
mean and sample variance by n0, µ0, and s0

2 (resp. n1, µ1, and s1
2). To this end, the

t-test statistic and the degrees of freedom v are computed as

t = µ0 − µ1√
s02

n0
+ s12

n1

, v =

(
s0

2

n0
+ s1

2

n1

)2

(
s02
n0

)2

n0−1 +

(
s12
n1

)2

n1−1

· (1)

Based on the two-tailed Welch’s t-test, the confidence level to accept the null hypothesis
is estimated by means of the Student’s t probability density function as

p = 2
∫ ∞
|t|

f(t, v) dt, f(t, v) =
Γ(v+1

2)
√
πv Γ(v2)

(
1 + t2

v

)− v+1
2

,

where Γ(.) denotes the gamma function. As a result, small p values (alternatively, large t
values) give evidence to reject the null hypothesis and conclude that the sets were drawn
from different populations. It is noteworthy that the degree of freedom is sometimes
ignored in the exploitation of Welch’s t-test for leakage detection, and a threshold of 4.5
for the t statistic is frequently considered as a condition of detection [SM15, CRB+16,
CBR+16, BGN+14]. We refer to [ZDD+17] for a recent discussion on how to set this
threshold.

2.2 Leakage detection with Welch’s t-test
Welch’s t-test has been frequently used in the areas of Side-Channel Analysis (SCA), both
as a distinguisher (e.g., classical Kocher DPA attack [KJJ99]) and as a detection tool. In
the popular context of the TVLA methodology [CDG+13, GJJR11a], the Device Under
Test (DUT) which contains a fixed key is supplied with fixed or random inputs (in a
non-deterministic order) and the measurements (or leakage traces) are collected for those
two classes. By splitting the traces into two sets Qfixed and Qrandom, Welch’s t-test can be
conducted independently for each sample point of the measured traces. The latter typically
allows assessing the leakage of an unprotected implementation (i.e., when information
lies in the first-order moments of the univariate distribution corresponding to the leakage
samples).

In order to extend the test so that it can detect higher-order dependencies (e.g., in
order to assess the leakage of a masked implementation), a pre-processing step tailored to
the target security order is needed. For example, for a second-order univariate analysis,
the traces should be mean-free squared (at each sample point of the measured traces
independently), for a third-order univariate analysis they should be standardized and
cubed, for a second-order multivariate analysis the samples should be mean-free multiplied,
etc. We refer to [SM15, MS16, RGV17] for more detailed information and efficient
implementation techniques to carry out such higher-order detections (which will be used
in our comparisons).

We note that the same test can be conducted using two different fixed inputs (which we
will refer to as a fixed vs. fixed test, in contrast with the fixed vs. random test originally
proposed). The authors in [DS16] discuss its advantages and conclude that well-chosen
fixed inputs can lead to successful leakage detections with lower data complexity.

2.3 Pearson’s χ2-Test
Pearson’s χ2-test of independence is used to evaluate the dependence between unpaired
observations on two variables. Its null hypothesis states that the occurrences of these

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 213

0 1 2 3
0

10

20

30

40

50

60

70

0 1 2 3
0

10

20

30

40

50

60

70

28

59

24

9

23

57

20

0

Figure 1: The histograms of the two example trace sets.

observations are independent. In contrast to Welch’s t-test, this is not achieved by com-
paring estimated means (nor any specific statistical moment), but instead the observations
are stored in a contingency table and the frequencies of each cell of the table are used to
derive the test statistic which follows a χ2 distribution.

Let us denote the number of rows (resp. columns) of the contingency table as r (resp.
c), the frequency of the cell in the i-th row and j-th column as Fi,j , and the total number

of samples as N (i.e., sum of all cells
r−1∑
i=0

c−1∑
j=0

Fi,j). The χ2-test statistic x and the degrees

of freedom v are computed as

x =
r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)2

Ei,j
, v = (r − 1) · (c− 1), (2)

where Ei,j denotes the expected frequency for a given cell (i, j) which can be derived as

Ei,j =

(
c−1∑
k=0

Fi,k

)
·
(
r−1∑
k=0

Fk,j

)
N

· (3)

For the χ2-test, the confidence level to accept the null hypothesis is estimated through
the χ2 probability density function f as

p =
∫ ∞
x

f(x, v) dx, f(x, v) =

x

v
2 −1e− x

2

2
v
2 Γ(v

2) x > 0

0 otherwise
, (4)

where again Γ(.) denotes the gamma function. As for Welch’s t-test, small p values give
evidence to reject the null hypothesis and conclude that for these scenarios the occurrences
of the observations are not independent.

Example. For a better understanding of the underlying concept of χ2-test we give the
following example. Assume two sets, one with 120 and the other one with 100 samples.
Let us consider the histograms shown in Figure 1 as their corresponding frequency of
observations. Therefore, the following contingency table is made:

Fi,j j = 0 j = 1 j = 2 j = 3 total
i = 0 24 59 28 9 120
i = 1 23 57 20 0 100
total 47 116 48 9 220

214 Leakage Detection with the χ2-Test

The degrees of freedom v can be easily calculated with the number of rows and columns

v = (2− 1) · (4− 1) = 3.

We then exemplarily calculate the expected frequency

E0,0 = (24 + 59 + 28 + 9) · (24 + 23)
220 = 120 · 47

220 ≈ 25.64

Calculating this for all cells results in the following table:

Ei,j j = 0 j = 1 j = 2 j = 3
i = 0 25.64 63.27 26.18 4.91
i = 1 21.36 52.73 21.82 4.09

Using both tables, the portions of the χ2 value corresponding to each cell can be computed.
Again, exemplarily for cell i = 0 and j = 0:

(24− 25.64)2

25.64 ≈ 0.10

Summing up these portions for all cells results in the χ2 value as

0.10 + 0.29 + 0.13 + 3.41 + 0.13 + 0.35 + 0.15 + 4.09 = 8.64

Based on Equation (4) we can calculate the probability p ≈ 0.0345 to accept the null hy-
pothesis, i.e., the occurrences of the observations in the aforementioned sets are dependent.

3 Methodology
In this section, we explore the applicability of Pearson’s χ2-test in the scenarios of leakage
detection and key recovery. After explaining the concept for univariate leakages, we discuss
different strategies to extend the approach to the multivariate case.

3.1 Leakage detection with Pearson’s χ2-Test
As described in Section 2.3, Pearson’s χ2-test can be used to evaluate the dependence
of two variables. To utilize this test in the context of leakage detection, we propose the
following methodology.

3.1.1 Test procedure

In a typical leakage detection setting, the evaluator runs the DUT for different input classes
C ⊂ I, with I the set of possible inputs, observes physical leakages ` ∈ L, and stores them
in several sets Qj , with 0 ≤ j ≤ r − 1 and r the number of input classes considered. In
the simplest (exhaustive) case, the number of classes corresponds to the number of inputs
|I|, but any class can in principle be considered. Fixed vs. random (or fixed vs. fixed)
classes like in the TVLA methodology and Hamming weight classes like in Brier et al.’s
Correlation Power Analysis (CPA) [BCO04] are typical examples. For our description, we
assume that the evaluator measures multiple traces for each class and evaluates one point
of the traces as depicted in Figure 2. To assess the presence of side-channel information,
we propose to use Pearson’s χ2-test and check the independence between the input classes
and the observed leakages. If the test concludes with enough evidence to reject the null
hypothesis, we can also conclude that the leakages are informative.3

3Up to the risks of false positive and false negatives mentioned in introduction when the number of
classes is lower than |I|.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 215

Q0

.

t

. . .

Qr−1

.

t

j = 0

1
−2
−3
−

#

0 1 2 3 4 5

. . .

j = r − 1

1
−2
−3
−

#

0 1 2 3 4 5

r − 1

.

0

0 1 2 3 4 5

2 3 1 1 2 3

3 2 1 2 1 3

Lt

J

Figure 2: Our proposed leakage detection methodology based on Pearson’s χ2-test.

To perform the test, the evaluator first has to build the contingency table as described
in Section 2.3. Since each cell of the table should hold the frequency of occurrence of each
possible pair (j, `), the measurements are grouped based on the input and histograms are
created for the leakages. Each of these histograms represents one row of the contingency
table as depicted at the bottom of Figure 2. It is important to note that the bins of
each histogram should be the same in order to allow a fair comparison. In this simple
(univariate) case, the number of bins can be chosen as the number of discrete leakage
values output by the oscilloscope (e.g., 256 for an 8-bit sampling). Furthermore, columns
which only contain zeros need to be removed. These columns lead to an increase of the
degrees of freedom while not affecting the test statistic. Therefore, they can only impact
the efficiency of the detection negatively.

Next, the evaluator just needs to compute the p-value according to the formula from
Section 2.3, and compare it to a previously-chosen threshold α to decide if there is enough
evidence to reject the null hypothesis. This threshold α indicates the level of significance of
the test. If p ≤ α, the null hypothesis is rejected which in our case means that informative
leakages are detected. The choice of this α depends on the goal of the evaluator: a low
threshold provides higher confidence that the leakage is informative, but requires more
measurements. In the original TVLA publications, the authors propose to use a threshold
of α = 10−5 which we also use for our simulations and experiments.

216 Leakage Detection with the χ2-Test

3.1.2 Discussion and remarks

About the threshold. It should be noted that for Welch’s t-test, the p-value is usually not
explicitly computed. Instead, the test statistic |t| is compared to a threshold of 4.5 based
on the relation p = 2F (−4.5, v > 1000) < 10−5. Such a relation is not easily found for the
test statistic of the χ2-test (since the degrees of freedom depend only on the number of
rows and columns of the contingency table, they can change drastically between different
test scenarios). Therefore, we next base our comparisons on p-values.

About multiple comparisons. We also note that since in most evaluations the traces consists
of multiple sample points, the test procedure needs to be repeated for every point. As
a result, the evaluator will have a large number of p-values which need to be combined.
The most common solution to this problem (which has been used in many evaluation
scenarios [CBR+16, MW15, SM15]) is the min-p approach (i.e., comparing the minimum p-
value to the threshold). Recently a more sophisticated strategy was proposed in [ZDD+17].
However, since the problem of combining the p-values is universal to all statistical leakage
detection tests, we exclude this aspect from our analysis and in the following rely on the
common min-p approach.

About the selection of classes. Despite the χ2-test naturally extents to multiple classes,
the following experiments will show that in most practically-relevant cases, the reduction
of the number of classes to two (e.g., fixed vs. random or fixed vs. fixed as in the
TVLA methodology) leads to the most efficient detections, for the reasons intuitively
pictured in introduction. Yet, it is worth observing that this extension to multiple classes
may come in handy when the evaluation has to be performed in a known plaintext
(rather than chosen plaintext) scenario, which makes the estimation of multiple classes
mandatory. We insist that we do not claim capturing such a scenario is impossible with
Welch’s t-test (which would require combining the results of multiple tests) or other tools
(e.g., information theoretic metrics such as a Signal-to-Noise Ratio (SNR) or the mutual
information [DFS15]).

Comparison with Welch’s t-test. Intuitively, the most significant difference between the
two tests is that while the t-test can only compare statistical moments (for two sets of
traces), the χ2-test considers the full distributions. The latter is instrumental in avoiding
the drawbacks of a moment-based security evaluation mentioned in introduction. Hence,
this is the main potential advantage that we aim to analyze experimentally in the following
sections. Besides, the fact that exploiting multiple moments can lead to stronger attacks,
has also been previously demonstrated (e.g., in [SVO+10, SMSG16]). It motivates the
next extension of leakage detection based on the χ2-test towards a distinguisher.

χ2 distinguisher. Following the general principle of a “partition-based DPA” [SGV09],
the χ2-test can be extended to a distinguisher by splitting the traces into several classes
based on a key guess and assigning each key guess a confidence level by indicating whether
this partitioning leads to a confident rejection of the null hypothesis. The latter leads to
a simple DPA exploiting the full distribuition of the leakages, which is in principle very
similar to Gierlichs et al.’s Mutual Information Analysis (MIA) [GBTP08]. As mentioned
in introduction, a slight advantage is that it provides a confidence level for each key
candidate which may help interpreting the attack results. For the rest, and as for MIA, it
requires exploiting a lower number of classes than the number of key candidates (i.e., it
cannot work in a strictly generic manner [WOS14]).

3.2 Extension to multivariate detections and attacks
The above-described methodology works perfectly in a scenario where the information
occurs at one point in time. Such univariate higher-order leakages are commonly generated

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 217

by masked hardware circuits that process all shares concurrently, as typically observed in
state-of-the-art TIs [SMG16, MW15, BGN+15, CBR+16, CRB+16]. By contrast, if each
share is manipulated in a different clock cycle (e.g., in serial software implementations
such as [RP10] and follow up works) information can only be recovered by exploiting a
tuple of leakage samples covering all the shares.

In this respect, we note as a preliminary that finding a leaking tuple in large traces of
masked implementations is a non-trivial task. Beside the naive exhaustive search which has
a complexity exponential in the number of shares, there are several publications related to
finding points of interest (POI) [RGV12, DS16, CDP16]. Our concern here is orthogonal.
Namely, we investigate the complexity of detecting information in a tuple of samples, and
(as in the univariate case – see the remark on multiple comparisons in the previous section)
we ignore the problem of comparing many tuples thanks to an exhaustive or advanced
analysis.

For Welch’s t-test the only solution allowing to deal with these tuples is to first pre-
process them in order to obtain a single sensitive sample on which a univariate evaluation
can again be performed. The following “normalized product combining function” is a
natural option for this purpose

`′ =
d−1∏
i=0

(`ti − µti) ,

where `ti denotes a leakage sample at time ti where the share i is manipulated, µti the
sample mean at this point, and `′ is the pre-processed (univariate) sample. It has been
shown that this function is optimal for a Hamming weight leakages [PRB09].4

By contrast, since the χ2-test uses histograms rather than one specific statistical
moment, there are two strategies to process multivariate leakages spread over several
samples:

1. Pre-processing. Just as for the t-test, one solution is to combine the tuples into
one pre-processed sample and conduct a univariate test afterwards. However, since
the χ2-test considers the whole distribution, it is not necessary to use a non-linear
combining function. Instead, it is sufficient to simply sum the samples (without
raising the result to any power). This linear combining is typically used for dimen-
sionality reduction with Principal Component Analysis (PCA) [APSQ06] or Linear
Discriminant Analysis [SA08]. Of course, non-linear combinations (e.g., with the
normalized product) or Kernel Discriminant Analysis [CDP16] are also an option
(e.g., in high-noise contexts where it is known to be optimal).

2. Multivariate estimation. Due to the distribution-based nature of the χ2-test, the other
strategy is to directly build histograms for the multivariate distribution corresponding
to the tuples to evaluate.

Remark. As mentioned before, for univariate analyses the number of bins is limited to the
accuracy of the sampling facility (256 bins for an 8-bit oscilloscope - which may not even
all be filled in practice for low noise leakages). This picture changes significantly when
evaluating multivariate leakages. By linear pre-processing the maximum number of bins
extends to 256 · d, and by multivariate estimation to 256d. Here again, it may happen that
not all the bins are filled (e.g., for low noise levels), which is the typical case where the
χ2-test works best. But in general, it is necessary to limit the number of bins in order

4 An alternative is to first use a sum combining and then raise the resulting samples to a certain power.
While this is a priori less efficient, it may becomes more useful in the context of trading time and data
complexity for the detection of POIs [DS16]. However, as noted above this aspect is excluded from our
analysis.

218 Leakage Detection with the χ2-Test

to avoid the memory complexity to explode. In the following, we limited it to 256 for
simplicity (formally, the only strict requirement to detect at order d is to have at least
d+ 1 bins). We do not claim optimality for this choice, which is known to be a hard one
(e.g., see [BGP+11] for a discussion about a similar issue in the context of MIA).

In the next section, we use simulations to investigate the performance of each of these
multivariate approaches and give recommendations which of these should be used given a
specific testing scenario.

4 Simulated Experiments
In this section, we use simulations to evaluate the performance of our new leakage detection
methodology based on Pearson’s χ2-test. It is analysed in both univariate and multivariate
leakage scenarios and compared to the t-test.

4.1 Univariate Simulations
To model the leakage of a masked hardware design in which the shares are processed in
parallel (i.e., the common target for univariate higher-order evaluations), we rely on the
common assumptions of a Hamming weight leakage function and additive Gaussian noise.
Furthermore, we assume a Boolean-masked variable X that is split into d shares Xi with
d−1⊕
i=0

Xi = X. The leakage of these shares is summed and noise is added to the result as

L =
d−1∑
i=0

w(Xi) +N0,σ, (5)

where w(.) denotes the Hamming weight and N0,σ the Gaussian noise with a mean of zero
and standard deviation σ. Since the χ2-test uses histograms, we round the result (after the
addition of the noise) to the next integral value to emulate the effect, where the leakages
are sampled by an oscilloscope5. For our evaluations, we consider three SNRs to cover
different evaluation scenarios and examine the sensitivity of each test to increasing noise:

1. SNR1 = 0.1, high noise with σ1 = 4.4,

2. SNR2 = 1.0, medium noise with σ2 = 1.4,

3. SNR3 = 10.0, low noise with σ3 = 0.4.

The samples are generated according to the fixed vs. random strategy in which we consider
two equally sized sets of samples Qrandom and Qfixed, where the samples in Qrandom (resp.
Qfixed) are simulated using random (resp. fixed) input values. Each experiment is repeated
150 times and average is taken for better comparison. As a metric, we compute the
p-values for increasing number of samples and examine which test reaches the threshold of
p ≤ 10−5 with the fewest number of samples. In the following, we use a subset of all cases
to highlight the differences between the two tests. The figures for the remaining SNRs and
orders are provided in Appendix B.

First, we evaluated the performance of the tests assuming an ideal leakage function as in
Equation (5). The results for an unprotected implementation and masked implementations
up to d = 4 are depicted in Figure 3 for SNR2 = 1.0. It is noticeable that the t-test
significantly outperforms the χ2-test for d = 1, 2. However, this differences becomes smaller

5We repeated the experiments with a larger quantization size and reached the same conclusions, as
both tests were affected similarly.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 219

50 100 150 2000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 1, SNR2 = 1.0

1,000 2,000 3,000 4,000 5,000 6,0000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 2, SNR2 = 1.0

1 2 3 4 5 6
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 3, SNR2 = 1.0

0 0.2 0.4 0.6 0.8 1
·106

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(d) d = 4, SNR2 = 1.0

Figure 3: Performance of the (orange) t-test and (blue) χ2-test for simulated univariate
1st-, 2nd-, 3rd-, and 4th-order leakage with SNR2 = 1.0.

with increasing the number of shares and is completely reversed for d = 4, where the
χ2-test reaches the threshold much earlier than the t-test. We expect that this advantage
of the χ2-test over the t-test continues for even higher orders, making it an ideal evaluation
tool of masked hardware designs with many shares.

We also found that this advantage strongly depends on the SNR of the measurements.
Figure 4 depicts the case of d = 3 for the other settings SNR1 = 0.1 and SNR3 = 10.0. A
decrease in the SNR, also results in a reduced superiority of the χ2-test over the t-test
as shown in the left part of the figure. It is to be expected that the t-test will reach the
threshold faster again for even lower SNRs. For SNR3 = 10.0, a similar relation to the
performances of the tests can be observed. By reducing the standard deviation of the
noise, the difference between the tests increases in the favor of the χ2-test.

The later experiments are quite consistent with an information theoretic analysis of
univariate leakages such as performed in [Sta17]. Namely, with low noise levels / large
SNRs, the leakage distribution is a Gaussian mixture for which the estimation of a single
statistical moment (as exploited by Welch’s t-test) becomes increasingly suboptimal as the
number of shares increases. It confirms that the χ2-test can reveal useful intuition about
the tradeoff between the noise level and the number of shares of a masked implementation
in a black box manner.

Remark. As already mentioned, in most of our experiments, the χ2-test with two input
classes outperformed the χ2-test with nine input classes (i.e., one for each Hamming weight
of X) for practically-relevant p-values (p ≥ 10−20). In this section, it was only for very
low noise scenarios and very small p-values (p ≤ 10−100) that the test with more input
classes became better. Therefore, we do not include the results in the figures.

220 Leakage Detection with the χ2-Test

0 0.5 1 1.5 2 2.5 3
·106

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 3, SNR1 = 0.1

0.5 1 1.5 2 2.5 3
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 3, SNR3 = 10.0

Figure 4: Performance of the (orange) t-test and (blue) χ2-test for simulated univariate
3rd-order leakage with SNR1 = 0.1 and SNR3 = 10.0.

4.2 Multivariate Simulations
In software implementations and serialized hardware designs (e.g., in [MM13]), the shares
are not processed in parallel. Instead, each share leaks at a different point in time.
Therefore, we simulate the samples for these multivariate leakages as

Lti = HW (Xi) +N0,σ, 0 ≤ i < d (6)

separately for each share. As noted in Section 3, we rely on the normalized product as a
combining function for the t-test and evaluate three different strategies for the χ2-test:

1. Normalized Product. We evaluate this non-linear pre-processing approach for both
tests. The samples for each share are combined as

L′ =
d−1∏
i=0

(Lti − µti)

and the tests are conducted on the pre-processed samples L′.

2. Sum combining. We evaluate this linear pre-processing approach only for the χ2-test,
since it would not be effective for the t-test which only compares the means. The
samples for each share are trivially summed as

L′ =
d−1∑
i=0

Lti .

As noted before, this comes with the advantage that noise terms are not multiplied.

3. Multivariate Histograms. We build histograms directly for the leakage tuple

L′ =
(
Lt0 , Lt1 , . . . , Ltd−1

)
covering all shares.

The results for the tests up to d = 4 for SNR2 = 1.0 are depicted in Figure 5 (a) - (c).
It is noticeable that the t-test outperforms the χ2-test for all cases and that the χ2-test
suffers more from increasing the number of shares. The main reason for this phenomenon
is that contrary to the previous section, increasing the number of shares does not only
increase the security order but also the number of dimensions which may either increase

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 221

the noise after re-combination or increase the complexity of the multivariate estimation
(which both hurt the χ2-test more than the t-test). As a result, increasing the noise
standard deviation has the same impact as in the univariate case, but further amplified.
And therefore, the only context where the χ2-test can improve over the t-test is when the
noise is very low. For example Figure 5 (d) shows the result of an analysis with 4 shares
and such a very low noise level, where the χ2-test is significantly better than the t-test
(which is also one of the rare case where using multiple classes helps).

A similar intuition can be extracted from the combining functions. Namely, the
normalized product is the best option for non-negligible noises, and the sum combining
becomes better when the noise becomes very low. This change in effectiveness of the
normalized product and sum combining functions is in line with the results of [SVO+10],
where it is shown that for small noise standard deviations the normalized product performs
worse than the sum, while it becomes better than the sum for larger σ. Interestingly, we
also see that the χ2-test with multivariate histograms is not the best option in our case
(contrary to the use of the joint distribution in the profiled analysis of [SVO+10]).

So overall, these results outline similar but less definitive intuitions regarding the type
of leakages analyzed as in the previous section. Namely, for a given number of shares,
observing a better detection with the χ2-test guarantees that the noise is too low. By
contrast the opposite situation is harder to interpret, since in theory it might be due to
both a large enough noise level or a hard to estimate distribution. In the latter case,
launching a worst-case (information theoretic) metric is therefore advisable in order to
gain a full understanding of the leakages.

5 Experiments

In this section, we compare our simulated results from the previous section with real
measurements. For the experiments we measured a threshold implementation of PRESENT
whose intermediate state is split into three Boolean shares as shown in Figure 6. The
nibbles of the shared state (x1, x2, x3) – after being XORed with the corresponding round
key nibble – are serially shifted through the state register into the S-box which is divided
into two functions G and F with registers in between. The output of the F function equals
the masked S-box output y1⊕ y2⊕ y3 = y := S(x), and the PLayer is performed in parallel
in one clock cycle. We indeed have realized the uniform shared TI of the S-box based on
the details given in [PMK+11]. The cipher is implemented on the Xilinx Spartan-6 FPGA
of a SAKURA-G board [sak] and its power consumption curves (through the integrated
amplifier of the SAKURA board) were measured by means of a digital oscilloscope at a
sampling rate of 1GS/s. It is noteworthy that the PRESENT TI core was being operated
at a frequency of around 160MHz, and the masks for initial sharing have been provided
by an AES core in a counter mode. We further made sure that the masks follow a uniform
distribution.

To perform the different analyses in an efficient way, we first precomputed the histograms
for each point in time of the different populations. This reduces the amount of data needed
to process for different tests, so they can be performed in an efficient way. It is similar
to the approach Reparaz et al. followed in [RGV17] to compute t-statistics. Appendix A
shows the used C++ implementations of the t-test and the χ2-test based on histograms.
Benchmarks of these functions confirmed that the χ2-test can be executed with a similar
computational effort as a single order of the t-test. Both functions need approximately
2.8µs per point on a single core of an Intel i7-6600U CPU @2.6GHz. When omitting the
calculation of the degree of freedom and the p value for the t-test the function only speeds
up by 0.4µs.

222 Leakage Detection with the χ2-Test

1,000 2,000 3,000 4,0000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 2, SNR2 = 1.0

0 1 2 3 4 5 6 7
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 3, SNR2 = 1.0

0 0.2 0.4 0.6 0.8 1
·106

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 4, SNR2 = 1.0

0.5 1 1.5 2 2.5
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(d) d = 4, SNR4 = 20.0

Figure 5: Performance of the (orange) t-test with normalized product, (green) χ2-test
with normalized product, (yellow) χ2-test with sum combining, and (blue) χ2-test with
multivariate histograms for simulated multivariate 2nd-, 3rd-, and 4th-order leakages with
SNR2 = 1.0.
4th-order leakages with SNR4 = 20.0 including the performance of (red) χ2-test with sum
combining for nine input classes.

2 1 031415

PLayer
PLayer

PLayer

...
G F

Key nibble

x y

Figure 6: 3-share PRESENT TI architecture used for the experiments.

5.1 Leakage Detection

We performed two experiments to evaluate the performance of the χ2-test in comparison
to the t-test for leakage detection. First, we conducted the analysis on a set of fixed versus
random traces. Secondly, we performed the tests for different combinations of two fixed
plaintexts (out of eight) and when all eight fixed plaintexts are considered in the χ2-test.
For the measurements, we also followed the scenario recommended in [SM15] to efficiently
randomize the order of giving either different fixed or random plaintexts.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 223

5.1.1 Fixed versus Random

To compare the χ2-test and the t-test in the fixed-vs-random scenario, we measured
100,000,000 traces with the plaintext being randomly selected between random values and
a fixed plaintext. For the results shown in Figure 7 only 5,000,000 traces were used since
the higher order leakage are already detected. The underlying TI design was developed
to be first-order secure which is reassured by the p-value of the first order t-test staying
above the threshold of p = 10−5 (chosen to compare it to the commonly used threshold for
t-statistics of 4.5).

Taking the t-test into account, the main leakage lies in the third order. This is
also confirmed by the χ2-test which has a very similar shape to the third order t-test.
However, with p ≈ 10−68 it gives a much higher confidence than the t-test with p ≈ 10−40.
Concerning the number of traces needed to exceed the threshold, the tests are also very
similar detecting the leakage after 100,000 and respectively 20,0000 traces. This behavior
is consistent with our simulations for univariate leakage of three shares (c.f. Figure 3),
and shows the advantage of χ2-test over t-test.

It is noteworthy to highlight that this practical experiment shows how χ2-test captures
all leakages lying in multiple statistical moments, although it is dominated by the most
informative moment (here by the 3rd-order leakage).

5.1.2 Fixed versus Fixed

The other leakage detection approach we tested is fixed versus fixed. For this we recorded
20,000,000 traces with eight different fixed plaintexts, i.e., with around 2,500,000 traces for
each fixed plaintext. For different combinations of two fixed plaintexts we calculated the
χ2-test as well as 1st- to 3rd-order t-tests. We further calculated the χ2-test with eight
categories utilizing all fixed plaintexts.

Figure 8 shows the results for five of such combinations. Different selections of two
fixed plaintexts lead to considerably various results. One of the χ2-tests shows a similar
behavior as the fixed-vs-random test in the areas between 0 ns and 500 ns but additionally
highlights a leakage in the middle of the trace. In general, different combinations (of fixed
plaintexts) highlight different areas of the trace.

The χ2-test with all eight fixed plaintexts shows the leakage at the beginning of the
traces with a similar probability as the fixed-vs-random test but highlights also additional
areas with lower confidence. However, it needs considerably more traces compared the
fixed-vs-random test, i.e., 1,200,0000 traces versus 200,000 traces.

While the first and second order t-tests do not detect or only detect leakages with a
low confidence, the third order t-test detects nearly the same areas as the χ2-test. The
same combinations of plaintexts highlight the same areas, but the χ2-test in general gives
a higher confidence with, e.g., p ≈ 10−64 compared to p ≈ 10−32 considering the first part
of the trace.

Comparing the best combinations for each test in Figure 9, the χ2-test with two fixed
plaintexts and the 3rd-order t-test detect the leakages using nearly the same amount of
traces. As mentioned in Section 4.1, χ2-test with more classes also need more traces to give
a significant confidence. This also corresponds to our results with the eight fixed plaintext
χ2-test which needs 1,100,000 traces to exceed the threshold. However, it achieves a higher
p-value than the 3-rd order t-test using 5,000,000 traces.

5.2 Attack
To examine the χ2-test as a distinguisher, we performed an attack on the same implemen-
tation using the same traces collected for the fixed-vs-random tests of Section 5.1.1. In
other words, we used the half of the collected traces (i.e., 50,000,000 traces) associated

224 Leakage Detection with the χ2-Test

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

60

-lo
g1

0(
p)

χ
2-test

0 10 20 30 40

No. of Traces × 105

0

20

40

60

-lo
g1

0(
p)

 χ2-test

0 500 1000 1500 2000 2500
Time [ns]

0

2

4

6

-lo
g1

0(
p)

t-test 1st order

0 10 20 30 40

No. of Traces × 105

0

2

4

6

-lo
g1

0(
p)

t-test 1st order

0 500 1000 1500 2000 2500
Time [ns]

0

2

4

6

8

-lo
g1

0(
p)

t-test 2nd order

0 10 20 30 40

No. of Traces × 105

0

2

4

6

8

-lo
g1

0(
p)

t-test 2nd order

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

-lo
g1

0(
p)

t-test 3rd order

0 10 20 30 40

No. of Traces × 105

0

20

40

-lo
g1

0(
p)

t-test 3rd order

Figure 7: Results of the fixed-vs-random test using χ2-test, and 1st to 3rd order t-test,
using 5,000,000 traces.

with random plaintexts. Considering the underlying architecture of the implementa-
tion (see Figure 6), the state is shifted 4-bit-wise through the registers. Hence, we
have chosen the Hamming distance (HD) between two consecutive 4-bit S-box outputs
HD(S(xi ⊕ ki)⊕ S(xi+1 ⊕ ki+1)) as the power model. For comparison purposes we also
considered 1st- to 3rd-order CPA attacks using the same power model.

We performed the attacks on the distance between the 10th and 11th S-box output and
plotted the results over the number of traces and over time for the entire 50,000,000 traces
in Figure 10. For the attack based on χ2-test, the correct key is clearly distinguishable
after approximately 28,000,000 traces with steadily rising χ2 value. It also gives a high
confidence level p ≈ 10−10 for the correct key candidate. The exploited leakage appears for
about 48 ns, i.e., 6 clock cycles. This corresponds to the shift register architecture which
shifts all values in the state registers, so the predicted HD reoccurs during all clock cycles

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 225

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

60
-lo

g1
0(

p)
χ

2-test 8 fixed

0 10 20 30 40

No. of Traces × 105

0

20

40

60

-lo
g1

0(
p)

 χ2-test 8 fixed

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

60

80

-lo
g1

0(
p)

χ
2-test 2 fixed

0 10 20 30 40

No. of Traces × 105

0

20

40

60

80

-lo
g1

0(
p)

 χ2-test 2 fixed

0 500 1000 1500 2000 2500
Time [ns]

0

2

4

6

-lo
g1

0(
p)

t-test 1st order

0 10 20 30 40

No. of Traces × 105

0

2

4

6

-lo
g1

0(
p)

t-test 1st order

0 500 1000 1500 2000 2500
Time [ns]

0

5

10

-lo
g1

0(
p)

t-test 2nd order

0 10 20 30 40

No. of Traces × 105

0

5

10

-lo
g1

0(
p)

t-test 2nd order

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

-lo
g1

0(
p)

t-test 3rd order

0 10 20 30 40

No. of Traces × 105

0

20

40

-lo
g1

0(
p)

t-test 3rd order

Figure 8: Results of the fixed-vs-fixed test using χ2, and 1st- to 3rd-order t-test. The
colors represent different combinations of two fixed plaintexts.

after the calculation of the targeted S-box. The CPAs however are shown to be unable to
identify the correct key.

Note that for this experiment, we focused on a short window of the traces covering

226 Leakage Detection with the χ2-Test

0 500 1000 1500 2000 2500
Time [ns]

0

20

40

60

80
-lo

g1
0(

p)
χ
2
-8

χ
2
-2

t 1st

t 2nd

t 3rd

0 10 20 30 40

No. of Traces × 105

0

20

40

60

80

-lo
g1

0(
p)

χ
2
-8

χ
2
-2

t 1st

t 2nd

t 3rd

Figure 9: Comparison between 8- and 2-fixed plaintext χ2-test and 1st- to 3rd-order t-tests
for the best combinations of two fixed plaintexts.

300 ns corresponding to the first encryption round. We further – for simplicity – supposed
that the 10th key nibble is known and searched in a space of 24 to recover the 11th key
nibble. This scenario is common in serialized architecture while only for the first step of a
divide-and-conquer attack the entire 28 key space should be searched.

6 Conclusion and Future Work
We have shown how to use Pearson’s χ2-test, a popular statistical hypothesis test, in the
context of side-channel analysis. Its application in leakage detection (as a complement to
Welch’s t-test) and in attacks (as a distinguisher) has been demonstrated. Supported by
simulation and practical experiments, we highlighted the advantages and disadvantages
of the χ2-test compared to the publicly-known and commonly-applied t-test. We mainly
observe that the χ2-test is sometimes able to outperform the t-test either if the noise level
is not sufficient or the leakage is such that its information is split over multiple statistical
moments. Therefore, the χ2-test is able to detect flaws in insecure designs, which are
undetectable with evaluations based on t-test. We insist however that the χ2-test alone is
not sufficient as an evaluation tool, as there are many cases in which it does not detect
existing leakage for a fixed number of measurement, while the t-test does. So both tests
reflect different implementation requirements (i.e., the security order for the t-test, the
noise level for the χ2-test), and our results suggest that the χ2-test in combination with
the t-test is a powerful evaluation tool.

When used as a distinguisher, it is a complement to MIA. It has all the advantages of
MIA (including not being limited to a certain statistical moment and relaxing the necessity
of a linearly-matching hypothetical power model) while being advantageous with respect to
lower complexity and being able to give a confidence level to the key candidates. In short,
the proposed methodology is shown to be useful as a novel ingredient to the side-channel
analysis toolbox.

One interesting aspect of future work is the problem of combining multiple p-values.
The χ2-test might provide a better solution to this problem than the min-p approach,
since it can combine the histograms of multiple points in time into one test by an easy
concatenation. It is to be examined if this results in a more efficient test than the established
strategies. Another further aspect is the application of the χ2-test in the search for POIs.
In the aforementioned solution [DS16], more sample points are summed than necessary
to trade time and data complexity. It would be interesting to see how the χ2-test would
perform in such a scenario and if its beneficial properties can improve the search.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 227

0 50 100 150 200 250
Time [ns]

0

5

10
-lo

g1
0(

p)
χ

2-test

0 10 20 30 40

No. of Traces × 106

0

5

10

-lo
g1

0(
p)

χ
2-test

0 50 100 150 200 250
Time [ns]

-4

-2

0

2

4

C
or

re
la

tio
n

×10-4 CPA 1st order

0 10 20 30 40

No. of Traces × 106

0

2

4

C
or

re
la

tio
n

×10-3 CPA 1st order

0 50 100 150 200 250
Time [ns]

-4

-2

0

2

4

C
or

re
la

tio
n

×10-4 CPA 2nd order

0 10 20 30 40

No. of Traces × 106

0

2

4

C
or

re
la

tio
n

×10-3 CPA 2nd order

0 50 100 150 200 250
Time [ns]

-5

0

5

C
or

re
la

tio
n

×10-4 CPA 3rd order

0 10 20 30 40

No. of Traces × 106

0

1

2

3

C
or

re
la

tio
n

×10-3 CPA 3rd order

Figure 10: Results of the attack using χ2-test as a distinguisher and the corresponding
1st- to 3rd-order CPA.

Acknowledgements

This work has been funded in part by the European Commission through the H2020 project
731591 (acronym REASSURE) and the ERC project 724725 (acronym SWORD), the
German Research Foundation (DFG) through the project NaSCA (Nano-Scale Side-Channel
Analysis) and the European Commission and the Walloon Region through the FEDER
project USERMedia (convention number 501907-379156). François-Xavier Standaert is a
senior research associate of the Belgian Fund for Scientific Research. We would also like to
thank the anonymous reviewers for their very valuable and helpful feedback.

228 Leakage Detection with the χ2-Test

References
[APSQ06] Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-

Jacques Quisquater. Template Attacks in Principal Subspaces. In CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 1–14. Springer,
2006.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 16–29. Springer, 2004.

[BGH+16] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul, François-
Xavier Standaert, and Yannick Teglia. Taylor Expansion of Maximum Like-
lihood Attacks for Masked and Shuffled Implementations. In ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 573–601,
2016.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-Order Threshold Implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-Offs for Threshold Implementations Illustrated on AES. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(7):1188–1200, 2015.

[BGP+11] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual Information Analy-
sis: a Comprehensive Study. J. Cryptology, 24(2):269–291, 2011.

[booa] Boost Framework 1.63 Documentation Chi Squared Distribution.
http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_
toolkit/dist_ref/dists/chi_squared_dist.html.

[boob] Boost Framework 1.63 Documentation Students t Distribution.
http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_
toolkit/dist_ref/dists/students_t_dist.html.

[CBR+16] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and
Svetla Nikova. Higher-Order Threshold Implementation of the AES S-Box.
In CARDIS 2015, volume 9514 of Lecture Notes in Computer Science, pages
259–272. Springer, 2016.

[CDG+13] Jeremy Cooper, Elke Demulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, and Pankaj Rohatgi. Test Vector Leakage Assessment (TVLA)
Methodology in Practice. International Cryptographic Module Conference,
2013.

[CDP16] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Kernel discriminant
analysis for information extraction in the presence of masking. In CARDIS,
volume 10146 of Lecture Notes in Computer Science, pages 1–22. Springer,
2016.

[CMG+] Jeremy Cooper, Elke De Mulder, Gilbert Goodwill, Josh Jaffe, Gary Kenwor-
thy, and Pankaj Rohatgi. Test vector leakage assessment (TVLA) methodology
in practice (extended abstract). ICMC 2013. http://icmc-2013.org/wp/
wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf.

http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_toolkit/dist_ref/dists/chi_squared_dist.html
http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_toolkit/dist_ref/dists/chi_squared_dist.html
http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_toolkit/dist_ref/dists/students_t_dist.html
http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_toolkit/dist_ref/dists/students_t_dist.html
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 229

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware. In
CHES, volume 9813 of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
Masking Security Proofs Concrete - Or How to Evaluate the Security of Any
Leaking Device. In EUROCRYPT 2015, volume 9056 of Lecture Notes in
Computer Science, pages 401–429. Springer, 2015.

[DS16] François Durvaux and François-Xavier Standaert. From Improved Leakage
Detection to the Detection of Points of Interests in Leakage Traces. In
EUROCRYPT 2016, volume 9665 of Lecture Notes in Computer Science,
pages 240–262. Springer, 2016.

[DZFL14] A. Adam Ding, Liwei Zhang, Yunsi Fei, and Pei Luo. A statistical model for
higher order DPA on masked devices. In CHES, volume 8731 of Lecture Notes
in Computer Science, pages 147–169. Springer, 2014.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
Information Analysis. In CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 426–442. Springer, 2008.

[GJJR11a] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop,
2011.

[GJJR11b] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A test-
ing methodology for side channel resistance validation. NIST non-invasive
attack testing workshop, 2011. http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[LDL14] Yanis Linge, Cécile Dumas, and Sophie Lambert-Lacroix. Using the joint
distributions of a cryptographic function in side channel analysis. In COSADE,
volume 8622 of Lecture Notes in Computer Science, pages 199–213. Springer,
2014.

[LPR+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and
Adrian Thillard. How to estimate the success rate of higher-order side-channel
attacks. In CHES, volume 8731 of Lecture Notes in Computer Science, pages
35–54. Springer, 2014.

[MM13] Amir Moradi and Oliver Mischke. On the Simplicity of Converting Leakages
from Multivariate to Univariate - (Case Study of a Glitch-Resistant Masking
Scheme). In CHES 2013, volume 8086 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2013.

[MOBW13] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does
My Device Leak Information? An a priori Statistical Power Analysis of
Leakage Detection Tests. In ASIACRYPT 2013, volume 8269 of Lecture Notes
in Computer Science, pages 486–505. Springer, 2013.

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

230 Leakage Detection with the χ2-Test

[MS16] Amir Moradi and François-Xavier Standaert. Moments-Correlating DPA. In
ACM Workshop on Theory of Implementation Security, TIS@CCS, pages 5–15.
ACM, 2016.

[MW15] Amir Moradi and Alexander Wild. Assessment of Hiding the Higher-Order
Leakages in Hardware - What Are the Achievements Versus Overheads? In
CHES 2015, volume 9293 of Lecture Notes in Computer Science, pages 453–474.
Springer, 2015.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292–321, 2011.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptology, 24(2):322–345, 2011.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Trans. Computers, 58(6):799–
811, 2009.

[RGV12] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Selecting Time
Samples for Multivariate DPA Attacks. In CHES 2012, volume 7428 of Lecture
Notes in Computer Science, pages 155–174. Springer, 2012.

[RGV17] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Fast Leakage
Assessment. In CHES 2017, volume 10529 of Lecture Notes in Computer
Science, pages 387–399. Springer, 2017.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Mask-
ing of AES. In CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 413–427. Springer, 2010.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using Subspace-Based
Template Attacks to Compare and Combine Power and Electromagnetic
Information Leakages. In CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2008.

[sak] Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.
ac.jp/SAKURA/index.html.

[SGV09] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Verbauwhede. Parti-
tion vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of
Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected
CMOS Devices. In ICISC 2008, volume 5461 of Lecture Notes in Computer
Science, pages 253–267. Springer, 2009.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In CHES, volume 9293 of Lecture
Notes in Computer Science, pages 495–513. Springer, 2015.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined
Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks.
In CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages
302–332. Springer, 2016.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 231

[SMSG16] Tobias Schneider, Amir Moradi, François-Xavier Standaert, and Tim Güneysu.
Bridging the gap: Advanced tools for side-channel leakage estimation beyond
gaussian templates and histograms. In SAC, volume 10532 of Lecture Notes
in Computer Science, pages 58–78. Springer, 2016.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks. In EUROCRYPT
2009, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

[Sta17] François-Xavier Standaert. How (not) to Use Welch’s T-test in Side-Channel
Security Evaluations. IACR Cryptology ePrint Archive, 2017:138, 2017.

[SVO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The World Is Not Enough: Another Look on Second-Order DPA. In ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
112–129. Springer, 2010.

[TGWC17] Hugues Thiebeauld, Georges Gagnerot, Antoine Wurcker, and Christophe
Clavier. SCATTER : A new dimension in side-channel. IACR Cryptology
ePrint Archive, 2017:706, 2017.

[WH17] Mathias Wagner and Stefan Heyse. Single-trace template attack on the DES
round keys of a recent smart card. IACR Cryptology ePrint Archive, 2017:57,
2017.

[WHZZ16] Mathias Wagner, Yongbo Hu, Chen Zhang, and Yeyang Zheng. Comparative
study of various approximations to the covariance matrix in template attacks.
IACR Cryptology ePrint Archive, 2016:1155, 2016.

[WOS14] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. The
Myth of Generic DPA...and the Magic of Learning. In CT-RSA 2014, volume
8366 of Lecture Notes in Computer Science, pages 183–205. Springer, 2014.

[ZDD+17] Liwei Zhang, A. Adam Ding, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards Sound and Optimal Leakage Detection Procedure. In
CARDIS 2017, Lecture Notes in Computer Science. Springer, 2017. to appear.

232 Leakage Detection with the χ2-Test

A Code
A.1 t-test

1 #include<boost /math/ d i s t r i b u t i o n s / students_t . hpp>
2
3 void ca lc_t (unsigned long ∗H[2] , double ∗ range , double ∗ t_ret , double ∗

t_dof_ret , double ∗ t_p_ret)
4 {
5 double mean [2] = { 0 . 0 , 0 . 0 } ;
6 double var [2] = { 0 . 0 , 0 . 0 } ;
7 double n [2] = { 0 . 0 , 0 . 0 } ;
8
9 // only c a l c u l a t e f o r b ins which are non−zero −> f a s t e r f o r r e a l

measurements
10 vector<int> nonZeroBins ;
11 for (int idx_bin = 0 ; idx_bin < number_of_bins ; idx_bin++)
12 {
13 bool isNonZero = f a l s e ;
14 for (s i z e_t idx_category = 0 ; idx_category < number_of_categories ;

idx_category++)
15 {
16 i f (H[idx_category] [idx_bin] != 0)
17 isNonZero = true ;
18 }
19 i f (isNonZero)
20 nonZeroBins . push_back (idx_bin) ;
21 }
22
23
24 for (s i z e_t idx_category = 0 ; idx_category < number_of_categories ;

idx_category++)
25 {
26 for each (auto idx_bin in nonZeroBins)
27 {
28 mean [idx_category] += H[idx_category] [idx_bin] ∗ range [idx_bin] ;
29 n [idx_category] += H[idx_category] [idx_bin] ;
30 }
31
32 mean [idx_category] = mean [idx_category] / n [idx_category] ;
33
34 for each (auto idx_bin in nonZeroBins)
35 {
36 double temp = (range [idx_bin] − mean [idx_category]) ;
37 var [idx_category] += (temp∗temp) ∗H[idx_category] [idx_bin] ;
38 }
39
40 var [idx_category] = var [idx_category] / n [idx_category] ;
41 }
42
43 // c a l c u l a t e t−va lue
44 double mean_diff = mean [0] − mean [1] ;
45 double variance_sum = (var [0] / n [0]) + (var [1] / n [1]) ;
46 ∗ t_ret = mean_diff / s q r t (variance_sum) ;
47
48 // c a l c u a l t e degree o f freedom
49 double denominator = ((var [0] / n [0]) ∗(var [0] / n [0])) / (n [0] − 1) + ((

var [1] / n [1]) ∗(var [1] / n [1])) / (n [1] − 1) ;
50 ∗ t_dof_ret = (variance_sum∗variance_sum) / denominator ;
51
52 boost : : math : : s tudents_t_di s t r ibut ion<> t_dist (∗ t_dof_ret) ;
53 ∗ t_p_ret = 2 ∗ boost : : math : : cd f (t_dist , −f abs (∗ t_ret)) ;
54 }

Listing 1: C++ Function for calculating t-statistics (uses Boost framework for cdf [boob])

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 233

A.2 χ2-test

1 #include<boost /math/ d i s t r i b u t i o n s / chi_squared . hpp>
2
3 void ca l c_ch i (unsigned long ∗H[number_of_categories] , double ∗ chi_ret ,

double ∗ chi_dof_ret , double ∗ chi_p_ret)
4 {
5 // f i n d b ins which are non−zero in at l e a s t one category
6 vector<int> nonZeroBins ;
7 for (int idx_bin = 0 ; idx_bin < number_of_bins ; idx_bin++)
8 {
9 bool isNonZero = f a l s e ;

10 for (s i z e_t idx_category = 0 ; idx_category < number_of_categories ;
idx_category++)

11 {
12 i f (H[idx_category] [idx_bin] != 0)
13 isNonZero = true ;
14 }
15 i f (isNonZero)
16 nonZeroBins . push_back (idx_bin) ;
17 }
18
19 // degrees o f freedom
20 ∗ chi_dof_ret = (double) (nonZeroBins . s i z e ()−1)∗(number_of_categories−1) ;
21
22 // ch i ^2 va lue
23 double sums_rows [number_of_categories] ;
24 double sums_columns [number_of_bins] ;
25 double N = 0 . 0 ;
26
27 // c a l c u l a t e sums f o r expec ted v a l u e s
28 for (s i z e_t i = 0 ; i < number_of_categories ; i++)
29 sums_rows [i] = 0 . 0 ;
30 for (s i z e_t i = 0 ; i < number_of_bins ; i++)
31 sums_columns [i] = 0 . 0 ;
32
33 for each (auto idx_bin in nonZeroBins)
34 {
35 for (s i z e_t idx_category = 0 ; idx_category < number_of_categories ;

idx_category++)
36 {
37 sums_rows [idx_category] += H[idx_category] [idx_bin] ;
38 sums_columns [idx_bin] += H[idx_category] [idx_bin] ;
39 N += H[idx_category] [idx_bin] ;
40 }
41 }
42
43 double chi_temp = 0 . 0 ;
44 // c a l c u l a t e ch i ^2 va lue
45 for each (auto idx_bin in nonZeroBins)
46 {
47 for (s i z e_t idx_category = 0 ; idx_category < number_of_categories ;

idx_category++)
48 {
49 double E = (sums_rows [idx_category] ∗ sums_columns [idx_bin]) / N;
50 double temp = (H[idx_category] [idx_bin] − E) ;
51 chi_temp += (temp∗temp) / E;
52 }
53 }
54
55 ∗ ch i_ret = chi_temp ;
56 boost : : math : : ch i_squared_dist r ibut ion<> ch i_d i s t (∗ chi_dof_ret) ;
57 ∗ chi_p_ret = 1 − boost : : math : : cd f (ch i_dist , chi_temp) ;
58 }

Listing 2: Function for calculating χ2-statistics (uses Boost framework for cdf [booa])

234 Leakage Detection with the χ2-Test

B Additional Figures

200 400 600 800 1,0000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 1, SNR1 = 0.1

1 2 3 4 5 6
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 2, SNR1 = 0.1

0 1 2 3 4 5 6
·107

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 4, SNR1 = 0.1

Figure 11: Performance of the (orange) t-test and (blue) χ2-test for simulated univariate
1st-, 2nd-, and 4th-order leakage with SNR1 = 0.1.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 235

20 40 60 80 100 1200

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 1, SNR3 = 10.0

300 400 500 600 700 800 900 1,0000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 2, SNR3 = 10.0

0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 4, SNR3 = 10.0

Figure 12: Performance of the (orange) t-test and (blue) χ2-test for simulated univariate
1st-, 2nd-, and 4th-order leakage with SNR3 = 10.0.

236 Leakage Detection with the χ2-Test

0.5 1 1.5 2 2.5
·105

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 2, SNR1 = 0.1

0 2 4 6 8
·106

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 3, SNR1 = 0.1

0 1 2 3 4 5 6
·107

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 4, SNR1 = 0.1

Figure 13: Performance of the (orange) t-test with normalized product, (green) χ2-test
with normalized product, (yellow) χ2-test with sum combining, and (blue) χ2-test with
multivariate histograms for simulated multivariate 2nd-, 3rd-, and 4th-order leakages with
SNR1 = 0.1.

Amir Moradi, Bastian Richter, Tobias Schneider and François-Xavier Standaert 237

200 400 600 800 1,0000

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(a) d = 2, SNR3 = 10.0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(b) d = 3, SNR3 = 10.0

0 0.5 1 1.5 2
·105

0

5

10

15

20

Samples

−
lo
g 1

0(
p
)

(c) d = 4, SNR3 = 10.0

Figure 14: Performance of the (orange) t-test with normalized product, (green) χ2-test
with normalized product, (yellow) χ2-test with sum combining, and (blue) χ2-test with
multivariate histograms for simulated multivariate 2nd-, 3rd-, and 4th-order leakages with
SNR3 = 10.0.

	Introduction
	Background
	Welch's t-test
	Leakage detection with Welch's t-test
	Pearson's 2-Test

	Methodology
	Leakage detection with Pearson's 2-Test
	Extension to multivariate detections and attacks

	Simulated Experiments
	Univariate Simulations
	Multivariate Simulations

	Experiments
	Leakage Detection
	Attack

	Conclusion and Future Work
	Code
	t-test
	2-test

	Additional Figures

