C

D Tampere University

CACHE-TIMING ATTACKS ON RSA KEY GENERATION

Conference on Cryptographic Hardware and Embedded Systems (CHES) 2019

Alejandro Cabrera Aldaya', Cesar Pereida Garcia?,
Luis Manuel Alvarez Tapia’, Billy Bob Brumley?,
{aldaya, lalvarezt89}@gmail.com, {billy.brumley, cesar.pereidagarcia}@tuni.fi

! Universidad Tecnologica de la Habana (CUJAE), Habana, Cuba
2 Network and Information Security Group (NISEC), Tampere University, Tampere, Finland

Aug 25-28, 2019

Contents

Introduction

Side-Channel Leakage Finding
The BN_FLG_CONSTTIME
A New Methodology
The Tool

Leakage Analysis
RSA Key Generation
Binary GCD

The Attack

Conclusion
Lessons Learned

2/21

Contents

Introduction

3/21

Introduction

> What?: A single trace cache-timing attack against the binary Extended
Euclidean (GCD) algorithm used during RSA key generation, leading to
complete RSA private key recovery.

> Why?: Becatse-wecank

» Cloud services (e.g. AWS, Azure) and automated certificate renewal (e.g. Let's
Encrypt) make RSA key generation a semi-predictable operation.

» Micro-architecture attacks.

» RSA key generation neglected.

» How?: We developed a new methodology to help us detect insecure code
paths in OpenSSL, then we combine FLUSH+RELOAD, signal processing and
lattice techniques.

Contents

Side-Channel Leakage Finding
The BN_FLG_CONSTTIME
A New Methodology
The Tool

5/21

OpenSSL and the BN_FLG_CONSTTIME

» OpenSSL relies on the BN_FLG_CONSTTIME to protect against timing-attacks.

» The flag gives a lot of room for mistakes.

» Several flaws involving the flag have been identified previously.

> CVE-2016-2178
» CVE-2016-7056
> CVE-2018-0734

» We have a record of well known side-channel vulnerable functions used in
OpenSSL.

A New Methodology

» Create a list of known side-channel
vulnerable functions in a library (e.g.

OpenSSL).
. Prase1l PrasE2 PHase3
» Use a debugger to automatically set
breakpoints at lines of code that Collect ’? B 5

underpants

should be unreachable.

» Run several security-critical
commands.

» Generate a report if any of the
breakpoints is reached.

» Investigate manually the root-cause.

7121

The Tool’

INFO: Parsing source code at: ./openssl-1.0.2k
INFO: Breakpoints file generated: triggers.gdb

INFO: Monitor target command line

TOOL: gdb --batch --command=triggers.gdb --args
openssl-1.0.2k/apps/openssl genpkey -algorithm RSA
-out private_key.pem -pkeyopt rsa_keygen_bits:2048

INFO: Setting breakpoints...
Breakpoint 1 at ...: file bn_exp.c, line 418.

Breakpoint 2 at ...: file bn_gcd.c, line 120.
Breakpoint 3 at ...: file bn_gcd.c, line 238.

INFO: Insecure code executed!

Breakpoint 1, BN_mod_exp_mont (...) at bn_exp.c:418
418 bn_check_top(a);

#0 BN_mod_exp_mont (...) at bn_exp.c:418

#1 ... in witness (...) at bn_prime.c:356

#2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:329
#3 ... in BN_generate_prime_ex (...) at bn_prime.c:199
#4 ... in rsa_builtin_keygen (...) at rsa_gen.c:150

INFO: Insecure code executed!
Breakpoint 2, BN_gcd (...) at bn_gcd.c:120

120 int ret = 0;
#0 BN_gcd (...) at bn_gcd.c:120
#1 ... in rsa_builtin_keygen (...) at rsa_gen.c:154

INFO: Insecure code executed!
Breakpoint 3, BN_mod_inverse (...) at bn_gcd.c:238

238 bn_check_top(a);

#0 BN_mod_inverse (...) at bn_gcd.c:238

#1 ... in BN_MONT_CTX_set (...) at bn_mont.c:450

#2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:319
#3 ... in BN_generate_prime_ex (...) at bn_prime.c:199

#4 ... in rsa_builtin_keygen (...) at rsa_gen.c:171

'[Gri+19] expanded our methodology and tooling into a Cl tool called TriggerFlow.

https://gitlab.com/nisec/triggerflow

8/21

https://gitlab.com/nisec/triggerflow

Contents

Leakage Analysis
RSA Key Generation
Binary GCD

9/21

RSA Key Generation

1

Algorithm 1: OpenSSL RSA key generation

Input: Key size n and public exponent e.
Output: Public and private key pair.
begin
while ged(p — 1,€) # 1 do

| p <« rand n/2-bit prime
while ged(q — 1,€) # 1 do

| g« rand n/2-bit prime
d<e"mod(p—1)(g—1)
dp < dmod (p—1)
dg <+ dmod (g — 1)
ig g " modp
return (N, e), (d, p, g, dp, dq, iq)

/* Generate p

/* Generate ¢

/* Priv exp

/* CRT parameters

Binary GCD

Algorithm 2: Binary GCD

Input: Integers a and b such that 0 < a < b.
Output: Greatest common divisor of a and b.
begin
U<+ a,v<+>b,i<+0
while even(u) and even(v) do

| uu/2,vev/2i—i+1

5 while u # 0 do

A W N =

6 while even(u) do

7 | u«u/2 /* u-loop */
8 while even(v) do

9 | vevy2 /% v-loop */
10 if u>vthen

1 | ueu—-v /* sub-step */
12 else

13 | vev—u

14 returnv - 2/

Coppersmith bound
512

768 1007 1023
Yy NisT Y |
=201 e=2'%+]

Contents

The Attack

12/21

Memory Hierarchy

Computer Memory Hierarchy

small size

processor registers
small capacity

very fast, very expensive

power on
immediate term
small size

processor cache
small capacity

very fast, very expensive

medium size power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term

slower, cheap

large size power off hard drives

very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term

very slow, affordable

13721

EEEEEEER
B i o

1) Victim executes its own process, filling the cache
[]

3) Victim may or may not execute its own process
again while the attacker waits

H [N
H [(/H

N
[]
N

H [N
H [N
H [N
H [N

FLUSH+RELOAD and Performance Degradation

EEEEEEER
.

: ®
EEEEEEEN

2) Attacker flushes victim's data from the cache and
waits

EEEEEEER
[] 0

4) Attacker reloads the data and measures the loading
time

5) Attacker traces the victim's process execution and
infers information about the victim

Attack Scenario

/

N

U

=] =n]=s

SSL.

] ®

15721

The Attack 1/2

» OpenSSL 1.0.2k.

FLUSH+RELOAD EE
[YE14].
> Templating. . E
I
Pearson ol
correlation. s
Low-pass filter. g
5 -0.2
Horizontal 04 ‘ ‘ ‘ ‘ ‘
anal SlS. 0 50000 100000 150000 200000 250000
y . w0 subrmcx'i]p‘[\pmge
g shift probe
» Sequence of ops. £ o L
s .m“ u. L A‘ JU LHLM i A.A njn
284400 284500 284600 284700 284800 284900 285000 285100 285200 285300

Time (samples)

LLLSLLSLSLLLLLSL...LS

The Attack 2/2

>

>
>
>
>

Use expand-and-prune [HMM10] error correction algorithm.
Obtain a ranked list of partial prime factors.

Formulate lattice problems for the candidates.

Run in a cluster for 4 hours.

Recover private keys with a 27% success rate.

// C[l\\

(w1;2) (x1 4+ 0;22) z9 — 0) mult

AN AN

(z1 +0;22) (z1;22—0) mult 0 (1 4+ 0;22) (21 —0;22) (21322 +0) mult

/N

(x1322) (21 + 0;23) 0 (®1322) (21— 0;229) (21522 +0)

N~

mult

Contents

Conclusion
Lessons Learned

18721

TL,DNL

» We developed a simple methodology and tool to track existing flaws leading
to insecure code paths in crypto libraries.

» We discovered three new flaws affecting OpenSSL during RSA key generation.

» We performed a cache-timing attack on the GCD algorithm, allowing us to
fully recover RSA keys with a success rate of 27%.
» Our general strategy was:

» FLUSH+RELOAD and performance degradation.
» Signal processing.

» Error correction algorithm.

» Lattice problem solving.

Responsible Disclosure

We reported our findings to OpenSSL security team, and they confirmed affected
versions? 1.1.0-1.1.0h and 1.0.2-1.0.20.

OpenSSL assigned CVE-2018-0737 based on our work and adopted the proposed
patches.

» Lesson 1: Secure by default. These and similar flaws can be prevented with
a secure-by-default approach.

» Adopt constant-time algorithms by default, e.g. [BY19]

> Lesson 2: Knowledge transfer. The engineers and cryptographers must
work side-by-side to ensure that academic results permeate over real-world
products.

20penSSL 1.1.1 did not exist at the time of disclosure.

Thank you for listening.

Questions?

21721

	Outline
	Introduction
	Side-Channel Leakage Finding
	The BN_FLG_CONSTTIME
	A New Methodology
	The Tool

	Leakage Analysis
	RSA Key Generation
	Binary GCD

	The Attack
	Conclusion
	Lessons Learned

