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Abstract. Masking is a sound countermeasure to protect implementations of block-
cipher algorithms against Side Channel Analysis (SCA). Currently, the most efficient
masking schemes use Lagrange’s Interpolation Theorem in order to represent any S-
box by a polynomial function over a binary finite field. Masking the processing of
an S-box is then achieved by masking every operation involved in the evaluation of
its polynomial representation. While the common approach requires to use the well-
known Ishai-Sahai-Wagner (ISW) scheme in order to secure this processing, there
exist alternatives. In the particular case of power functions, Genelle, Prouff and
Quisquater proposed an efficient masking scheme (GPQ). However, no generalization
has been suggested for polynomial functions so far. In this paper, we solve the open
problem of extending GPQ for polynomials, and we also solve the open problem of
proving that both the original scheme and its variants for polynomials satisfy the
t-SNI security definition. Our approach to extend GPQ is based on the cyclotomic
method and results in an alternate cyclotomic method which is three times faster
in practice than the original proposal in almost all scenarios we address. The best-
known method for polynomial evaluation is currently CRV which requires to use the
cyclotomic method for one of its step. We also show how to plug our alternate cyclo-
tomic approach into CRV and again provide an alternate approach that outperforms
the original in almost all scenarios. We consider the masking of n-bit S-boxes for
n ∈ [4; 8] and we get in practice 35% improvement of efficiency for S-boxes with
dimension n ∈ {5, 7, 8} and 25% for 6-bit S-boxes.

Keywords: Side-channel countermeasure · Masking · Polynomial evaluation · Probing
security · Block cipher · Authenticated encryption.

1 Introduction

Side channel attacks exploit physical leakages of a device during the computation. This
leakage may unveil sensitive information on the data manipulated by an implementation.
Since their introduction in the late nineties [Koc96,KJJ99], numerous side-channel attacks
have been successfully mounted on cryptosystems, motivating the design of provably se-
cure countermeasures against such realistic threats.

The most common strategy is based on masking. Such a countermeasure randomly splits
every sensitive variable into several shares such that all of them are required to retrieve
any information about the original data. Internal computations no longer operate directly
on complete data but rather on their corresponding shares. The number of random shares
used to split (or mask) a sensitive variable is referred to as the masking order. Typically, a
masking scheme of order greater or equal to d resists to an attack of order d (that exploits
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physical information from d leakage points of a circuit). Indeed, without all the (random)
shares and the associated masked sensitive variable, an attacker gets information he can
only relate to random values.

Another advantage is that higher-order masking schemes, for which sensitive data are split
into d shares (with d > 2), are sound countermeasures in realistic leakage models. One
of them is the noisy leakage model for which it has been shown in [CJRR99, PR13] that
the complexity of recovering sensitive data grows exponentially with the number of shares.
There also exists the more theoretical but simpler probing model introduced by Ishai, Sa-
hai and Wagner in [ISW03] for which an attacker exploit the information carried through
circuit wires during computations. Ishai et al. were interested in securing circuits against
an adversary who can probe a limited number of wires. More precisely, they showed how
to transform any boolean circuit of size |C| into a larger construction of size O(|C| · t2)
that is secure against an attacker that is able to probe t wires at a time. Their security
proof implies the simulation of transformed AND gates processing variables splitted into
d ≥ 2t + 1 shares. A secure AND gate has size O(t2) and shall be referred to as the
ISW gadget in the following. The probing model has been extensively used to prove the
security of numerous constructions. More recently, the work of Duc, Dziembowski and
Faust [DDF14] showed a security reduction from the noisy leakage model to the model of
probing adversaries. This result renders the use of the probing security more legitimate
than before. Yet, proving the security of cryptographic algorithms in the probing model
remains a challenge. Namely, a construction is not necessarily secure even if each of its
basic blocks has been proven to be secure. The composition of basic blocks may induces
flaws in a scheme. This issue has been recently addressed in [BBD+15] in which was
introduced a stronger security definition for the probing model, referred to as t-SNI, and
used to guarantee that the composition of masked blocks remains secure.

A cryptographic algorithm is a sequence of affine and nonlinear functions. Linear/affine
functions are simply masked by applying any of such functions to every share separately.
However, the processing of masked nonlinear functions is less straightforward. The input
shares of a nonlinear transformation have to be handled carefully in order to guarantee
the security of the masking countermeasure.

In [RP10], Rivain and Prouff proposed the first efficient and provably secure masking
scheme in the probing model for AES whose S-box consists in computing inversions in the
finite field F28 . Their idea was to express the corresponding inverse function x 7→ x254

as a sequence of squares and nonlinear multiplications over F28 . While squares are linear
functions and are therefore easy to mask, they adapted the ISW multiplication gadget over
F2 to the desired extension field F28 in order to mask the nonlinear multiplications. The
proposed scheme was originally supposed to achieve dth order security. However, the com-
position of their mask refreshing procedure with the ISW multiplication gadget induced
a security flaw in the overall scheme [CPRR13]. A solution proposed in the same article
was to avoid the use of the mask refreshing gadget by adapting the ISW scheme. The
resulting secure multiplications are referred to as bilinear multiplications in the literature.
It was only recently that the original scheme (without the bilinear multiplications) has
been fixed in [BBD+15]. Namely, they proved that the composition of the multiplica-
tion gadget with a different mask refreshing procedure results in a safe construction with
d ≥ t+1 shares by showing that both previous gadgets satisfy the t-SNI security definition.

The approach followed by Rivain and Prouff was extended to any n-bit S-box by Carlet,
Goubin, Prouff, Quisquater and Rivain (CGPQR) in [CGP+12]. They showed that any
n-bit S-box can be expressed as a sequence of linear transformations and nonlinear mul-
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tiplications over F2n , that is represented by a polynomial S(x) =
∑

i aix
i over F2n using

Lagrange’s interpolation theorem. Thus, the CGPQR masking scheme consists in evaluat-
ing securely such polynomial over F2n by masking with ISW every nonlinear multiplication
involved in the corresponding sequence. However, as the masking order grows, the secure
processing of nonlinear multiplications quickly becomes expensive. Therefore, they also
described two efficient heuristics called cyclotomic and parity-split methods that optimize
the number of nonlinear multiplications required to evaluate the polynomial representa-
tion of generic S-boxes. Several methods have also improved CGPQR by further optimizing
this number of nonlinear multiplications. Roy and Vivek [RV13] further reduced the
complexity of several well known S-boxes and the currently best-known method for fast
polynomial evaluation in F2n has been proposed by Coron Roy and Vivek in [CRV14] and
is referred to as the CRV method in the rest of the paper. Recently, other constructions of
multiplication circuits in finite fields than ISW have been proposed [BBP+17]. However,
ISW remains the most efficient t-SNI scheme for orders of practical interest (i.e. orders 1,
2 and 3).

Different approaches can be used as alternatives to the higher-order CGPQR masking scheme
[ISW03, GM11, PR11, GPQ11b, Cor14, BFG15, CPRR15]. Among them, the higher-order
masking scheme introduced by Genelle, Prouff and Quisquater (GPQ) in [GPQ11b] is a
more efficient alternative for the AES than [RP10] (see [GSF14]). The GPQ scheme is
particularly efficient to mask S-boxes which are power functions but no generalization to
mask generic S-boxes has been proposed so far.

1.1 Our contributions

In this paper, we begin to prove the security of the GPQ masking scheme in the probing
model under the stronger t-SNI security definition. Then, we show how to solve the open
problem of extending GPQ to mask generic S-boxes (not only power functions). Specif-
ically, our approach is based on the generic cyclotomic method proposed in [CGP+12],
whose security so far relied on the ISW scheme. We show how to refine the use of GPQ

when combined with the cyclotomic method so that it results in an alternate cyclotomic
approach for polynomial evaluation over F2n that no longer requires ISW. We provide
a description of our construction and prove that it satisfies the t-SNI requirements. We
also provide an alternate approach for CRV. The latter requires the cyclotomic method in
order to build a set of monomials in one of its steps. We show how to plug our alternate
cyclotomic method into CRV, in order to efficiently compute those power functions with
our previous construction. Moreover, our approach allows us to derive new parameters
for CRV considered as irrelevant with the original proposal, but which are well-suited in
our case. We then show that our alternate CRV construction is t-SNI. In practice, we
consider the same scenarios for both our alternate approaches. We report the cost of poly-
nomial evaluations with our approaches compared to the original ones where S-boxes are
of dimension n ∈ [4; 8]. We improve by a factor 3 the efficiency of the original cyclotomic
method in almost all scenarios (for n ∈ {5, 6, 7, 8}) and we improve by 35% the efficiency
of the original CRV for S-boxes of dimension n ∈ {5, 7, 8} and 25% for 6-bit S-boxes.

1.2 Road map

The paper is organized as follows. Section 2 provides background notions on masking and
surrounding the probing model. We present GPQ in Section 3 along with our t-SNI security
proof. In Section 4 we recall aspects of the cyclotomic method, we address the extension of
GPQ to the masking of generic S-boxes and we give security proofs regarding our alternate
cyclotomic construction. In Section 5, we describe the CRV method before showing how
to derive an alternate approach that also enables to consider new parameters, and we
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also provide security proofs. Section 6 reports implementation results using our alternate
approaches compared to the originals for S-boxes of dimension n ∈ [4; 8]. Eventually
Section 7 concludes the paper.

2 Basics and Definitions

In this paper, n denotes the bit-length of processed data. By default, variables in this
paper are assumed to be defined in the field F2n

∼= (F2[x]/(p(x)),⊕,⊗), where p(x) is an
irreducible polynomial of F2[x] of degree n, ⊕ is the bitwise XOR operation and ⊗ denotes
the polynomial multiplication modulo p(x). These variables can also sometimes be viewed
as elements of the vector space F

n
2 defined over the field (F2,⊕,⊙), where ⊙ is the AND

operation. Some transformations may involve n-bit operations XOR, AND which shall be
referred to by ⊕n,⊙n. The inverse of an element x ∈ F

∗
2n for the law ⊗ is x−1 where F

∗
2n

denotes the set of invertible elements of F2n .

2.1 Basics on masking

As explained in the introduction, the masking countermeasure splits every sensitive vari-
able x into d = t + 1 shares x0, . . . , xd in such a way that the following relation is satisfied
for a group operation ⊥. Namely,

x0 ⊥ x−1
1 ⊥ . . . ⊥ x−1

d = x . (1)

where x−1
i denotes the inverse of xi w.r.t ⊥. Usually, the d shares x1 . . . , xd are randomly

generated and x0 is processed so that (1) is satisfied. In this paper, ⊥ either denotes the
field addition ⊕ or the field multiplication ⊗. When ⊥= ⊕ (resp. ⊥= ⊗), the relation
(1) induces an additive masking (resp. a multiplicative masking) of x. A (d + 1)-tuple
(x0, . . . , xd) satisfying (1) for ⊥= ⊕ (resp. for ⊥= ⊗) is called a dth order additive (resp.
dth order multiplicative) sharing of x.

2.2 Security definitions

In the probing model, proofs are based on simulation. Namely, if any adversary observa-
tion set (i.e. set of probed wires) can be simulated without the knowledge of any input
variable then the t probes are of no use to an attacker. We remind several security defi-
nitions introduced in [BBD+15] that are useful to prove the security of a construction in
the probing model under the stronger t-SNI security definition.

An adversary can probe input wires, internal wires or output wires. An adversary obser-
vation set is denoted by Ω and divided into two sets I and O such that I is the set of
input or internal probed wires while O is the set of output probed wires. For any set
Ω = (I,O) of at most t probed wires, it is obvious that |I|+ |O| ≤ t.

The following security definitions rely on whether or not it is possible to simulate Ω.
Namely, if Ω can be perfectly simulated without knowledge of any input variable then the
t probes used by the attacker to build Ω are not dependent on any secret. Indeed, an input
variable is a (d + 1)-sharing generated such that the knowledge of d of its shares does not
reveal the original data. Thus, as long as the simulation of Ω only requires strictly less
than d + 1 shares of each input variable, then Ω can be simulated without knowing any
secret. Consequently the t probes reveal nothing to the attacker.

The set of input shares required simulating an adversary set of probed wires is denoted
by S. The latter also indicates which specific shares (i.e. which wires) are considered for
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each input. The upper bounds on the cardinality of S lead to more or less strong security
definitions of [BBD+15] which are reminded hereafter. For simplicity we consider a gadget
taking as input a single (d + 1)-sharing x and that outputs a single (d + 1)-sharing y.

t-NI security. Let G be a gadget which takes as input a (d + 1)-sharing (x0, . . . , xd) of
x and outputs a (d + 1)-sharing (y0, . . . , yd) of y. The gadget G is said to be t-NI secure
if for every adversary set of t probed wires Ω = (I,O) with t ≤ d, there exists a set S of
input shares such that |S| ≤ t and S is sufficient to simulate the adversary observation
set Ω on G.

affine-NI security. Let G be a gadget which takes as input a (d + 1)-sharing (x0, . . . , xd)
of x and outputs a (d + 1)-sharing (y0, . . . , yd) of y. The gadget G is said to be affine-NI

secure if for every adversary set of t probed wires Ω = (I,O) with t ≤ d, there exists a set
S of input shares such that |S| ≤ |I| + |O| and S is sufficient to simulate the adversary
observation set Ω on G.

t-SNI security. Let G be a gadget which takes as input a (d + 1)-sharing (x0, . . . , xd) of
x and outputs a (d + 1)-sharing (y0, . . . , yd) of y. The gadget G is t-SNI secure if for every
adversary set of t probed wires Ω = (I,O) with t ≤ d, there exists a set S of input shares
such that |S| ≤ |I| and S is sufficient to simulate the adversary observation set Ω on G.

t-SNI security (binary gadgets). Let G be a gadget which takes as inputs a (d + 1)-
sharing (x0, . . . , xd) of x, a (d + 1)-sharing (y0, . . . , yd) of y, and outputs a (d + 1)-sharing
(z0, . . . , zd) of z. The gadget G is said to be t-SNI secure if for every adversary set of t
probed wires Ω = (I,O) with t ≤ d, there exist sets S1 of input shares of x and S2 of
input shares of y such that |S1| ≤ |I|, |S2| ≤ |I| and S1 ∪ S2 is sufficient to simulate the
adversary observation set Ω on G.

2.3 Useful t-SNI gadgets

Several constructions in this article may involve gadgets whose security has already been
analyzed in the literature. We hereafter recall the secure multiplication algorithm as
described in [RP10] and the mask refreshing procedure introduced by Duc, Dziembowski
and Faust in [DDF14]. Furthermore, it has been shown in [BBD+15] that both gadgets
are t-SNI.

Algorithm 1 SecMult [RP10]

Require: An order d, a (d + 1)-sharing of x and a (d + 1)-sharing of y.
Ensure: A (d + 1)-sharing (z0, . . . , zd) of (x⊗ y).

1: for i = 0 to d do
2: zi ← xi ⊗ yi

3: end for
4: for i = 0 to d do
5: for j = i + 1 to d do

6: r
$
← F2n

7: zi ← zi ⊕ r
8: r ← xi ⊗ yj ⊕ r ⊕ xj ⊗ yi

9: zj ← zj ⊕ r
10: end for
11: end for
12: return (z0, . . . , zd)
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Alg. 2 presents the multiplication-based refreshing algorithm of [DDF14].

Algorithm 2 Multiplication-Based Mask Refreshing Algorithm

Require: An order d and a (d + 1)-sharing (x0, . . . , xd) of x.
Ensure: A (d + 1)-sharing (z0, . . . , zd) of x.

1: for i = 0 to d do
2: zi ← xi

3: end for
4: for i = 0 to d do
5: for j = i + 1 to d do

6: r
$
← F2n

7: zi ← zi ⊕ r
8: zj ← zj ⊕ r
9: end for

10: end for
11: return (z0, . . . , zd)

3 The GPQ scheme

Introduced by Genelle, Prouff and Quisquater in [GPQ10, GPQ11a, GPQ11b], the GPQ

scheme securely evaluates power functions by mixing additive and multiplicative masking.
Namely, (1) holds alternatively for ⊥= ⊕ and ⊥= ⊗. The additive masking is used to
secure affine functions while multiplicative masking efficiently masks power functions as
illustrated in Fig. 1. Thus, special transformations are necessary to convert an additive
sharing into a multiplicative one and conversely. This strategy was initially addressed by
Akkar and Giraud [AG01] but turned out to be not secure when a multiplicatively masked
variable equals zero [GT02]. Genelle, Prouff and Quisquater solved this issue by proposing
a secure implementation of the Dirac function that enables to multiplicatively mask the
value zero [GPQ11a,GPQ10]. For the sake of self-completeness, we recall some algorithms
of [GPQ10,GPQ11a,GPQ11b] that constitute GPQ and we also conduct a security analysis
throughout this section to prove that the scheme actually satisfies the t-SNI property and
not only the t-NI definition (as proven in the original paper).

Multiplicative masking

Affine functions Power function Affine functions

Additive masking Additive masking

Figure 1: GPQ mixes additive and multiplicative masking.

From the above discussion, an additively masked element of F2n is mapped into F
∗
2n by

adding it to its Dirac value so that the resulting non-zero element can be multiplicatively
masked. Further details are given below.

3.1 Dirac

The Dirac function δ is defined over F2n by δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
Hence for any x ∈ F2n , it results (x⊕ δ(x)) ∈ F

∗
2n . The computation of the Dirac function

of x ∈ F2n may be performed as follows.
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Let x = (x0, . . . , xn−1) denote the bitwise complement of x = (x0, . . . , xn−1), we have

δ(x) = x0 ⊙ x1 ⊙ · · · ⊙ xn−1 ,

where ⊙ denotes the AND operation.

Computing one Dirac function at a time for several field elements may not be interesting
in terms of efficiency (due to AND operations that have to be secured with ISW). However,
bit-slicing enables to compute several Dirac functions simultaneously at a reasonable cost
[GPQ11a]. The latter approach is therefore preferred. In a nutshell, it computes the
Dirac function of n elements of F2n viewed as a (n × n)-matrix whose lines are actually
treated as elements of F

n
2 . In the following, the field elements involved in the Secure-

Dirac procedure are referred to as x(k) with k ∈ {0, 1, . . . , n− 1}. We hereafter recall the
resulting algorithm that we also used in our implementations.

Algorithm 3 Secure-Dirac

Require: An order d, a length n and a (d + 1)-sharing (M0, · · · , Md) of a binary (n×n)-
matrix M whose lines are the x(k)’s.

Ensure: A (d + 1)-sharing (∆0, · · · , ∆d) of the n-bit vector ∆ = (δ(x(0)), · · · , δ(x(n−1))).
** Compute the bitwise complement M0 of the (n× n)-matrix M0.

1: M0 ←−M0

** Transpose the (n× n) matrices Mi for every i ≤ d.
2: for i = 0 to d do
3: ti ←− (Mi)

⊺

4: end for

** Refresh the shares.

5: (t
(0)
0 , . . . , t

(0)
d )←− Refresh(t

(0)
0 , . . . , t

(0)
d )

6: (∆0, . . . , ∆d) ←− (t
(0)
0 , . . . , t

(0)
d )

** Process the Dirac computations.
7: for i = 1 to n− 1 do
8: (∆0, · · · , ∆d)←− (∆0, · · · , ∆d)⊙n (t

(i)
0 , . . . , t

(i)
d )

9: end for

10: return (∆0, · · · , ∆d)

The ⊙n operation (Step 8 of Alg. 3) performs n secure multiplications over F2.

Remark 1. In order to prove the following Lemma, we had to add a refreshing procedure
(step 5) that was not originally required. In particular, this step requires the use of Alg.
2.

Lemma 1. Secure-Dirac(·) is t-SNI. Let (Mi)0≤i≤d be the input and let (∆i)0≤i≤d be the
output of Alg. 3. For any adversary set of at most t probed wires Ω = (I,O), with t ≤ d,
there exists a set of input shares S such that |S| ≤ |I| and S is sufficient to simulate the
adversary observation set Ω.

Proof. See Appendix A.1.

For a given set of n additively masked field elements, their Dirac values can be computed
with Alg. 3 and have to be added to their corresponding elements before converting them
into multiplicative maskings. The complexity of the Secure-Dirac procedure is given at
the end of this section. We now address the conversion transformations that enable to
switch encodings for a non-zero masked element between its additive and multiplicative
sharing.
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3.2 Conversions

The general strategy consists in replacing sequentially each additive (resp. multiplicative)
mask of the (d + 1)-additive (resp. multiplicative) sharing of an element x ∈ F

∗
2n by a

multiplicative (resp. additive) one. This strategy results in the following two algorithms.
Alg. 4 describes the steps for an additive to multiplicative masking conversion and Alg.
5 describes the multiplicative to additive masking conversion. As in [GPQ11b], these
transformations are respectively called AMtoMM and MMtoAM.

Algorithm 4 AMtoMM

Require: A (d + 1)-additive sharing (x0, . . . , xd) of x ∈ F
∗
2n

Ensure: A (d + 1)-multiplicative sharing (z0, . . . , zd) of x ∈ F
∗
2n

1: z0 ← x0

2: for i = 1 to d do
3: zi

$
← F

∗
2n

4: z0 ← z0

.
⊗ zi

5: for j = 1 to d− i do

6: U
$
← F2n

7: xj ← zi

.
⊗ xj

8: ∗∗ Refreshing of the additive share
9: xj ← xj ⊕ U

10: z0 ← z0 ⊕ xj

11: xj ← U
12: end for
13: xd−i+1 ← zi

.
⊗ xd−i+1

14: z0 ← z0 ⊕ xd−i+1

15: end for
16: return (z0, z1, . . . , zd)

This conversion has been proven in [GPQ11b] to satisfy the t-NI definition. We now prove
the following theorem that states that AMtoMM(·) actually satisfies the t-SNI requirements.

Theorem 1. AMtoMM(·) conversion is t-SNI. Let (xi)0≤i≤d be the input and let (zi)0≤i≤d

be the output of Alg. 4. For any adversary set of at most t probed wires Ω = (I,O),
with t ≤ d, there exists a set of input shares S such that |S| ≤ |I| and S is sufficient to
simulate the adversary observation set Ω.

Proof. See Appendix A.2.

The other conversion that deals with getting an additive masking from a multiplicative
one is described by Alg. 5. This conversion has only been proven to satisfy the t-NI

property. We prove similarly to the previous conversion that it satisfies the stronger
security definition.

Theorem 2. MMtoAM(·) conversion is t-SNI. Let (xi)0≤i≤d be the input and let (zi)0≤i≤d

be the output of Alg. 5. For any adversary set of at most t probed wires Ω = (I,O),
with t ≤ d, there exists a set of input shares S such that |S| ≤ |I| and S is sufficient to
simulate the adversary observation set Ω.

Proof. See Appendix A.3.

The GPQ scheme involves Alg. 3, 4 and 5. We now give further details about the evaluation
of power functions with GPQ.
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Algorithm 5 MMtoAM

Require: A (d + 1)-multiplicative sharing (z0, . . . , zd) of x ∈ F
∗
2n

Ensure: A (d + 1)-additive sharing (x0, . . . , xd) of x ∈ F
∗
2n

1: x0 ← z0

2: for i = 1 to d do
3: xi

$
← F2n

4: x0 ← x0 ⊕ xi

5: x0 ← x0

.
⊗ z−1

i

6: for j = 1 to i do
7: xj ← xj

.
⊗ z−1

i

8: U
$
← F2n

9: ∗∗ Refreshing of the additive share
10: xj ← xj ⊕ U
11: z0 ← z0 ⊕ xj

12: xj ← U
13: end for
14: end for
15: return (x0, x1, . . . , xd)

3.3 Power function processing

We outline the processing of a power function as follows. Consider a power α ∈ [0, 2n− 1]
and an element x ∈ F2n that is initially additively masked. First, the GPQ processing re-
quires to compute the Dirac function of x and add the result to it in order to map the field
element into F

∗
2n . Then, x is converted into a multiplicative sharing in order to process

the power function x 7→ xα. Afterwards, xα is converted back into an additive sharing
and the resulting element is mapped from F

∗
2n back into F2n to be further processed by

linear operations only. This processing is illustrated Fig. 2.

x

xα

AMtoMM(·)

MMtoAM(·)

δ(·)

⊕

(·)α Multiplicatively masked

⊕

Figure 2: GPQ power function processing : x 7→ xα.

The classical approach to securely process a power function x 7→ xα consists in expressing
it in terms of squares and multiplications over F2n , the latter being secured with the ISW

multiplication gadget. This approach was first proposed by Rivain and Prouff in [RP10]
for AES whose S-box can be represented as a single monomial over F2n (i.e. x 7→ x254).
The study of masking power functions has been generalized by the work of Carlet, Goubin,
Prouff, Quisquater and Rivain in [CGP+12]. They defined the notion of masking com-
plexity for a n-bit S-box as the minimal number of nonlinear multiplications required to
evaluate its polynomial representation over F2n , and they computed the masking com-
plexity of all power functions over F2n for n ≤ 11. Their approach involves the notion of
cyclotomic class and addition chain which are recalled hereafter.
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Cyclotomic class. The cyclotomic class of α denoted by Cα, α ∈ [0; 2n− 2] is defined by

Cα = {α · 2i mod 2n − 1 ; i ∈ [0; n− 1]} .

As the Frobenius map x 7→ x2 over F2n is linear, any αi ∈ Cα can be computed from
any αj ∈ Cα with αj 6= αi only using linear transformations. Hence, powers whose
exponents lie in the same cyclotomic class have the same masking complexity. The au-
thors of [CGP+12] have related the problem of computing the masking complexity for
an element α whose cyclotomic class is Cα to finding the shortest addition chain for α,
Cα0

→ Cα1
→ . . . → Cαk

, such that Cα0
= C1, Cαk

= Cα, and for every i ∈ [1; k], there
exist j, l ≤ i such that αi = αj + αl where αj ∈ Cαj

and αl ∈ Cαl
. The resulting chain

decomposes any power xα in terms of linear operations (i.e. squares) and nonlinear mul-
tiplications between powers whose exponents belong to different cyclotomic classes. On
the contrary to the classical approach, GPQ does not require ISW to secure the sequence
that decomposes a power function. More precisely, multiplications which are nonlinear
when an additive masking is involved may be performed by element-wise field multiplica-
tions between the shares of the multiplicatively masked values and hence ISW is no longer
required. In fact, a power function x 7→ xα can even be tabulated with GPQ leading to
great efficiency gains. Such an implementation choice costs 2n bytes of memory to store
the table, which is reasonable for a power function over F2n with n < 10.

In the following, when power functions cannot be tabulated, we use the procedure Eval-
Chain(·) that takes as inputs a multiplicatively masked element x and an addition chain
for α and that outputs the desired power xα multiplicatively masked. Note that the cost
of Eval-Chain(·) is negligible with GPQ. However, in order to minimize the complexity of
an evaluation, it is always better to find the shortest possible addition chains.

Algorithm 6 Secure Power Function Evaluation

Require: An order d, an addition chain A for α, and a (d + 1)-additive sharing of x
Ensure: A (d + 1)-additive sharing (y0, . . . , yd) of xα

** Mapping from F2n to F
∗
2n .

1: (∆0, . . . , ∆d)← Secure-Dirac (x0, . . . , xd)
2: (x0, . . . , xd) ← (x0, . . . , xd)⊕ (∆0, . . . , ∆d)

** Convert into multiplicative masking
3: (z0, . . . , zd) ← AMtoMM (x0, . . . , xd)

** Evaluate the chain
4: (zα

0 , . . . , zα
d ) ← Eval-Chain ((z0, . . . , zd),A)

** Convert back into additive masking
5: (y0, . . . , yd) ← MMtoAM (zα

0 , . . . , zα
d )

** Mapping from F
∗
2n to F2n .

6: (y0, . . . , yd) ← (y0, . . . , yd)⊕ (∆0, . . . , ∆d)

7: return (y0, . . . , yd)

3.3.1 Complexity

Let us denote by Cδ, CAMtoMM and CMMtoAM respectively the costs of Alg. 3, 4 and 5 and by
CGPQ the overall cost of a power function processing with GPQ (Alg. 6). For each algorithm,
we express their cost in terms of the costs of their elementary operations. To that end,
let us also denote by C⊺, C⊕, C⊙, C⊗ respectively the costs of (n×n)-matrix transpositions,
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⊕,⊙ and ⊗ operations. At last, C⊕n and C⊙n denote the cost of n-bit operations ⊕,⊙.
We have,

Cδ =
(d + 1)

n
× C⊺ +

((2d (n− 1) + n)(d + 1)

n
× C⊕n +

(n− 1)(d + 1)2

n
× C⊙n ,

CAMtoMM = d2 × C⊕ +
d (3 + d)

2
× C⊗ ,

CMMtoAM = d (2 + d)× C⊕ +
d (3 + d)

2
× C⊗ ,

which gives,

CGPQ = Cδ + CAMtoMM + CMMtoAM .

3.3.2 Security

We now prove that GPQ is t-SNI. This is made accurate in the following theorem.

Theorem 3. GPQ is t-SNI. Let (xi)0≤i≤d be the input and let (yi)0≤i≤d be the output of
Alg. 6 (or equivalently of Fig. 3). For any adversary set of t probed wires Ω = (I,O),
with t ≤ d, there exists a set S of input shares such that |S| ≤ |I| and S is sufficient to
simulate the adversary observation set Ω.

x
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⊕
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⊕I5
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Figure 3: GPQ secure Gadget (·)α.

Proof. As in [BBD+15], the proof is constructed by composition. Namely, we construct
the simulator for the circuit of Fig. 3 by simulating sequentially each inner gadget from
right to left.

Let Ω = (I,O) be an observation set that has to be simulated, made on the whole circuit

of Fig. 3 such that I =
⋃

1≤i≤6 I
i and such that the global constraint

∑6
i=1 |I

i|+ |O| ≤ t
is satisfied.

Gadget 1 - Let Ω1 = (I1,O) be an observation set made on Gadget 1. Since G1 is
affine-NI, we know that for every observation set Ω1, there exists a set of input shares
Ŝ1 = (Ŝ1

1 , Ŝ1
2 ) such that |Ŝ1| ≤ |I1 ∪ O| and the set Ŝ1 is sufficient to simulate Ω1.

Gadget 2 - Let Ω2 = (I2, Ŝ1
2 ) be an observation set made on Gadget 2. Since MMtoAM(·)

is t-SNI and |I2 ∪ Ŝ1
2 | ≤ |I

2 ∪ I1 ∪ O| ≤ t (by simulation of Gadget 1 and the global
constraint), we know that for every observation set Ω2, there exists a set of input shares
S2 such that |S2| ≤ |I2| and the set S2 is sufficient to simulate Ω2.
Gadget 3 - Let Ω3 = (I3,S2) be an observation set made on Gadget 3. Since G3 is
affine-NI, we know that for every observation set Ω3, there exists an observation set Ŝ3

such that |Ŝ3| ≤ |I3 ∪ S2| ≤ |I3|+ |I2| and the set Ŝ3 is sufficient to simulate Ω3.
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Gadget 4 - Let Ω4 = (I4, Ŝ3) be an observation set made on Gadget 4. Since AMtoMM(·)
is t-SNI and |I4∪Ŝ3| ≤ t (by simulation of Gadget 3 and the global constraint) , we know
that for every observation set Ω4, there exists an observation set S4 such that |S4| ≤ |I4|
the set S4 is sufficient to simulate Ω4.
Gadget 5 - Let Ω5 = (I5,S4) be an observation set made on Gadget 5. Since G5 is
affine-NI, we know that for every observation set Ω5 there exists an observation set Ŝ5

such that |Ŝ5| ≤ |I5 ∪ S4| ≤ |I5|+ |I4| and the set Ŝ5 is sufficient to simulate Ω5.
Gadget 6 - Let Ω6 = (I6, (Ŝ5 ∪ Ŝ1

1 )) be an observation set made on Gadget 6. Since
δ(·) is t-SNI and |I6 ∪ Ŝ5 ∪ Ŝ1

1 | ≤ |I
6 ∪ I5 ∪ I4 ∪ I1 ∪ O| ≤ t (by simulation of gadgets

5 and 1 and by the global constraint), we know that for every observation set Ω6, there
exists an observation set S6 such that |S6| ≤ |I6| and the set S6 is sufficient to simulate Ω6.

To simulate the whole circuit, that is the observation set Ω = (
⋃

1≤i≤6 I
i,O), the simulator

requires |S6 ∪ Ŝ5| shares of x. Since |S6| ≤ |I6|, and |Ŝ5| ≤ |I5| + |I4|, we have that

|S6 ∪ Ŝ5| ≤
∑6

i=1 |I
i| ≤ t and therefore GPQ satisfies the t-SNI property.

4 Polynomial GPQ : The Alternate Cyclotomic Method

In this section, we describe how to extend the GPQ scheme to the masking of generic S-
boxes. The main idea is outlined as follows. Since any n-bit S-box can be represented
by a polynomial S(x) =

∑
aix

i over F2n , a secure evaluation of S(x) thus requires to
securely process the corresponding sequence of linear operations and power functions. As
mentioned in the previous section, the common approach, referred to as the CGPQR method,
would in turn decompose each power function in terms of squares and nonlinear multipli-
cations over F2n . Thereby, this approach involves ISW in order to secure these nonlinear
multiplications. We propose to use GPQ to process the power functions in such manner
that ISW is no longer required. However, a naive evaluation of the above writing of S that
processes each power xi with GPQ is not recommended in terms of efficiency. Indeed, such
an evaluation would require the computation of a Dirac function along with conversions
from an additive masking to a multiplicative masking and conversely for each monomial
involved in the polynomial representation. Note that those transformations are costly
to process (asymptotically they have the same complexity O(d2) as ISW multiplications),
thus we seek to minimize their number during a polynomial evaluation. A solution is
provided by the cyclotomic method of [CGP+12] which we briefly present hereafter. Our
approach is then detailed along with security proofs for the new proposed constructions.

4.1 Original Cyclotomic Method

Since the family of cyclotomic classes Cα is a partition of [0, 2n−1], hence the polynomial
representation of any S-box can be written

S(x) = a0 +

(
q∑

i=1

Li(x
αi)

)
+ a2n−1x2n−1 , (2)

where Li(x) denotes the linearized polynomial
∑

j ai,jx2j

and q is the number of distinct
cyclotomic classes of [0; 2n − 2]. The cyclotomic method simply consists in deriving the
powers xαi for each cyclotomic class as well as x2n−1 if a2n−1 6= 0 and in evaluating
S(x). Following the CGPQR approach, it is required to find an addition chain for the xαi ’s,
Cα0

→ Cα1
→ . . . → Cαk

such that Cα0
= C1 and for every xαi , there exists j ∈ [1, k]

such that Cαi
= Cαj

. The addition chain decomposes the xαi ’s as a sequence of squares
and nonlinear multiplications over F2n . The rest of the powers can be derived with Frobe-
nius maps. Using CGPQR, ISW is involved to derive at least one power of each distinct
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cyclotomic classes of [0; 2n − 2]. Therefore, the shorter the chain is, the better.

4.1.1 Complexity

Let us denote by CCyclo the cost of evaluating polynomials with the CGPQR scheme and the
cyclotomic method. Let us also denote by CSecMult the cost of a finite field multiplication
which is secured with ISW and let q be the number of distinct cyclotomic classes of [0; 2n−2].
Then the cost of masking generic S-boxes is

CCyclo = (q − 1)× CSecMult,

or CCyclo = (q − 2)× CSecMult if the S-box which is considered is balanced (see [CGP+12]).

We now propose a different writing of (2) adapted for an evaluation with GPQ.

4.2 Our alternate proposal

We have that xαi = (x + δ(x))αi + δ(x) which gives Li(x
αi) = Li((x + δ(x))αi) + Li(δ(x))

by linearity of Li. Thus, (2) can be written as

S(x) = a0 + L1(xα1) +

q∑

i=2

(Li((x + δ(x))αi) + Li(δ(x))) + a2n−1x2n−1 ,

where Li(δ(x)) =
∑

j ai,jδ(x)2j

=
∑

j ai,j(1)2j

δ(x) = Li(1) · δ(x), which gives

S(x) = a0 + L1(xα1) +

q∑

i=2

(Li((x + δ(x))αi) + Li(1) · δ(x))) + a2n−1x2n−1 .

According to the field equation, x2n−1 = 0 if x = 0 and x2n−1 = 1 otherwise. It follows
that since δ(x) = 1 if x = 1 and δ(x) = 0 otherwise, we have x2n−1 = δ(x) + 1. Finally,

S(x) = a0 + a2n−1 + L1(xα1) +

q∑

i=2

Li((x + δ(x))αi) +

(
q∑

i=2

Li(1) + a2n−1

)
· δ(x) . (3)

The above writing of S(x) yields to a novel version of the cyclotomic method which shall
be referred to as the alternate cyclotomic method in the following and which also extends
GPQ to the evaluation of polynomials over F2n .

We outline the steps of such an evaluation in Alg. 7. Similarly to the processing of a
single power function (see Section 3.3), the procedure Eval-Chain(·) (Step 4 of Alg. 7)
takes as inputs an element (x + δ(x)) ∈ F

∗
2n along with an addition chain for all the

xαi ’s, evaluates the latter without ISW and outputs the desired powers (x + δ(x))αi still
multiplicatively masked. Note that the sequence of operations provided by the chain
may lead to computing powers which are not one of the (x + δ(x))αi ’s. However, only
the (x + δ(x))αi ’s are converted back into additive maskings at the end of the evaluation.
Moreover, since Frobenius maps are less costly than conversions, the linearized polynomial
L1(x) of (3), whose monomials are only powers of two, is always computed in additive
masking.
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Algorithm 7 Alternate Cyclotomic

Require: An order d, an addition chain A, and a (d + 1)-additive sharing of x
Ensure: A (d + 1)-additive sharing (S0, . . . , Sd) of S(x)

Note : The (d+1)-additive sharing (x0, . . . , xd) of x is stored in memory

** Mapping from F2n to F
∗
2n .

1: (∆0, . . . , ∆d) ← Secure-Dirac(x0, . . . , xd)
2: (x0, . . . , xd) ← (∆0, . . . , ∆d)⊕ (x0, . . . , xd)

** Convert into multiplicative masking and evaluate the addition chain.
3: (z0, . . . , zd) ← AMtoMM(x0, . . . , xd)
4: (zα2 , . . . , zαk )← Eval-Chain((z0, . . . , zd),A)

** Compute the linearized polynomials.
5: (L0, . . . , Ld) ← Linearize-Poly(x0, . . . , xd)
6: for i = 2 to q do

7: (x
(i)
0 , . . . , x

(i)
d )← MMtoAM(zαi

0 , . . . , zαi

d )

8: (l
(i)
0 , . . . , l

(i)
d ) ← Linearize-Poly(x

(i)
0 , . . . , x

(i)
d )

9: (L0, . . . , Ld) ← (L0, . . . , Ld)⊕ (l
(i)
0 , . . . , l

(i)
d )

10: end for

** Mapping from F
∗
2n to F2n .

11: a← a0

12: for i = 1 to 2n − 1 do
13: a← a⊕ (ai · (∆0, . . . , ∆d))
14: (S0, . . . , Sd)← a0 ⊕ a2n−1 ⊕ (L0, . . . , Ld)
15: end for

16: return (S0, . . . , Sd)

4.2.1 Complexity

Let us denote by CAlt−cyclo the cost of evaluating polynomials using the alternate cyclo-
tomic method (Alg. 7). We do not take into account the costs of Eval-Chain(·) and
Linearize-Poly(·) procedures as they can be computed with linear transformations. The
cost of our alternate cyclotomic method for the evaluation of polynomials is therefore

CAlt−cyclo = Cδ + CAMtoMM + (q − 2)× CMMtoAM ,

where q is the number of distinct cylotomic classes of [0; 2n − 2].

For the sake of clarity, Table 1 lists the complexities of our proposal and the original
method in terms of elementary operations as a function of the order d. Also, as oper-
ations ⊕,⊕n,⊙,⊙n have the same complexity in practice (see Section 6), we list them
together. Operation M⊺ denotes (n× n)-matrix transpositions.

In order to proceed to a fair comparison it should be noted that field multiplications with
our proposal do not have the same weight as the ones that are implemented following the
original method. Our approach allows to implement field multiplications more efficiently
(see Section 6).
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Table 1: Complexities of our proposal and the original method in terms of elementary
operations.

Our proposal [CGP+12]
Operations

⊗ (q − 1) d2 + (3q − 3) d (q − 2) d2 + (2q − 4) d + (q − 2)

⊕,⊕n,⊙,⊙n
(
q + 2− 3

n

)
d2 +

(
2q + 1− 4

n

)
d +

(
2− 1

n

)
(2q − 4) d2 + (2q − 4) d

M⊺ d
n

+ 1
n

−

From Table 1 it is obvious that the complexities of both our proposal and the original
method mainly depend on the number of cyclotomic classes.

The end of the section is dedicated to prove the security of the resulting method under
the t-SNI security definition.

4.2.2 Security

In order to analyze the security of our alternate cyclotomic method and for the sake of
clarity, we divide the processing of the corresponding Gadget Alt-Cy(·) into two parts as
illustrated Fig. 4. The security of Gadgets Alt-Cy1(·) and Alt-Cy2(·) is analyzed sepa-
rately. Then the security of Alt-Cy(·) is induced by the secure composition of Gadgets
Alt-Cy1(·) and Alt-Cy2(·). Note that Gadget R is a refreshing Gadget (Alg. 2).

x ⊕ AMtoMM(·)δ(·)

Eval-Chain(·) O

⊕

a0
a2n−1

L1(·)

MMtoAM(·) L2(·)

Lq(·)

a0

a2n−1

⊕ ⊕ ⊕

C(·)

Alt-Cy2(·) Alt-Cy1(·)

MMtoAM(·)

R

MMtoAM(·) L3(·)

Figure 4: Gadget Alt-Cy(·) : circuit of the alternate cyclotomic processing.

Gadget Alt-Cy1(·) only involves affine gadgets. Indeed, Gadget Li(·) corresponds to the
procedure Linearize-Poly(·) (step 9) of Alg. 7 which only involves linear operations
(i.e. squares and additions) and Gadget C(·) corresponds to step 8 which involves scalar
multiplications and additions. Since the composition of affine gadgets is affine, hence
Alt-Cy1(·) is affine-NI. Regarding Gadget Alt-Cy2(·) we prove the following Lemma.

Lemma 2. Alt-Cy2(·) is t-SNI. Let (xi)0≤i≤d be the input and let (x′
i)0≤i≤d, ((x+δ(x))

αj

i )0≤i≤d

with j ∈ [2; q] and (δ(x)i)0≤i≤d be the outputs of Gadget Alt-Cy2(·). For any adversary
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set of t probed wires Ω = (I,O), with t ≤ d, there exists a set S of input shares such that
|S| ≤ |I| and S is sufficient to simulate the adversary observation set Ω.

Proof. See Appendix B.1.

Theorem 4. Alternate cyclotomic is t-SNI. Let (xi)0≤i≤d be the input and let (Si)0≤i≤d be
the output of Alg. 7 or equivalently of Gadget Alt-Cy(·) (see Fig. 4). For any adversary
set of t probed wires Ω = (I,O), with t ≤ d, there exists a set S of input shares such that
|S| ≤ |I| and S is sufficient to simulate the adversary observation set Ω.

We illustrate Fig. 5 the circuit corresponding to our alternate cyclotomic method. We
already analyzed Gadgets Alt-Cy1(·) and Alt-Cy2(·) and now we prove the security of the
full construction by composition.

x O

I1I2

G1

Ŝ1
Alt-Cy2(·) Alt-Cy1(·)

G2

S2

Figure 5: Gadget Alt-Cy(·).

Proof. Let Ω = ((I1∪I2),O) be an observation set to simulate for the circuit represented
Fig. 5, such that the global constraint |I1|+ |I2|+ |O| ≤ t is satisfied.

Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI, we know that there exists an

observation set Ŝ1 such that |Ŝ1| ≤ |I1|+ |O| and the set of input shares Ŝ1 is sufficient
to simulate the adversary observation set Ω1 made on Gadget 1.
Gadget 2. Let Ω2 = (I2, Ŝ1). Since G2 is t-SNI (by Lemma 2) and |I2∪ Ŝ1| ≤ t (by sim-
ulation of Gadget 1 and the global constraint), we know that there exists an observation
set S2 such that |S2| ≤ |I2| and S2 is sufficient to simulate Ω2.

In order to simulate Gadget Alt-Cy(·), the corresponding simulator requires the shares S2

of its input x and |S2| ≤ |I2| ≤
∑2

i=1 |I
i| ≤ t. Therefore, Gadget Alt-Cy(·) is t-SNI.

Gadgets Alt-Cy1(·) and Alt-Cy2(·) involved in our alternate cyclotomic method are also
used in the next section in which we describe how to combine them to propose an alternate
CRV method.

5 The Alternate CRV Method

In this section we describe an alternate approach for the CRV method proposed by Coron,
Roy and Vivek in [CRV14] which is currently the best known method for polynomial
evaluation over F2n . The idea is to plug our polynomial evaluation method with GPQ (i.e
our alternate cyclotomic method) into the CRV construction. First, we recall the original
method, then we describe our alternate approach and we also show how it enables to
derive new parameters more adapted to our case. Finally, we prove that the resulting
construction is t-SNI.

5.1 Original CRV method

The CRV method first consists in choosing a collection S of l cyclotomic classes among
which C0 and C1 are always counted. Then it defines the union set L of all integers in
those cyclotomic classes. The original approach states that the set S has to be carefully
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chosen so that the monomials xL can be computed with only l − 2 nonlinear multipli-
cations. It is moreover required that every monomial of [0, 2n − 1] can be written as a
product of some two monomials generated from L.

Denoting by P(xL) the set of all polynomials in F2n whose monomials belong to the set
xL, CRV generates randomly k − 1 polynomials qi(x) ∈ P and tries to find k polynomials
pi(x) ∈ P such that

S(x) =

k−1∑

i=1

pi(x) · qi(x) + pk(x) . (4)

From (4), CRV tries to solve a system of 2n linear equations with k× |L| unknowns which
are the coefficients of the pi’s. Such a system admits a solution for every choice of S if it
has rank 2n. To be of full rank, the necessary condition k · |L| ≥ 2n has to be satisfied.

5.1.1 Complexity

Let us denote by CCRV the overall cost of CRV. As mentioned in the above description,
the set of monomials xL requires l − 2 nonlinear multiplications to be built, and k − 1
additional nonlinear multiplications are necessary to compute (4). Following the CGPQR

method, those nonlinear multiplications are secured with ISW, which cost is denoted by
CSecMult. Thus,

CCRV = (l + k − 3)× CSecMult .

5.2 Our Alternate Proposal

The original approach imposes a constraint on the choice of cyclotomic classes that form
the set S. Underlying this constraint is in fact the cyclotomic method. The latter enables
to evaluate polynomials composed of l cyclotomic classes with l − 2 nonlinear multiplica-
tions, as long as each nonlinear multiplication allows to reach a different cyclotomic class.
Also, monomials that belong to C0 or C1 do not require nonlinear multiplications to be
derived (see Section 4.1 of [CGP+12]).

On the other hand, our alternate cyclotomic approach does not imply to secure these
l− 2 nonlinear multiplications with ISW and thus makes the previous constraint obsolete.
It evaluates polynomials with GPQ instead. Therefore, we propose to plug our alternate
cyclotomic approach into the CRV construction only to build the precomputed set xL. We
emphasize that computing (4) still requires k − 1 ISW multiplications.

5.2.1 New parameters

Our approach allows more freedom degree on the choice of cyclotomic classes to build xL.
Also, we can consider larger sets S. As an example, let us consider the secure evaluation of
8-bit S-boxes. It has been shown in [CRV14] that choosing l = 7 and the set of cyclotomic
classes L = C0 ∪C1 ∪C3 ∪C7 ∪C29 ∪C87 ∪C251 gives a full rank system for some random
choice of the polynomials qi(x). The precomputed set from which the monomials of the
qi’s are picked up can thus be built with 5 nonlinear multiplications. Moreover, in order
to satisfy the necessary condition k · |L| ≥ 2n, such a choice for L (|L| = 49) implies that
k = 6.

In our approach, we increase the size of S only to decrease the parameter k. To that end,
we chose l = 10 and L = C0∪C1∪C15∪C31∪C39∪C43∪C53∪C61∪C111∪C119 (|L| = 69)
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which implies that k = 4 and we have checked that the corresponding system is of full
rank. Such settings would require a total of 11 nonlinear multiplications following the
original approach. However, they are better suited for our alternate cyclotomic approach
than those proposed in [CRV14]. We also determined new sets of parameters for the cases
n ∈ {5, 7}, which are given along with implementation results Section 6.

5.2.2 Complexity

Let us recall that CSecMult denotes the cost of a finite field multiplication which is secured
with ISW. The cost to build the precomputed set of monomials is denoted by CSet and we
denote by CAlt−CRV the overall cost of our alternate CRV proposal. Note that CSet represents
the cost of our alternate cyclotomic proposal for polynomials that can be generated from
l distinct cyclotomic classes. Thus,

CSet = Cδ + CAMtoMM + (l − 2)× CMMtoAM ,

and

CAlt−CRV = CSet + (k − 1)× CSecMult .

For the sake of clarity, Table 2 lists the complexities of our proposal and the original
method in terms of elementary operations as a function of the order d. Also, as operations
⊕,⊕n,⊙,⊙n have the same complexity in practice (see Section 6), they are listed together.
Operation M⊺ denotes (n× n)-matrix transpositions.

Table 2: Complexities of our proposal and the original method in terms of elementary
operations.

Our proposal
Operation

⊗ (l + k − 2) d2 + (3l + 2k − 5) d + (k − 1)

⊕,⊕n,⊙,⊙n
(
l + 2k − 3

n

)
d2 +

(
2l + 2k − 4

n
− 1
)

d +
(
2− 1

n

)

M⊺ d
n

+ 1
n

[CRV14]

⊗ (l + k − 1) d2 + (2l + 2k − 2) d + (l + k − 1)

⊕ (2l + 2k − 2) d2 + (2l + 2k − 2) d + (l + k − 1)

As previously mentioned, in order to proceed to a fair comparison it should be noted
that field multiplications with our proposal do not have the same weight as the ones that
are implemented following the original method. Our approach allows to implement field
multiplications more efficiently (see Section 6).

5.2.3 Security

We now describe the resulting alternate CRV construction that incorporates our alternate
cyclotomic approach to build the precomputed set of monomials. Gadgets Alt-Cy1(·) and
Alt-Cy2(·) of our alternate cyclotomic approach which have been analyzed in the previous
section are thus involved in the full construction as illustrated Fig. 6. Note that Alt-Cy2(·)
enables to derive powers of the precomputed set and each gadget Alt-Cy1(·) enables to gen-
erate distinct linearized polynomials by affecting different coefficients to powers belonging
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to the precomputed set. Therefore, each composition of a Gadget Alt-Cy2(·) with a Gad-
get Alt-Cy1(·) generates a new polynomial. Note also that Gadgets CRV1

i(·) correspond to
the products of the pi(x)’s with the qi(x)’s of (4) for which we prove the following Lemma.

⊗

Alt-Cy1
q1

(·)

O

Alt-Cy1
p1

(·)

R

CRV1
1(·)

⊕

Alt-Cy2(·)

Alt-Cy1
pk−1

(·)

R

⊗

CRV1
k−1(·)

⊕

Alt-Cy1
qk−1

(·)

Alt-Cy1
pk

(·) ⊕

CRV2(·)

x

⊕

Figure 6: Gadget Alt-CRV(·) : circuit of the alternate CRV method.

Lemma 3. Gadget CRV1
i(·) is t-SNI. Let (xi)0≤i≤d, (δ(x)i)0≤i≤d and

(
(x + δ(x))

αj

i

)
0≤i≤d

with j ∈ [2; q] be the inputs and let (yi)0≤i≤d be the output of Gadget CRV1
i(·) represented

Fig. 6. For any adversary set of t probed wires Ω = (I,O), with t ≤ d, there exists a set
S of input shares such that |S| ≤ |I| from which Ω can be perfectly simulated.

Proof. See Appendix C.1.

Regarding Gadget CRV2(·) we prove the following Lemma.

Lemma 4. CRV2(·) is t-NI. Let (xi)0≤i≤d, (δ(x)i)0≤i≤d and
(
(x + δ(x))

αj

i

)
0≤i≤d

, j ∈ [2, q]

be the inputs and let (yi)0≤i≤d be the output of Gadget CRV2(·) represented Fig. 14. For
any adversary set of t probed wires Ω = (I,O), with t ≤ d, there exists a set S of input
shares such that |S| ≤ t from which Ω can be perfectly simulated.

Proof. See Appendix C.2.

We now prove the following theorem regarding the full construction of our alternate CRV

approach.

Theorem 5. Alternate CRV is t-SNI. Let (xi)0≤i≤d be the input and let (yi)0≤i≤d be the
output of Gadget Alt-CRV(·) represented Fig. 6 and 7. For any adversary set of t probed
wires Ω = (I,O), with t ≤ d, there exists a set S of input shares such that |S| ≤ |I| from
which Ω can be perfectly simulated.

Proof. Let Ω = ((I1 ∪ I2),O) be an observation set we want to simulate, made on the
whole circuit represented Fig. 7 (or equivalently Fig. 6) such that |I2|+ |I1|+ |O| ≤ t.
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x O

I1I2

G1

Ŝ1

Alt-Cy2(·) CRV2(·)

G2

S2

Figure 7: Gadget Alt-CRV(·).

Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI (by Lemma 4) and |I1 ∪ O| ≤ t
(by the global constraint), we know that there exists an observation set S1 such that
|S1| ≤ |I1| + |O| and the set of input shares S1 is sufficient to simulate the adversary
observation set Ω1 made on Gadget 1.

Gadget 2. Let Ω2 = (I2, Ŝ1). Since G2 is t-SNI (by Lemma 2) and |I2 ∪ Ŝ1| ≤
|I2|+ |I1|+ |O| ≤ t (by simulation of Gadget 1 and the global constraint), we know that
there exists an observation set S2 such that |S2| ≤ |I2| and S2 is sufficient to simulate Ω2.

To simulate Gadget Alt-CRV(·), the simulator needs the shares S2 of x and |S2| ≤ |I2| ≤
|I1|+ |I2| ≤ t. Therefore Alt-CRV(·) is t-SNI.

6 Implementation Results

In this section we compare the efficiency of our alternate approach for the cyclotomic
and the CRV methods with that of the original approach (CGPQR) for orders d = 1, 2, 3.
We wrote the codes in assembly language for an 8051 based 8-bit architecture with bit-
addressable memory and we provide implementation results for different settings related
to S-boxes of size 4 to 8. For the sake of clarity, we begin to explicit our implementation
choices and provide timings (in cycles) for several elementary operations. For elementary
operations ⊕ and ⊙, we experienced C⊕ = C⊙ = 1 cycle.

Finite field multiplications. We tabulated them for S-boxes of dimension n = 4 at the
cost of 28 bytes of memory and we experienced C⊗ = 10 cycles. For larger dimensions,
the memory required to store such tables becomes prohibitive. In cases n ∈ [5; 8], we
implemented finite fields multiplications using exp/log tables. This approach still requires
to store two tables with 2n entries each, but offers a good trade-off between execution time
and memory cost. The most tricky part of the exp/log multiplication is to manage the case
where the inputs equal 0 while avoiding any conditional branch. In our GPQ based alternate
approaches, there are always one non-zero input involved in field multiplications which
yields to slightly more efficient field multiplications than in the classical CGPQR approach.
A time constant field multiplication is executed in C⊗ = 38 cycles in the context of CGPQR

while it only takes C⊗ = 25 cycles in our alternate proposals.

(8 × n)-matrix transposition. We recalled in Section 3.1 a bit-sliced approach that
computes n Dirac functions simultaneously over F2n . The procedure (Alg. 3) involves
(n × n)-matrix transpositions. However, on 8-bit architectures we are able to simulta-
neously compute 8 Dirac functions at a time for any S-box dimension lower or equal to
8 which consequently requires (8 × n)-matrix transpositions. We experienced C⊺ = 150
cycles to transpose (8× n)-matrices for 5 ≤ n ≤ 8. Note that 8-bit architectures allow us
to fill each register with two elements of F24 in order to faster the transformation in that
particular case leading to a cost C⊺ = 75 cycles.
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We give costs of the transformations involve in GPQ along with the cost of a secure multi-
plication using ISW (Alg. 1) in Table 3.

Table 3: Costs of Secure-Dirac (Alg. 3), AMtoMM (Alg. 4), MMtoAM (Alg. 5) and SecMult

(Alg. 1).

Costs (in cycles)

Order (d) Cδ CAMtoMM CMMtoAM CSecMult

1 43 51 53 156
2 72 129 133 354
3 105 234 240 632

6.1 Cyclotomic method

The cyclotomic method only consists in evaluating a polynomial whose monomials may
belong to any of the q distinct cyclotomic classes of [0, 2n−2]. The classical CGPQR scheme
requires to secure each of the q − 1 nonlinear multiplications with ISW (q − 2 if the S-box
is balanced, see [CGP+12]). Considering our proposal, a secure polynomial evaluation
implies to process 1 Secure-Dirac(·), 1 AMtoMM(·) and q− 1 MMtoAM(·) (q− 2 if the S-box
is balanced). Table 4 lists the costs (in cycles) to evaluate polynomials over F2n with
n ∈ [4; 8].

Table 4: Costs of evaluating S-boxes of size 4 ≤ n ≤ 8 with the cyclotomic method and
our alternate proposal.

n

Method Order (d) 4 5 6 7 8

Our proposal 1 83 246 553 860 1677
[CGP+12] 132 780 1716 2652 5148

Our proposal 2 276 585 1362 2138 4205
[CGP+12] 174 1770 3894 6018 11682

Our proposal 3 477 1036 2445 3854 7603
[CGP+12] 293 3160 6952 10744 20856

When finite field multiplications can be tabulated (when n = 4), our proposal does not
lead to improvement of efficiency. In this case, the original approach is preferred. In all
other scenarios, our proposal is approximatively 3 times faster at orders d = 1, 2, 3. Those
results illustrates the efficiency of our extended version of GPQ for polynomials.

6.2 CRV method

Regarding the CRV method, its processing can be divided into two main stages. First it
requires to generate polynomials whose monomials are derived from a set of l distinct
cyclotomic classes. This stage requires l − 2 nonlinear multiplications with the classical
approach or 1 Secure-Dirac(·), 1 AMtoMM(·) and l − 2 MMtoAM(·) with ours. Then the
evaluation is completed with k − 1 additional nonlinear multiplications secured with ISW

for both approaches.
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New parameters. As mentioned in Section 5.2, our proposal enables to consider new
settings for parameters l,k and L. We list in Table 5 the settings that led to better
performances in practice. We were able to derive more efficient parameters for S-boxes of
dimension n with n ∈ {5, 7, 8}.

Table 5: New settings for parameters k and l of the CRV method.

n l k |L| L

5 5 2 21 C0 ∪ C1 ∪ C5 ∪ C7 ∪ C15

7 8 3 50 C0 ∪ C1 ∪ C3 ∪ C9 ∪ C11 ∪ C15 ∪ C21 ∪ C43

8 10 4 69 C0 ∪ C1 ∪ C15 ∪ C31 ∪ C39 ∪ C43 ∪ C53 ∪ C61 ∪ C111 ∪ C119

We report in Table 6 the cost (in cycles) of the CRV method with the original approach
compared to our proposal. Parameters l and k have been chosen accordingly to [CRV14]
for the original approach, while our alternate proposal uses our new settings for S-boxes
of dimension n ∈ {5, 7, 8}.

Table 6: Costs of evaluating S-boxes of size 4 ≤ n ≤ 8 with the CRV method and our
alternate proposal.

n

Method Order (d) 4 5 6 7 8

Our proposal 1 127 402 559 713 972
[CRV14] 88 624 780 1092 1560

Our proposal 2 276 939 1296 1685 2300
[CRV14] 204 1416 1770 2478 3540

Our proposal 3 477 1668 2305 3012 4117
[CRV14] 368 2528 3160 4424 6320

Again in the particular case n = 4, the original approach is preferred since finite field mul-
tiplications can be tabulated. However, our alternate proposal outperforms the original
in every other scenario.

7 Conclusion

In this paper, we have proven the security of the power function masking scheme GPQ under
the t-SNI definition. We have extended the GPQ scheme to the evaluation of polynomials
over F2n and we have proven the security of the resulting construction under the t-SNI

definition. Our extension results in an alternate cyclotomic method which we have plugged
into the CRV construction in order to speed up polynomial evaluations. We have analyzed
our alternate CRV construction and we have proven that it is t-SNI. Moreover, we have
provided new sets of parameters that improve even more the efficiency of our alternate
approach for CRV. We have given implementation results in several realistic scenarios
where S-boxes are of dimension n ∈ {4, 5, 6, 7, 8}. Given those results, we argue that our
t-SNI proposal for polynomial evaluation over F2n is a better alternative than the original
approach in all scenarios where finite field multiplications are not tabulated.
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A Security analysis of GPQ

A.1 Proof of Lemma 1.

For the sake of clarity, we divide the bit-sliced Secure-Dirac procedure into two stages
as illustrated Fig. 8 and we give further details about the transformation before proving
its security.

R
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Stage 2Stage 1

MT
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⊙n
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Figure 8: Gadget δ(·).

Stage 1 is composed of the steps 1 to 4 of Alg. 3 and stage 2 illustrates the steps 5 to 9.
As mentionned previously, the Secure-Dirac procedure uses bit-slicing and therefore pro-
cesses simultaneously several elements of Fn

2 . We consider the case of n-bit architectures
for which the transformation processes n elements of Fn

2 at a time. These n elements are
represented by a matrix M ∈ F

n×n
2 in such a way that each line of M is one element

of Fn
2 . Since the procedure manipulates masked data, stage 1 therefore takes as input a

(d + 1)-sharing (M0, . . . , Md) of M , with Mj ∈ F
n×n
2 for every j ∈ [0; d]. We hereafter

exhibit the matrices involve in the computation. Namely, we have

Mj =
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where
(
πk

(
x(i)
))

j
is the projection of the kth bit of the jth share of the element x(i) with

i in [0; n− 1], j in [0; d] and k in [0; n− 1].

Stage 1 transposes the matrices Mj for every j ∈ [0; d]. Note that the bit-wise complement
(step 1 of Alg. 3) is only performed over the elements of M0. The transposed matrices
are denoted by tj and we therefore have t0 =

(
M0

)⊺
and tj = (Mj)

⊺
for j ∈ [1; d]. Then,

stage 1 outputs the d + 1 binary (n× n)-matrices t0, . . . , td such that

tj =
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Finally, stage 2 takes as inputs n distinct vectors v(k) =
(

t
(k)
0 , . . . , t

(k)
d

)
where t

(k)
j is the

kth line of the matrix tj . In other words, t
(k)
j is a n-tuple composed of the kth bits of the

jth shares of all input elements and v(k) is therefore composed of the kth bit of all the
shares of every input elements. In the following proof, we assume that if a single inter-
nal bit has to be simulated then the whole word corresponding to this single bit is required.

As in [BBD+15], the proof is constructed by composition. Namely, we construct the sim-
ulator for the whole circuit by simulating sequentially each inner gadget from right to left.
We begin our security analysis by stage 2 which we also divide into two parts (see Fig. 9).
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Figure 9: Stage 2 of Gadget δ(·).

Proof. Let Ω = (I,O) be an observation set made on stage 2 such that I =
⋃

0≤i≤n−1 I
i

and such that the global constraint
∑n−1

i=0 |I
i|+ |O| ≤ t is satisfied.

Let us first consider the right side of Fig. 9. For every i ∈ [2, n − 1], we want to simu-
late the observation set Ωi = (Ii,OGi) made on Gadget i. Since Gadget i is t-SNI and
|In−1 ∪ O| ≤ t (by global constraint) and |Ii ∪ OGi | ≤ t for i ∈ [2, n − 2] (by global
constraint and simulation of Gadget i + 1), we know that there exists an observation set
Si = (Si

1,Si
2) such that |Si

1| ≤ |I
i|, |Si

2| ≤ |I
i| and Si

1 ∪S
i
2 is sufficient to simulate Gadget

i (i.e. simulate Ωi) for every i ∈ [2, n− 1]. As illustrated Fig. 9 and by the t-SNI property
of Gadget i for every i ∈ [2, n − 1], the simulation of these Gadgets therefore requires at
most |Ii| shares of v(i), and at most |Ii| shares of the output of Gadget i − 1 for every
i ∈ [2, n− 1].

Let us now also take into account the left side of Fig. 9. It has been shown in [BBD+15]
that such a composition of t-SNI gadgets is t-SNI thanks to the additional t-SNI refreshing
Gadget (Alg. 2). Thus, in order to simulate the observation set Ω0,1 = ((I0 ∪ I1),OG1)
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and since |I0 ∪ I1 ∪OG1 | ≤ t (by global constraint and simulation of Gadgets i for every
i ∈ [2, n−1]), the corresponding simulator requires at most |I0| shares of v(0) and at most
|I1| shares of v(1).

Altogether, the simulation of stage 2 requires at most |Ii| shares of v(i) for every i ∈
[0, n− 1].

Let us now take into account stage 1. As mentioned previously, v(i) =
(

t
(i)
0 , . . . , t

(i)
d

)
for

every i ∈ [0, n − 1], which means that the v(i)’s are composed of the ith bit of all the
shares of every input elements. Let us also remind that we assume that if a single internal
bit has to be simulated then the whole word corresponding to this single bit is required.
For the sake of clarity, we illustrate in Fig. 10 the propagation of a share v(i) throughout
stage 1. As an example, we consider the case where the simulation requires the first share

t
(i)
0 of v(i) and show how it is actually related to the first shares of each input elements.
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Figure 10: Linking the shares of the vi’s to the shares of the input elements.

The above figure shows that if the simulation requires the jth share of v(i), then the
simulation actually requires the jth shares of all input elements. Moreover and as discussed
above, the simulation of the procedure requires |Ii| shares of v(i) for every i ∈ [0, n − 1].
Oberserve that the simulation may involve |Ii| distinct shares of v(i) for every i = [0, n−

1]. Therefore, at most
∑n−1

i=0 |I
i| distinct shares of each input element of the Secure-

Dirac procedure are actually required. Also, by the global constraint
∑n−1

i=0 |I
i| ≤ t and

consequently the t-SNI property is satisfied for the whole circuit of the Secure-Dirac

procedure.

Remark 2. In order to satisfy the t-SNI property, the shares of v(0) have to be refreshed
in stage 2 thanks to Algorithm 2. This mask refreshing was not required in the original
approach that only proves the security of Secure-Dirac under the less stronger t-NI secu-
rity definition.

A.2 Proof of Theorem 1

The AMtoMM(·) transformation converts an additively masked element x ∈ F
∗
2n into a mul-

tiplicative masking. Initially x is represented by a (d + 1)-additive sharing (X0, . . . , Xd)
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involving d additive masks (Xi)1≤i≤d such that
∑d

i=0 Xi = x. A sequence of transforma-
tions is carried out over the successive intermediate maskings of x to finally produce a
(d + 1)-multiplicative sharing (Z0, . . . , Zd) of x such that

∏d
i=0 Zi = x.

More precisely, Alg. 4 randomly generates multiplicative masks (Zi)0≤i≤d−1 and computes

the sequence X(i+1) = πi(X
(i), Zi) for i in [0; d − 1] where X(i) = (X

(i)
0 , X

(i)
1 , . . . , X

(i)
d−i).

Thus, X(0) is the input of Alg. 4, X(d) is the output and the other X(i)’s are intermediate
maskings of x. We illustrate the above discussion in Fig. 11.

X(0)

Z0

Z1

Zd−1I0

I1

X(1)

X(d−1). . .

X(2)

I(d−1)

π0 π1
πd−1

S0
S1

S2

Sd−1 X(d)
O

Sd

Figure 11: Internal functioning of Gadget AMtoMM(·).

The Ii’s are random vectors whose components are some intermediate variables that ap-
pear during the corresponding transformation πi and may also be composed of some of
X(i)’s shares. The Si’s specify which components of X(i) are considered. In the following
we denote by X̃(i) vectors only composed of the shares of X(i) and specified by Si. Also,
O = X̃(d) ∪ Z|J

where Z|J
= (Zi)i∈J .

Our goal is to prove that Gadget AMtoMM(·) is t-SNI.

Proof. Let Ω = (I,O) be an adversary observation set constructed over Gadget AMtoMM(·)
with I = ∪d−1

i=0 I
i such that the global constraint |I ∪ O| ≤ t is satisfied.

In order to prove that Alg. 4 is t-SNI, we prove that Ω = (I,O) may be simulated
from a set of its input shares S0 with |S0| ≤ |I|. More precisely, we prove that any
adversary view Ω satisfying the global constraint may be expressed as a function ρ of

X̃(0) and a uniform random vector U such that Ω = ρ(X̃(0),U), where X̃(0) ∈ F
|S0|
2n and

|S0| ≤ |I|. This is achieved in two steps. We first prove that the adversary view Ω

may be expressed in terms of a vector (X̃(0), X̃(1), . . . , X̃(d), z|J∪L
) and a uniform random

vector (Ud−2, · · · ,U0). We then prove that (X̃(0), X̃(1), . . . , X̃(d), z|J∪L
) may be expressed

as h(X̃(0),U ′) with |S0| ≤ |I| and U ′ is a uniform random vector.

Let us first build the sequence of Si’s.

If X(d) is a component of O, then Sd = 0 and thus |Sd| = 1, otherwise Sd = ∅ and
|Sd| = 0. Then the other Si’s are defined according to the following discussion.

We start from the end of the evaluation of AMtoMM(·) and we therefore first consider the
transformation

πd−1(X(d−1), Zd−1) −→ (X(d)) ,

where X(d−1) = (X
(d−1)
0 , X

(d−1)
1 ) and X(d) = X

(d)
0 .

We list hereafter the variables computed during this transformation :
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• W
(d)
0 = X

(d−1)
0 · Zd−1

• W
(d)
1 = X

(d−1)
1 · Zd−1

• X
(d)
0 = W

(d)
0 + W

(d)
1

Let Id−1 be a subset of {X
(d−1)
0 , X

(d−1)
1 , W

(d)
0 , W

(d)
1 } and

◦

Id−1 = Id−1\{X
(d−1)
0 , X

(d−1)
1 }.

On the one hand, if
◦

Id−1 = ∅ then Id−1 is only composed of input variables of πd−1, thus

all variables of Id−1 may be expressed from X̃(d−1) ∈ F
|Sd−1|
2n with |Sd−1| = |Id−1|. On

the other hand, if
◦

Id−1 6= ∅, noting that W
(d)
0 (resp. W

(d)
1 ) can be expressed from X

(d−1)
0

(resp. X
(d−1)
1 ) and Zd−1, Id−1 may be expressed in terms of X̃(d−1) with |Sd−1| ≤ |Id−1|.

Consequently in any cases, all variables of Id−1 may be expressed as a function of Zd−1

and X̃(d−1) ∈ F
|Sd−1|
2n , i.e.

Id−1 = ρd−1(X̃(d−1), Zd−1) with |Sd−1| ≤ |Id−1| . (5)

Let us define the sets Si = {0, . . . , d− i} and Ti = {1, . . . , d− i− 1} for i = (d− 2) · · · 0.

Our goal is now to prove that for any i = (d − 2) · · · 0, for any Ii with
◦

Ii 6= ∅ and for
any subset Si+1 ⊆ Si+1 there exists a subset Si ⊆ Si, a uniform vector Ui stochastically
independent of all other random vectors and an application ρi such that

Ii = ρi(X̃
(i), X̃(i+1), Zi,Ui) with |Si| ≤ |Ii|+ |Si+1| . (6)

We list hereafter the variables involved in the πi transformation, with i ∈ {0, . . . , d− 2} :

• X
(i+1)
j ∼ U(F2n) with j ∈ Ti

• W
(i+1)
j = X

(i)
j · Zi with j ∈ Si

• Y
(i+1)

j = W
(i+1)
j + X

(i+1)
j with j ∈ Ti

• H
(i+1)
j = W

(i+1)
0 +

∑j
t=1 Y

(i+1)
t = H

(i+1)
j−1 + Y

(i+1)
j with j ∈ Ti. Note that H

(i+1)
0 =

W
(i+1)
0 .

• X
(i+1)
0 = H

(i+1)
d−i−1 + W

(i+1)
d−i .

We have
Ii = (X

(i)
|Ii

, W
(i+1)
|Ki

, Y
(i+1)

|Li

, H
(i+1)
|Qi

) ,

with Ii ⊆ Si, Ki ⊆ Si, Li ⊆ Ti, Qi ⊆ Ti.

First note that X
(i)
|Ii

and W
(i)
|Ki

may be expressed as a function of X
(i)
|Ii∪Ki

and Zi. Therefore,

Si ⊇ Ii ∪Ki. For any j ∈ Si+1 ∩ Li, X̃(i+1) and X
(i)
j are necessary to simulate Y

(i+1)
j .

Therefore, Si ⊇ Si+1∩Li. For any j ∈ Li \S
i+1, Y

(i+1)
j may be simulated from a uniform

random variable stochastically independent from any other random variables.

If Qi = ∅, Ii may be expressed as a function of X̃(i+1), X̃(i) (with Si = Ii∪Ki∪(Si+1∩Li)),
Zi and a uniform random vector Ui stochastically independent from any other random
variables. It follows that

|Si| ≤ |Ii|+ |Ki|+ |S
i+1| ≤ |Ii|+ |Si+1| .
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The condition (6) is therefore satisfied in this case.

If Qi 6= ∅, i.e. Qi = {s1, · · · , st}. Applying a well determined invertible linear application

to H
(i+1)
|Qi

, we observe that the simulation of H
(i+1)
|Qi

is equivalent to the simulation of the

vector

X

(i)
0 · Zi +

s1∑

j=1

Y
(i+1)

j ,

s2∑

j=s1+1

Y
(i+1)

j , . . . ,

st∑

j=st−1+1

Y
(i+1)

j


 .

If the interval [1; s1] ⊆ Si+1 then the first component of the above vector may be expressed

as a function of X̃(i+1), Zi and the random variables X
(i)
j for j ∈ [1; s1]∪ {0}. Otherwise,

the first component may be simulated from a uniform random variable stochastically
independent from any other random variables. If the interval [si; si+1] ⊆ Si+1 then the

corresponding component of the vector may be expressed as a function of X̃(i+1), Zi

and the random variables X
(i)
j for j ∈ [si; si+1]. Otherwise, this component may be

simulated from a uniform random variable stochastically independent from any other
random variables. It follows that Ii may be expressed as a function of X̃(i) (with Si =
Ii ∪ Ki ∪ (Si+1 ∩ Li) ∪ S

i+1 ∪ {0}), Zi and a uniform random vector Ui stochastically
independent from any other random variables. Since Qi 6= ∅ by assumption, it follows
that

|Si| ≤ |Ii|+ |Ki|+ |Li|+ |S
i+1|+ 1 ≤ |Ii|+ |Si+1| .

The condition (6) is therefore satisfied in this case.

Observe that for any Ii with
◦

Ii = ∅ we have Ii = X̃(i) with Si = Ii. In this case, we
have therefore |Si| = |Ii|.

Define L = {i |
◦

Ii 6= ∅} with
◦

Ii = Ii\X̃(i). Let us prove that (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L
)

may be expressed as h(X̃(0),U ′) with |S0| ≤ |I|, U ′ is a uniform random variable stochas-

tically independent of X̃(0) and X̃(i) are vectors only composed of the shares of X(i) which
are specified by Si.

Suppose that there does not exist an indice k such that |Sk| = d− k + 1, then none of the

sets Si are Si = {0, . . . , d− i} and thus all the X̃(i)’s and Z|J∪L
are uniform stochastically

independent random vectors. It follows that (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L
) may clearly be

expressed as h(X̃(0),U ′).

Define now k as the smallest index such that |Sk| = d − k + 1. Note that k ≥ 1 by the
global constraint |I ∪ O| ≤ t.

For the case k = d, all the X̃(i) with i in [0; d− 1] are uniform stochastically independent

random vectors of F
|Si|
2n respectively. Also, (X̃(d), Z|J∪L

) is a uniform random vector of

(F∗
2n)1+|J∪L| with |J ∪L| ≤ t− 1 according to the global constraint |I ∪O| ≤ t. It follows

that if k = d then (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L
) may be expressed as h(X̃(0),U ′).

Let us now assume that 1 ≤ k ≤ d − 1. Gathering conditions (5) and (6), we have

|Sk| ≤
∑d−1

i=k |I
i| ≤ |I|. Also, |I|+ |O| ≤ |I ∪ O| ≤ t by the global constraint. It follows

that |O| ≤ t− |Sk|. Note that
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X(k) = (x ·
k−1∏

i=0

Zi +

d−i∑

j=1

X
(k)
j

︸ ︷︷ ︸
X

(k)
0

, X
(k)
1 , . . . , X

(k)
d−k).

Remembering that t ≤ d and that |Sk| = d− k + 1, we have |O| ≤ k − 1. It follows that

at most k − 1 Zi’s have to be simulated among the k Zi’s in the expression of X
(k)
0 , i.e.

p∗ = x ·
∏k−1

i=0 Zi is therefore a uniform random variable of F∗
2n stochastically independent

of the random variables in the set O. All other random variables X̃(i) with i > k and
Z|(J∪L)∩{k,...,d−1}

may be build from p∗, random vectors of F
|Si|
2n and (F∗

2n)
|(J∪L)∩{k,...,d−1}|

.

From the above discussion, it follows that (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L
) may be expressed

as h(X̃(0),U ′) with |S0| ≤ |I| and U ′ is a uniform random vector.
Finally, from conditions (5) and (6) it follows that Ω = (I,O) may be expressed as

ρ(X̃(0),U) which means that AMtoMM(·) is t-SNI.

A.3 Proof of Theorem 2

The proof concerning MMtoAM(·) is very similar to the one of AMtoMM(·). It consists essen-
tially in interchanging the role of the additive masks with the multiplicative ones in the
previous proof of AMtoMM(·).

B Security analysis of alternate cyclotomic.

B.1 Proof of Lemma 2

AMtoMM(·)

Eval-Chain(·)

x

I2

Ŝ2
I3

G1
2

G2

G3

S3
δ(·) ⊕

Ox

Oδ(x)

I4

I6

G5

S4

S6

G6

R

G4

I5

Ŝ5 S1
2 O(x+δ(x))α2

I1
2

MMtoAM(·)

G1
q

S1
q

O(x+δ(x))αq

I1
q

MMtoAM(·)

Figure 12: Gadget Alt-Cy2(·).

As previously, we build the simulator for the circuit Fig. 12 by simulating sequentially
each inner gadget from right to left.

Proof. Let Ω = (I,O) be the adversary observation set that we want to simulate and which
is made on the whole circuit of Fig. 12, with O = (Ox,O(x+δ(x))α2 , . . . ,O(x+δ(x))αq ,Oδ(x))

such that I =

(
q⋃

j=2

I1
j

)
∪

(
6⋃

i=2

Ii

)
and such that

(∑q
j=2 |I

1
j |+

∑6
i=2 |I

i|
)

+ |O| ≤ t.
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Gadgets 1. For every j ∈ [2; q], let Ω1
j = (I1

j ,O(x+δ(x))αj ) be an observation set made on

G1
j . Since G1

j is t-SNI and |I1
j ∪ O(x+δ(x))αj | ≤ t (by global constraint), we know that for

every observation set Ω1
j there exists an observation set S1

j for G1
j such that |S1

j | ≤ |I
1
j |

and S1
j is sufficient to simulate Ω1

j for every j ∈ [2, q].

Gadget 2. Let Ω2 = (I2, (S1
2 , . . . , S1

q )). Since G2 is affine-NI, we know that for every ob-

servation set Ω2 there exists an observation set Ŝ2 such that |Ŝ2| ≤ |I2∪
(⋃

2≤j≤q S1
j

)
| ≤

|I2| +
∑q

j=2 |I
1
j | and the set of input shares Ŝ2 is sufficient to simulate the adversary

observation set Ω2 made on Gadget 2.

Gadget 3. Let Ω3 = (I3, Ŝ2). Since G3 is t-SNI and |I3 ∪ Ŝ2| ≤ t (by simulation of
Gadget 2 and the global constraint), we know that for every observation set Ω3 there
exists an observation set S3 such that |S3| ≤ |I3| and S3 is sufficient to simulate Ω3.

Gadget 4. Let Ω4 = (I4,Ox). Since G4 is t-SNI and |I4 ∪ Ox| ≤ t (by the global
constraint), we know that for every observation set Ω4 there exists an observation set S4

such that |S4| ≤ |I4| and S4 is sufficient to simulate Ω4.

Gadget 5. Let Ω5 = (I5,S3). Since G5 is affine-NI, we know that for every observation
set Ω5 there exists an observation set Ŝ5 such that |Ŝ5| ≤ |I5 ∪ S3| ≤ |I5|+ |I3| and the
set of input shares Ŝ5 is sufficient to simulate the adversary observation set Ω5 made on
Gadget 5.

Gadget 6. Let Ω6 = (I6, Ŝ5 ∪ Oδ(x)). Since G6 is t-SNI and |I6 ∪ Ŝ5 ∪ Oδ(x)| ≤
|I6| + |I5| + |I3| + |Oδ(x)| ≤ t (by simulation of Gadget 5 and the global constraint),
we know that for every observation set Ω6 there exists an observation set S6 such that
|S6| ≤ |I6| and S6 is sufficient to simulate Ω6.

In order to simulate Gadget Alt-Cy2(·), the corresponding simulator requires the shares

S6 ∪ Ŝ5 ∪ S4 and |S6 ∪ Ŝ5 ∪ S4| ≤ |I6| + |I5| + |I4| + |I3| ≤
∑q

j=2 |I
1
j | +

∑6
i=2 |I

i| ≤ t.

Therefore, Gadget Alt-Cy2(·) is t-SNI.

C Security analysis of alternate CRV

C.1 Proof of Lemma 3.

Alt-Cy1
qi

(·)

⊗Alt-Cy1
pi

(·)

x

δ(x)

(x + δ(x))α2

(x + δ(x))αq

R

I1

I2

I4

I3

Ŝ4

Ŝ3

S1
1

S2

S1
2

Ŝ4 ∪ Ŝ3

G1

G2

G3

G4

O

Figure 13: Gadget CRV1
i(·).
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Proof. Let Ω = (I,O) be an observation set that we want to simulate and which is made
on the whole circuit of Fig. 13, such that I =

⋃
1≤i≤4 I

i and such that the global con-

straint
∑4

i=1 |I
i|+ |O| ≤ t is satisfied.

Gadget 1. Let Ω1 = (I1,O). Since G1 is t-SNI and |I1∪O| ≤ t (by global constraint), we
know that there exists an observation set S1 = (S1

1 ,S1
2 ) such that |S1

1 | ≤ |I
1|, |S1

2 | ≤ |I
1|

and S1 is sufficient to simulate Ω1.
Gadget 2. Let Ω2 = (I2,S1

2 ). Since G2 is t-SNI and |I2 ∪ S1
2 | ≤ t (by simulation of

Gadget 1 and the global constraint), we know that there exists an observation set S2 such
that |S2| ≤ |I2| and S2 is sufficient to simulate Ω2.
Gadget 3. Let Ω3 = (I3,S1

1 ). Since G3 is affine-NI, we know that there exists an
observation set Ŝ3 such that |Ŝ3| ≤ |I3 ∪S1

1 | ≤ |I
3|+ |I1| ≤ t and the set of input shares

Ŝ3 is sufficient to simulate the adversary observation set Ω3 made on Gadget 3.
Gadget 4. Let Ω4 = (I4,S2). Since G4 is affine-NI, we know that there exists an
observation set Ŝ4 such that |Ŝ4| ≤ |I4 ∪ S2| ≤ |I4|+ |I2| and the set of input shares Ŝ4

is sufficient to simulate the adversary observation set Ω4 made on Gadget 4.

In order to simulate Gadget CRV1
i(·), the corresponding simulator requires the shares

Ŝ4 ∪ Ŝ3 of each of its inputs and |Ŝ4 ∪ Ŝ3| ≤ |I4| + |I3| + |I2| + |I1| ≤
∑4

i=1 |I
i| ≤ t.

Therefore, Gadget CRV1
i(·) is t-SNI.

C.2 Proof of Lemma 4.

Alt-Cyclo1
k(·)

⊕

CRV1
1(·)

CRV1
k−1(·)

⊕

x

(x + δ(x))α2

(x + δ(x))αq

δ(x)

O

S2′

Sk

Ik

Gk

I2′

G2′

G1′

I1′

Ŝ1′

Ŝ1

Ŝ2 I2

I1
G2

G1

Gk−1

⊕

Ik−1
Ŝk−1

G3

⊕

Ŝ3 I3

CRV1
2(·)Sk−1′

Ik−1′

Gk−1′

Figure 14: Gadget CRV2(·).

Proof. Let Ω = (I,O) be an observation set to simulate, made on the whole circuit of

Fig. 14, such that I =
(⋃

1≤i≤k I
i
)
∪
(⋃

1≤i≤k−1 I
i′
)

and such that the global constraint
(∑k

i=1 |I
i|+

∑k−1
i=1 |I

i′

|
)

+ |O| ≤ t is satisfied.

Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI, we know that there exists an
observation set Ŝ1 such that |Ŝ1| ≤ |I1 ∪ O| ≤ |I1| + |O| and the set of input shares Ŝ1

is sufficient to simulate Ω1.
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Gadget 1’. Let Ω1′

= (I1′

, Ŝ1). Since Alt-Cy1
t(·) is affine-NI, we know that there exists

an observation set Ŝ1′

such that |Ŝ1′

| ≤ |I1′

∪ Ŝ1| ≤ |I1′

|+ |I1|+ |O| and the set of input
shares Ŝ1′

is sufficient to simulate Ω1′

.
Gadget i, for every i ∈ [2; k−1]. Let Ωi = (Ii, Ŝi−1). Since ⊕ is affine-NI, we know that
there exists an observation set Ŝi for Gi such that |Ŝi| ≤ |Ii ∪ Ŝi−1| ≤ |

⋃
1≤j≤i I

j ∪O| ≤
∑i

j=1 |I
j |+|O|. Moreover, the set of input shares Ŝi is sufficient to simulate the adversary

observation set Ωi made on Gadget i.
Gadget i’, for every i ∈ [2; k − 1]. Let Ωi′

= (Ii′

, Ŝi). Since CRV1
i(·) is t-SNI and

|Ii′

∪ Ŝi| ≤ t (by simulation of Gadgets j for every j ∈ [2, i] and the global constraint),
we know that there exists an observation set Si′

for Gi′

such that |Si′

| ≤ |Ii′

| and the
set of input shares Si′

is sufficient to simulate the adversary observation set Ωi′

made on
Gadget i′.
Gadget k. Let Ωk = (Ik, Ŝk−1). Since CRV1

1(·) is t-SNI and |Ik∪Ŝk−1| ≤
∑k

i=1 |I
i|∪|O| ≤

t (by simulation of Gadget i for i ∈ [1, k − 1] and the global constraint), we know that
there exists an observation set Sk such that |Sk| ≤ |Ik| and Sk is sufficient to simulate Ωk.

In order to simulate Gadget CRV2(·), the corresponding simulator requires the shares⋃
1≤i≤k−1 S

i′

∪Sk and |
⋃

1≤i≤k−1 S
i′

∪Sk| ≤ |Ik|+
∑k−1

i=1 |I
i′

|+ |I1|+ |O| ≤ t. Therefore

Gadget CRV2(·) is affine-NI.
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