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Abstract. The design of a silicon Strong Physical Unclonable Function (PUF) that is
lightweight and stable, and which possesses a rigorous security argument, has been
a fundamental problem in PUF research since its very beginnings in 2002. Various
effective PUF modeling attacks, for example at CCS 2010 and CHES 2015, have
shown that currently, no existing silicon PUF design can meet these requirements. In
this paper, we introduce the novel Interpose PUF (iPUF) design, and rigorously prove
its security against all known machine learning (ML) attacks, including any currently
known reliability-based strategies that exploit the stability of single CRPs (we are
the first to provide a detailed analysis of when the reliability based CMA-ES attack
is successful and when it is not applicable). Furthermore, we provide simulations and
confirm these in experiments with FPGA implementations of the iPUF, demonstrating
its practicality. Our new iPUF architecture so solves the currently open problem of
constructing practical, silicon Strong PUFs that are secure against state-of-the-art
ML attacks.

Keywords: Arbiter Physical Unclonable Function (APUF), Majority Voting, Modeling
Attack, Strict Avalanche Criterion, Reliability based Modeling, XOR APUF, CMA-ES,
Logistic Regression, Deep Neural Network.

1 Introduction
A Physical Unclonable Function (PUF) is a fingerprint of a chip which behaves as a
one-way function in the following way: it leverages process manufacturing variation to
generate a unique function taking “challenges” as input and generating “responses” as
output. Silicon PUFs were introduced in 2002 by Gassend et al. [GCvDD02] and are an
emerging hardware security primitive in various applications such as device identification,
authentication and cryptographic key generation [MV10, KGM+08, YMSD11, BFSK11].
The fundamental open problem of strong silicon PUFs is: How to design a PUF that is
lightweight, strong and secure. Below we explain each of these three properties and discuss
current PUF designs that do not satisfy all of these properties. We also propose a new
PUF design, the Interpose PUF (iPUF) to solve this open problem.

Lightweight and Strong Design. A lightweight design must have a small number of
gates (small area) and in addition only limited digital computation is allowed with only a
small number of gate computations and without the need for accessing additional memory.
This lightweight implementation gives a small hardware footprint and high throughput. A
strong PUF is one that has a large number of Challenge-Response Pairs (CRPs) which are
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impractical to enumerate.1

Security Argument. We consider an adversarial model in which an attacker attempts
to obtain a software model of a PUF by using information extracted from measured
CRPs. Intrinsically, a PUF hides a “random” function, and learning such functions from
input-output pairs is the field of machine learning – therefore, security must be argued
with respect to the best-known applicable machine learning techniques. In practice we
measure the security of a PUF by the number of required CRPs for modeling the PUF
with a sufficiently high prediction accuracy (e.g. 90%).

Current PUF Designs. Current strong PUFs designs can generally be placed into
one of three categories. 1. Strong PUFs without rigorous security arguments, e.g., the
Power Grid PUF [HAP09], Clock PUF [YKL+13], Crossbar PUF [RJB+11]. 2. Strong
PUFs based on the Arbiter PUF (APUF) or APUF design which have been broken by
machine learning based attacks as discussed in Section 2, e.g., the XOR APUF [SD07],
the Feed-Forward PUF [LLG+05], LSPUF (Lightweight Secure PUF) [MKP08], Bistable
Ring PUF [CCL+11], and MPUF (Multiplexer PUF) [SMCN18]. 3. Strong PUFs with
security proofs but are not lightweight, e.g., LPN PUF (Learning Parity with Noise based
PUF) [HRvD+17, JHR+17].

Machine Learning Categorization. In this paper we divide the best-known machine
learning attacks on PUFs into two types. The first type of attacks which use non-repeated
measurements of CRPs, are denoted as Classical Machine Learning (CML). We further
describe various CML attacks in Section 2. The CML security arguments for the iPUF are
based on the theoretical arguments developed for the x-XOR APUF. It has already been
proven that for the x-XOR APUF, if x is large enough then it is secure against known
CML attacks [Söl09, RSS+10, TB15]. In this paper, we prove an equivalence relationship
between the (x, y)-iPUF and x-XOR APUF such that the developed theoretical framework
for CML for the x-XOR APUF can be applied to the iPUF. Specifically, if y is chosen
large, then the iPUF is theoretically secure against CML, just like the x-XOR APUF. In
this way, we can re-use the XOR APUF CML security framework without having to create
and prove an entirely new CML security framework. However, regardless of how large x is,
the x-XOR APUF is still vulnerable to a second type of machine learning attacks.

The second type of machine learning attacks we discuss in this paper are attacks that
use repeated CRP measurements [DV13, Bec15] (see Section 2 for more details). We
denote these types of attacks as reliability-based machine learning. In this paper we prove
these attacks are unable to model the iPUF. Overall, the iPUF is secure against CML
attacks and reliability-based machine learning attacks. Moreover, it is as lightweight as
an XOR APUF. Hence, the iPUF replaces the XOR APUF as a next-generation secure
lightweight strong PUF.

Contributions. In this paper, our contributions are as follows.

• Reliability-based CMA-ES (Covariance Matrix Adaptation Evolution Strategy) attacks.
Through theoretical study, rigorous simulation and experimentation we explain why
the most prevalent reliability-based machine learning attack works on APUFs and
XOR APUF. Moreover, we show under what circumstances the attack fails. To
the best of our knowledge, we are the first ones to work on these two problems. In
addition, we propose enhanced reliability-based CMA-ES attacks which are much
more powerful than the original one.

• Interpose PUF (iPUF). We propose a novel APUF based PUF design called the
iPUF. The iPUF is a lightweight, strong secure PUF design that solves the open
fundamental problem of silicon PUFs. We show that the iPUF can prevent CML

1Assuming no additional physical limitation on the read-out speed of CRPs from the PUF.
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attacks that use derivative based calculations (i.e. Logistic Regression) as well as
the main reliability-based machine learning attack (i.e. reliability-based CMA-ES).
Moreover, by showing the similarity between the iPUF and XOR APUF, we can
prove that the iPUF is secure against deep neural network attacks and CRP-based
CMA-ES attacks which are the most powerful classical attacks applicable to the
iPUF.

• Open Source Library. We provide open source code on GitHub2 for all our simulations
and experiments. This includes code for machine learning attacks on APUF, XOR
APUF and iPUF in Matlab, C#, and Python. Code to create various PUF models
on FPGA hardware is also given.

Paper Organization. The paper is organized as follows.
The background on machine learning attacks is presented in Section 2. Section 3 briefly

introduces the APUF and iPUF designs. Here, we also explain the road map to prove
the resistance of the iPUF against all known modeling attacks, and introduce the specific
chosen set of parameters for a practical secure iPUF (see Section 3.4). After that, we
give a short description of reliability-based CMA-ES on XOR APUF and introduce its
enhanced variant on APUF and XOR APUF in Section 4.

Section 5 provides a comprehensive study of reliability-based CMA-ES on XOR APUF,
i.e., why it works and when it fails. We move to the security analysis of iPUF regard-
ing classical machine learning attacks and reliability-based machine learning attacks in
Section 6. We explicitly provide the security conjecture used for iPUF security and the
design philosophy of iPUF (see Section 6.1). We introduce the notions Contribution
and Equivalence to show the relationship between iPUF and XOR APUF in Section 6.3.
With the developed understanding of reliability-based CMA-ES, the knowledge of the
equivalence between iPUF and XOR APUF, we now can show the resistance of the iPUF
against all known attacks, i.e., the reliability-based CMA-ES attack, the special class of
machine learning attacks developed only for iPUF (coined linear approximation attacks,
see Section 4.3), the Logistic Regression (LR) attacks, the Deep Neural Network attacks,
the CRP-based CMA-ES attacks, the Boolean function based attacks, Deterministic Finite
Automata attacks and Perceptron attacks used for PAC learning framework in Section 6.5.
Section 7 studies the strict avalanche criteria (SAC) and the reliability property of the
iPUF.

We provide detailed simulations to support the analysis of iPUF in Section 8. Section 9
presents the results for the iPUF implemented in FPGA. Here, we experimentally and
theoretically explain the impact of bad implementations and good implementations on the
security of the iPUF. We conclude our paper in Section 10. Moreover, we also provide a
brief description of APUF and XOR APUF in Appendix A.1, the influence of a challenge
bit on the output of an APUF in Appendix A.2, Multiplexer PUF’s vulnerability with
respect to the reliability-based CMA-ES attack in Appendix A.3, and k̃-junta test in
Appendix A.4.

2 Background on Machine Learning Attacks on PUFs

In this section we discuss background information related to the evolution of machine
learning attacks on PUFs.

2URL: https://github.com/scluconn/DA_PUF_Library
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2.1 Classical Machine Learning Attacks Background
Classical Machine Learning (CML) was first introduced in 2004, where the 64 bit APUF was
shown to be vulnerable with respect to Support Vector Machine (SVM) [Lim04, LLG+05].
The most efficient CML attack on APUF and XOR APUF [RSS+10, TB15] is Logistic
Regression (LR) which uses non-repeated measurements of CRPs. LR was used to break
APUFs and XOR APUFs in 2010 [RSS+10]. Rührmair et al. [RSS+10] demonstrated how
the x-XOR APUF for x ≤ 5 can be modeled with at least 98% accuracy using LR with
non-repeated measurements of CRPs. The state-of-the-art implementation of LR breaks
the 64 bit x-XOR APUF up to x ≤ 9 and a 128 bit x-XOR APUF up to x ≤ 7 [TB15].
For larger x the XOR APUF has been shown to resist LR due to the subexponential
relationship between x and the amount of training data required to model the XOR APUF
[Söl09, RSS+10, TB15].

Many PUF designs based on the APUF can also be broken using CML. The Bistable
Ring PUF borrows from the APUF design and can be broken like the APUF using a
neural network [SH14] or SVM [XRHB15]. The Feed-Forward APUF (FFA) [LLG+05]
is another variant of the APUF and can be broken using SVM, LR and ES (Evolution
Strategy) for ≤ 8 feedforward positions [RSS+10]. For a larger number of feedforward
positions the FFA becomes unreliable and is therefore not considered to be practical. The
Lightweight Secure PUF (LSPUF) [MKP08] is a variant of the XOR APUF with multiple
outputs. The LSPUF is based on the x-XOR PUF and consequently is vulnerable to LR
[SNMC15] when x ≤ 9.

Another type of classical machine learning is the Probably Approximately Correct
(PAC) [GTS15, GTS16, GTFS16] attack. PAC learning provides a framework to learn
the maximum number of CRPs required for modeling an XOR PUF, with given levels of
accuracy and final model delivery confidence. The Perceptron algorithm used in the PAC
learning framework is shown to be successful against the x-XOR APUF for x ≤ 4 [GTS15]
and the Deterministic Finite Automata (DFA) [GTS16] algorithm can be used to model
APUF. We note that DFA in [GTS16] can be modified to further attack x-XOR APUF,
but the necessary modification is not fully explained. If we compare the LR attack on
XOR APUF in [Söl09, RSS+10, TB15] with the Perceptron attack or with the DFA attack
on XOR APUF in [GTS15], we can see that the LR attack is much more powerful. This is
because that LR has a much smaller search space, uses a mathematical model of the XOR
APUF, and uses gradient information in an optimization process. Therefore, we only focus
on the LR attack for XOR APUF in this paper. In addition, there is one Boolean function
based attack related to the PAC learning framework [GTFS16]. However we show that it
is inapplicable to APUFs, XOR APUFs and iPUFs in Section 6.5.

In this paper we focus on the main classical machine learning attacks: LR, Deep Neural
Network [GBC16] (DNN) and Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [Han16]. LR is considered as the most powerful attack on XOR APUF because it is a
gradient-based optimization and it uses the mathematical model of XOR APUF [Söl09,
RSS+10]. Since DNN is considered as one of the most powerful black box attack (i.e.,
does not require any mathematical model of the PUF), it is an interesting case for study.
CMA-ES is a gradient free algorithm (i.e., the gradient is not used for finding the desired
model) and this property makes it different from algorithms that require gradient based
computations (i.e., the LR algorithm). By considering LR, DNN and CMA-ES algorithms,
we complete the study of classical machine learning attacks on APUF-based PUFs (i.e.,
XOR APUF and iPUF).

2.2 Reliability-based Machine Learning Attacks Background
The first reliability-based attack was proposed in [DV13], where the authors used reliability
information and Least Mean Square optimization method to attack APUF only. In other
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words, this attack in [DV13] is not applicable to XOR APUFs. Later on, Becker [Bec15]
was able to break the XOR APUF (and as a consequence the LSPUF) with a linear
complexity in x using a non-classical ML attack which uses the reliability information of
CRPs and the CMA-ES method. Reliability information can be extracted from repeated
measurements of responses belonging to the same challenge [DV13]. This allows an attacker
to measure the sensitivity of a response to environmental noise caused by e.g. temperature
and voltage variations.

In this paper we refer to attacks that use repeated CRP measurements as reliability-based
machine learning attacks.3

Note that if responses are not sensitive to environmental noise, i.e., the PUF is very
reliable, then Becker’s reliability-based CMA-ES attack is not applicable. For this reason
one may want to add digital circuitry to the PUF in the form of a fuzzy extractor [DRS04]
or an interface that exploits the LPN problem [HRvD+17, JHR+17], but these techniques
are not lightweight and therefore do not solve the stated fundamental problem. A more
lightweight solution is presented in [WGM+17] where the reliability of an x-XOR APUF
is enhanced using majority voting. However, this is not sufficiently lightweight as the
same circuitry (including memory for storing a counter) needs to be executed repeatedly a
large number of times which implies a large number of gate evaluations and reduction in
throughput. But more importantly, majority voting does not prevent the reliability-based
CMA-ES attack as the environment can be pushed to extremes in order to make the
PUF more unreliable again. In [SMCN18], a new PUF design was introduced but it is
also not secure against CMA-ES attack (see Algorithm 1 in Section 5 in [SMCN18] or
Appendix A.3). Since we only focus on the PUF primitive, PUF-based protocols which
can prevent the reliability-based CMA-ES attack are out of the scope of this paper. For
example the Lockdown protocol in [YHD+16] is one of good candidates. However, the
iPUF design we propose is more lightweight and simpler than Lockdown protocol because
it does not require many hardware primitives such as a True Random Number Generator,
counters etc (see [YHD+16]).

3 The Arbiter PUF and Interpose PUF
In this section, we briefly introduce the analytical delay model [Lim04] and the reliability
model [DV13] of the APUF. We also discuss the basic design of the newly proposed
(x, y)-iPUF. Descriptions of both designs are necessary to understand the effectiveness of
ML attacks on PUFs in Section 4. The reader can find the detailed description of APUF
and XOR APUF in Appendix A.1.

3.1 The APUF Linear Additive Delay Model

In [Lim04, LLG+05], an analytical model called the Linear Additive Delay Model was
presented. As shown in [Lim04], the linear additive delay model of an APUF has the form:

∆ = w[0]Ψ[0] + · · ·+ w[i]Ψ[i] + · · ·+ w[n]Ψ[n] = 〈w,Ψ〉, (1)

where n is the number of challenge bits, w and Ψ are known as weight and parity (or
feature) vectors, respectively. The parity vector Ψ is derived from the challenge c as

3Reliability information can be regarded as a type of ‘side-channel’ information which is extracted
from CRPs alone without the use of extraneous equipment, whereas additional equipment is needed in
power side-channel analysis etc. [RXS+14, TDF+14, TLG+15]. In this paper security is argued in an
adversarial model where the attacker only has access to CRPs.
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c = (c[0], . . . , c[i], . . . , c[n− 1])

(c[0], . . . , c[i], rx, c[i+ 1] . . . , c[n− 1])

rx

y-XOR APUF

x-XOR APUF

r

Figure 1: The (x, y)-iPUF (Interpose PUF) is comprised of an x-XOR APUF whose
output rx is interposed between c[i] and c[i+ 1] in the input of a y-XOR APUF.

follows:

Ψ[n] = 1, and Ψ[i] =
n−1∏
j=i

(1− 2c[j]), i = 0, . . . , n− 1. (2)

In this delay model, the unknown weight vector w depends on the process variation
of the APUF instance (i.e. of a specifically manufactured APUF). The response to a
challenge c is defined as: r = 0 if ∆ ≥ 0. Otherwise, r = 1.

3.2 The Arbiter PUF Reliability Model
Due to noise, the reproducibility or reliability of the output of a PUF is not perfect, i.e.,
applying the same challenge to a PUF will not produce a response bit with the same value
every time. The repeatability is the short-term reliability of a PUF in presence of CMOS
noise, and it is not the long-term device aging effect [DV13].

In an APUF we can measure the (short-term) reliability R (i.e., repeatability) for a
specific challenge c in the following way: Assume that the challenge c is evaluated M
times, and suppose the measured responses that are equal to 1 is N out of M evaluations.
The reliability is defined as R = N/M ∈ [0, 1].

In Eq. (1) we showed the mathematical relationship between the parity vector Ψ and
the corresponding response ∆. Similarly, there exists a mathematical relationship between
the reliability R of a given challenge and its response ∆ as shown in [DV13]:

∆/σN =
n∑
i=0

(w[i]/σN )Ψ[i] = −Φ−1(R) (3)

where the noise follows a normal distribution N (0, σN ) and Φ(·) is the cumulative distri-
bution function of the standard normal distribution. In the case where R ∈ [0.1, 0.9] a
further approximation [DV13] can be made:

∆/σN ≈ R. (4)

3.3 The iPUF Design
A (x, y)-iPUF consists of two layers. The upper layer is an n-bit x-XOR APUF and the
lower layer is an (n+ 1)-bit y-XOR APUF. We denote the input to the x-XOR APUF as
cx = (c[0], . . . , c[i], c[i+1], . . . , c[n−1]). The response rx of the x-XOR APUF is interposed
in cx to create a new n+ 1 bit challenge cy = (c[0], . . . , c[i], rx, c[i+ 1], . . . , c[n− 1]). The
final response bit is the response ry of the y-XOR APUF with respect to the new challenge
cy. The structure of the (x, y)-iPUF is shown in Figure 1.

When creating an n-bit (x, y)-iPUF four important parameters determine its security
against ML attacks. The four parameters are n which represents the length of the iPUF’s
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challenge, x which represents the number of APUFs in the upper layer XOR APUF, y
which represents the number of APUFs in the lower layer XOR APUF, and the place
where the response of the upper layer rx is interposed in the input challenge for the lower
layer y-XOR APUF. In the next two sections, we will go over more details related to the
ML attacks on PUFs including the (x, y)-iPUF. Based on this knowledge, we explain how
to properly choose the design parameters for the (x, y)-iPUF in Section 6.5 to secure it
against various ML attacks.

3.4 iPUF Security Philosophy
The iPUF design parameters are chosen based on certain machine learning attacks. In
this section, we explain why we use certain specific attacks to dictate the choice of iPUF
parameters instead of others. In Section 6 we will prove the (x, y)-iPUF is secure against
reliability based CMA-ES attacks, so we only focus our design choices here based on
classical machine learning attacks. Our explanation of design choices also requires us to
develop a hierarchy to rank some of the classical machine learning attacks. In this manner,
we can show that the iPUF can defend against the strongest classical attack.

Theorem 1. For any given x-XOR APUF, the Logistic Regression (LR) attack is the
most powerful attack among three classical machine learning attacks: the LR attack, the
CRP-based CMA-ES attack and the Deep Neural Network (DNN) attack.

Proof. We note that the following comparison is only valid for XOR APUFs, and later we
will link these comparison results to the security of iPUFs. The comparison is based on
the following facts.

1. Fact 1. We can accurately describe the behavior of an XOR APUF using a mathe-
matical model [Söl09, RSS+10].

2. Fact 2. The formulation of the LR attack exploits a-priori knowledge of the XOR
structure in the XOR APUF, i.e., the mathematical model of the XOR APUF.
The model used in the LR attack perfectly captures the structure of the XOR
APUF [Söl09, RSS+10]. Moreover, LR is a gradient-based optimization methodology,
i.e., for finding the true model, the gradient is based on a training dataset and the
model is updated in each iteration. The gradient information will give the most
optimal updated direction to guide the current model to the true model in each
iteration. The reader is referred to [Sch16] for more details.

3. Fact 3. The CRP-based CMA-ES attack is a gradient free optimization methodol-
ogy [Han16] and it uses the mathematical model of XOR APUF. In each iteration,
it randomly generates a population of models based on the current model and then
keeps only some best matching models among these models (see [Han16] or Section 4.1
for more details). The current model will be updated based on the information from
these chosen models. Therefore, CRP-based CMA-ES only gives a heuristic updated
direction to take the current model to the true model in each iteration. Therefore,
CRP-based CMA-ES is not as efficient as LR (i.e., LR has the most optimal updated
direction in each iteration as described in Fact 2). We also perform this attack on
iPUF and XOR APUF in Section 6.3.

4. Fact 4. The deep neural network algorithm is a black box optimization methodol-
ogy [GBC16], i.e., it does not use the mathematical model of XOR APUF. This is
the main disadvantage compared to LR. Note that LR attack on XOR APUF takes
the advantage of the mathematical model of XOR APUF (see Fact 2). Therefore LR
does not have to optimize as many parameters as a DNN to model a PUF. In other
words, the LR attack is more efficient than the DNN attack.
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We formalize the result in the following inequalities of attacking efficiency.

CMA-ES < Logistic Regression. (5)

Deep Neural Network < Logistic Regression. (6)

Our experimental results in Table 3 also confirm our arguments above. Hence, the most
powerful classical attack on XOR APUF is LR. However the LR attack is not applicable
on iPUF as we will show in Section 6.5. Therefore we have to show the resiliency of
the iPUF against the DNN attack and the CRP-based CMA-ES attack. To the best
of our knowledge, there is no theory which can give a lower bound on the required
number of CRPs for training a machine learning model to learn an XOR APUF with a
given prediction accuracy using CRP-based CMA-ES, the DNN attack, or LR. Since the
structure of iPUF is only slightly different from the structure of XOR APUF, we do not
have such theory for iPUF either.

The x-XOR PUF has one theory which states that the number of CRPs required for
the LR algorithm exponentially increases when x increases [Söl09]. Moreover, this theory
was confirmed by experiments in [TB15] and the empirical lower bounds for the number
of CPRs required for the LR algorithm is presented in [TB15].

Fortunately, we can come up with an “approximate” theory to choose the iPUF
parameters based on the following information. First we know from the above attack
comparison, LR is the strongest classical attack on an XOR APUF. We also know the
XOR APUF’s state-of-the-art empirical lower bound of the number CRPs to make the
attack work [TB15]. Second we know the security of the iPUF can be related to the
security of XOR APUF (which we formally develop in Theorem 4). The result in brief is
that the (x, y)-iPUF with i = n/2 is equivalent to (y + x

2 )-XOR APUF (see Theorem 4).
Based on the two pieces of information above, we can conclude that if a (y + x

2 )-XOR
APUF can be secure against LR, then the (x, y)-iPUF with i = n/2 can be secure against
DNN attacks and CRP-based CMA-ES attacks as well. The literature has shown that
a 64-bit 10-XOR APUF is secure against LR attack [TB15]. Based on that design we
suggest using challenge length n = 64, (1,10)-iPUF with interpose bit in the
middle i = n/2 = 32 as a set of practical design parameters.

4 Reliability Based ML Attacks
Conceptually, instead of using CRPs like in Classical ML (CML) attacks, the repeatability
(i.e. short-term reliability) of APUF outputs can be used to build an APUF model based
on a set of challenge-reliability (not response) pairs. The relationship between reliability, R
and the weights w of an APUF were shown in Eq. (3) and Eq. (4). In [DV13] a Reliability
based ML (RML) attack was done under the assumption that R ∈ [0.1, 0.9]. Based on this
assumption a system of linear equations was established using Eq. (4) so that w[i]/σN
could be solved for by using the Least Mean Square algorithm. This approach only applies
to the APUF, and not the XOR APUF and by extension it also does not apply to the
iPUF. However, RML attacks can be done without assumptions about the range of R, as
we will explain in Section 4.1. Section 4.2 presents the enhanced version of this attack
on APUF and XOR APUF. In Section 4.3 we show how to model the iPUF as a linear
approximation (LA) of an XOR APUF. This can be used to analyze to what extent the
CML and RML attacks on the XOR APUF apply to the iPUF.
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4.1 Reliability Based CMA-ES
In [Bec14, Bec15] an ML attack on APUFs was developed using CMA-ES with reliability
information obtained from the repeated measurements of CRPs. More precisely, the
reliability information R of a challenge c (i.e. (c, R)) is used in the attack instead of the
corresponding response r (i.e. (c, r)).

The rationale behind this attack is as follows: if the delay difference |∆| between the
two competing paths in an APUF for a given challenge c is smaller than a threshold ε,
then the corresponding response r would be unreliable in the presence of noise; otherwise
the response would be reliable. This implies that reliability information directly leaks
information about the “wire delays” in an APUF model. Let ri be the i-th measured
response of challenge c for i = 1, . . . ,M . Two different definitions of R, as provided in
Eq. (7) and Eq. (8), are found in [DV13] and [Bec15], respectively:

R = 1
M

M∑
i=1

ri, (7)

R = |M/2−
M∑
i=1

ri|. (8)

Note similar to Eq. (7) and Eq. (8), repeatability for an APUF was defined as R =
N/M ∈ [0, 1] (see Section 3.2). The objective of CMA-ES is to learn weights w =
(w[0], . . . ,w[n]) together with a threshold value ε. All variables w[0], . . . ,w[n] are treated
as independent and identically distributed Gaussian random variables. The attack is
conducted as follows:

1. Collect N challenge-reliability pairs

Q = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN )},

where Ri is computed as in Eq. (8).

2. Generate K random models:

{(w1, ε1), . . . , (wj , εj), . . . , (wK , εK)}.

3. For each model (wj , εj) (j = 1, . . . ,K), do the following steps:

(a) For each challenge ci (i = 0, . . . , N), compute the R′i as follows:

R′i =
{

1, if |∆| ≥ ε
0, if |∆| < ε,

(9)

where ε = εj and ∆ follows from (1) and (2) with c = ci and w = wj . Note
that for a given model wj with input ci, R′i indicates whether the output of
the response of the model is reliable or noisy.

(b) Compute the Pearson correlation coefficient ρj based on
(R1, . . . , Ri, . . . , RN ) and (R′1, . . . , R′i, . . . , R′N ),

where Ri is computed as in Eq.(8).

4. CMA-ES keeps L models (wj , εj) which have the highest Pearson correlation ρ, and
then, from these L models, another K models are generated based on the CMA-ES
algorithm.
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5. Repeat steps (3)-(4) for T iterations and model (w, ε) which has the highest Pearson
correlation ρ will be chosen as the desired model. Note that sometimes the chosen
model may have low prediction accuracy and in this case we restart the algorithm to
find a model with higher prediction accuracy.

While the above pseudo-code is used to model an APUF, it can also be used to model
an x-XOR APUF. Let

Q = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN )}

be a set of challenge-reliability pairs of an x-XOR APUF instance. If the CMA-ES
algorithm for modeling an APUF is executed many times with the set Q, then it can
produce x different models for A0, . . . , Ax−1 with high probability [Bec15]. Although there
is no proof on how many times the CMA-ES algorithm has to be executed to get the
models of all APUF instances of the x-XOR APUF, experimentally it is observed that
this value needs not to be large, i.e., 2x or 3x CMA-ES runs. As done in [Bec15], one can
parallelize CMA-ES executions to build models for A0, . . . , Ax−1.

As explained above, the modeling of an x-XOR APUF simplifies to the modeling of x
independent APUF instances in the reliability based CMA-ES attack. This is significant
because the relationship between x and the number of CRPs needed for the reliability
based CMA-ES attack is linear. As previously stated, CML attacks have an exponential
relationship between the number of CRPs and x. Therefore increasing x is a valid way
to mitigate the CML attacks. However, the reliability based CMA-ES attack cannot be
defeated in the same manner.

4.2 Enhanced Reliability Based CMA-ES Attack On APUF and XOR
APUF

In the reliability based CMA-ES attack, each model w is evaluated according to a fitness
function. The fitness function correlates the observed reliability R of the PUF to the
reliability of the estimated model R′. Let us denote the observed reliability R in Eq. (8) by
Roriginal and the model reliability R′ in Eq. (9) as R′original. The correlation between Roriginal
and R′original is limited by the fact that the observed reliability Roriginal only ranges from
[0,M/2], while the range of R′original is {0, 1}. This is significant because the comparison of
R′original and Roriginal is not as accurate, since the two terms do not have the same range of
values.

We propose two alternative definitions for (Roriginal, R
′
original). We define (Rabsolute, R

′
absolute)

and (Rcdf , R
′
cdf), as follows:

Roriginal = |M/2−
M∑
i=1

ri| and R′original =
{

1, if |∆| ≥ ε
0, if |∆| < ε,

(10)

Rabsolute = |M/2−
M∑
i=1

ri| and R′absolute = |∆| (11)

Rcdf = 1
M

M∑
i=1

ri and R′cdf = Φ(−∆/σN ) (12)

We hypothesize that (Rcdf , R′cdf) can create a more accurate model than (Roriginal, R
′
original)

when attacking an individual APUF for two reasons. First (Rcdf , R
′
cdf) uses the proper

reliability ranges. Second (Rcdf , R
′
cdf) takes into account information from two sources:

reliability information and the response information of the APUF by not using any absolute
value operation when computing R′cdf . However, when attacking an XOR APUF, the
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response of each individual APUF is not known so (Rcdf , R
′
cdf) does not improve the

reliability based CMA-ES attack in this case.
When attacking an XOR APUF (Rabsolute, R

′
absolute) outperforms (Roriginal, R

′
original) be-

cause it has the proper reliability ranges. Since it does not attempt to use any response
information (which is not available from individual APUFs in an XOR APUF), it also
outperforms (Rcdf , R

′
cdf).

The simulated results of the enhanced attacks on APUF and XOR APUFs are presented
in Section 8.3 and Section 8.4, respectively.

4.3 Linear Approximation of the (x, y)-iPUF
A technique that can be used in conjunction with CML or RML is linear approximation;
this technique is specifically designed for use against the (x, y)-iPUF. We develop the
technique based on the following observation: The difference between the input challenge
to the y-XOR APUF in an (x, y)-iPUF and the input to a standard y-XOR APUF is
only one bit. Assume i + 1 is the interposed bit position for the input challenge to
the y-XOR APUF in an (x, y)-iPUF. The input to the y-XOR APUF is denoted as
clow = (c[0], . . . , c[i], rx, c[i+ 1], . . . , c[n− 1]). Instead of attempting to learn the x-XOR
APUF in the (x, y)-iPUF to estimate rx, we can give a fixed value for bit i + 1, i.e.
c′low = (c[0], . . . , c[i], 0, c[i+ 1], . . . , c[n− 1]).

By making this approximation we can effectively ignore the x-XOR APUF component of
the (x, y)-iPUF and treat the (x, y)-iPUF as a y-XOR APUF. Through this approximation
we can do both CML and RML attacks on the (x, y)-iPUF while still using the XOR APUF
model. These attacks are denoted as LA-CML and LA-RML. In Section 6.4.2 we analyze
under what conditions the linear approximation accurately approximates the (x, y)-iPUF
and how this attack can be mitigated.

5 Analysis of the Reliability based CMA-ES Attack
The reliability based CMA-ES attack is a serious security issue when designing a PUF.
Our goal is to create a secure PUF design (the (x, y)-iPUF) that prevents this attack. To
do this, it is necessary to understand under what conditions the reliability based CMA-ES
attack works. In this section, we consider the following questions for an in-depth analysis
of the reliability based CMA-ES attack:

1. In [Bec15] it is noted that CMA-ES converges more often to some APUF instances
than others when modeling the components of an x-XOR APUF. Essentially this
means some APUFs in an x-XOR APUF are easier and some are harder to model
using the given challenge-reliability pairs. Why does this happen?

2. What are the conditions such that CMA-ES never converges to a particular APUF
instance? In other words, under which condition does the reliability based CMA-ES
attack fail?

The first question was posed in [Bec15] without any theoretical answer and the second
question has not been investigated in literature. The next experiments are aimed at
answering these questions. Based on the knowledge gained from these experiments, we
develop the (x, y)-iPUF that is secure against the reliability based CMA-ES attack as well
as the other known classical machine learning attacks mentioned in Section 2.

5.1 Experiment-I: Understanding CMA-ES Convergence
The objective of this experiment is to analyze why some APUF instances are easier and
some are harder to model using reliability based CMA-ES. More specifically, we want to
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Table 1: Relationship between the APUF model converged to by CMA-ES and the APUF’s
data set noise rate proportion in each data set Q

Rank n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 Failed
Occurrence 36% 5% 9% 5% 12% 7% 7% 5% 7% 5% 2%

Rank: APUF model had the n-th highest data set noise proportion in the data set.
Failed: Failed to converge to any APUF model.
Occurrence: Percentage of time a convergence occurred.

verify whether the probability of converging to an APUF model in CMA-ES is correlated
with the “data set noise proportion” of that APUF instance present in a given data set Q.
Here we define the data set noise proportion for a particular APUF in an x-XOR APUF
as the number of noisy (unreliable) CRPs Qn due to the specified APUF divided by the
number of total CRPs in Q. We define the noise rate β of a given PUF as follows. Let rc,1
and rc,2 be the values of the first and the second measurements of the PUF for a given
challenge c, respectively. The noise rate β of the PUF is equal to Prc(rc,1 6= rc,2), i.e.,
β = Prc(rc,1 6= rc,2).

Every time we generate a new set Q, the challenge-reliability pairs {(ci, Ri)} of Q can
be divided into two parts. The first part is made up of the reliable challenge-reliability pairs
Qr and the second part is made up of the noisy challenge-reliability pairs Qn. Each APUF
instance Ai has its own set of noisy challenge-reliability pairs Qi,n ⊂ Qn, i = 0, . . . , x− 1.

Theorem 2. For a given dataset Q, the CMA-ES algorithm is more likely to converge to
the APUF instance which has the largest number of pairs in the combined set Qr ∪Qi,n,
i.e., highest Pearson correlation, where Qr is the reliable CRPs and Qi,n is the noisy CRPs
for APUF instance i.

Proof. Since Qr is useful for modeling all the APUF instances, the set Qi,n should be large
to make the Qr∪Qi,n sufficiently large enough for modeling the i-th APUF instance. From
Step-4 of the reliability based CMA-ES attack in Section 4.1, it is obvious that CMA-ES
tries to converge to the APUF instance that has the largest value for |Qi,n|/|Q|.

To verify Theorem 2, we do the following experiment.

Experimental Setup: We run the CMA-ES algorithm 100 times on a 10-XOR APUF
in simulation. Each time we run CMA-ES we use a new randomly generated dataset Q
which contains 70 × 103 CRPs. The noise rate of each individual APUF is 20%. Note
that the 20% noise rate is chosen to be intentionally large to make the number of used
CRPs small, i.e., the bigger the noise of each APUF, the less number of CRPs required
for the reliability-based attack. This is by no means the only possible noise rate that could
work, but we only use this noise rate here to illustrate the results of the experiment. It
is important to note that while the noise rate of each APUF is the same, the data set
noise proportion of each APUF in Q will change each time we generate a new Q. For
each Q, we generate the challenge-reliability pairs for Q by measuring the response to
each challenge 11 times. Note the repeated measurement 11 is chosen heuristically here
based on two criteria. The repeated measurement must be large enough to capture the
reliability information with an acceptable precision, but not too large that the repeated
measurement time significantly slows down the experiment run time.

Experimental Results: The results of experiment I are summarized in Table 1. In
each run of CMA-ES, a model w is generated. We classify the model in the following
way: if the model w matches one of the APUF models with probability ≥ 0.9 or ≤ 0.1
(the complement model), then we accept it as a correct model for that particular APUF
instance. If the generated model w does not match any of the APUF models we consider
the CMA-ES algorithm to have failed to correctly converge. Note that w can match with
at most one APUF instance. This is because if the model w corresponds to a particular



P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, M. van Dijk 255

APUF instance, then only that instance will have a matching probability ≥ 0.9 or ≤ 0.1,
and the other APUF instances will have a matching probability around 0.5. This is due to
the good uniqueness property of simulated APUF instances. Note that in Experiments I
and II we are not a true adversary, i.e., we are a verifier regarding the reliability based
CMA-ES attack on the x-XOR PUF as described in [Bec15]. In other words, we know all
APUF instances and check whether a model produced by the CMA-ES algorithm is a correct
model for one of them. The audience is referred to [Bec15] for the detailed description of
a real attack.

For the given Q, we measure the data set noise proportion of each APUF with respect
to the challenges present in Q. If CMA-ES converges to the APUF model with the highest
data set noise proportion in the current Q, we increment the count in column one. If
CMA-ES converges to the APUF model with the second highest data set noise proportion
in the current Q, we increment the count in column two and so on. If the CMA-ES
algorithm generates a model that corresponds to none of the APUFs then we say it failed
to converge to any model.

Analysis of Results: The APUF with the highest data set noise rate proportion in Q
should have the highest Pearson correlation coefficient as explained in Theorem 2 and
therefore be the global maximum. However CMA-ES does not guarantee convergence to
the global maximum. When CMA-ES converges to a local maximum, it produces another
one of the valid APUF models, or an invalid model. For this reason we can see in Table 1
that we can converge to a PUF model that does not have the highest noise proportion
with small probability compared to the highest case, i.e.,

5
100 ,

7
100 ,

9
100 ,

12
100 �

36
100 .

Overall every time we generate Q, the PUF with the highest noise proportion in Q will
have a high probability of being found by CMA-ES (i.e., 36/100). Likewise, the PUFs with
a smaller noise proportion in Q will have a smaller probability of being found.

5.2 Experiment-II: CMA-ES Reliability Conditions
The objective of this experiment is to understand under which condition the reliability
based CMA-ES attack fails to build a model for a particular APUF in an x-XOR APUF.
From experiment I we know that CMA-ES is most likely to converge to the APUF model
which has the highest data set noise proportion in Q. We want to show that if the noise
rate of the APUF instances in the x-XOR APUF’s output are not equal (i.e., drawn from
different distributions), then some APUF models cannot be generated by CMA-ES.

Experimental Setup: We simulate a 2-XOR APUF consisting of two APUF instances,
denoted as A0 and A1. The noise rate of both APUFs are set at 1%. We run CMA-ES on
the 2-XOR APUF 100 times. In each run of CMA-ES we generate a Q of size 70× 103,
where in Q each challenge is evaluated 11 times to generate the reliability information.

In this experiment we hypothesize that CMA-ES fails to build a certain APUF model
when that model always has a lower noise rate (and therefore a lower data set noise
proportion in Q). To do this we manipulate the reliability information presented in the
final output, such that A0 always has lower data set noise proportion. This is achieved by
applying majority voting to the responses of A0 before XOR-ing it with the response of
A1. In majority voting, we have experimented with M = 5 and M = 10 votes to observe
the performance of CMA-ES. We note that the noise rate in this experiment (i.e., 1%) is
not related to the noise rate in Experiment-I (i.e., 20%). Here, we intentionally choose
a small noise rate to demonstrate two things. First even if the noise rate of the APUFs
are extremely small, the CMA-ES attack still works. Second even if there is a sufficiently
small discrepancy in the noise rates between two APUFs, CMA-ES will converge to the
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Table 2: Results of Experiment-II
M† Number of times A0 found Number of times A1 found
5 8 92
10 0 ‡ 99 ‡

† No. of measurements used in the majority voting of A0.
‡ The sum of the two counts is not equal to 100 because one attack failed.

APUF model which is the nosiest. The numbers 5 and 10 for majority voting and 11 for
reliability evaluation are chosen arbitrarily. While other values are possible here, we just
use one set of values to illustrate the results of our experiment.

Theorem 3. In a 2-XOR APUF, if one APUF instance is sufficiently more reliable than
the other, then the CMA-ES fails to converge to the APUF which has lower noise rate.

Proof. We will prove the Theorem above using the experimental setup we described in the
beginning of Section 5.2. If the number of votes M is sufficiently large, then the output
of A0 is always more reliable than that of A1 due to the existing majority voting at the
output of A0. This implies that |Q0,n|/|Q| � |Q1,n|/|Q| for any given Q where Qi,n is
the set of noisy challenge-reliability pairs of Ai, i = 0, 1. For a given data set Q, as stated
in Theorem 2, CMA-ES tends to converge to the model with the highest data set noise
proportion with high probability. Hence, CMA-ES always converges to A1 when M is
sufficiently large.
Experimental Results: The experimental results are shown in Table 2. The first column
corresponds to the number of times the output was measured on A0 before majority voting
was done. The second and the third columns refer to the number of times the correct
model was found by CMA-ES for A0 and A1, respectively.

Analysis of Results: From Table 2, it is clear that if M is sufficiently large (M ≥ 10),
then the reliability based CMA-ES attack cannot build a model for A0. This is because
we decreased the noise rate of A0 by applying majority voting. Since A0 is less noisy, it
will have a lower data set noise proportion in Q. As we established in the first experiment,
CMA-ES tends to converge to the model with the highest data set noise proportion with
high probability. In Table 2 we can clearly see this happening when M = 10, as CMA-ES
is never able to build a model for A0 (the APUF with the lower data set noise proportion).

It is important to also note that just because the APUFs have different noise rates, it
does not make the XOR APUF secure against the reliability based CMA-ES attack. In
the setup described in this experiment, an attacker could simply learn a model for A1.
Once the model for A1 has been learned the attacker could then use that model to remove
most of the noisy challenge-reliability pairs corresponding to A1 from Q. Doing this would
create a new dataset Qreduced from Q in which A0 would have the highest data set noise
proportion. The attacker could then run CMA-ES on Qreduced to get a model for A0.

5.3 Inferences from the Experiments
Two important points can be understood from the experiments in this section. In order for
the reliability based CMA-ES attack to be successful the following conditions must be met:

1. All APUF instances outputs must have the same influence on the final output of the
PUF.

2. The noise rate of all APUF instances should be similar.

In the next section, we leverage the knowledge from these experiments to show how
the proposed iPUF can be secured against the reliability based CMA-ES attack.
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6 Security Analysis of iPUF against Machine Learning At-
tacks

In this section, we analyze the security and reliability of the proposed (x, y)-iPUF design.
Starting in Section 6.1 we discuss our basic conjecture to reason about the security of the
iPUF design. In Section 6.2 we begin our security analysis by first showing how a single
challenge bit in an APUF effects its output r. We then develop a relationship between the
security of the (x, y)-iPUF and x-XOR APUF in Section 6.3. We then use the analysis from
Section 6.2 to determine the most secure position for the interposed bit in a (1, 1)-iPUF in
Section 6.4.2. Since the iPUF is developed to prevent the reliability-based ML attacks, we
need to study the reliability of the (1, 1)-iPUF as shown in Section 6.4.1. After that, we
explain why iPUF’s design can prevent reliability-based ML attacks. While the (1, 1)-iPUF
can prevent reliability-based ML attacks, properly choosing the interposed bit position
alone is not enough. The (1, 1)-iPUF still suffers from classical machine learning, LA-CML
and LA-RML attacks (see Section 4.3). Therefore, in Section 6.5 we expand our analysis
to the (x, y)-iPUF where x ≥ 1 and y > 1. By using a middle interposed bit and properly
choosing x and y ≥ 2 we are able to show that the (x, y)-iPUF is secure against all current
state-of-the-art ML attacks. Based on our analysis we claim properly designed iPUFs are
superior to XOR APUFs in terms of security, reliability and hardware overhead.

6.1 Security Conjecture and Design Philosophy of iPUF
Security Conjecture. Our basic security conjecture is “if x is sufficiently large, then
an x-XOR APUF is practically secure against all known classical ML attacks” as stated
in the literature [Söl09, RSS+10, TB15] (this is not an NP-hard problem). We show
that the (x, y)-iPUF is equivalent to the (x/2 + y)-XOR APUF, (see Definition 2 for
the definition of equivalence), so it inherits the same classical ML security. Furthermore
the iPUF can prevent the reliability-based CMA-ES attack which the XOR APUF is
vulnerable to. For PUF research, the XOR APUF w.r.t. classical ML is similar to AES
(Advanced Encryption Standard) block cipher in the sense that it is considered a hard
problem by itself [Söl09, RSS+10, TB15], i.e., the security of AES is not reduced to any
intractable problem [DR02]. Indeed, we can show that among all known classical ML
attacks on XOR APUF, LR attack is the most powerful attack (see Theorem 1) because it
is a gradient-based optimization method and it uses a mathematical model of the XOR
APUF. In other words, it uses the information about the XOR APUF (the XOR APUF
mathematical model) in the most efficient way. No non-repeated measurement ML attack
can match LR. Moreover, the LR attack on XOR APUFs has a full theory developed on the
relationship between the modeling accuracy and modeling complexity [Söl09]. This theory
is strongly supported with empirical results [TB15]. In summary, we deeply understand
the resistance of XOR APUF against all known machine learning attacks.

Design Philosophy. Our design philosophy is as follows: We propose that it is possible
to construct a strong PUF whose security can be reduced to an intractable problem
(classical ML on XOR APUF). This practice of basing PUF security on its reduction
to an intractable problem is not unique to this paper. For example the LPN-based
PUF [HRvD+17, JHR+17] uses this exact same formulation and reduces its security to a
well-known computational hardness assumption: learning parity with noise (LPN). Note
that the large matrix operations in LPN-based PUF has an extremely large hardware
footprint making it not lightweight and hence not a solution to the fundamental PUF
problem considered in this paper. To develop a lightweight and secure strong PUF, we
adopt another approach. We use broken but lightweight and reliable PUF primitives
(i.e., APUF) to develop a secure, lightweight and reliable PUF design (i.e., iPUF) which
can be shown to be equal to some hard problems (classical ML on an XOR APUF). We
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consider this approach as a practical and proper methodology to develop a lightweight and
secure strong PUF. To re-iterate, this process is commonly accepted in the cryptography
community to develop cryptographic primitives such as block ciphers, stream ciphers and
hash functions. In all these cryptographic primitives the secure designs are built on insecure
components such as s-box, non linear shift register, etc [DR02, MOV96]. Moreover, the
mathematical model of the APUF is fully developed and the iPUF is a simple composite
APUF design. Hence, a full mathematical model of the iPUF can be developed for analysis
purpose. This point is significantly important, because we can do a clean security analysis
as we will show in the rest of the paper. In summary, we use APUF as a building block of
iPUF because it is a lightweight, reliable strong PUF with a clean mathematical model for
analysis purpose. Our iPUF design is also significantly simple. Hence, it also offers a clean
framework for conducting security analysis.

6.2 Influence of Challenge Bit c[j] on the Response r in the APUF
The influence of a challenge bit on an APUF’s response depends on its position in
the challenge c [MKP09, DGSV14, NSCM16]. From Eq. (1), it can be observed that
Ψ[j+ 1], . . . ,Ψ[n− 1] does not depend on challenge bit c[j]. For a given challenge c, based
on the linear delay model of the APUF, the delay difference ∆ can be described as:

∆ = (1− 2c[j])×∆Flipping + ∆Non−Flipping (13)

where ∆Flipping is the term affected by the flipping of bit c[j] and is given by ∆Flipping =∑j
i=0 w[i] Ψ[i]

(1−2c[j]) . Likewise, the term that is not dependent on the flipping of c[j] is
denoted as ∆Non−Flipping =

∑n
i=j+1 w[i]Ψ[i].

If c[j] = 0 then ∆ = ∆Flipping + ∆Non−Flipping and we will denote this ∆ as ∆c[j]=0
with corresponding response rc[j]=0. Similarly when c[j] = 1 we will have ∆ = −∆Flipping+
∆Non−Flipping. We denote this ∆ as ∆c[j]=1 and the response as rc[j]=1.

We want to know the influence of flipping c[j] on output r. We measure this influence
by computing the probability that the output remains the same if we flip bit c[j] while
keeping the rest of c constant:

Prc(rc[j]=0 = rc[j]=1). (14)

In Appendix A.2, we explain:

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1 (15)

This implies that an expected probability Prc(rc[j]=0 = rc[j]=1) decreases with in-
creasing value of j, so the influence of each challenge bit is not equal. This undesirable
security property means we must carefully consider the position of the interposed bit.
In the next section we analyze how the interposed bit position effects the security and
reliability of the (1, 1)-iPUF. We note that the influence of individual challenge bits
on the response is highly related to the SAC (Strict Avalanche Criterion) introduced
in [MKP09, DGSV14, NSCM16], and the SAC property of iPUF will be further explained
and analyzed in Section 7.2.

6.3 The Relationship between (x, y)-iPUF and (x + y)-XOR APUF
For a fixed challenge we study the contribution of each APUF component of an APUF-
based PUF (i.e. XOR APUF or iPUF) to its output. Here we define contribution in the
following manner.
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Definition 1. [Contribution] For a given challenge c, if the output of an APUF Ai flips
(while the rest of the APUF outputs are held constant) and this causes the final response
of the APUF-based PUF r to flip, then we say that Ai contributes to the output for the
challenge c.

In an x-XOR APUF it can clearly be seen that each of the x APUFs contribute to the
output. This is because in an XOR gate flipping any one of the inputs always causes the
output to flip. We know the more APUFs that contribute to the output, the harder the
XOR APUF design is to attack with classical machine learning.

Definition 2. [Equivalence] For a given challenge c, if an APUF-based PUF has m
APUFs contributing to the final response, then we say that this PUF is equivalent to an
m-XOR APUF for the challenge c.

Theorem 4. If the interposed bit position is i, then averaged over all possible challenges
c the n-bit (x, y)-iPUF is equivalent to the n-bit (y + prx)-XOR APUF where

pr = 1− (1− 2p)y

2 and p = i

n
.

Proof. We denote r0
y as the output of the iPUF when rx = 0 with cy = (c[0], . . . , c[i], rx =

0, c[i + 1], . . . , c[n − 1]) and r1
y as the output of the iPUF when rx = 1 with cy =

(c[0], . . . , c[i], rx = 1, c[i+ 1], . . . , c[n− 1]). Based on our definition of contribution above,
if r0

y = r1
y it means that the x-XOR APUF output rx does not contribute to the final

output ry of the iPUF. In this case only y APUFs contribute to the output of the iPUF.
Note we can also write r0

y = r1
y as r1

y ⊕ r0
y = 0. Alternatively if r1

y ⊕ r0
y = 1 then the output

of (x, y)-iPUF depends on the output rx of x-XOR PUF, as well as the output ry of the
y-XOR PUF. This implies that there are (x + y) APUFs which contribute to the final
output ry for a given challenge. Therefore, the challenge-response space of an (x, y)-iPUF
can be partitioned into two groups. The first group represents challenge-response pairs
where the response only depends on the y APUFs of the y-XOR PUF. The second group
of challenge-response pairs has responses which depend on both the x-XOR APUF and
the y-XOR APUF (the response depends on a total of (x+ y) APUFs). Now we calculate
the expected number of challenge-response pairs in each group. First, we will compute the
probability the challenge-response pair is in the second group:

pr = Prc(r0
y 6= r1

y) = Prc(r0
y ⊕ r1

y = 1) (16)

Let rlow,0, rlow,1, . . . , rlow,y−1 be the outputs of the y APUFs in the lower layer y-XOR
PUF when rx is 0. We will assume ideal classical machine learning conditions where
no measurement noise is present. Because there is no measurement noise, Section 6.2
is applicable: For a given challenge c, rlow,i depends on the upper layer output rx (in
that output rlow,i would flip if rx would be substituted by 1) with probability p =
(i+ 1)/(n+ 1) ≈ i/n if the feedback position of rx is i. For a given challenge c, pr is the
probability that the response of (x, y)-iPUF is equal to r = 1⊕ rlow,0 ⊕ . . .⊕ rlow,y−1 if rx
would be substituted by 1. Then pr depends on i:

pr =
y∑

k=1,k odd

(
y

k

)
pk(1− p)y−k = 1− (1− 2p)y

2 . (17)

4

4For any given a and b, we have:

(a+ b)x − /+ (a− b)x = 2
x∑

j=0,j is odd/ even

(x
j

)
ajbx−j .

Hence, replacing a = 1− p and b = p yields Eq.(17).
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Figure 2: Prediction accuracy of CRPs based CMA-ES attack on 64-bit APUF (1-XP),
64-bit 2,3,4,5,6-XOR APUF (y-XP) and (1,5), (2,4), (3,3), (4,2), (5,1)-iPUF ((x,y)-IP).

Thus, a fraction 1− pr of challenge-response pairs is in the first group and a fraction pr
of challenge-response pairs is in the second group. For a given (x, y)-iPUF with parameter
i, the expected number of APUFs contributing to the response of a given challenge is

= (1− pr)y + pr(x+ y) (18)
= y + prx

Simulation Validation. Through simulation we compare the (x, y)-iPUF and the (x+y)-
XOR APUF. Since we only focus on the design, we consider reliable PUFs to experimentally
demonstrate Eq. (18), i.e. If the interposed bit position is in the middle, then the (x, y)-
iPUF is equivalent to a (y + x

2 )-XOR APUF (see Theorem 4). We run the CRPs-based
CMA-ES attack on 64-bit APUF (a.k.a 1-XOR APUF or 1-XP), 64-bit 2,3,4,5,6-XOR
APUF (y-XP) and (1,5), (2,4), (3,3), (4,2), (5,1)-iPUF ((x,y)-IP) with 200,000 CRPs for
training. In each attack the CMA-ES algorithm is run for 1000 iterations. The results are
shown in Fig 2. For each PUF, we attack it 10 times. The prediction accuracy of each
attack is computed using 2000 CRPs. Fig 2 shows that the experimental results closely
match the theory presented in Eq. (18). Note that the prediction accuracy of (5,1)-iPUF
is higher than that of 3-XOR APUF or 4-XOR APUF, because when the lower layer only
has one APUF, the linear approximation attack becomes effective. Here the attacker only
needs to model the APUF in the lower layer accurately, after which the upper bound on
the accuracy for the linear approximation attack on (x, 1)-iPUF can be achieved, which is
75% accuracy. A detailed analysis of the linear approximation attack will be provided in
Section 6.4.2.

6.4 Security and Reliability Analysis of the (1,1)-iPUF
The most basic form of the (x, y)-iPUF is the (1, 1)-iPUF, with the upper layer consisting
of a single APUF Aup and the lower layer consists of a single APUF Alow. Let us denote
the responses to Aup and Alow by rup and rlow, respectively. The final output of the
(1, 1)-iPUF is the response rlow. Based on the (1, 1)-iPUF structure we analyze where to
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interpose the bit in the lower APUF and how this affects the reliability and security of the
(1, 1)-iPUF.

6.4.1 Reliability of the (1,1)-iPUF

In order to determine the effect of measurement noise in the (1, 1)-iPUF, we evaluate a
challenge c twice. Let us denote rup,0 as the response of the upper APUF and rlow,0 as the
response of the lower APUF the first time the challenge is applied. Likewise, let us denote
rup,1 and rlow,1 as the APUF’s responses the second time the challenge is evaluated.

Assume APUF Aup has noise rate βup such that Prc(rup,0 6= rup,1) = βup. Similarly,
assume that APUF Alow has noise rate βlow such that Prc(rlow,0 6= rlow,1|rup,0 = rup,1) =
βlow.

Let us denote i+ 1 as the interposed bit position for rup in the (n+ 1)-bit challenge
of Alow. If the flipping of the output of Aup flips the output of Alow and Alow is itself
reliable, then the output of Alow should be flipped. This event occurs with probability
(1 − βlow) i+1

n+1 . If the flipping of the output of Aup does not flip of the output of Alow
and Alow is itself noisy, then the output of Alow flips. This event occurs with probability
βlow

(
1− i+1

n+1

)
. Therefore, the event where flipping the output of Aup flips the output of

Alow occurs with the following probability

Prc(rlow,0 6= rlow,1|rup,0 6= rup,1) = (1− βlow) i+ 1
n+ 1 + βlow

(
1− i+ 1

n+ 1

)
.

We use the equality above and Eq. (15) to derive

Prc(rlow,0 6= rlow,1)
= Prc(rlow,0 6= rlow,1|rup,0 = rup,1)Prc(rup,0 = rup,1) +

Prc(rlow,0 6= rlow,1|rup,0 6= rup,1)Prc(rup,0 6= rup,1)

= βlow(1− βup) + [(1− βlow) i+ 1
n+ 1 + βlow

(
1− i+ 1

n+ 1

)
]βup

= βlow(1− βup) + [(1− 2βlow) i+ 1
n+ 1 + βlow]βup. (19)

In practice βup � 1 and βlow � 1, thus Eq. (19) can be approximated as:

Prc(rlow,0 6= rlow,1) ≈ βlow + βup
i

n
(20)

From Eq. (19) and Eq. (20) it can be seen that the reliability information of Aup and
Alow available at the output of (1, 1)-iPUF are not equal even when βlow = βup. If we
assume βlow = βup = β then Alow contributes approximately β while Aup contributes ap-
proximately β i

n . The unequal reliability contribution shown by our analysis has important
implications of the resilience against the reliability based CMA-ES attack.

6.4.2 Security of (1, 1)-iPUF

We will now discuss the security of the (1,1)-iPUF with respect to the reliability based
CMA-ES attack (i.e. RML), CML and ML attacks that use a linear approximation
technique (i.e. LA-CML and LA-RML).

Reliability Based CMA-ES Attack: The (1,1)-iPUF is theoretically secure against
the CMA-ES reliability attack for two reasons if the interposed bit position for rup is
properly chosen: The first reason is based on the conditions under which the CMA-ES
attack operates and the second is based on the computation done to learn the APUF
model in CMA-ES.



262 The Interpose PUF

First, recall the conditions under which the reliability based CMA-ES attack works
as described in Section 5.2. In order to successfully model the APUF components Aup
and Alow, each APUF must contribute equal reliability information to the output. For the
(1,1)-iPUF, we showed in Eq. (20) that the contributions of Alow and Aup are not equal,
i.e., β is not equal to β i

n when i is between 0 and n
2 . Due to the unequal contribution of

reliability information in the output when the interposed bit position (i+ 1) is not close to
n, CMA-ES will not converge to the model for Aup. We did the following experiment to
determine the importance of the interposed bit position. We launched the reliability based
CMA-ES attack on a 64-bit (1,1)-iPUF with 30,000 challenge-reliability pairs. In this
experiment, the noise rate of each APUF was 20% (β = 0.2). The number of iterations for
CMA-ES was 30,000. We repeated the attack 20 times with the interposed bit position at 0
(i = 0), 32 (i = n/2) and 64 (i = n). The result shows that Aup can be modeled (i.e.,
the prediction accuracy of the model of Aup is 98%) when i = n = 64. However,
if the inserted position is in the middle (i = 32) or at first stage (i = 0), then
Aup can not be modeled (i.e., the prediction accuracy of the model of Aup is
51%).

Since we cannot first build a model for Aup we must first try to build a model for Alow.
This brings us to the second reason the (1,1)-iPUF is secure against the reliability based
CMA-ES attack. Recall in Section 4.1 that ∆ is needed to compute the fitness of each
model w. ∆ is based on the input to Alow. However we do not know one of the input bits
(the interposed bit) to Alow so we cannot compute ∆ (see the calculation of ∆ in Eq. (1)
and (2)).

However, we should take a closer look at the way the computation of ∆ is
done to know how the interposed bit position affects the modeling attack on
Alow. In Section 6.2, we have ∆ = (1− 2c[j])×∆Flipping + ∆Non−Flipping (see Eq.( 13))
and thus, if j gets closer to 0, then ∆ and ∆Non−Flipping become similar. Strictly speaking,
we cannot run CMA-ES to build a model for Alow when the interposed bit position i is
NOT close to 0, for example the interposed bit position is in the range of [n/2, n].

Conclusion: We cannot model Aup due to the unequal reliability information on the
output and we cannot model Alow due to the unknown value of the interposed bit when
the interposed bit position is properly chosen. Therefore, we claim the (1, 1)-iPUF is
secure against the reliability based CMA-ES attack when the interposed bit
position is properly chosen in the middle of the input to Alow.

Classical Machine Learning Attacks: The (1, 1)-iPUF is not secure against classical
machine learning attacks due to its low model complexity. Instead of modeling the APUF
components individually, any machine learning algorithm can be used to learn the model
for Alow and Aup simultaneously. Experiments to support our claim are given in Section 8
(see Table 4). Note that, while the iPUF is vulnerable to classical derivative free machine
learning, we will prove that derivative based classical machine attacks are not possible on
an iPUF in the next section. As a result, we only need to consider derivative free classical
machine learning attacks on an iPUF.

Attacks Using Linear Approximation (LA-CML and LA-RML): The security of
the (1, 1)-iPUF against an ML attack that use the linear approximation (see Section 4.3)
depends on the choice of the interposed bit position. In this attack, any CML or RML
attack on an XOR PUF can be adapted to work on an (x, y)-iPUF. This adaptation is
done by approximating the (x, y)-iPUF as a y-XOR APUF by fixing the interposed bit
from the x-XOR APUF to be 0. In the case of the (1, 1)-iPUF this means that we ignore
the component Aup and approximate (1, 1)-iPUF by APUF Alow.

Let us denote clow as the input to Alow and c′low to be the approximation of clow
where we fix the interposed bit rup in clow to be 0. We can write Alow(c′low) as the output
of the linear approximation and Alow(clow) as the output of the (1, 1)-iPUF. We can
now analyze how effective the linear approximation is. We measure the effectiveness of
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the approximation by computing the probability that the output of the linearized model
Alow(c′low) matches the output of Alow(clow):

papprox = Prc(Alow(c′low) = Alow(clow)) (21)

If papprox is high, then the (1, 1)-iPUF is accurately approximated by APUF
Alow(c′low) and can be modeled with an ML attack.

Let us assume the following conditions for the analysis of the attack and for the sake
of explanation, we drop low from c′low or clow. We model a (x, 1)-iPUF with APUF
components that are 100% reliable and the output rup of the x-XOR APUF is uniform,
i.e., Prc(rup = 0) = Prc(rup = 1) = 1

2 . Then,

papprox = Prc(Alow(c′) = Alow(c))
= Prc (Alow(c′) = Alow(c)|rup = 0) Prc(rup = 0)

+Prc(Alow(c′) = Alow(c)|rup = 1)Prc(rup = 1)

= 1× 1/2 + n− i
n
× 1/2 = 1/2 + n− i

2n . (22)

Eq. (22) shows that papprox decreases as i increases. Note that our discussion holds
for any (x, 1)-iPUF and thus, it is applicable to the (1, 1)-iPUF. We model a 64-bit
(1,1)-iPUF using the reliability based CMA-ES attack with the linear approximation
(LA-RML). The number of challenge-reliability pairs is 30,000 and the noise rate is 20%.
From the experiment, the prediction accuracy of LA-RML on a 64-bit (1,1)-iPUF when
i = 0, 32, 64 is equal to 97%, 70% and 51%, respectively. Likewise, a similar result can be
achieved by using CRP based CMA-ES (classical machine learning).

A prediction accuracy of 50% is the worst a machine learning attack can do on a
PUF with uniform binary output. Therefore, it would seem that picking the interposed
bit position to be as high as possible would result in the most secure (x, y)-iPUF design.
However, below we will explain why choosing a high interposed position is not ideal.

Interposed Bit Position: In the (1, 1)-iPUF the only design parameter we must choose
is the interposed bit position. The higher the interposed bit position, the more influence
Aup has on the (1, 1)-iPUF. As a result the PUF model is more complex. It is more difficult
to attack with CML attacks and the linear approximation is less accurate. However, a
high bit position yields high noise on the output (less reliable). In addition, with a high
interposed bit position and large enough number of input bits, the (1, 1)-iPUF becomes
equivalent to an XOR APUF in terms of susceptibility to RML attacks.

The conclusion from the analysis of the (1, 1)-iPUF is that using the interposed bit
position as the only security parameter is not enough to mitigate all the different ML
attacks. We seek a trade-off between all the factors by choosing the interposed bit to be
the middle bit position. Based on this choice we then analyze how to modify x and y to
further secure our design in Section 6.5.

6.5 Security Analysis of the (x, y)-iPUF
The analysis in Section 6.4.2 shows that the (1, 1)-iPUF with a middle interposed bit
position can defeat the reliability based CMA-ES attack. However the (1, 1)-iPUF is still
vulnerable to CML attacks and both types of attacks that employ the linear approximation
(LA-CML and LA-RML). In this section, we show how selecting x and y can mitigate
the remaining ML attacks, and we prove that the CRP based Logistic Regression attacks
are not applicable, and we show how the (x, y)-iPUF can mitigate the reliability based
CMA-ES attack (RML), CML attacks (LR, DNN, CRP-based CMA-ES), LA-CML and
LA-RML, and PAC learning attacks (Boolean function based attack, DFA attack and
Perceptron attack).
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Reliability based CMA-ES Attack: The security argument for the (1, 1)-iPUF in
Section 6.4.2 also applies to the (x, y)-iPUF. Using challenge-reliability pairs and CMA-ES,
an adversary cannot build models for the x component APUFs in the x-XOR APUF. This
is due to the unequal contribution of noise on the output between the x-XOR APUFs and
the y-XOR APUFs (see Section 7.1 for a detailed reliability analysis). Also an adversary
cannot build models for the y component APUFs in the y-XOR APUF as rx (at the
interposed bit position) is not known. Therefore, we consider the (x, y)-iPUF to be secure
against the reliability based CMA-ES attack.

Classical Machine Learning Attacks: There is no known way the APUF components
of the (x, y)-iPUF can be modeled individually. As a result, the only way to attack an
(x, y)-iPUF is by modeling all the (x+ y) component APUFs simultaneously using classical
machine learning, e.g., neural network or CRP based CMA-ES. Rührmair et al. [RSS+10]
showed that the more APUFs that influence (contribute) to the output of an XOR APUF,
the more difficult the PUF is to model using CML methods. In other words, increasing
x in an x-XOR APUF can mitigate CML attacks. In Theorem 4, we prove that if the
interpose position of rx is i then the (x, y)-iPUF is equivalent to a (y + prx)-XOR APUF
where:

pr = 1− (1− 2p)y

2 and p = i

n
.

If i = n and y is odd, then pr = 1 and (x, y)-iPUF is equivalent to (x+ y)-XOR APUF
in terms of security because of (x+ y) APUFs contributing to every challenge-response
pair. If i = 0, then pr = 0 and (x, y)-iPUF is equivalent to a y-XOR PUF. In terms of
difficulty of modeling with classical machine learning methods (i.e. CRP based CMA-ES),
the (x, y)-iPUF with parameter i is approximately equivalent to a (y + prx)-XOR PUF.
We experimentally verify this claim in Section 8.2 (see Figures 2 and 5). As a result, we
can use the same strategy employed in the XOR APUF design [RSS+10] and increase x
and y in an (x, y)-iPUF to mitigate classical machine learning attacks. It is also worth
noting the analysis to determine the number of APUFs that contribute in an iPUF can be
used to derive further iPUF properties such as uniformity, uniqueness and reliability.

LA-RML. Reliability based CMA-ES applied to an (x, y)-iPUF after linearly approxi-
mating it as a y-XOR APUF learns one single component APUF of the y-XOR APUF. In
the linear approximation we substitute rx from the upper x-XOR APUF by 0 and feed
0 into the lower y-XOR APUF. If we denote the single component APUF which we try
to learn using CMA-ES by Alow, then, for the challenge interposed with rx, the output
of Alow is the output of an (x, 1)-iPUF. I.e., we attempt to learn a model for Alow from
a linear approximation of an (x, 1)-iPUF. From Eq.(22) with interpose bit position in
the middle we infer that the model at best predicts Alow with papprox = 75% accuracy.
Reliability based CMA-ES learns models for each of the component APUFs of the lower
y-XOR APUF, each with at most 75% accuracy. This shows that the maximum accuracy
of the learned approximated y-XOR APUF is at most

pXORlearn =
y∑

j=0,j is even

(
y

j

)
(1− papprox)jpy−japprox

= 1 + (2papprox − 1)y

2 = 1
2 + 1

2y+1 .

This shows that pXORlearn is close to 1/2 for y large enough and this implies that the
learned model for the linearly approximated y-XOR APUF does not contain predictive
value5.

5We can compare the model’s output with the iPUF’s output and attempt to find out whether this
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If y ≥ 3, then pXORlearn ≤ 56.25%. We launched the LA-RML attack on a 64-bit (3,3)-
iPUF. In this experiment the noise rate for each APUF was 20%. The prediction accuracy
of the final model was around 50% (confirming the theoretical upper bound) when 200,000
challenge-reliability pairs were used in the training phase (see Table 4).

LA-CML. In the case of linearly approximating the (x, y)-iPUF as a y-XOR APUF and
applying classical ML, we know that learning a model for even a noise-free 64 bit y-XOR
APUF is currently not practical for y ≥ 10 if LR is used and not practical for even smaller
y if CRP based CMA-ES is used. However, even if the iPUF itself is 100% reliable, a
reliable CRP of the iPUF may be a noisy CRP of the linearly approximated y-XOR APUF.
By combining Eq.(15) with the derivation leading to Eq.(22), the accuracy pXORapprox of the
linearly approximated y-XOR APUF itself is given by

pXORapprox = 1× 1/2 + p′ × 1/2,

where

p′ =
y∑

j=0,j is even

(
y

j

)(
i

n

)j (
n− i
n

)y−j
=

1 + (1− 2i
n )y

2 .

After substituting p′ we obtain

pXORapprox = 3
4 + 1

4(1− 2i
n

)y.

If the interposed bit is at the middle position (i.e. i = n
2 ), then pXORapprox is 75%. This

implies that the noise rate of the linearly approximated y-XOR APUF given by the CRPs
from the iPUF is 25%. For this reason CML should be even more difficult: We performed
the LA-CML attack using CRP based CMA-ES on a reliable 64-bit (3,3)-iPUF. The
prediction accuracy of the model is around 50% when 200,000 CRPs are used in the
training phase (see Table 4).

Logistic Regression Attack on the iPUF: In the analysis of the security of the iPUF
against classical ML attacks, we do not specifically consider the type of machine learning
attack, i.e., deep neural network, Logistic Regression, or CRP based CMA-ES. We prove
that the Logistic Regression attacks can at best learn a linear approximated model of the
iPUF and therefore reduce to LA-RML or LA-CML.

Basically, CRP based Logistic Regression works more efficiently than CRP based CMA-
ES when the searching space is large. For example, in [TB15], using Logistic Regression
we can successfully model 4-XOR APUF with 15,000 CRPs only while using CMA-ES we
cannot have a good model for 4-XOR APUF with 200,000 CRPs (see Figure 2). Hence,
it is important to know if there exists any possible Logistic Regression based attacks on
the iPUF or not. We show that the answer to this question is NO by analyzing Logistic
Regression (LR).

In the upper x-XOR APUF of the iPUF, since there are x n-bit APUF instances,
we denote wx = (wx

1 , . . . ,wx
x) as the model of the x-XOR APUF. Further we denote

wx
i = (wx

i [0], . . . ,wx
i [n]) as the (n+ 1) dimensional vectors and the models of the APUFs

in the x-XOR APUF, i = 1, . . . , x. Similarly, wy = (wy
1 , . . . ,wy

y) is the model of the
y-XOR APUF of the iPUF and wy

i are (n + 2) dimensional vectors and the models of
APUFs in the y-XOR APUF. In order to enable derivative based ML attacks, we follow
the approach proposed in [RSS+10, Söl09] (this is the Logistic Regression ML attack on
an x-XOR APUF), i.e. we approximate the discrete output rx and ry by a continuous

teaches something about rx. Due to the XOR in the lower y-XOR APUF, the outputs of individual
component APUFs are masked so that little can be learned about rx. For small y = 1, we are able to
learn some information about rx from comparing the model’s output with the iPUF’s actual output; this
can then be used to learn about the upper x-XOR APUF.
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function sigmoid σ(·) where σ(x) = 1
1+exp(−x) . More precisely, we define the following

functions (here Ψ(c, r̂x) denotes Ψ(.) applied to challenge c interposed with r̂x):

∆x = gx(wx, c) =
x∏
i=1
〈wx

i ,Ψ(c)〉,

rx = δ(∆x) = δ(gx(wx, c)),
r̂x = δ(∆x) + e(∆x) = δ(gx(wx, c)) + e(gx(wx, c)),

∆y = gy(wy, c, r̂x) =
y∏
i=1
〈wy

i ,Ψ(c, r̂x)〉,

r̂y = σ(∆y) = σ(gy(wx, c, r̂y)),

where δ(x) is the step function, i.e., δ(x) = 1 if x > 0, and δ(x) = 0 otherwise, and e
is a certain error function chosen by the adversary. The function δ has derivative of 0
everywhere except x = 0 (where the derivative is ∞) and e(x) has derivative everywhere.
Since in practice ∆x is never exactly equal to 0, we may assume that the derivative of δ in
∆x is always equal to 0.

In order to find the optimal solution of w = (wx,wy) (i.e. the model for the (x, y)-
iPUF) from a randomly generated model w, we define the following function as described
in [RSS+10, Söl09]:

l = − 1
N

∑
(ci,ri),i=1,...,N

ln(σ(∆y)ri(1− σ(∆y))1−ri)

where {(c1, r1), . . . , (cN , rN )} are the challenge-response pairs of the iPUF in the training
set. After that, we need to compute the gradient of l in order to find the optimal solution,
i.e., we need to compute

∇l =( ∂l

∂wx
1 [0] , . . . ,

∂l

∂wx
1 [n] , . . . ,

∂l

∂wx
x[0] , . . . ,

∂l

∂wx
x[n] ,

∂l

∂wy
1 [0] , . . . ,

∂l

∂wy
1 [n] , . . . ,

∂l

∂wy
y[0] , . . . ,

∂l

∂wy
y[n] )

After that we will update w = w− η∇l where η is the learning stepsize. By updating
like this many times, we hope that the algorithm will converge to an optimal solution w∗.
Now, we focus on the calculation ∂l

∂wx
i
[j] which is equal to:

= ∂(− 1
N

∑
(ci,ri),i=1,...,N

ln(σ(∆y)ri(1− σ(∆y))1−ri))/∂wx
i [j]

= − 1
N

∑
(ci,ri),i=1,...,N

[ri(1− σ(∆y))− (1− ri)σ(∆y)] ∂∆y

∂wx
i [j] .

We have
∂∆y

∂wx
i [j] = ∂gy

∂wx
i [j] = ∂gy

∂[δ(∆x) + e(∆x)]
∂[δ(∆x) + e(∆x)]

∂wx
i [j]

= ∂gy
∂[δ(∆x) + e(∆x)]

∂e(∆x)
∂∆x

∂∆x

∂wx
i [j]

(since δ′(∆x) = 0 as explained above).
But if we consider using the linear approximation with this attack where we fix

r̂x = 0 + e(∆x), then we also have the same result, i.e.,

∂∆y

∂wx
i [j] = ∂gy

∂[δ(∆x) + e(∆x)]
∂e(∆x)
∂∆x

∂∆x

∂wx
i [j] ,
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since ∆x is exactly equal to 0 with probability 0 and outside ∆x = 0, δ(∆x) has derivative
0.

This fact implies that we cannot distinguish the partial derivative of the iPUF from
that of the linear approximated model of the iPUF. From this analysis, we conclude that
Logistic Regression attacks are equivalent to Logistic Regression attacks that use the linear
approximation. Due to this fact, the iPUF can mitigate Logistic Regression attacks just
like it can mitigate attacks that use the linear approximation by choosing y ≥ 3.

We already proved that the (x, y)-iPUF with the interposed bit position in the middle
is equivalent to a (y + x

2 )-XOR APUF in terms of general security. From Inequality (5),
we can now argue that y + x

2 < 10 in order to defeat derivative free modeling attacks
on a (y + x

2 )-XOR APUF: The number 10 is reported in [TB15], where it is shown that
if y + x

2 = 10, then the state-of-the art derivative based machine learning attacks are
infeasible on a (y+ x

2 )-XOR APUF. This means that iPUFs require less APUF components
than an XOR APUF to be secure. As a result, iPUFs are better in terms of security,
reliability and hardware overhead compared to XOR APUFs.

Deep Neural Network Attacks on the iPUF: To the best of our knowledge, there is
no theory which can tell us the lower bound of the number of required CRPs for using
deep neural networks to attack iPUFs. Instead, we leverage the relationship between XOR
APUFs and iPUFs we previously developed to map this problem to attacking XOR APUFs
using deep neural networks. In this attack, the deep neural networks need to learn the
structure of the XOR APUFs (no specific mathematical model is assumed). Essentially,
this means deep neural networks use a black box learning approach. However, Logistic
Regression use a precise mathematical model of the XOR APUF. This means LR is more
powerful for attacking XOR APUFs as compared to deep neural networks. Hence, if
we use choose x, y such that (y + x

2 )-XOR APUF is secure against Logistic Regression
attacks, then we know that the (x, y)-iPUF with the interpose bit in the middle is also
secure against deep neural network attacks. For example, we can choose x = 2, y = 9
(such that y + x

2 = 10), interpose bit i = 32, and challenge length n = 64, knowing that
64-bit 10-XOR APUF is secure against Logistic Regression attack in practice [TB15]. The
detailed experimental results for deep neural network attacks on XOR APUFs can be
found in Section 8.2.2.

(CRP-based) CMA-ES Attacks on the iPUF: CMA-ES as a derivative-free opti-
mization method, is always less efficient than a derivative-based optimization method,
like Logistic Regression. This is because the derivative tells the best direction towards
the optimal solution. So far there is no theory for the lower bound on the number of
required CRPs for using CMA-ES to model iPUFs or XOR APUFs. Hence, we use the
same methodology as we discuss for deep neural networks above. Furthermore, comparing
CRP-based CMA-ES to Logistic Regression, experimentally (see Section 8) we can see that
in general Logistic Regression can model an XOR APUF with higher accuracy using less
CRPs than CRP-based CMA-ES. Therefore, the (x, y)-iPUF can be secured against the
CRP-based CMA-ES attacks by setting x, y such that (y + x

2 )-XOR APUFs are resilient
against Logistic Regression.

PAC-Learning Attacks on the iPUF: In [GTS15, GTS16, GTFS16], the authors
proposed two novel modeling attacks for the PAC learning problem. PAC learning attacks
can be divided into three categories: Boolean functions based attack [GTFS16], Perceptron
attack [GTS15], and Deterministic Finite Automata (DFA) attack [GTS16].

The attack described in [GTFS16] does not work for the iPUF because of the following
reason. As described in [GTFS16], assume that if the PUF has k number of influential
bits (or average sensitivity) (see Section 2.2 and Theorem 3 in [GTFS16] for the detailed
definition), then this PUF can be ε-approximated by another Boolean function h depending
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on only a constant number of Boolean variables K, where

K = e
k
ε×(2+

√
2ε log2(4k/ε)

k ) > e
2k
ε .

We notice the definition of influence of variable i in Section 2.2 in [GTFS16] is equivalent
to the definition of SAC in Section 7. As shown in [GTFS16], for a n-bit (x, y)-iPUF with
interposed position j, k can be computed as follows:

k =
n∑

i=0,i6=j
pi

Eq.(28)=
n∑

i=0,i6=j
{

1 + (1− 2 in )x

2
1− (1− 2 i

n+1 )y

2

+
1− (1− 2 in )x

2
1− (1− 2 |i−j|n )y

2 }.

For 64-bit (3, 3)-iPUF with interpose position j = 31, k = 25.2. Hence, even if we
consider a very weak approximated function h with ε = 0.5, then K = e25.2×2/0.5 > e100 >
2100. However, Theorem 3 in [GTFS16] tells us that if K is small then we can model
the PUF and it does not confirm that we cannot approximate the iPUF by a Boolean
function. To show the resistance against the attack described in Theorem 4 in [GTFS16],
we need to do one more step, i.e., we apply k̃-junta testing [Bea14] for our iPUF. The
k̃-junta testing we implemented follows [Bea14] and it is fully explained in Appendix A.4.
We applied this test6 with k̃ = 63 and ε = 0.2 to the most simple version of an iPUF, i.e.,
64-bit (1,1)-iPUF, in simulation. Since k̃-junta testing is a randomized test with a certain
correct probability, we ran the test for 100 times. It consistently outputs that it is not a
63-junta after 100 runs. Let us analyze our confidence in this result below.

Let 1− p denote the probability such that the outcome O of a k̃-junta test correctly
matches the ground truth T . Suppose we perform m times a k̃-junta test leading to an
output pattern with m− y “No” and y ”Yes” outcomes. Since ground truth is either all
outcomes are “No” or all outcomes are “Yes”, we know that, conditioned on the output
pattern, the k̃-junta tests either correctly matches ground truth T a total of m− y times
(where O = T equals “No”) and incorrectly matches T a total of y times (where O equals
“Yes”) or correctly matches ground truth T a total of y times (where O = T equals “Yes”)
and incorrectly matches T a total of m− y times (where O equals “No”). This gives

Pr(T = “No”|output pattern) = py(1− p)m−y

py(1− p)m−y + pm−y(1− p)y = 1

1 +
(

p
1−p

)m−2y .

Since k̃-junta testing has the property p ≤ 1/3, we have p/(1− p) ≤ 1/2, hence,

Pr(T = “No”|output pattern) ≥ 1
1 + 2−(m−2y) ≥ 1− 2−(m−2y).

In our execution of k̃-junta testing we used m = 100 and observed y = 0. Conditioned on
this observation we conclude that T equals “No” with probability ≥ 1− 2−100 based on
the derived formula.

This result can be explained intuitively because the influence of any challenge bit
i (or SAC property of i) is larger than 0 in an iPUF (see Section 7.2 for theoretical
analysis of SAC of iPUF, and see Figure 6 for its experimental validation). In other words,
it means that every challenge bit has a contribution to the final response of an iPUF.
Since the computed k̃ = 64, the time complexity for the attack used in [GTFS16] on

6ε measures the modeling inaccuracy of the given function by any k̃-junta, and it is taken from the
range between 0 and 1. By setting ε = 0.2, in the k̃-junta test, we are testing whether there exists a
k̃-junta that can model the given function with at least 80% accuracy.
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64-bit (1,1)-iPUF will be O(6464) which makes the attack infeasible (see the discussion
in Theorem 4 in [GTFS16]). Moreover, we performed k̃-junta testing with the same
setup for (1,1)-iPUF on 64-bit 2-XOR APUF and APUF, and the results turn out to
be 64, which is consistent with the SAC property analysis of XOR APUFs and APUFs
in [MKP09, DGSV14, NSCM16].

If we compare the LR attack on XOR APUF in [RSS+10, TB15] with the Perceptron
attack on XOR APUF in [GTS15] or with the DFA attack on XOR APUF in [GTS16]
(DFA attack is demonstrated on APUFs, but [GTS16] also claims that it is possible to
attack XOR APUFs with some modifications), we can see that the LR algorithm is much
more powerful. The reasons are LR algorithm has a much smaller searching space, uses the
XOR APUF mathematical model, and uses information of the gradient in an optimization
process. As shown in Section 6.3, the (x, y)-iPUF is equivalent to the (y + x/2)-XOR
APUF under classical ML. Therefore, the attacks in [GTS15, GTS16] do not work for the
iPUF when x and y are properly chosen.

7 Reliability Analysis and Strict Avalanche Criterion of
(x, y)-iPUF

7.1 Reliability of the (x, y)-iPUF
We develop a formula for computing the noise of the x-XOR APUF where the noise rate
of all APUFs are the same, i.e., all APUFs have a noise rate of β, 0 ≤ β ≤ 1. Let βx be
the noise rate of the x-XOR APUF. For a given challenge c, if there is an odd number of
noisy APUF responses, then XOR APUF’s output is noisy. Hence,

βx =
x∑

j=0,j is odd

(
x

j

)
βj(1− β)x−j

= 1− (1− 2β)x

2 . (23)

Now, we compute the unreliability (i.e. the noise) of the (x, y)-iPUF. We consider the
following two cases.

Case I: The output of the x-XOR APUF is reliable. This event occurs with
probability 1− βx, in which case the noise rate of the output of the iPUF denoted as βI is
equal to the noise rate of the y-XOR APUF denoted as βy, i.e.,

βI = βy = 1− (1− 2β)y

2 . (24)

Case II: The output of the x-XOR APUF is unreliable. This event occurs with
probability βx. In this case (see Section 6.4.1), each APUF in the y-XOR APUF will have
noise β′ = β(1− i

n ) + (1− β) in = β + (1− 2β) in . Hence in this case, the noise rate of the
iPUF, denoted as βII , is equal to the noise rate of the y-XOR APUF where all APUFs
have the noise rate β′, i.e.,

βII = 1− (1− 2β′)y

2 =
1− (1− 2(β + (1− 2β) in ))y

2

=
1− (1− 2β)y(1− 2 in )y

2
Eq.(24)=

1− (1− 2βy)(1− 2 in )y

2 . (25)
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Therefore, the noise rate of the (x, y)-iPUF, denoted as βiPUF , is equal to

βiPUF = (1− βx)βI + βxβII = βy + βx(βII − βy)

= βy + βx(
1− (1− 2βy)(1− 2 in )y

2 − βy)

= βy + βx
2 (1− 2βy)(1− (1− 2i

n
)y). (26)

The following examples confirm the correctness of Eq.(26). If i = 0, then we have
βiPUF = βy. When i = 0, the (x, y)-iPUF is basically equivalent to the y-XOR APUF.
Therefore, the calculated result βiPUF = βy is confirmed.

If i = n and y is odd, then from Eq.(26), βiPUF = βx + βy − 2βxβy = βx(1 − βy) +
βy(1− βx) = β(x+y)−XOR APUF. We know that when i = n and y is odd, the (x, y)-iPUF
is exactly the (x+ y)-XOR APUF. Hence, the calculated result βiPUF = β(x+y)−XOR APUF
is confirmed.

7.2 Strict Avalanche Criterion of (x, y)-iPUF
The SAC property is an important security feature as discussed in [MKP09, DGSV14,
NSCM16]. Here we analyze the SAC property of the (x, y)-iPUF. Assume that the output
rx of the x-XOR APUF is interposed at position j in the challenge to the y-XOR APUF,
j = 0, 1, . . . , n. We would like to compute the probability that flipping a bit in the input
results in the flipping of the output bit of the (x, y)-iPUF. This analysis for the (x, y)-iPUF
is similar to the analysis we did for the APUF in Section 6.2:

pi = Prc(rc[i]=0 6= rc[i]=1), i = 0, 1, . . . , n− 1 (27)

where rc[i]=0 and rc[i]=1 are the output of the (x, y)-iPUF when bit c[i] = 0 and c[i] = 1,
respectively, while all the other challenge bits are same. To compute pi, we consider the
following two cases:

Case I. c[i] flips, rx does not flip, r flips. In this case, we flip challenge bit c[i] but
the output rx of the x-XOR APUF does not flip and the (x, y)-iPUF’s output r flips (i.e.,
rc[i]=0 6= rc[i]=1). From the analysis in Section 6.2, we know that if the challenge bit c[i]
flips, then the output of an APUF in an x-XOR APUF will flip with expected probability
p = i

n and thus, the output of x-XOR APUF will flip with an expected probability
px = 1−(1−2p)x

2 . In other words, rx will not flip with a probability p̄x = 1−px = 1+(1−2p)x
2 .

When rx is not flipped due to c[i] flipping, the output of an APUF in the y-XOR APUF
will be flipped by flipping c[i] with a probability p′ = i

n+1 . Thus the probability that rx
does not flip (and r flips) when flipping c[i] is equal to:

pI = 1 + (1− 2p)x

2 · 1− (1− 2p′)y

2 .

Case II. c[i] flips, rx flips and r flips. If rx flips because c[i] flips, then there are two
flipping challenge bits at position i and j in the input challenge to the y-XOR APUF. In
this case, the output of an APUF in the y-XOR APUF will be flipped with a probability
p′′ = |i−j|

n+1 . The computation for p′′ is beyond the scope of this paper but a detailed
derivation of it can be found in [NSCM16]. Thus the output r will flip with a probability

pII = 1− (1− 2p)x

2 · 1− (1− 2p′′)y

2
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Figure 3: SAC property of 64-bit (3,3)-iPUF with theoretical and simulation data.

Therefore, we have

pi =pI + pII (28)

=1 + (1− 2p)x

2 · 1− (1− 2p′)y

2

+ 1− (1− 2p)x

2 · 1− (1− 2p′′)y

2

=
1 + (1− 2 in )x

2 ·
1− (1− 2 i

n+1 )y

2

+
1− (1− 2 in )x

2 ·
1− (1− 2 |i−j|n )y

2

We experimentally verify our calculations for the SAC property of the (3, 3)-iPUF and
the result is described in Fig 3. The simulation of the SAC property is computed by using
20,000 pairs of CRP for computing each pi.

8 Simulation Results
We provide simulation results in this section to support the major security and reliability
claims made regarding the iPUF.

8.1 Experimental Verification of the Classical Machine Learning Hier-
archy

In this section we experimentally verify Theorem 1 regarding the efficiency of different
classical machine learning attacks. Recall that we stated LR is more efficient in attacking
an XOR APUF than CMA-ES and Deep Neural Networks. To provide empirical evidences
of this we ran the following experiment: We ran these three attacks on a 4-XOR APUF
with various numbers of CRPs as shown in Table 3.

We ran CRP-based CMA-ES with 200,000 CRPs (Figure 2) and 500,000,000 CRPs
(Section 8.2.2). Regardless of the two possible CRPs numbers used, CRP based CMA-ES
had a prediction accuracy of around 50%, clearly showing that the attack fails. When
we use a deep neural network with 30,000 CRPs the highest accuracy we can achieve
after 10 runs is 94% which is significantly better than CRP based CMA-ES with a smaller
number of CRPs. Lastly in Table 3 we run the LR attack which is the most efficient of
all the classical attacks tested here. LR attacks requires only 12,000 CRPs to achieve a
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Table 3: Prediction accuracy of different algorithms using the same amount of CRPs for
training.

#CRPs LR DNN CMA-ES
12,000 98% 55% 50%
30,000 99% 94% 50%

Table 4: Vulnerability of different PUF designs to machine learning attacks.
CML=Classical Machine Learning attack, RML=Reliability based Machine Learning
attack, LA-RML=Linear Approximation Reliability based Machine Learning attack, LA-
CML=Linear Approximation Classical Machine Learning attack.

PUF Design
6-XOR APUF (1,1)-iPUF (3,3)-iPUF

A
tt
ac
k CML 50.2% (7) † 82.4% (X)‡ 52.9% (7)

RML 84.0% (X) N/A(7) N/A (7)
LA-CML N/A(7) 74.0% (X) 49.0% (7)
LA-RML N/A(7) 73.0% (X) 48.0% (7)

† Attack fails
‡ Attack works

prediction accuracy of around 99% [RSS+10]. Thus, from these experimental results we
can empirically show that LR is the most efficient attack on XOR APUFs, followed by
deep neural networks. The least efficient classical machine learning attack is CRP based
CMA-ES.

8.2 iPUF Security
8.2.1 Simulated Machine Learning Attacks On iPUF and XOR APUF

To compare the vulnerabilities of the XOR APUF and various iPUF configurations to
machine learning attacks we used the following setup: We simulated a 64-bit 6-XOR APUF,
a 64-bit (1, 1)-iPUF and a 64-bit (3, 3)-iPUF using Matlab. Note that, all the iPUFs have
the interposed bit in the middle position.

The APUF components that make up each PUF design use weights that follow a
normal distribution with µ = 0 and σ = 0.05. The noise for each weight follows a normal
distribution N (0, σ2

noise). The distribution of each weight is therefore N (0, σ2 + σ2
noise).

In our simulations, we used the following relation between σ and σnoise to control the
reliability levels: σnoise = γσ, where 0 ≤ γ ≤ 1. For γ = 0, a PUF instance is 100% reliable.
Note that this model does not include the noise introduced by the arbiter circuit itself, but
it still properly serves our analysis purpose. The reason is that in practice, the hardware
footprint of a switch and an arbiter are roughly same. Hence, the noise introduced by an
arbiter circuit is very small compared with all the noises introduced by all switches in an
APUF because there are multiple switches but only one arbiter in an APUF. Also, this
simulation method is widely used in literature and it has been have observed that this
method matches what occurs in practice [Bec15, DV13].

On each respective PUF design we run three different machine learning attacks (two in
the case of the XOR APUF). We perform a classical machine learning attack (denoted
as CML in Table 4), the reliability based CMA-ES attack (denoted as RML in Table 4)
and the linear approximation to the classical and reliability based machine learning attack
(denoted as LA-CML and LA-RML in Table 4 ).

Each attack in Table 4 is performed using CMA-ES to optimize the mathematical model
for 1000 iterations. Each attack uses 200,000 CRPs for training (or 200,000 challenge
reliability pairs in the case of the reliability attacks). The accuracy of the attack is
computed based on a testing dataset of 2000 CRPs. We compute the accuracies reported
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in Table 4 by running each attack 10 times and taking the average. Note the accuracy of
best-working attacks is not much different from the average one (1% or 2% difference).

The security of the 6-XOR APUF is shown in Table 4 in the first column. It is clear
that an XOR APUF using a large number of APUF components (in this case 6) can
mitigate classical machine learning attacks, given the amount of training data provided in
this setup. However, the 6-XOR APUF is still highly vulnerable to reliability-based ML
attacks. This result is demonstrated in Table 4 as the reliability based CMA-ES attack
achieves an average accuracy of 84% on this PUF design. Note that we do not run any
attacks on the 6-XOR APUF that use the linear approximation because these types of
attacks are specific to the iPUF.

The resilience of the (1, 1)-iPUF to classical machine learning, LA-CML and LA-RML
is shown in column two of Table 4. We note the following: As hypothesized, the (1, 1)-iPUF
is vulnerable to classical machine learning due to its low model complexity. However, the
linear approximation reliability based CMA-ES attack (LA-RML) works on the (1, 1)-iPUF
which may seem unexpected given our previous claims. Recall that in general the reliability
based CMA-ES attack cannot be performed on any iPUF design (hence the X in entry
for the reliability-based ML attack for the (1, 1)-iPUF). This is because the input to the
y-XOR APUF is unknown and therefore ∆ cannot be computed. However, in our LA-RML
attack on the (1, 1)-iPUF and (3, 3)-iPUF we do not use the original formulation of the
reliability based CMA-ES attack. To make the attack work on iPUF configurations we
assume the interposed bit to be 0. By doing this we can now compute ∆ and treat the
(1, 1)-iPUF as a single APUF. In section 6.5 we showed that for the (x, 1)-iPUF using
any ML technique with the linear approximation would have an upper bounded model
accuracy of 75%. The model accuracy produced by the LA-RML and LA-CML on the
(1, 1)-iPUF in Table 4 closely matches our theoretical upper bound.

The security of the (3, 3)-iPUF against classical machine learning, LA-CML and LA-
RML is shown in the third column of Table 4. It can clearly be seen that all attacks fail to
produce an accurate model of the (3, 3)-iPUF. Due to the high model complexity, the (3, 3)-
iPUF is not vulnerable to the classical machine learning attack, just like the 6-XOR APUF.
Just like for the (1, 1)-iPUF, the reliability based CMA-ES attack cannot be performed on
the (3, 3)-iPUF. When we run the linear approximation reliability based CMA-ES attack,
due to the higher y, the accuracy of the model generated by any method that uses the
linear approximation is theoretically upper bounded at 75% (See Eq. (22)). This coincides
with the low accuracy of the model generated by both the linear approximation reliability
based CMA-ES attack and the linear approximation CRP based CMA-ES. Overall our
experimental results for this section support our claim that the (x, y)-iPUF with proper
parameter choices is secure against all current state-of-the-art of machine learning attacks.

8.2.2 Some Notes on x-XOR APUF

Under state-of-the-art classical ML, the x-XOR APUF must resist Logistic Regression
attacks, deep neural network attacks and CRP-based CMA-ES attacks. However, the
iPUF only needs to mitigate deep neural network attacks and CRP-based CMA-ES attacks
(since Logistic Regression attack is not possible). In this section we present experiments
to determine y + x/2 in an (y + x/2)-XOR that resists both aforementioned attacks.
Based on these results we can use the equivalence proof developed earlier to determine the
corresponding (x, y)-iPUF parameters.

We ran CRP-based CMA-ES attacks and deep neural network attack experiments to
determine the minimum value of y + x/2 to create a secure PUF design. We ran CRP
based CMA-ES for 2,000 iterations using 500,000,000 CRPs for training and 2,000 CRPs
for testing. In this experiment we run a parallelized version of CMA-ES in C# using an
Intel Xeon E5-2680 14 core machine with 128 GB of RAM. In this setup the maximum
number of CRPs we can use is limited by the RAM (storing the CRPs in a byte data array
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Table 5: Modeling accuracy using a Deep Neural Network

XOR number Bit Number
64 128 256

5 0.987 0.986 0.975
6 0.976 0.977 0.533
7 0.976 0.491 -
8 0.513 - -
9 0.502 - -

− The result is not available.

in C#). On a 128 bit 4-XOR APUF the average accuracy for 10 attack runs on the testing
set was 51.77%.

In deep neural network attacks, the adversary uses the challenge transformation
mapping (see Eq. (1)) and a deep neural network for the attack (contrary to the pure
black box attack which only employs the deep neural network without the challenge
transformation mapping). The first study on how to implement deep neural network
attacks on APUF based designs including iPUF (for small x and y) was done by Pranesh
et.al [SBC19, SBC18]. For our deep neural network experiments we created a feed forward
neural network. Our neural network structure is as follows: 3 hidden layers with 100,
60 and 20 neurons respectively, and a Softmax layer on the output. For the neurons
in the hidden layers, we used a sigmoid activation function. Our network is trained by
minimizing the cross-entropy loss function using the optimization technique ADAM [KB14].
We trained our network for 20 epochs using 2,000,000 CRPs (with a batch size of 128) and
use 2,000 CRPs for testing.

In our computational setup we use an Intel Xeon E5-2680 14 core machine to generate
the CRPs and corresponding responses in parallel in C#. We then load this data into
TensorFlow in Python and train the neural network using an Nvidia Titan V GPU.
In our setup the data generation and network training are run efficiently through CPU
parallelization in C# and GPU parallelization in Python respectively. However, transferring
the CRP data between C# and Python creates a bottleneck that limits the amount of
data we can load in a feasible amount of time to 2,000,000 CRPs. Re-coding of the neural
network in C# using Microsoft’s Cognitive Toolkit is needed to go beyond 2,000,000 CRPs.

For our neural network implementation please refer to our open source code publicly
available on Github. Using the neural network configuration and training data described
above, we are unable to model ≥ 8-XOR APUF with 64 bits, ≥ 7-XOR APUF with 128
bits and ≥ 6-XOR APUF with 256 bits given 2,000,000 CRPs. For the full neural network
attack results please see Table 5.

8.3 Enhanced Reliability Based CMA-ES Attack On APUF
When modeling both APUF and XOR APUF designs, the original reliability based CMA-
ES attack can be improved by using more precise fitness functions (see Section 4.2).
This is significant because due to the improved modeling offered by (Rcdf , R

′
cdf) and

(Rabsolute, R
′
absolute), the reliability based CMA-ES attack can now work with less training

data, where before the original attack would fail. When sufficient training data is available,
the proposed fitness functions give more accurate models than the original fitness function.
Table 6 depicts the modeling accuracy of the reliability based CMA-ES attack on a 64-bit
APUF. In this set of simulations σnoise = σ/10, giving the APUF a reliability of around
96 − 97%. From Table 6, it is evident that the reliability based CMA-ES attack using
our proposed model (Rabsolute, R

′
absolute) and (Rcdf , R

′
cdf) outperforms the reliability based

CMA-ES attack using the original model (Roriginal, R
′
original) as proposed in [Bec15]. This is

due to both proposed models using the proper reliability ranges. In addition, (Rcdf , R
′
cdf)
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Table 6: A comparison of 64-bit APUF’s modeling accuracy using CMA-ES

N†
Modeling Accuracy(%)

(Roriginal, R
′
original) (Rabsolute, R

′
absolute) (Rcdf , R

′
cdf)

600 60.33 78.27 96.02
1500 69.60 96.64 97.80
3000 97.49 97.65 98.38
6000 97.85 97.98 98.40
† No. of CRPs is used to train a model.

Table 7: Modeling results of 4-XOR APUF using CMA-ES and different reliability models
Model
setup N†

Modeling Acc.(%) Frequency?
A0 A1 A2 A3 A0 A1 A2 A3

(R
o
.,
R
′ o.

) 10× 103 65.10 66.17 67.40 68.96 0 0 0 0
20× 103 98.08 97.91 98.23 98.33 1 4 3 1
30× 103 98.27 98.06 98.27 98.39 19 10 6 3
50× 103 98.31 98.16 98.37 98.44 39 20 17 10

(R
a
.,
R
′ a.

) 10× 103 97.53 97.09 97.10 95.24 22 24 31 8
20× 103 97.86 97.75 97.74 97.78 24 29 29 17
30× 103 98.08 97.89 98.02 98.12 47 27 20 6
50× 103 98.17 98.06 98.23 98.27 50 29 16 5

† No. of CRPs is used to train an APUF as well as 4-XOR APUF models.
? No. of correct models (prediction accuracy > 90%) for Ai out of 100 runs of
CMA-ES.

outperforms (Rabsolute, R
′
absolute) as both the response polarity and reliability information

are considered in (Rcdf , R
′
cdf).

8.4 Enhanced Reliability Based CMA-ES Attack On XOR APUF
To demonstrate the improvement (Rabsolute, R

′
absolute) offers, we simulated a 4-XOR APUF

and ran the reliability based CMA-ES attack 100 times using both (Rabsolute, R
′
absolute)

and (Roriginal, R
′
original). In this simulation each APUF has a σnoise = σ/10, giving it a

reliability of around 96− 97%. The results of this simulation are shown in Table 7. We
report two aspects in Table 7: i) modeling accuracy and ii) frequency of the correct
APUF models (a correct model has a prediction accuracy greater than 90%). From the
results of Table 7 it is clear that (Rabsolute, R

′
absolute) is able to generate more correct APUF

models than (Roriginal, R
′
original). Note that in the case where N = 10× 103, CMA-ES using

(Rabsolute, R
′
absolute) can successfully model all the APUF components but (Roriginal, R

′
original)

fails to build any correct APUF models. Our enhancement to the CMA-ES attack results
in a more efficient modeling of an XOR APUF.

8.5 Reliability Simulation of the iPUF and XOR APUF
To compare the reliability of the (x, y)-iPUF to the (x+ y)-XOR APUF we simulated a
(x + y)-XOR APUF, (x, y)-iPUF, x-XOR APUF and a y-XOR APUF for x = 20, and
y = 2 and y = 3. In the simulation, we have 64-bit APUFs, each with a noise rate defined
by setting σnoise = 0.05σ. To estimate the reliability, we evaluated each PUF design with
10,000 randomly generated challenges. Each challenge is measured 11 times to determine
whether it is noisy or not. If the repeatability of a challenge is 100%, we say it is reliable;
otherwise, it is a noisy challenge. The reliability of a PUF is estimated as the fraction of
reliable challenges.

We varied the interpose position i of the iPUF from 0 to 64. For each interpose position
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(a) x = 20 and y = 2 (b) x = 20 and y = 3

Figure 4: Noise rate of (x+y)-XOR APUF, (x,y)-iPUF, x-XOR APUF and y-XOR APUF
when the noise rate of each APUF is around 0.05.

we measured the reliability of the (x, y)-iPUF. In the same figure we also plot the reliability
of the (x+ y)-XOR APUF, x-XOR APUF and y-XOR APUF. The simulated results are
presented in Figure 4.

Figures 4a and 4b show that the noise rate of the (x+ y)-XOR APUF and the x-XOR
APUF are close to each other as the value of y is very small compared to the value of x
(i.e. y = 2 or y = 3). The noise rate of the y-XOR APUF is very small compared to the
(x+ y)-XOR APUF and the x-XOR APUF. The noise rate of the (x, 3)-iPUF increases
when the interpose bit position increases from 0 to 64. However, the noise rate of the
(x, 2)-iPUF reaches the maximum value at interpose position 32. This is due to the parity
of y (see Eq. (17)). The noise rate of the (x, 3)-iPUF is equal to half of the noise rate of
the (x+ 3)-XOR APUF when i is in the middle position. The experiments confirm our
findings related to reliability in Section 7.

9 iPUF Implementation
In order to validate our iPUF security and reliability claims, we implemented our proposed
iPUF designs on an FPGA board. In this section, we describe the FPGA implementation
details and related experimental results. We also discuss the limitations of FPGA based
APUFs on composite PUF (XOR APUF and iPUF) security.

Good Implementation and Bad Implementation. Having a theoretical secure design
is not enough. Besides a secure design, one also needs a proper implementation that meets
the assumptions used in the security analysis of the design. The hidden assumption used
in the security analysis of the iPUF is that we have good APUF instances, i.e., all the
weights w[i] (see Eq. 1) of the APUFs are sampled from the same distribution N (0, σ2).
Failure of this condition in a practical APUF implementation would reduce or severely
damage the security of the iPUF. In this section, we will show that badly implemented
APUFs lead to a vulnerable iPUF which can be broken by the reliability-based CMA-ES
attack. We show that a properly implemented iPUF defeats the reliability-based CMA-ES
attack.

9.1 iPUF Implementation Details
In our iPUF design we implemented every stage (switch) of each APUF by using a Look-Up
Table (LUT)7 on a Digilent Nexys 4 DDR board with Xilinx Artix-7 embedded [Dig16].

7In particular on our board, each stage is implemented by a 6-input 2-output LUT, where the two
outputs serve as the outputs of upper and lower paths and only three inputs are used as the inputs of
upper and lower paths and the challenge bit. We notice that Programmable Delay Line (PDL) is a widely
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The LUTs are chained together and the final output is collected by a flip-flop serving as
an arbiter. The main issue in implementing any iPUF design is to make sure that the
response rup of the upper layer XOR APUF is ready when the interposed position of the
lower layer XOR APUF is evaluated. To solve this issue, we added one more signal from
the upper layer XOR APUF to inform the control circuitry when rup is ready. Once the
signal is received the lower layer XOR APUF evaluates its input.

Desirable statistical properties of a PUF include uniqueness, reliability and uniformity.
It has been experimentally verified that uniqueness is a serious issue when implementing
FPGA based APUFs [MGS11, HYKS10]. The main reason implementing unique APUFs
on FPGAs is problematic [MYIS14, MGS11] is because the designers are not allowed to
precisely control the routing between each LUT. The delay difference induced by routing is
much larger than the delay difference introduced by process variation. Thus, the behavior
of one APUF on an FPGA is largely determined by the placement and routing of the
LUTs. Controlling the routing between the LUTs maintains the balance of the length of
the two competing paths.

In practice, in order to keep the balance between the delays of two competing paths,
usually one switch chain is kept in one column of slices on an FPGA. However, in our
APUF implementation on a Digilent Nexys 4 DDR with Xilinx Artix-7 embedded [Dig16]
there are four LUTs in each slice of the FPGA. Due to the configuration on this hardware,
a choice must be made on how to connect the LUTs inside a slice or between two adjacent
slices to form the switch chain. Since the behavior of each APUF is dominated by the
routing difference between the two paths, each switch chain must be placed differently for
each APUF, in order to create unique APUFs. Note this design strategy only alleviates
the uniqueness issue on a single FPGA. If the same bitstream is used to program different
FPGAs, the difference between the same APUFs on different FPGAs will be very small.
Thus, this is not a general design strategy to improve the uniqueness of APUFs on FPGA,
but it is sufficient for us to conduct our experiments.

We have two different ways to place the switch chains: (1) Random placement [Bad
Implementation]: we randomly select one LUT in each slice and then connect them to-
gether. (2) Pattern placement [Good Implementation]: we place the switches according
to a pre-defined pattern. For example, we only use LUT A and LUT B in every slice.

According to our experiments, each design strategy has advantages and disadvantages.
For the random placement design strategy, the advantage of this method is that it gives us
many options to build unique APUFs. Here we define two APUFs as being non-unique
when their responses are the same for more than 60% of the challenges8. Initially, we
generated 100 different switch chains using random placement. After extensive evaluation,
we selected 23 placements of the APUFs, which can provide APUFs with good uniformity
(50.2% - 61.6%) and good uniqueness/inter-hamming distance (39.5% - 59.0%). The noise
rate of these APUFs under room temperature is between 0.66% and 1.25%. However, with
good statistic properties, comes a security weakness in the APUFs. Since the routing
between each adjacent switches is randomly selected, there are a few delays that are
significantly larger than the other delays. This effectively introduces a few significant
weights in the weight vector (see Eq. 1) of this APUF. As a result the difficulty of all
machine learning attacks is reduced since only these significant weights need to be precisely
modeled (instead of having to precisely learn all the weights). This gives a bad PUF
implementation and therefore it can now be broken by ML attacks. We built the model
of individual APUFs to understand the distribution of weights. The standard deviation
of the weights of the APUFs created by random placement ranges from 4.23 to 7.48. As

used technique to implement APUFs [MKD10], but we did not choose to use it due to the poor uniqueness
of PDL-based APUFs according to a recent study [SCM15].

8For FPGA implemented APUFs, 60% uniqueness is considered sufficiently close on its ideal value 50%,
due to the difficulty of controlling the routing between LUTs. As it is shown in our experiments, only 23
out of 100 can satisfy this requirement. Our results are in agreement with [SCM15].
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Table 8: Results of reliability based machine learning attack on XOR APUFs with real
measurements from the FPGA.

#CRPs used in one
attack

Overall Noise Rate Average Prediction
Accuracy

2-XOR 50,000 1.44% 98.22%
3-XOR 90,000 2.38% 96.38%
4-XOR 140,000 2.92% 96.15%
5-XOR 200,000 3.80% 96.62%
6-XOR 260,000 4.47% 91.58%*

*Note that the attack on 6-XOR APUF only recovered 5 out of 6 models. The attacks on 2,3,4,5
XOR APUFs successfully recovered all the models.

we will explain shortly, the standard deviation is much smaller for the pattern placement
design strategy, but this method has its own drawbacks.

For the pattern placement design strategy, there are a very limited number of patterns
we can generate and some APUFs formed by different placement patterns are not unique.
After exhaustively trying 11 patterns9, we found only 4 placement patterns that can
generate 4 unique APUFs. The uniqueness limitation of this design strategy gives us very
few options to form an iPUF design with more than 4 APUFs in total. However, the
pattern placement design strategy does not have the same security weakness as the random
placement design strategy. This is a good PUF and the PUF is secure against ML attacks.
We also built the model of individual APUFs to understand the distribution of weights
in this design. The standard deviation of the weights of the APUFs created by pattern
placement ranges from 1.11 to 3.77. Using this design strategy we do not observe the same
effect of only a few influential weights (unlike in the random placement design strategy).

Since the design strategy will largely influence the experimental results that we will
present later, we will clearly state how the APUFs are generated for each experiment.

9.2 Experimental Results

Reliability-Based Machine Learning Attack on XOR APUFs: First, we repeated
the enhanced reliability based CMA-ES attack in Section 8.4 on XOR APUFs to validate
the effectiveness of our attack. In this experiment, we selected 6 unique APUFs created
by random placement to form a 6-XOR APUF on the FPGA. We then measured 300,000
CRPs with each CRP measurement repeated 11 times to get 300,000 challenge reliability
pairs. The number of challenge reliability pairs used for one CMA-ES attack and the
modeling results after 100 runs of CMA-ES are presented in Table 8.

Reliability-Based Machine Learning Attack on iPUFs: To show the machine learn-
ing resistance of the iPUF to the enhanced reliability-based CMA-ES attack, we perform
the attack on a (1,1)-iPUF. We do not test this attack on iPUF designs with more APUF
components because our security against reliability-based machine learning attacks does
not depend on the number of APUF components.

We used two APUFs created by pattern placement [Good Implementation] to form
a (1,1)-iPUF with an interposed position exactly in the middle in the lower APUF. We
measured 200,000 CRPs with each CRP measurement repeated 11 times to get the challenge
reliability measurements. We then sampled a subset of 90,000 challenge reliability pairs
out of the 200,000 challenge reliability pairs to run the reliability-based CMA-ES attack.
CMA-ES was not able to converge to the upper APUF after 10 runs. This validated our

9Since there are only four LUTs (A, B, C, and D) in a slice, we can only construct 11 different patterns:
1 pattern that uses all four LUTs in each slices, 6 patterns that uses a combination of two LUTs in each
slices (AB, AC, AD, BC, BD, and CD), 4 patterns that uses one LUTs in each slices (A, B, C, and D).
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Figure 5: Results of CRP based CMA-ES attacks on APUF (1-XP), x-XOR APUFs
(x-XP) and ((x, y))-iPUFs ((x, y)-IP).

security claim that the iPUF structure can prevent reliability based machine learning
attacks. Unfortunately, due to the uniqueness issue of pattern placed APUFs, we were
not able to test the security of the (3,3)-iPUF as we did in our experimental simulations.
We also observed that if the component APUFs are created by random placement [Bad
Implementation], CMA-ES was able to break it. We give a detailed analysis of this
phenomenon in Section 9.3. We want to clarify the fact that the reliability-based CMA-ES
attack can break the iPUF because of the improper implementation in the case of
random placement, i.e., not because of any design flaws of the iPUF.

Classical Machine Learning Attacks on XOR APUFs and iPUFs: In this sub-
section we conduct experiments to verify the claim that the model complexity of an
(x, y)-iPUF is similar to that of a (y+x

2 )-XOR APUF. In this experiment we generate
component APUFs using the random placement design strategy to construct iPUFs and
XOR APUFs.

We measured 200,000 CRPs for each XOR APUF and iPUF. We then used CRP based
CMA-ES to optimize each model given the 200,000 CRPs. To further reduce the influence
of noisy CRPs in this attack, for each CRP we did a majority voting from 11 repeated
measurements. We ran CRP based CMA-ES on this training dataset 10 times to avoid
the possible failure introduced by the probabilistic nature of the algorithm. The results
are shown in Figure 5.

Strict Avalanche Property: We also tested SAC property of an implemented (3,3)-
iPUF, where each component APUF is generated by random placement (see Section 9.1).
The shape is shown in Figure 6, which is similar to Figure 3.

Reliability of the iPUF with respect to Interposed Position: We selected 22 and
23 unique component APUFs to construct a (20,2)-iPUF and a (20,3)-iPUF respectively
on the FPGA. We evaluated how the noise rate was affected by changing the interposed
positions in the lower XOR APUFs. We tested 5 different interposed bit positions (0,
16, 32, 48, 64). The noise rate of the (20,2)-iPUF and the (20,3)-iPUF with respect to
interposed position are shown in Figure 7. This follows the same trend as the simulation
result in Figure 4. Note that the reliability is equal to (1-noise rate) or (100%− noise rate)
in percentage.
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Reliability of iPUF under Temperature Variation: We used a (3, 3)-iPUF for
reliability testing under temperature variation, where each APUF is created by random
placement, and has good uniformity and uniqueness. We measured 1,000 CRPs from this
iPUF under 25 degree Celsius as the reference CRPs. We then measured the same 1,000
CRPs again under 70 degrees and 0 degrees Celsius. The error rate introduced by 70
degrees and 0 degrees Celsius is 2.1% and 1.4%, respectively.

9.3 Security Issue Introduced by Careless Implementation
We also used two APUFs created by random placement to form a (1,1)-iPUF with an
interposed position exactly in the middle in the lower APUF. Again, we measured 200,000
CRPs with each CRP measurement repeated 11 times to get the challenge reliability
measurements. We then sampled a subset of 90,000 challenge reliability pairs out of the
200,000 challenge reliability pairs to run the reliability-based CMA-ES attack. CMA-ES
was able to converge to the model of the upper APUF with 96.6% accuracy. According to
our previous analysis and simulation results, only the model of the lower APUF should
be built with up to 75% accuracy (i.e., the reliability-based machine learning attack on a
(1,1)-iPUF is equivalent to the linear approximation reliability-based CMA-ES). When
CMA-ES converged to the model of the lower APUF, the accuracy was upper bounded by
75%, which confirms our theoretical analysis.

When we discovered the phenomenon of biased weights in the APUFs generated by
random placement, we further investigated why this implementation affects the security
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Table 9: Results of the enhanced reliability-based CMA-ES attack on a (1,1)-iPUF with
biased weights.

SAC Upper Lower Failed
4 0.39 0 10 0
8 0.58 9 1 0
12 0.54 2 8 0
16 0.32 0 9 1
20 0.41 0 10 0

Figure 8: The weight distribution of the lower APUF in a (1,1)-iPUF where the number
of large weights (> 3) is constrained to 4.

of iPUFs. We created APUF models with biased weights, such that the distribution that
generates the large weights is N (0, 6), while the standard weights are drawn from N (0, 1).
We also precisely controlled the number of large weights in the second half (the half which
is closer to the output) of the lower APUF. We simulated (1,1)-iPUFs with 4, 8, 12, 16, and
20 dominating weights. On each type of iPUF we performed the enhanced reliability-based
CMA-ES attack 10 times. The results are shown in Table 9.

From Table 9, we can see that the SAC value of the middle bit of the lower APUF will
affect its security. The SAC value is computed by the probability that a bit flip in the
middle challenge bit of the lower APUF will flip the final output bit. The larger the SAC
value is, the higher the chance that the reliability information of the upper APUF will be
exposed to adversaries. This leads to a successful attack on the upper APUF with higher
probability. Ideally, the SAC value of the middle bit should be 50%, but due to the biased
distribution in the weights on FPGAs, the SAC value can be possibly higher than normal.
From the computed SAC values, the reliability-based CMA-ES attack is supposed to
not converge to the upper APUF because they are good enough to prevent the attack
according to our analysis in Section 6.4. However, the attack still works very well when
the number of dominating weights is 8 or 12.

Security Analysis. We can explain this fact as follows. The interposed bit at the
middle splits the lower APUF into two parts: the flipping part which is closer to the 0-th
challenge bit and the non-flipping part which is closer to the output of iPUF. For the
sake of explanation, we assume that all small weights are equal to 0. The motivation of
assuming this is that if the biased weights are significant larger than the small weights, we
can ignore all the small weights. We assume that there are k biased weights in the flipping
part and m biased weights in the non-flipping part. Moreover, the biased weights follow a
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normal distribution N (0, σ2
b ). From Equation (13), we can write

∆ = (1− 2c[n/2])×∆Flipping + ∆Non−Flipping,

where ∆Flipping =
∑n/2
i=0 w[i] Ψ[i]

(1−2c[n/2]) and ∆Non−Flipping =
∑n
i=n/2+1 w[i]Ψ[i]. Since

we have k + m biased weights, ∆Flipping and ∆Non−Flipping only depend on k and m
weights, respectively. This implies ∆Flipping and ∆Non−Flipping follow normal distributions
N (0, kσ2

b ) and N (0,mσ2
b ), respectively. We know that, for a given challenge c, the output

of the lower APUF would flip by flipping challenge bit c[n/2] when |∆Non−Flipping| <
|∆Flipping|. It is obvious that the smaller |∆Non−Flipping| (let’s say < e), the higher the
chance the output will be flipped. Since ∆Non−Flipping ∼ N (0,mσ2

b ),

Pr(|∆Non−Flipping| < e) = Φ( e√
mσb

)− Φ( −e√
mσb

)

= 2Φ( e√
mσb

)− 1.

If m increases, then Pr(|∆Non−Flipping| < e) decreases for any given small positive
number e. This implies that the leakage of information is reduced when increasing m.
This explains why the number of convergences to the upper APUF for the case m = 8 is
larger than for when m = 12. Of course, when m is large enough, the attack does not
work. In our simulation, we just need m to be larger than 16 to prevent the attack. In our
simulation, we noticed that when m = 4, the attack does not work. The weights of lower
APUF when m = 4 is described in Figure 8. We give the following possible reasoning. In
the non-flipping part, there are two significant large weights and the second largest weight
among the two is much smaller (< 13) than the largest one (≈ 23). Moreover, both of them
are much bigger than the remaining weights. The smallest value of |∆Non−Flipping| is 10
and largest value is 36. This implies that |∆Non−Flipping| is always larger than |∆Flipping|.
It means that the leakage of the output of the upper APUF is very small and thus, the
attack does not work. Actually in this case, the SAC property for m = 4 is 0.39 which is
smaller than ideal SAC of 0.5.

Discussion. What if the biased delay value is at the interposed stages of the lower y-XOR
APUFs in an iPUF?

We will discuss this situation in two cases: (a) Suppose that the delay values at the
interposed stages of the lower y-XOR APUFs are very small comparing with the other
delay values, then the delay introduced by the interposed stages are very small, but the
response of the upper x-XOR APUF still affects the final response of y-XOR APUF. This
is because the challenge bit decides whether to swap the accumulated delay values of
all the stages in front of the interposed stage, and this still introduces a large impact to
the final response of y-XOR APUF and the iPUF as a whole. (b) The second case is if
the interposed stages have a very large delay that is comparable with the accumulated
delay of all the other stages in the y-XOR APUF. In this case then the final response of
the iPUF will be largely influenced by the x-XOR APUF and it will be defeated by the
reliability-based CMA-ES attack.

To comment on the possibility of this event, we note that it is extremely rare that the
delay values at the interposed stages of every single APUF in the y-XOR APUF are larger
than the accumulated delays of all the other stages in a good implementation. Thus, this
will not be a concern in terms of security for a correctly implemented iPUF.

10 Conclusion
In this paper, we develop three main contributions. First, we comprehensively analyzed
the reliability-based CMA-ES attack to understand how it works and how to enhance it.
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Second we propose a new PUF design, the (x, y)-iPUF. We prove through theory and
experimentation that the iPUF is not vulnerable to the strongest known reliability-based
machine learning attack (reliability-based CMA-ES) and the strongest known classical
machine learning attack (Logistic Regression). Our final contribution is publicly available
source code for all our iPUF, XOR APUF and APUF attack simulations written in
Matlab and C#. We also provide source code for the FPGA implementation of the
XOR APUF and iPUF. All codes for this paper can be found in DA PUF Library on
Github. Since the iPUF has more advantages in terms of security, reliability and hardware
overhead compared to the XOR APUF, it implies that the iPUF can be considered
a standard design or primitive replacement for the XOR APUF. As a next step,
we propose to implement the iPUF in ASIC (Application Specific Integrated Circuit) in
order to overcome the uniqueness problem encountered in FPGA implementations.
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A Appendix
A.1 The Arbiter PUF and its XORed Versions

c[0] c[1] c[n-1]

Clk

D Q r

Arbiter

Path-swapping switchTrigger signal Upper path Lower path

Figure 9: Arbiter PUF.

We briefly introduce the design of Arbiter PUFs (APUFs) and the reader is referred
to [GCvDD02] for further details. The design of an APUF is depicted in Figure 9. It is
a delay-based silicon PUF with n-bit challenge c = (c[0], c[1], . . . , c[n− 1]) that extracts
random variation in silicon in terms of the delay difference of two symmetrically laid
out parallel delay lines. Ideally, the nominal delay difference between these path pairs
should be 0, but this does not happen due to uncontrollable random variation in the
manufacturing process that introduces random offset between the two path delays. In
general, an n-bit APUF comprises of n switches connected serially to build two distinct,
but symmetrical paths. The arbiter which is located at the end of the two paths is used
to decide which path is faster. The challenge bits c[0], c[1], . . . , c[n− 1] are used as the
control input of path-swapping switches that eventually results in two paths and input
stimulus runs through these two paths. The arbiter declares which path wins the race in
the form of a 0 or 1 response. Typically, the response of an APUF is defined by

r =
{

1, if the signal at the upper path runs faster
0, otherwise.

The most important feature of this design is its small hardware overhead, i.e. the
hardware overhead of an n-bit APUF is linearly proportional to the number of challenge
bits n.

c Ai ri

A0 r0

Ax−1 rx−1

r

Figure 10: x-XOR APUF.

Due to the existence of a linear additive delay model of the APUF, see Eq.(1), a
modeling attack is applicable [LLG+05, RSS+10]. In [SD07], the authors proposed the
design of an x-XOR APUF which enjoys better modeling resistance. Figure 10 describes
the design of an x-XOR APUF.

A.2 Analysis of Influence of Challenge Bit c[j] on the Response r in
the APUF

In this section, we explain

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1.
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Let us examine under which conditions rc[j]=0 will equal rc[j]=1. Assume for a specific
challenge c we fix all bits (except for c[j]) and the output r is 0 regardless of the
value of c[j]. This means ∆c[j]=0 = ∆Flipping + ∆Non−Flipping > 0 when c[j] = 0 and
∆c[j]=1 = −∆Flipping + ∆Non−Flipping > 0 when c[j] = 1. From this example, it is easy to
derive that rc[j]=0 = rc[j]=1 if and only if |∆Flipping| ≤ |∆Non−Flipping| so that:

Prc(rc[j]=0 = rc[j]=1) = Pr(|∆Flipping| ≤ |∆Non−Flipping|). (29)

We follow existing PUF literature [Lim04, LP14] and assume that when generating
an instance of an APUF all wi are sampled from the same normal distribution N (0, σ2)
and hence, ∆Flipping ∼ N (0, (j + 1)× σ2) and ∆Non−Flipping ∼ N (0, (n− j)× σ2). Thus
Prc(rc[j]=0 = rc[j]=1) is equal to:

= Pr(|∆Flipping| ≤ |∆Non−Flipping|) (30)

= 4×
∫ ∞

0
φ0,(n−j)σ2(u)Φ0,(j+1)σ2(−u) du,

where φµ,σ2(·) and Φµ,σ2 are the probability distribution function and cumulative distribu-
tion function of a normal distribution N (µ, σ2), respectively. Experimentally it has been
shown [MKP09, DGSV14, NSCM16] that Eq. (30) can be approximated as:

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1.

A.3 MPUF’s Vulnerability
MPUF was introduced in [SMCN18] but it is also not secure against the reliability-based
CMA-ES attack (see Algorithm 1 in Section 5 in [SMCN18]). To make the MPUF more
robust against the reliability-based CMA-ES attack, the authors propose rMPUF (see
Figure 3 in [SMCN18]). The rMPUF can be broken by using a modified version of
Algorithm 1 and the reliability-based CMA-ES attack as well. Note that the notation As
is proposed in Figure 3 in [SMCN18]. First we learn the APUF As on the multiplexer
closest to the output using the reliability-based CMA-ES attack (this PUF has more noisy
CRPs in the dataset, so the reliability-based CMA-ES attack is more likely to converge
to this model). Next we use our learned model to determine which CRPs are reliable for
As. Using these As reliable CRPs we create a new dataset for the rMPUF and run the
reliability-based CMA-ES attack on the new dataset to learn the next PUF closest to the
output (since the new dataset only has CRPs that are reliable for As we know that the
reliability-based CMA-ES attack will most likely converge to the next nosiest PUF). We
can repeat this process until we have learned all the APUFs in the rMPUF. It is important
to note that this attack works on the rMPUF, this attack does not work on the iPUF
because we cannot learn any of the APUFs in the iPUF. Clearly, this approach cannot be
applied to iPUF because it requires the reliability-based CMA-ES attack to learn at least
one APUF component in every step.

A.4 k̃-junta Test
To test the number of influential inputs in a given function, k̃-junta test is usually applied
to the function. The concept of k̃-junta is defined as follows:

Definition 3. [k̃-junta] A function f : Ωn → Z is a k̃-junta iff there is a subset J ⊆ [n]
with |J | ≤ k̃ and function g : ΩJ → Z such that for all x ∈ Ωn, f(x) = g(xJ) where
xJ = (xj1, ..., xjk̃) for J = {j1, ..., jk̃}.

The k̃-junta test [Bea14] algorithm can help us determine whether a given function f
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• f is a k̃-junta, or

• f is ε-far from any k̃-junta, where we say two functions f and g are ε-far under a
certain distribution µ iff Px∼µ[f(x) 6= g(x)] > ε.

The algorithm of k̃-junta test works as follows [Bea14]:

Algorithm 1 k̃-junta test [Bea14]

1: procedure JuntaTest(f , k̃, ε)
2: s← (k̃/ε)O(1)

3: t← 12(k̃ + 1)/ε
4: Randomly partition [n] in s sets I1, ..., Is; i.e., choose a random h : [n]→ [s] and

let Ij = {i|h(i) = j}.
5: S ← [n]
6: l← 0
7: for r ← 1 to t do
8: Choose x, y independently from Ωn
9: ys̄ ← xs̄
10: if f(x) 6= f(y) then
11: Use binary search on [s] to find a set Ij such that Ij contains an influential

variable
12: Remove Ij from S
13: l← l + 1
14: if l > k̃ then
15: Output “Not a k̃-junta” and halt
16: end if
17: end if
18: end for
19: Output “k̃-junta”
20: end procedure

Since it only generates output with probability > 2
3 , in practice we have to run this

test repeatedly to gain a higher confidence in the result.
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