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Abstract. During the last years public-key encryption schemes based on the hardness
of ring-LWE have gained significant popularity. For real-world security applications
assuming strong adversary models, a number of practical issues still need to be
addressed. In this work we thus present an instance of ring-LWE encryption that is
protected against active attacks (i.e., adaptive chosen-ciphertext attacks) and equipped
with countermeasures against side-channel analysis. Our solution is based on a post-
quantum variant of the Fujisaki-Okamoto (FO) transform combined with provably
secure first-order masking. To protect the key and message during decryption, we
developed a masked binomial sampler that secures the re-encryption process required
by FO. Our work shows that CCA2-secured RLWE-based encryption can be achieved
with reasonable performance on constrained devices but also stresses that the required
transformation and handling of decryption errors implies a performance overhead that
has been overlooked by the community so far. With parameters providing 233 bits
of quantum security, our implementation requires 4,176,684 cycles for encryption
and 25,640,380 cycles for decryption with masking and hiding countermeasures on a
Cortex-M4F. The first-order security of our masked implementation is also practically
verified using the non-specific t-test evaluation methodology.
Keywords: Ideal Lattices · ring-LWE · CCA2 security · Masking · Hiding ·
Sampling · Implementation · ARM Cortex-M

1 Introduction
Public-key encryption (PKE) is a fundamental asymmetric cryptographic primitive and
plays an extremely important role in numerous applications and security protocols, such as
key-transport or email encryption. To date, most applications deploy RSA- and ECC-based
schemes that are known to be broken by powerful quantum computers running Shor’s
polynomial-time algorithm [Sho94] on a sufficiently large number of qubits. Given that
such large-scale quantum computers are expected to exist in the future, the effects would
be devastating as it would jeopardize the security of RSA or ECC protected ciphertexts
exchanged today in case they are stored and decrypted in the future by a malicious entity1.
Concerns over quantum computers have recently been fueled by an announcement of

∗The majority of the work was performed while Tobias Schneider was with Ruhr-Universität Bochum
1Note that this scenario is likely for PGP or S/MIME encrypted emails as users (or their providers)

might keep them encrypted for a long time on a server over which they do not have control.
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NIST to start the standardization process for post-quantum cryptography [CJL+15,NIS16]
and by the statement of NSA’s Information Assurance Directorate (IAD) to "initiate
a transition to quantum resistant algorithms in the not too distant future" for Suite B
cryptography [NSA15].

Possible candidates to replace RSA and ECC-based public-key encryption are cryp-
tosystems based on the hardness of certain lattice problems – a very prominent example is
NTRUEncrypt, proposed by Hoffstein, Pipher, and Silverman [HPS98] almost two decades
ago. More recently, cryptographic instances based on ideal lattices and the ring-learning
with errors (ring-LWE) problem gained some popularity in this field. This happened pre-
sumably due to their simplicity, high efficiency, and scalability (see [RVM+14,dCRVV15,
BSJ14, BJ14]), as well as because of theoretical foundations and security reductions
(see [LPR10a,Pei14,PRS17]). A practical advantage of ring-LWE-based encryption over
NTRU is relatively easy constant-time implementation and fast key generation, which is
useful when constructing schemes for ephemeral key exchange (e.g., NewHope [ADPS16b]
and BNCS [BCNS15]).

However, there are several challenges that have to be solved before ring-LWE-based
encryption can be considered as a serious replacement of RSA or ECC for public-key
encryption and (authenticated) key exchange. An example is the interaction of decryption
errors (i.e., correctness) with conversions that achieve security against adaptive chosen-
ciphertext attacks (CCA2)2 and the protection against side-channel attacks. In this context,
a basic semantically secure encryption scheme with parameters leading to a negligible
amount of decryption errors is a requirement to achieve CCA2-security as discussed by
Dwork, Naor, and Reingold [DNR04] when applying CCA2-transformations. This issue also
led to practical attacks on NTRU [HNP+03] or code-based encryption using QC-MDPC
codes [GJS16]. Moreover, CCA2-security is a condition for most real-world usage scenarios
and has to be in place before side-channel protection can be considered. Otherwise,
an attacker with physical access to a decryption oracle could simply create malformed
ciphertexts to reveal a secret key, without the need to perform a side-channel attack at all3.
The importance of CCA2-security is also reflected in the NIST submission requirements
for post-quantum public-key encryption and key-exchange [NIS16] that explicitly ask to
declare whether CCA2-security is achieved (see [NIS17] for the list of submissions).

Contribution. In this work we address the aforementioned issues of ring-LWE
PKE schemes that need to be considered before any wide-spread deployment of lattice-
based cryptography can be initiated. We conservatively instantiate ring-LWE public-key
encryption (n = 1024, q = 12289, and ς = 2) for negligible decryption errors and implement
the post-quantum variant of the Fujisaki-Okamoto [FO99] transformation by Targhi and
Unruh [TU16]. Our main contribution is a novel, provably first-order secured masking
scheme and its non-trivial integration into a CCA2 conversion. We point out that for full
protection of the secret key and message in the probing model, a masked noise sampler
is required for re-encryption and we provide the first design of corresponding protected
binomial sampler. Our implementation and measurements were carried out on an ARM
Cortex-M4F and we experimentally verified our masking scheme using the common non-
specific t-test [GJJR11] methodology. In this setting, our implementation is the first
instance for constrained devices that allows a fair comparison with established schemes like
the Optimal Asymmetric Encryption Padding (OAEP) method with RSA or corresponding
transformations for NTRU that can achieve CCA security. With masking and hiding
countermeasures our code achieves 2,669,559 cycles for key generation, 4,176,684 cycles
for encryption, and 25,640,380 cycles for decryption. The supposed security level against

2Security against adaptive attacks is a stronger notion than security against non-adaptive chosen-
ciphertext attacks where the adversary is constrained on the choice of the challenges, often referred to as
CCA1 [BDPR98] or lunchtime attack.

3Note that a chosen-ciphertext attack on ring-LWE encryption [LPR10a,LP11] is trivial as it is only
secured against chosen plaintext attacks (CPA) [Flu16].



144 Practical CCA2-Secure and Masked Ring-LWE Implementation

currently known quantum adversaries in the model of [ADPS16b] is 233 bits. In comparison,
our masking scheme thus outperforms previous masking approaches for ring-LWE by one
million cycles.

2 Preliminaries
In this section we cover preliminaries on ring-LWE-based public-key encryption, discuss
previous attempts to mask ring-LWE-based PKE schemes, and provide related work on
protected NTRU implementations. Unless explicitly stated, we denote addition (resp.
subtraction) modulo q with + (resp. −). We denote multiplication by · and point-
wise multiplication by ◦. We use ⊕ as operator for addition modulo 2. Polynomials in
Rq = Zq[x]/〈xn + 1〉 are labeled by bold lower case letters. When we access a single bit of
a bit vector, we use an index in square brackets to identify the respective bit.

2.1 Ring-LWE Encryption
The plain CPA-secured ring-LWE-based public-key encryption scheme we are using was
previously proposed in [LP11,LPR12,LPR10b]. Several variants of the scheme exist and
the concrete instantiation we are using is defined as follows:

• RLWE.CPAgen
NTT(): Sample the binomial noise r̃1

$← NTT(SampleNoisePoly()), r̃2
$←

NTT(SampleNoisePoly()), sample uniform ã $← SampleUniformPoly(), and compute
p̃ = r̃1 − ã◦r̃2. Output the secret key r̃2 and the public key (p̃, ã).

• RLWE.CPAenc
NTT(ã, p̃,mcpa ∈ {0, 1}n): Sample ẽ1 = NTT(SampleNoisePoly()), ẽ2 =

NTT(SampleNoisePoly()), and c̃1 = ã◦ẽ1 + ẽ2 and compute h̃2 = p̃◦ẽ1, e3 ←
SampleNoisePoly(), and c2 = INTT(h̃2)+e3+LWEEncode(mcpa). Output the cipher-
text (c̃1, c2).

• RLWE.CPAdec
NTT(r̃2, c̃1, c2): Output LWEDecode(INTT(c̃1◦r̃2) + c2) ∈ {0, 1}n.

In the scheme all elements are polynomials over Rq = Zq[x]/〈xn + 1〉 where we always
assume implicit reduction modulo q and reduction modulo xn+1 and only allow parameters
for which it holds that 1 ≡ q mod 2n for q being a prime and n being a power-of-two. For
efficiency, we make explicit use of the number theoretic transform (NTT)4 in a way that
has been previously described in [PG13,RVM+14]. By ã we denote that a polynomial a is
in the NTT domain and for efficiency we transmit and store keys and some ciphertexts in
the NTT domain. Note that for the discussion of the masking scheme it is sometimes not
relevant whether polynomials are stored in NTT format or whether the NTT is used at all
(other options would be schoolbook or Karatsuba) and thus we sometimes omit the NTT
notations to simplify the presentation. The public key (p = r1 − ar2,a) is a ring-LWE
sample and an attacker trying to extract the secret key basically has to solve the search
version of the ring-LWE problem [LPR10a]. In earlier works [GFS+12,BCNS15] RLWE.CPA,
or derived key exchange schemes, were usually instantiated with a (high-precision) discrete
Gaussian distribution with parameter σ. However, newer results show that security can
also be achieved with distributions that are close to a discrete Gaussian. Examples
are the binomial distribution [ADPS16b, BDK+17], a fixed distribution [BCD+16], a
binary distribution [BGG+16], or a uniform distribution [BLL+15,GLP12]. We define
SampleNoisePoly() to be a function that samples a polynomial in Rq with coefficients
coming from a binomial distribution with parameter k where each coefficient is sampled

4The NTT basically allows to efficiently compute a polynomial multiplication a · b as a · b =
INTT(NTT(a)◦NTT(b)).
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independently as
∑k−1
i=0 bi − b′i where the bi, b′i ∈ {0, 1} are uniform independent bits5.

The binomial distribution is centered with a zero mean, has variance k/2, and gives
a standard deviation of ς =

√
k/2. For distributions that roughly follow a discrete

Gaussian the standard deviation ς can be considered as the most important measure when
describing and comparing security levels for ring-LWE. A uniformly random polynomial
is sampled by SampleUniformPoly() and we decided to include ã in the public key for
simplification. Note that it would be possible to generate the secret key or ã from a
seed of 256-bits (or to choose ã as a global constant; see [ADPS16b] for a discussion).
Additionally, the secret key r̃2 could be generated from a seed or stored in normal domain
and efficiently encoded as it is not distributed uniformly but roughly follows a discrete
Gaussian (see [Saa16,PDG14]). However, for comparability and maintainability, we leave
these straightforward optimizations and trade-offs as future work as they are not essential for
our use-case. For successful decryption knowledge of the secret key r2 is required. Otherwise,
the large term ae1r2 cannot be eliminated when computing c1r2 +c2. An encoding of the n-
bit messagem is necessary as some small noise (i.e., e = e1r1+e2r2+e3) is still present after
calculating c1r2 +c2 and would prohibit the retrieval of the message after decryption. This
also shows why the noise distribution is chosen to be rather small – a too big noise level would
make reliable decoding impractical. Thus, to allow the extraction of the message despite the
noise during decryption RLWE.CPA requires (as a minimum) a simple message encoding. We
replace the standard threshold encoding and decoding functions with a variant that encodes
one message bit into four coefficients [PG13] (as mentioned earlier). The encoding function
used in RLWE.CPAenc

NTTis defined as LWEEncode(m ∈ {0, 1}n/4) =
∑n−1
i=0 m[bi/4c] · q2 · xi

(where m[i] denotes the i-th bit of m). The decoding function used in RLWE.CPAdec
NTTtakes

four coefficients z1, z2, z3, z4 ∈ [−bq/2c, bq/2c] as input that carry one bit of the message.
Decode(z1, z2, z3, z4) is defined to return 1 if |z1|+ |z2|+ |z3|+ |z4| < q and 0 otherwise.

2.2 Related Work on Masked Ring-LWE
Masking schemes for the ring-LWE encryption scheme have already been investigated
by Reparaz, Roy, Vercauteren, and Verbauwhede in [RRVV15a,RRdC+16]. The main
idea of [RRVV15a,RRdC+16] is to split the secret key r2 into two shares, compute the
multiplication r2 · c1 separately on both shares and add c2 to one of the shares. The
authors construct a masked decoder that takes both shares as input and checks whether
certain pre-defined rules are satisfied or not. For half of all inputs no rule applies and the
value cannot be decoded immediately. This is solved by adding a certain δ ∈ [0, q − 1]
to the shares and restarting the decoding process up to 16 times. However, this process
increases the decryption time and also the decryption error probability is increased by
19%, which has to be compensated by selecting lower noise sizes and thus leads to lower
security.

In follow-up work Reparaz, de Clercq, Roy, Vercauteren, and Verbauwhede [RdCR+16]
propose a different masking scheme. The authors exploit that the ring-LWE decryption
is almost additively homomorphic. Instead of dividing the secret key into two shares,
they split the ciphertext into two shares and compute decrypt(c′1 + c′′1 , c′2 + c′′2) to receive
(m′ ⊕m′′) as output. Note that this procedure includes an additional encryption of m′′
during the decryption. Unfortunately, the addition of two ciphertexts implies that also the
including error vectors are added and this again raises the decryption error probability of
the scheme and lowers performance.

In both masking schemes, the decrypted messagem is split into two parts,m′ = (m⊕m′′)
and m′′. In Appendix B of [RRVV15b] the authors state that they were able to simulate
a differential power analysis (DPA) attack targeting the pre-decoded value z. As the

5In [ADPS16b] the definition of the binomial distribution contains a typo in which the sum goes from
zero to k.
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output of the decryption is m = LWEDecode(z), we expect a DPA attack on m to be
feasible as well. Thus, the shares of m must not be combined on the device that performs
the decryption. Note, that it might be a possibility to transmit the message already
in two shares. However, this would mean that the protocol would have to be changed
for this purpose; currently our approach could be easily adapted to a large number of
lattice-based schemes. Additionally, the message space might not be sufficient. Another
more severe issue is that the simulated attack on z from [RRVV15b] requires an attacker
to be able to choose arbitrary ciphertexts. Such an attacker is even able to find the secret
key without DPA as ring-LWE itself does not provide CCA2-security (see [Flu16]) but
only security against chosen plaintext attacks (CPA). Thus, we draw two conclusions for
the implementation of practically secured ring-LWE encryption:

• Assuming a CPA-only attacker, the DPA attack on ring-LWE without masked
decoding is impractical and thus no masked decoder is required.

• Assuming a CCA2 attacker, a CCA2-conversion has to be applied to ring-LWE.
Otherwise, an attacker would be able to break the system without performing a DPA
and thus rendering any side-channel countermeasures useless. The message m must
not be stored unmasked in this setting.

As a consequence, the masking schemes described in [RRVV15a,RRdC+16,RdCR+16] are
less suitable for use in most practical settings.

2.3 Related Work on NTRU
In this section we review works on implementation attacks on NTRU. This is relevant
as NTRU and ring-LWE have a similar structure (especially from the perspective of
an implementer). Thus, (older) works on protecting NTRU are a natural reference for
countermeasure to protect ideal (or even standard) lattice-based scheme that should not
get overlooked.

In [ABGV08] a hardware implementation of NTRU and a first study regarding DPA
attacks is provided. The attack allows recovering secret coefficients one-by-one using a
Hamming distance model and Pearson’s correlation coefficient. In [WZW13] a correlation
power analysis of an NTRU implementation equipped with the blinding countermeasures
proposed in [MKSDG10] is attacked. These countermeasures are addition of a random
integer before convolution that can easily be removed, blinding using a random value, and
randomization of the order of which coefficients are processed. As additional countermea-
sures in [WZW13] random delays are proposed, masking, as well as dummy operations. A
first order collision attack on NTRU is given in [ZWW13] and as countermeasure, besides
random delays, a mathematical randomization is proposed where two inputs a and b to a
convolution are randomly rotated as a′ = a · xi and b′ = b · xn−i for a random i so that
the result a′ · b′ = a · xi · b · xn−i = ab. The same countermeasure has recently also been
proposed by Saarinen in [Saa16] for lattice-based signatures with the observation that the
shifting can be integrated into the NTT. Additionally, Saarinen proposes the multiplication
with random constants that could also be integrated into the NTT computation. Timing
attacks on NTRU have been investigated in [SW07]. Fault attacks are given in [KY11]
and countermeasures against fault attacks are given in [KY13], mainly using spatial and
temporal duplication.

3 CCA2 Conversion and Masking
In this section we describe how ring-LWE can be made resilient to CCA and side-channel
attacks using the Targhi-Unruh variant of the Fujisaki-Okamoto [FO99, TU16] (FO)
transformation and our masking scheme.
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Table 1: Security levels and failure probability of previously proposed ring-LWE-based
public-key encryption or key-exchange schemes. The security level was computed based on
the model in [ADPS16b]. Note that C-Sec = classical bit-level security, Q-Sec = known
quantum bit-level security, and that ς is the standard deviation of the ring-LWE noise
distribution.
Set Parameter (n, q, ς) C-Sec Q-Sec Failure
RLWE.CPA [GFS+12] (256, 7681,≈ 4.5) 64 58 ≈ 2−11

RLWE.CPA [GFS+12] (512, 12289,≈ 4.9) 144 131 ≈ 2−10

BCNS [BCNS15] (1024, 232 − 1,≈ 3.2) 86 78 2−217

NewHope [ADPS16b] (1024, 12289,≈ 2.8) 282 256 2−60

This work (1024, 12289, 2) 257 233 2−216

3.1 Parameter Selection
To be able to use the RLWE.CPA scheme in the well-known hybrid setting a message space
of 256-bit symmetric key is sufficient to account for quantum acceleration of brute-force
attacks [Gro96]. Additionally, to achieve CCA2-security using the FO transformation, a
negligible error probability is required. As a consequence, previously proposed parameter
sets, like the one used by the NewHope scheme [ADPS16b] or RLWE.CPA scheme [GFS+12,
LP11], are not suitable. However, with n = 1024 we have four coefficients to encode
one bit of a 256-bit message (similar as in NewHopeSimple [ADPS16a]) and can thus
tolerate noise levels 4 · q4 = q. To obtain a decryption error probability lower than 2−128

for the basic CPA-secured scheme we decreased the parameter of the binomial distribution
used in [ADPS16b] to k = 8 (contrary to k = 16 in NewHope). We therefore reach a
noise level with standard deviation of ς =

√
k/2 =

√
8/2 = 2. Even though a slightly

larger value of k would also be possible, we opted for k = 8 as it gives a large enough
margin on the error, simplifies and speeds-up sampling, and still leaves some room for
more aggressive ciphertext compression (which is out of the scope of this work). We would
like to note that the submission of NewHope to the NIST post-quantum cryptography
standardization process (see entry NewHope in [NIS17]) also uses k = 8. A comparison
of our final parameter set with previous proposals is given in Table 1 (see Table 5 and
Appendix A.1 for more details and the parameters used for the scripts). Going from
NewHope’s 256-bits quantum security and 2−60 failure for k = 16 to 233 bits of quantum
security and 2−216 failure probability for k = 8 seems like a reasonable trade-off. Note
that the bit security level compared to NewHope is only slightly smaller and still more
than 128-bits of security against a known-quantum adversary6. Note that this level of
security is still superior to BCNS or previously proposed RLWE.CPA parameters. It is
also worth mentioning that the security estimation in [ADPS16b] uses several worst-case
estimations/simplifications so that the concrete security of the instances might be higher
(i.e., there is currently no known algorithm that breaks, e.g., BCNS with 286 steps).

3.2 CCA2 Conversion for RLWE.CPA
In this work we use the Fujisaki-Okamoto [FO99] transformation to enable a semantically
secured encryption with respect to adaptive chosen ciphertext attack (CCA2). For this
transformation, Peikert came to the conclusion [Pei14] that a passively secured encryption
scheme should be converted into an actively secured one (based on the random oracle
model; assuming adaptive attacks for CCA2). For this transformation, two random oracles

6In this context this means an adversary that uses quantum algorithms which are available today to
accelerate cryptanalysis [ADPS16a].
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Figure 1: CCA2-secured decryption.

G : {0, 1}L → {0, 1}l and H : {0, 1}L+l → {0, 1}λ are required. Targhi and Unruh pointed
out that a third random oracle H ′ : {0, 1}L → {0, 1}l is necessary for the quantum security
of the transformation [TU16]. The parameter L determines the size of the message to be
encrypted, l the length of the input to ring-LWE encryption, and λ the length of the seed
for the pseudo-random number generator (PRNG). In our implementation, the parameters
L, l, and λ are set to 256 and we define RLWE.CCAenc

NTTand RLWE.CCAdec
NTTas follows:

• RLWE.CCAenc
NTT(ã, p̃,mcca ∈ {0, 1}L):

Let (c̃1, c2)= RLWE.CPAenc
NTT(ã, p̃, ν;H(ν||mcca)) where ν ∈ {0, 1}L is a nonce and

H(ν||mcca) seeds the PRNG of RLWE.CPAenc
NTT. Compute c3=G(ν)⊕mcca as well as

c4 = H ′(ν) and output (c̃1, c2, c3, c4).

• RLWE.CCAdec
NTT(r̃2, ã, p̃, c̃1, c2, c3, c4):

Compute ν′ = mcpa = RLWE.CPAdec
NTT(r̃2, c̃1, c2), mcca = G(ν′) ⊕ c3, (c̃∗1, c∗2) =

RLWE.CPAenc
NTT(ã, p̃, ν′;H(ν′||mcca)), and c∗4 = H(ν′). Check whether (c̃1, c2) ?=

(c̃∗1, c∗2) and c4
?= c∗4. If so, output mcca, otherwise output fail.

Using this transformation and our chosen parameters we obtain a theoretical public-key
size of |(ã, p̃)| = 2ndlog2(q)e = 2 · 1024 · 14 = 28672 bits (3584 bytes) and a theoretical
ciphertext size of |(c̃1, c2, c3, c4)| = 2ndlog2(q)e+ 2l = 29184 bits (3648 bytes). The secret
key is |r̃2| = ndlog2(q)e = 14336 bits (1792 bytes).

3.3 Masked CCA2-Secured Ring-LWE Decryption
To achieve side-channel resistance, it is necessary to mask all vulnerable modules of the
CCA2-secured decryption. As depicted in Figure 1 in bold notation, these modules are
RLWE.CPAdec

NTT, G, H, H ′, and RLWE.CPAenc
NTT, and the two comparisons. Note that it is

not sufficient to only protect RLWE.CPAdec
NTT, because in a chosen-ciphertext setting an

adversary can target the unmasked output of RLWE.CPAdec
NTT(see Appendix B of [RRVV15b])

to recover the secret key. This attack trivially extends to any other intermediate variable
which depends on mcpa. A DPA-adversary would keep c1, c2 constant while varying c3 and
c4. This way it is possible to derive hypothetical values for every other module following
RLWE.CPAdec

NTTdepending on a guess for mcpa (which only depends on one coefficient of r2
in a chosen-ciphertext setting). Therefore, even the final comparison needs to be protected
against a side-channel adversary.

In the following, we analyze the first-order security of each module separately in the
common probing model [ISW03]. To this end, we show that an attacker, who can probe one
intermediate variable of the computation, cannot derive any secret information. This notion
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r̃′2 ∈ Rq

r̃′′2 ∈ Rq

c̃1 ∈ Rq

c̃1 ∈ Rq

c2 ∈ Rq

×

×

+

INTT

INTT

MDecode

m′′cpa ∈ {0, 1}256

m′cpa ∈ {0, 1}256z′ ∈ Rq

z′′ ∈ Rq

Figure 2: Proposed masking scheme for ring-LWE decryption.

is equivalent to showing that each intermediate variable follows a distribution independent
of any sensitive variable, i.e., the secret key r2. For one probe it is indeed sufficient
to analyze each module separately, if the input and output distributions between the
modules are consistent. Therefore, 1-probing security with correct input distributions for
each module implies 1-probing security of the complete masked CCA2-secured decryption.
However, for more probes (i.e., 2-probing security) this approach would not cover every
possible attack vector and a more sophisticated analysis has to be utilized [BBD+16].

3.3.1 Ring-LWE Decryption.

As mentioned in Section 2.2, the masking schemes of the ring-LWE decryption from works
like [RRVV15a,RRdC+16] and [RdCR+16] suffer from a higher failure probability and
slower performance. Therefore, we present a new approach which avoids the aforementioned
problems and still provides side-channel protection. Figure 2 shows the basic structure
of our masked ring-LWE decryption. For the initial multiplications, additions, and
INTTs we rely on a simple randomized sharing of r2 = r′2 + r′′2 with r′2

$← Rq similar
to [RRVV15a,RRdC+16]. Given the linearity of the operations, it is easily possible to
perform these computations on each share separately. However, this approach does not
work for the final Decode. In [RRVV15a,RRdC+16], the authors proposed to use a rather
complex decoder for the arithmetically masked shares instead. To increase efficiency, we
rely on a new approach MDecode which first transforms the arithmetic shares to Boolean
shares and then performs the decoding. With this approach, we can avoid the costly
arithmetically masked decoder and the additional error of the scheme from [RdCR+16].

Correctness. To show the correctness of this scheme, we first denote the input to the
decoding as z′ and z′′ with z = z′ + z′′. Showing that this relation holds is trivial, since
the INTT is linear and the scheme is identical to [RRVV15a,RRdC+16] up to this point.
Instead, we show that MDecode(z′, z′′) = (m′cpa,m′′cpa) with mcpa = m′cpa ⊕m′′cpa. To this
end, we start by describing how an arithmetic-to-Boolean (A2B) transformation [Gou01,
Deb12,VG15,CGTV15,Cor17] can be used to easily decode one shared coefficient of z.
Then we demonstrate a solution to efficiently adjust the approach to our encoding scheme,
i.e., four coefficients of z for one bit of mcpa.

In our basic example, we assume the arithmetic shares (x1, x2) with

x1 + x2 (mod q) = x = m · bq2c+ e

for some error e and want to recover (m1,m2) with m1⊕m2 = m without leaking sensitive
information. Our solution to this problem is based on the observation that a sharing of
the most significant bit can be easily extracted from Boolean shares, while it is hard for
arithmetic shares. However, we cannot straightforwardly apply an A2B transformation to
(x1, x2) as all A2B algorithms work with arithmetic shares which are computed modulo a
power of two.
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Therefore, we propose to first transform (x1, x2) to the shares (y1, y2) with y1 +
y2 mod 215 = x given that 215 is the second-next-larger power of two for q = 12289. This
process is shown in Algorithm 1 where every operation is done mod 2bits, A2B denotes
an arithmetic-to-Boolean transformation, and MSB returns the most significant bit of the
input. In the algorithm, we first sample a random 15-bit value y1 and reshare the input
shares mod 2bits. However, in some cases this does not result in a correct sharing as in
Line 3 the shares are

y1 + y2 mod 2bits = x+ q · carry

where the carry is set if x1 + x2 ≥ q. To adjust this, we compute carry and subtract
q · carry from (y1, y2) in a secured fashion. First, we compute z1 ← y1 − q mod 2bits. By
doing this, we create the following relation for the most significant bit of z1 + y2 mod 2bits

MSB(z1 + y2 mod 2bits) =
{

0 x1 + x2 ≥ q
1 x1 + x2 < q

,

if bits ≥ log2(2q). Therefore, we have MSB(z1 + y2 mod 2bits)⊕ 1 = carry. Then we use
the A2B algorithm by Debraize [Deb12], so that we can apply MSB to each of the output
shares separately. The only remaining step now is to subtract q · carry from (y1, y2). This
is achieved using the shares k1 ⊕ k2 = carry and the relation k1 ⊕ k2 = k1 + k2 − 2k1k2 as
follows

y1 − (k1 ⊕ k2)q = y1− k1q − k2q + 2k1k2q

= y1 − k1q − k2q + 2(k′1 + k′′1 )(k′2 + k′′2 )q
= y1 − k1q − k2q + 2k′1k′2q + 2k′1k′′2 q + 2k′′1k′2q + 2k′′1k′′2 q.

Since (k1, k2) is not completely independent of (y1, y2) for some A2B, we include a random
value r in the computation of the sum in Algorithm 1.

Algorithm 1 TransformPower2

Input: x1, x2, bits
Output: y1, y2
1: y1

$← {0, 1}bits
2: y2 ← x1 − y1
3: y2 ← y2 + x2
4: z1 ← y1 − q
5: [z1, z2]← A2B(z1, y2)
6: k1 ← MSB(z1)⊕ 1
7: k2 ← MSB(z2)
8: k′1

$← {0, 1}bits
9: k′′1 ← k1 − k′1
10: k′2

$← {0, 1}bits
11: k′′2 ← k2 − k′2
12: r

$← {0, 1}bits
13: y1 = (((((((r + y1)− k1q)− k2q) + 2k′1k′2q) + 2k′1k′′2 q) + 2k′′1k′2q) + 2k′′1k′′2 q)
14: y2 = y2 − r

Although the output (y1, y2) of TransformPower2 fulfils the desired property of y1 +
y2 mod 215 = x and could be easily transformed to (y′1, y′2) with y1 ⊕ y2 = x, this is
not sufficient to recover m. Some additional steps are necessary to perform a successful
decoding. These steps are depicted in Figure 3. Each circle shows the distributions of the
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Figure 3: First three steps when decoding one coefficient.

unshared values for a specific value of m (m = 0 is thick, m = 1 is dashed) after each step,
e.g., the first circle in the upper-left corner shows the distributions for the original x where
the values of x for m = 0 (resp. m = 1) are grouped around the mean of zero (resp. q

2 ).
In the first step, we subtract q

4 from (x1, x2). This way no distribution is spread over the
modulo border, which would cause problems for the transformation to 15 bits. After the
transformation is done, we subtract q

2 from the result to create the following relation for
the new shares (y1, y2)

MSB(y1 + y2 mod 2bits) =
{

0 m = 0
1 m = 1

,

as the distributions are equally distant to zero which prevents an increase in the error
probability of the decoding. In the last step, we again perform an A2B transformation
A2B(y1, y2) = (y′1, y′2) to easily extract a sharing ofm with MSB(y′1)⊕MSB(y′2) = m1⊕m2 = m.

For four related coefficients, one possible approach is to perform the aforementioned
masked decoding for each coefficient separately and then combined them via a masked
majority function. However, a more efficient solution is described in Algorithm 2, where
(a1, a2), (b1, b2), (c1, c2), and (d1, d2) are four related shared coefficients (i.e., encode the
same m). Our main idea is to combine the coefficients before the final A2B. To perform
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this combination without losing information and keeping the same error probability, we
have to increase the number of bits for TransformPower2 to bits ≥ log2(2 · 4 · q2 ), i.e., 16
for q = 12289. After the transformation, we can easily sum the coefficients sharewise. We
also have to adjust the last subtraction to 2q. If no error has occurred (i.e., all coefficients
encode the same m), there are two distributions with means 216 − q and +q and (m1,m2)
can be easily recovered with a final A2B. In this way, we save three calls to A2B compared
to the naive majority approach.

Algorithm 2 MDecode
Input: a1, a2, b1, b2, c1, c2, d1, d2
Output: m1,m2
1: a1 ← a1 − b q4c
2: b1 ← b1 − b q4c
3: c1 ← c1 − b q4c
4: d1 ← d1 − b q4c
5: [a1, a2]← TransformPower2(a1, a2, 16)
6: [b1, b2]← TransformPower2(b1, b2, 16)
7: [c1, c2]← TransformPower2(c1, c2, 16)
8: [d1, d2]← TransformPower2(d1, d2, 16)
9: e1 ← a1 + b1 + c1 + d1
10: e2 ← a2 + b2 + c2 + d2
11: e1 ← e1 − 2q
12: [e1, e2]← A2B(e1, e2)
13: m1 = MSB(e1)
14: m2 = MSB(e2)

Security Analysis We analyze the security of Algorithm 1 and 2 by showing that each
intermediate variable follows a distribution independent of any sensitive variable. For
TransformPower2 this is formalized in the following lemma.

Lemma 1. When x1, x2 ∈ Zq are a uniform sharing of x = x1 + x2 (mod q) and
y1, k

′
1, k
′
2, r ∈ {0, 1}bits are uniformly and independently distributed in their respective value

spaces, all intermediate variables in Algorithm 1 have a distribution independent of the
sensitive variable x.

Proof. For the proof, we analyze the distributions of the variables of each line from
Algorithm 1 and show that their distributions are independent of the sensitive variable x.

• Lines 2,3 : Since y1 is a random value in {0, 1}bits, (x1−y1) is also a random variable
following a distribution independent of x. The same applies to (x1−y1)+x2 = x−y1.

• Lines 4 : A constant value is subtracted from a random value in {0, 1}bits which does
not leak about x.

• Line 5 : The security strongly depends on the chosen transformation algorithm. In
our implementation, we use the algorithm from [Deb12] and refer the interested
reader to their proof of security.

• Lines 6,7,9,11 : Each of these lines operates on only one of the shares. Therefore,
each of them follows a distribution independent of x assuming A2B to be secured.

• Line 13 : The first operand of the sum is the random value r ∈ {0, 1}bits. Therefore, all
following operations are perfectly masked by r and follow a distribution independent
of x.
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• Line 14 : A random value is subtracted from only one share. Therefore, the result
does not leak about x.

As shown above, the distribution of every intermediate variable of Algorithm 1 is indepen-
dent of the sensitive variable x. The output shares y1 and y2 with x = y1 + y2 mod 2bits
are both uniformly distributed in {0, 1}bits.

For MDecode, the security properties are formalized in the following lemma.

Lemma 2. When a1, a2, b1, b2, c1, c2, d1, d2 ∈ Zq are uniform shares a = a1 + a2 (mod q),
b = b1 + b2 (mod q), c = c1 + c2 (mod q), d = d1 + d2 (mod q) which are pairwise
independent, all intermediate variables in Algorithm 2 have a distribution independent of
the sensitive variables a, b, c, d, and m.

Proof. For the proof, we analyze the distributions of the variables of each line from
Algorithm 2 and show that their distributions are independent of the sensitive variables.

• Lines 1-4 : A constant value is subtracted from only one share. If the input sharings
are uniform, the result is still a uniform sharing independent of the sensitive variables.

• Lines 5-8 : The security depends on the security of TransformPower2 which is
analyzed in the previous lemma.

• Line 9,10 : Assuming the output sharings of the four calls to TransformPower2 are
still uniform and independent, processing only one share of each sharing is always
independent of the sensitive variables.

• Line 11 : (e1, e2) are a uniform sharing of e = a+ b+ c+ d. Since only one share is
processed, the result is independent of the sensitive variables.

• Line 12 : Again the security depends on the chosen algorithm for A2B.

• Lines 13,14 : Each of these lines operates on only one of the shares. Therefore, each
of them follows a distribution independent of the sensitive variables assuming A2B to
be secured.

As shown above, the distribution of every intermediate variable of Algorithm 2 is inde-
pendent of the sensitive variables a, b, c, d, and m. The output shares m1 and m2 with
m = m1 ⊕m2 are both uniformly distributed in {0, 1}.

3.3.2 G, H, and H ′ (SHAKE).

We choose to instantiate G, H, and H ′ with the commonly-used extendable-output function
SHAKE-128 that is based on the Keccak algorithm [BDPA13] and apply the masking
scheme presented in [BDPVA10]. Therefore, we do not include the security analysis of
this module and instead refer the reader to the original publications. We use a different
initialization vector for each instantiation of the random oracles to make G, H, and H ′
distinct from each other.

3.3.3 Ring-LWE Encryption.

For the masked RLWE.CPAenc
NTT (i.e. the re-encryption in RLWE.CCAdec

NTT), every input or
internally PRNG-generated variable is sensitive (i.e., mcpa, e1, e2, e3) since they can be
used to recover the secret key r2 as detailed in the beginning of this section. Therefore, the



154 Practical CCA2-Secure and Masked Ring-LWE Implementation

computation of c1 and c2 is done in the shared domain. For the former this is trivial, since
it only requires linear operations which can be performed on each input share separately as

c′1 = a · e′1 + e′2,
c′′1 = a · e′′1 + e′′2 .

Due to the simplicity of this computation we omit the security analysis.
For c2, however, we have to consider the rounding error from Encode to obtain the

correct result, i.e., it is not sufficient to compute

c′2 = p · e′1 + e′3 + Encode(m′cpa),
c′′2 = p · e′′1 + e′′3 + Encode(m′′cpa).

In this equation, m′cpa ⊕m′′cpa = mcpa. Since our modulus q is odd and therefore 2b q2c 6= q,
we have to adjust this operation so that the correct result is computed, i.e., the result of
the re-encryption has to be exactly the same as the result of the original encryption. The
naive approach would be to multiply one of the intermediate results, e.g., c′2 (without the
message), by 2, encode the shares of mcpa as {0, q}, perform two additions modulo 2q, and
divide the result by 2. While this approach indeed yields the correct result, it introduces
an easily detectable side-channel leakage as the last bit of the intermediate results before
the division is always set to 1 if and only if the unshared message bit is 1, i.e. q has been
added exactly one time. Similarly, the last bit is always set to 0 if and only if the unshared
message bit is 0. We cannot apply the technique described in [Pei14] as adding a random
bit yields a different result if the value that bit is added to is odd. In the CCA2 setting, it
is required that both, the original encryption and the re-encryption output exactly the
same result and thus even a single bit error is not tolerable.

We thus decided to only return a false result in case both shares, m′cpa and m′′cpa, have
the value 1. In this case, the floor operation cuts off 1

2 two times and thus the result
is off by one. To get the correct result, we have to add m′cpa AND m′′cpa. Obviously, we
cannot compute this multiplication of the shares directly without leakage. Thus, we split
the shares into subshares.

m′cpa = m′cpa,1 + m′cpa,2

m′′cpa = m′′cpa,1 + m′′cpa,2

Notice that for this calculation m′cpa and m′′cpa are implicitly treated as polynomials
in Rq and not as bit vectors. For simplicity, we assume in this description that one bit
is encoded into one coefficient but this approach trivially generalizes to multi-coefficient
encodings as well. As a consequence of the splitting into shares, we have to compute
(m′cpa,1 + m′cpa,2)◦(m′′cpa,1 + m′′cpa,2) instead of m′cpa AND m′′cpa. To obtain the correct
result, we compute:

c′2 = (p · e′1 + e′3 + Encode(m′cpa))
+ m′cpa,1m′′cpa,1 + m′cpa,1m′′cpa,2 + m′cpa,2m′′cpa,1 + m′cpa,2m′′cpa,2

Note that the term p · e′1 + e′3 provides the randomness to protect the masked AND
computation akin to Trichina’s masked AND [Tri03]. Therefore, the order of operations in
the computation of c′2 is important for the security. Our complete masked re-encryption is
shown in Algorithm 3.
Lemma 3. When e′1 + e′′1 = e1 ∈ Rq, e′3 + e′′3 = e3 ∈ Rq, m′cpa + m′′cpa = mcpa ∈
{0, 1}n/4 are uniform, independent shared representations of the sensitive input variables
and m′cpa,1,m′′cpa,1 ∈ Rq are uniform and independent random variables, all intermediate
variables in Algorithm 3 have a distribution independent of the sensitive variables mcpa,
e1, and e3.
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Algorithm 3 Masked Ring-LWE Encryption
Input: p, e′1, e′3, e′′1 , e′′3 ,m′cpa,m′′cpa,m′cpa,1,m′′cpa,1
Output: c′2, c′′2
1: c′2 ← p · e′1 + e′3 + Encode(m′cpa)
2: c′′2 ← p · e′′1 + e′′3 + Encode(m′′cpa)
3: m′cpa,2 ← m′cpa −m′cpa,1
4: m′′cpa,2 ← m′′cpa −m′′cpa,1
5: t11 ←m′cpa,1◦m′′cpa,1
6: t12 ←m′cpa,1◦m′′cpa,2
7: t21 ←m′cpa,2◦m′′cpa,1
8: t22 ←m′cpa,2◦m′′cpa,2
9: c′2 ← ((((c′2 + t11) + t12) + t21) + t22)

Proof. For the proof, we analyze the distributions of the variables of each line from
Algorithm 3 and show that they are independent of the sensitive variables mcpa, e1, and
e3.

• Lines 1,2 : Each of these lines only uses one of the shares and is therefore independent
of the sensitive variables. The shared representation of the error vectors is independent
of the shared representation ofmcpa due to the mask refresh inside the shared sampler.

• Lines 3,4 : m′cpa,1 (resp. m′′cpa,1) are new random masks that are used to mask the
shares of mcpa. Since only one share of mcpa is involved in each line, the result is
still independent of mcpa.

• Lines 5,6,7,8 : Both terms of each line are uniformly and independently distributed
in Rq. Therefore, the multiplication of these terms does not create a new dependency
on mcpa and the results can be easily simulated.

• Lines 9 : The term (p · e′1 + e′3) is independent of mcpa and therefore provides
sufficient fresh randomness to protect the masked AND. Each intermediate variable
of this line follows a uniform distribution in Rq independent of the sensitive variables
mcpa, e1, and e3.

As shown above, the distribution of every intermediate variable of Algorithm 3 is
independent of the sensitive variables mcpa, e1, and e3. Therefore, the aforementioned
chosen-ciphertext attack is not possible.

3.3.4 Masked binomial sampler

As detailed in the beginning of this section, the error vectors can be target for a chosen-
ciphertext adversary in the side-channel setting. Therefore, we have to perform the sampling
in a shared domain. We are using a binomial sampler that computes the Hamming weight
of two bit vectors α and β and outputs the difference out of those Hamming weights. If
we split α and β into two Boolean shares each, we can compute the output of the sampler
as follows:

out =
k−1∑
i=0

(α1[i] + α2[i]− 2α1[i]α2[i])−
k−1∑
i=0

(β1[i] + β2[i]− 2β1[i]β2[i])

=
k−1∑
i=0

(α1[i]− β1[i]) +
k−1∑
i=0

(α2[i]− β2[i])− 2
k−1∑
i=0

(α1[i]α2[i]) + 2
k−1∑
i=0

(β1[i]β2[i])
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Obviously, we cannot compute α1[i]α2[i] and β1[i]β2[i] directly. Instead, we compute
them securely with the help of three random valuesX,Y, Z ∈ [0, q−1] as shown in Algorithm
4.

Algorithm 4 Masked Binomial Sampler
Input: α1, α2, β1, β2 ∈ {0, 1}k with α1 ⊕ α2 = α and β1 ⊕ β2 = β
Output: out1, out2 with (out1 + out2) mod q binomial distributed
1: i← 0
2: out1 ← 0
3: out2 ← 0
4: for i < k do
5: out1 = out1 + (α1[i]− β1[i])
6: out2 = out2 + (α2[i]− β2[i])
7: X

$← [0, q − 1], Y $← [0, q − 1], Z $← [0, q − 1]
8: α1

′′ = α1 −X
9: α2

′′ = α2 − Y
10: out1 = out1 − 2((((Z +XY ) +Xα2

′′) + α1
′′Y ) + α1

′′α2
′′)

11: β1
′′ = β1 −X

12: β2
′′ = β2 − Y

13: out2 = out2 + 2((((Z +XY ) +Xβ2
′′) + β1

′′Y ) + β1
′′β2
′′)

14: i← i+ 1
15: end for

Lemma 4. When α2 ∈ {0, 1}k with α1 ⊕ α2 = α, β2 ∈ {0, 1}k with β1 ⊕ β2 = β,
X ∈ [0, q− 1], Y ∈ [0, q− 1], and Z ∈ [0, q− 1] are uniformly and independently distributed
in their respective value space, all intermediate variables in Algorithm 4 have a distribution
independent of the sensitive unshared input variables α and β.

Proof. For the proof, we analyze the distributions of the variables of each line from
Algorithm 4 and show that their distributions are independent of the sensitive variables α
and β.

• Lines 5,6 : Only one share is used in each of the two operations. Therefore, the result
is independent of the unshared values α and β.

• Lines 8-13 : The proof works analogous to the proof for Lines 5-9 of Lemma 3.

As shown above, the distribution of every intermediate variable of Algorithm 4 is
independent of the sensitive variables α and β. Therefore, it is not possible for an attacker,
which can probe one value, to derive sensitive information. The output shares out1 and
out2 with out = out1 + out2 are both uniformly distributed in [0, q − 1].

3.3.5 Masked PRNG

The PRNG is also a possible target for a chosen-ciphertext adversary as noted before.
Therefore, we used the already implemented masked version of SHAKE-128 to generate
random numbers with a fixed seed.

3.4 Masked Comparison
It is further necessary to protect all comparisons against a side-channel adversary, since
even c̃∗1, c∗2, and c∗4 can be used to distinguish r̃2. Since these values are shared, it is
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necessary to compute a function of both shares to compare them to the public and possibly
adversary controlled values c̃1, c2, and c4. To prevent leakage of the sensitive variables we
introduce an additional hashing-step before the comparison. Using c̃1 as an example, we
perform the comparison of c̃1 with the shared c̃∗1 = c̃∗′1 + c̃∗′′1 as provided in Algorithm 5.
The correctness of our approach is easy to verify as

Algorithm 5 Masked Comparison of public c̃1 with internal c̃∗1
Input: c̃1, c̃∗′1 , c̃∗′′1
Output: eq
1: c̃∗′1 ← c̃1 − c̃∗′1
2: c̃∗′1 ← H ′′(c̃∗′1 )
3: c̃∗′′1 ← H ′′(c̃∗′′1 )
4: eq ← c̃∗′1 ⊕ c̃∗′′1
5: eq ← (eq == 0)

H ′′(c̃∗1 − c̃∗′′1 ) ?= H ′′(c̃∗′1 )

⇔H ′′(c̃∗1 − c̃1 + c̃∗′1 ) ?= H ′′(c̃∗′1 ).

Relying on the collision-resistance of H ′′, this comparison is only true if the ciphertext is
valid and thus c̃∗′1 = c1.

Lemma 5. When c̃∗′1 + c̃∗′′1 = c̃∗1 ∈ Rq is a uniform, independent shared representation of
the sensitive input variable c̃∗1 and H ′′ is a cryptographic hash function, every intermediate
variable of Algorithm 5 is independent of the sensitive variable c̃∗1.

Proof. For the proof, we analyze the distributions of the variables of each line from
Algorithm 5 and show that they are independent of the sensitive variable.

• Lines 1-3 : Each line uses only one share of c̃∗1 and, therefore, the computation is
independent of c̃∗1.

• Line 4 : The adversary can probe H ′′(c̃∗1 − c̃1 + c̃∗′1 ) ⊕H ′′(c̃∗′1 ) which depends on
both shares. However, we rely on the properties of H ′′ to break the linear relation
between the shares and make a direct recovery of c̃∗1 impossible. Nevertheless, a
computationally unbounded adversary would be able to distinguish the sensitive
variable c̃∗1 by iterating over all possible c̃∗′1 . Since c̃∗′1 ∈ Rq this task is more complex
than directly iterating over the whole key space of r̃2. Therefore, we do not consider
this attack vector a viable threat. Furthermore, in the special case of c̃∗1 = c̃1 the
variable c̃∗1 is not sensitive.

However, it is only secure to have a function of both shares, because the comparison is
always negative, i.e., eq is false, in a chosen-ciphertext setting. Therefore, the attacker
does not gain additional knowledge from the output of the comparison. This does not
apply to the comparison of c2 and c4. In this case, the adversary can adaptively change
c2 or c4 without removing the sensitivity from mcpa (which is not possible for c̃1) and
use the output of compare(c∗′2 , c∗′′2 ) (resp. compare(c∗′4 , c∗′′4 )) to distinguish mcpa. This
problem can be solved by performing the other comparison (i.e., c̃1) beforehand and
only if it returns true the other two comparisons (i.e., c2, c4) are conducted. A constant
time solution would be to perform dummy comparisons for c2 and c4 in case the prior
comparison failed. Furthermore, for these comparisons it is not even necessary to perform
a masked comparison, since they are only ever done for valid c̃1 and in this setting mcpa is
not sensitive.



158 Practical CCA2-Secure and Masked Ring-LWE Implementation

3.5 Hiding
To increase the level of noise and make higher-order attacks harder, we do not only rely
on masking to thwart side-channel analysis but also include hiding schemes. We therefore
applied the aforementioned blinding technique from [Saa16] to our implementation by
multiplying the coefficients of c1 by a random value a ∈ [0, q − 1] and the coefficients of r2
by a different random value b ∈ [0, q−1]. The coefficients of c2 are multiplied by ab mod q
as they get added to the product (a ·c1) · (b · r2). The mask is then removed by multiplying
all coefficients by (ab)−1 mod q. Due to the linearity of the NTT it is possible to remove
the mask after the result has been transformed back to the time domain. To introduce
even more noise we used shuffling to execute linear operations during the decryption
in a randomized order. To achieve this we shuffled the list of coefficients by using the
Fisher-Yates algorithm [FY+57]. A similar countermeasure has been implemented by
Pessl [Pes16] to avoid cache-timing attacks. For every run of the decryption, the list of
coefficients gets shuffled again.

3.6 Fault Resistance
Fault injection is an additional physical threat for embedded systems. Previous publications
have analyzed the vulnerability of lattice-based signature schemes against fault attacks
[BBK16,EFGT16] and found several attacks. In the following, we present the – to our
knowledge – first vulnerability analysis of ring-LWE.

In our analysis, we assume that the adversary targets the secret key r2 during the
CCA2-secured decryption. Without CCA2-security, a fault attack is not necessary to
recover the secret key as described before. Given that the CCA2-conversion includes
a validity check at the end, it inherently includes resistance against certain faults. In
particular, any fault injected in the ring-LWE decryption that changes the output of the
ring-LWE decryption module will be detected by the re-encryption at the end7. Therefore,
to perform any type of fault attack, it is required to inject another fault into the input of
H (to change the seed) or the ring-LWE encryption with the goal of passing the validity
check. Depending on the capabilities of the fault attacker, this approach can be very
complex. Therefore, in most cases it is easier to directly inject the fault in the validity
check itself, e.g., by skipping instructions.

Furthermore, due to the construction of our scheme the attacker does not have direct
access to the output of the ring-LWE decryption module. Instead, the output is defined as

out = c3 ⊕G(m)
= (M ⊕G(m))⊕G(m) = M

where M is the message and m the output of the ring-LWE decryption. Assuming that
the attacker knows M and G(m), the faulty output is

outF = c3 ⊕G(mF )

and therefore the only novel information the attack can access is G(mF ). Based on the
pre-image resistance of G, it is not easily possible to compute mF from G(mF ) for arbitrary
mF . This poses another difficulty for the fault attacker, as it is necessary to skip the
computation of G to perform attacks that target the output of the decryption assuming
mF is uniformly distributed in {0, 1}n/4.

However, it is possible to overcome this limitation. A much simpler attack relies on the
basic vulnerability of ring-LWE decryption to chosen ciphertexts. By skipping the validity

7There are no two distinct outputs of the decryption that can be valid at the same time
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check at the end, the attacker effectively removes the CCA2-security. Meaning an attacker
can send chosen ciphertexts and receive the output

out = c3 ⊕G(mC)

where mC denotes the output of the decryption for the chosen ciphertext. Even though,
we noted above that G provides pre-image resistance, this does not apply when mC has
only a very limited value space. Then it is possible to compute G(mC) for all possible mC

and use out to check for the correct one. For our implementation, an attacker can target
each coefficient of the secret key polynomial separately by choosing c̃1 as a polynomial
with all coefficients but one set to zero. Therefore, an attacker needs to compute only q
different values for mC . Overall, this attack only requires the injection of one fault at the
end to skip the validity check of the CCA2-conversion.

In conclusion, our implementation provides basic resistance against simple faults in the
ring-LWE decryption. However, if the attacker can skip the validity check, it becomes very
easy to extract the secret key. Therefore, to increase the resistance against physical attacks,
additional countermeasures need to be included to protect this final check. Furthermore,
more sophisticated attacks, e.g., safe-error attacks [YJ00], also pose a threat to the secret
key and, therefore, would require more sophisticated fault countermeasures.

3.7 Higher-Order Masking
As mentioned before, it is not sufficient to analyze the security against d probes for each
module separately to show the security of the full decryption. Nevertheless, we now briefly
discuss the possible extension of our masked modules to higher-orders.

For the first part of RLWE.CPAdec
NTT, each share is processed separately and therefore

extending the security to more probes is trivial. A designer only needs to increase the
number of shares and process them similar to z′′. However, the addition of the shares
in the second part requires special care, e.g., order of operation, to obtain higher-order
security.

For G, H, and H ′ we refer to [BDPVA10] for a discussion of higher-order resistance.
We want to note that for this module the efficiency strongly depends on the chosen function.
Keccak is efficient for first-order security. However, for higher orders a different function
might be better suited. In the module RLWE.CPAenc

NTTmost operations are linear and,
therefore, can be trivially extended to higher orders. Only the masked AND needs to
be extended to higher orders as described by Ishai, Sahai, and Wagner [ISW03]. For
the masked sampler, the extension to higher orders would be quite expensive as it is
already the largest part of the implementation. Therefore, it is reasonable to design a new
sampler which is easy to mask. Maintaining an additional share means that we need extra
temporary storage for one polynomial that stores the third share of the key (2048 bytes)
and one additional Keccak state (200 bytes). Our target platform provides 192 kbytes
of RAM and therefore we expect that a higher-order masking scheme still fits onto the
microcontroller.

4 Implementation
To evaluate the performance of the CCA2-conversion and our masking scheme, we im-
plemented the constructions on an ARM Cortex-M4F. Our evaluation platform is an
STM32F4 DISCOVERY board with 1 Mbyte of flash memory, 192 kbyte of RAM, a
floating-point unit (FPU), and a true random number generator (TRNG). In order to
keep the running time independent of secret data, we implemented critical components in
assembly language. Furthermore, to prevent cache timing attacks we disabled the cache
of the on-board flash memory by setting the DCEN bit of the FLASH_ACR register to zero.
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This also prevents the single-trace attack by Primas, Pessl, and Mangard [PPM17] that
exploits timing differences in the DIV instruction.

We use SHAKE-128 as instantiation for all random oracles H, G, H ′, and H ′′ and use a
different initialization vector for each of them. As the hashing plays a minor role in terms of
performance, we selected the readable Keccak implementation by Saarinen [Saa11] as basis
for our implementation as it allowed us to easily implement side-channel countermeasures.
To achieve a constant running time we decided to implement the binomial sampler
from [ADPS16b] with k = 8. To sample the necessary randomness, we implemented a
PRNG that is initialized with a 256-bit seed. For encryption, we generate this secret seed
from the on-board TRNG and then use a PRNG to generate Gaussian noise. As we have
to perform a re-encryption during the decryption that must sample the exact same values,
we cannot use the TRNG for this purpose but have to initialize the PRNG with the same
seed. We also use SHAKE-128 as PRNG.

For the implementation of polynomial arithmetic we require a high-performance and
constant-time modular reduction to prevent arithmetic-related SPA and remote timing
attacks [PPM17]. As a consequence, the implementation of the NTT and especially the
three-instruction modular reduction from [dCRVV14] is not suitable. It uses the DIV
instruction, which has a data-dependent variable execution time that can reach from 2 to
12 clock cycles. Therefore, we implemented a Barrett reduction [Bar86] using the FPU
of the Cortex-M4F that takes 6 clock cycles and is timing-independent. De Clercq et
al. [dCRVV14] also present an optimized implementation of the NTT. They implement the
NTT in assembly and also proposed an optimized memory access scheme. Their idea is to
store two coefficients in one data word and being able to load/store both coefficients with
the same instruction. As reported in [AJSar], Alkim et al. implemented the NTT as well.
By combining a Montgomery reduction with Barrett reduction, their NTT is considerably
faster than the one from [dCRVV14] and most importantly also has a constant execution
time. We therefore embedded the NTT from [AJSar] into our implementation.

For our implementation of the blinding countermeasure, we need to compute the inverse
of the product of the blinding values (ab)−1 mod q. To realize this inversion efficiently,
we used an addition chain to compute (ab)q−2 mod q that equals (ab)−1 mod q according
to Fermat’s little theorem. To shuffle the list of indices of the polynomials and therefore
change the order of the computations we apply the Fisher-Yates algorithm [FY+57].

A theoretically secure masking scheme can still show leakage in an actual implementation
due to unconsidered effects inside the microarchitecture of the microcontroller. For instance,
overriding a register that holds one share with the content of another register storing the
other share, will inevitably leak information. Similarly, one must avoid to load or store
both shares from or to memory in consecutive instructions (or even the same instruction,
e.g. load multiple LDM). Furthermore, carry bits can be a source of leakage. We carefully
designed our implementation to not suffer from these problems. For operations that can
be performed on both shares independently (e.g. point-wise multiplication), this is easily
achieved by executing the operations on all coefficients of one share first and only then
do the operations for the coefficients of the other share. For operations that require both
shares (i.e. Decode) hand-crafted assembly code is necessary.

5 Side-Channel Evaluation
Even though we provide proofs for most of our modules against one probe, practical
first-order side-channel security is not automatically implied by that. Implementation
errors can still negatively affect the resistance due to effects that are not included in
the model [BGG+14]. Therefore, to completely evaluate the security of our masked
implementation, we performed basic side-channel experiments. Since our aim is to show
first-order resistance, we rely on the commonly-used t-test leakage detection methodology
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initially proposed in [GJJR11, CDG+13]. We performed the test at first and second
order. For bivariate second-order evaluation, we relied on the optimal centered product
[SVO+10,PRB09] as the combination function.

We use a PicoScope 5203 with a sample rate of 125 MS/s to measure the power
consumption at our STM32F4 Discovery board. To increase the measurement quality,
we reduce the internal clock to 12 MHz and remove some capacitors from the PCB. The
communication with the board is done over USART as the on-board USB interface causes
additional noise in the power traces. Since the entirely masked decryption requires an
extremely high number of clock cycles, we cannot easily perform a bivariate evaluation with
our proposed method. Instead, we split the practical evaluation into the modules similar
to the theoretical evaluation of Section 3.3. For first-order evaluation this is appropriate
as noted in Section 3.3. However, for the bivariate second-order test we do not cover
the scenario of two probes in different modules. Nevertheless, our goal is to show the
existence of second-order leakage to verify our measurement setup and we found this for
every module separately. For each module we took 100,000 measurements and performed
the aforementioned tests. To further speed up the second-order evaluation, we adjusted
the module to only process a small number of coefficients.

In our experiments, we perform the non-specific fixed vs. random t-test. To this end,
we take two types of measurements. One with fixed input and one with random input.
The t-statistic t is computed as

t = µF − µR√
σ2

F

nF
+ σ2

R

nR

where µF , σ2
F , and nF (resp. µR, σ2

R, and nR) denote the mean, variance, and number of
measurements set with fixed input (resp. random input). If the value exceeds the threshold
|t| > 4.5, the test has detected leakage. For more information, we refer the interested
reader to further literature related to this side-channel evaluation methodology [SM15].

We measured the computation of the butterfly during the NTT for two coefficients, the
addition of the two shares during the masked re-encryption as described in Section 3.3.3
for one coefficient, the remasking and decoding as described in Section 3.3.1 for four
coefficients (that encode one bit), the masked χ-step of Keccak for five bytes, point-wise
multiplication and addition for two coefficients, two bits for the sampler, and 12 bytes for
the comparison. To reduce the number of measured sample points per trace, we split the
decoding into one measurement of the modulus transformation (Algorithm 1) and one
measurement of the final operations as described in Algorithm 2. Figure 4 depicts the
results for each module. The lower (resp. upper) curve shows the maximum absolute value
of the first-order (resp. second-order) test as a function of the total number of measurements
considered in the evaluation. It is noticeable that there is indeed no first-order leakage up to
100,000 traces. There is also no obvious increase of the t-values. Thus, the implementation
showed first-order protection as expected. Additionally, the second-order evaluation shows
leakage early on for every module and displays an upward trend with higher number of
measurements. This is also expected given that we implemented first-order masking. We
also show examplary power traces and the t-test results as function of the time for the
decoding operations in Figures 5 and 6.

However, it should be noted that even though our evaluations clearly show second-
order leakage, performing an actual second-order attack on the masked implementation
might not be trivial. First, there is the aforementioned issue of the extreme high number
of sample points which can make our naive combination approach unfeasible. Instead,
more sophisticated point of interest detection mechanisms need to be utilized to reduce
the number of considered sample pairs [DSV+15, RGV12] which further increases the
complexity of the attack. A second aspect which is briefly mentioned in Section 3.5 is the
mixture of masking with hiding countermeasures. Higher-order attacks are very sensitive
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Table 2: Cycle counts of our implementation on an ARM Cortex-M4F. Cycle counts for
sampling are given for a whole polynomial. Our parameters are n = 1024, q = 12289, and
k = 8.
Operation Cycle Counts

Unmasked Masked
Key Generation (RLWE.CPAgen

NTT) 2,669,559 -
CCA2-secured Encryption (RLWE.CCAenc

NTT) 4,176,684 -
CCA2-secured Decryption (RLWE.CCAdec

NTT) 4,416,918 25,334,493
CPA-RLWE Encryption (RLWE.CPAenc

NTT) 3,910,871 19,315,432
CPA-RLWE Decryption (RLWE.CPAdec

NTT) 163,887 550,038
Shake-128 87,738 201,997
NTT 83,906 -
INTT 104,010 -
Uniform Sampling (TRNG) 60,014 -
SampleNoisePoly (PRNG) 1,142,448 6,031,463
PRNG (64 bytes) 88,778 202,454

to noise. Therefore, to increase the higher-order security it is advised to include one of
the discussed hiding countermeasures. In one recent example, this increased the practical
resistance more than implementing a higher-order masking scheme [MW15]. Furthermore,
if only the start of the ring-LWE decryption is targeted, a designer can rely on the linear
masking property to increase the number of shares significantly. However, including hiding
countermeasures prevents us from evaluating only simplified versions of the modules, since
the efficiency strongly increases with the number of coefficients. Therefore, we did not
measure a masked design with hiding, since a thorough second-order evaluation would not
be feasible (the first-order test would give similar results to Figure 4).

6 Results and Comparison
We evaluate the performance of our implementation using Keil µVision V5.17 and use
-O3 optimization for compiling. We took special care to prevent effects that the compiler
optimization itself could induce side-channel leakage, e.g. by overwriting one shared value
in a register with the second share. Cycle counts are measured using the on-board cycle
count register (DWT_CYCCNT). To measure the dynamic memory consumption we used the
callgraph feature of the Keil IDE. We present the cycle counts of our implementation
in Table 2. The CCA2-secured encryption takes 4,176,684 cycles which translates to 25
milliseconds when operating at a clock frequency of 168 MHz. The key generation takes
16 ms at 168 MHz.

Applying the CCA2-conversion to the decryption causes a much higher overhead due to
the necessary re-encryption. In the unmasked case, it requires 27 times more cycles and in
the masked case 46 times more cycles. Thus, the masked CCA2-decryption takes 25,334,493
cycles which is an overhead factor of 5.7 compared to the CCA2-secured decryption without
masking. The overhead cost for the masking of the CCA2-secured decryption is mainly due
to the high cost of the sampling. The sampling in turn heavily depends on the performance
of the PRNG. A suitable replacement for SHAKE-128 with better performance would
therefore improve the performance of the scheme. An insecure approach with an unmasked
re-encryption would require around 2 million cycles only. However, as noted in Section
3.3 such an implementation would not provide sufficient protection against a side-channel
adversary in a chosen-ciphertext scenario.
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Figure 4: Absolute maximum t-values for different modules of our masking scheme. The
solid blue line marks the first-order t-values and the dashed red line marks the second-order
t-values.
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(b) Final decoding operations

Figure 5: Examplary power traces.
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(b) Final decoding operations

Figure 6: T-test results as a function of the time.

The results of combining our masking approach of the decryption with additional
hiding countermeasures are given in Table 3. The overall running time for our protected
decryption is 25,640,380 cycles which leads to 152 milliseconds runtime at 168 MHz. The
secret key is one polynomial and therefore requires 2,048 bytes of memory. As the public
key consists of two polynomials, it needs twice as much memory (4,096 bytes). The
ciphertext consists of two polynomials (c̃1, c2) and the bit strings c3, c4 of 256 bits each
and therefore has a total size of 4,136 bytes.

Table 3: Cycle counts of our CCA2-secured decryption.
Masking

Countermeasure Unmasked Masked
No Hiding 4,416,918 25,334,493
Blinding/Shuffling 4,643,394 25,640,380
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6.1 Comparison

Notice that the masked implementation in [RRVV15a] is a hardware implementation and
that [RdCR+16] does not provide performance numbers. Thus we cannot directly compare
our results to the existing work and decided to re-implement the previous proposals in
combination with a CCA2-conversion to allow a fair comparison. Our results are given in
Table 4. This also demonstrates the individual overhead of all schemes independent of the
performance of the NTT. According to our findings, our CCA2-secured decryption needs
one million cycles less than the masked decoder approach from [RRVV15a] and 3.5 million
cycles less than additively homomorphic masking [RdCR+16]. It is also worth mentioning
that encoding one message bit into four coefficients is much more complex when using the
masked decoder approach as we no longer have 42 = 16 possible combinations of values to
match quadrants but 42·4 = 256 combinations. Thus, for the evaluation of the masked
decoding approach, we decode each coefficient separately and use masked majority voting
to combine them. The additively homomorphic masking inherently increases the failure
probability and may thus impact parameter choices and the acceptable noise levels.

Table 4: Cycle counts and dynamic memory consumption of our CCA2-secured decryption.
Masking Scheme Cycle counts Dynamic memory
Our scheme 25,334,493 25,696 bytes
Masked decoder [RRVV15a] 26,250,420 25,696 bytes
Additively homomorphic masking [RdCR+16] 28,899,058 29,984 bytes

7 Conclusion
In this work we presented a new instantiation of CPA-secured ring-LWE encryption with
masked decoding that outperforms previous proposals at a reduced decryption failure
probability. We also applied a CCA2-transform to the ring-LWE encryption scheme.
This requires a masked sampling of the error polynomials. The implementation of our
construction revealed that a side-channel and CCA2-secured implementation of ring-LWE
comes with a significant overhead. We identified a target of further optimization within
the masked implementation of the PRNG (SHAKE-128 in our case) for that further
acceleration would result in a significantly increased overall performance.
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A Appendix
A.1 Security Estimation
In Table 5 we provide detailed security estimations based on the approach and using the
script provided in [ADPS16b]. For the evaluation of the error rate we also used the script
from [ADPS16b] and set the parameters dim = 1024, q = 12289, k = 8, bound_CC =
66500, t_CC = 0.0055, tau = 17.8. To evaluate the security level of our proposal we add
the line summarize_params(12289,1024,sqrt(8.0/2), 3.*12289.0/4, False) to the
original NewHope script8.

Table 5: Security level of various parameters for ring-LWE encryption schemes

Attack m b Known Classical Known Quantum Best Plausible

RLWE.CPA [GFS+12] q = 7681, n = 256, ς ≈ 4.5160
Primal 347 222 64 58 46
Dual 369 222 64 58 46

RLWE.CPA [GFS+12] q = 12289, n = 512, ς ≈ 4.8591
Primal 660 496 145 131 102
Dual 674 494 144 131 102

BCNS proposal [BCNS15]: q = 232 − 1, n = 1024, ς = 3.192
Primal 1062 296 86 78 61
Dual 1055 296 86 78 61

NTRUencrypt [HPS+15]: q = 212, n = 743, ς ≈
√

2/3 ≈ 0.8165
Primal 613 603 176 159 125
Dual 635 600 175 159 124

JarJar: q = 12289, n = 512, ς =
√

12 ≈ 3.4641
Primal 623 449 131 119 93
Dual 602 448 131 118 92

NewHope: q = 12289, n = 1024, ς =
√

8 ≈ 2.8284
Primal 1100 967 282 256 200
Dual 1099 962 281 255 199

Our Work: q = 12289, n = 1024, ς =
√

8/2 = 2
Primal 999 886 259 235 183
Dual 1048 881 257 233 182

8See PQsecurity.py in https://cryptojedi.org/crypto/data/newhope-20160815.tar.bz2

https://cryptojedi.org/crypto/data/newhope-20160815.tar.bz2
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