Linear Repairing Codes and Side-Channel Attacks Hervé CHABANNE, Houssem MAGHREBI and Emmanuel PROUFF

IDEMIA, UL, ANSSI
Partially funded by REASSURE H2020 Project (ID 731591)
TCHES, Setember 2018
$\langle\mid\rangle\rangle$ IDEMIA

Shamir's Schemel LERS Schemel New Construction| Conclusions And Perspect

Secure implementations with secret sharing techniques.

Secure implementations with secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

Secure implementations with secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d}
$$

Secure implementations with secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d}
$$

- Theory available to prove the security in (relatively) sound models DucDziembowskiFaust14.

Secure implementations with secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d}
$$

- Theory available to prove the security in (relatively) sound models DucDziembowskiFaust14.
- Tools have been developed to automatize the proofs (e.g. BartheBelaidDupressoirFouqueGrégoireStrub15)

■ First Issue: how to share sensitive data?

■ Second Issue: how to securely process on shared data?

■ First Issue: how to share sensitive data?

- Related to:
- secret sharing Shamir9
- design of error correcting codes with large dual distance
Massey93, CastagnosRennerZémor13
- etc.

■ Second Issue: how to securely process on shared data?

- Related to:
- secure multi-party computation

NikovaRijmenSchläffer2008 ProuffRoche2011

- circuit processing in presence of leakage e.g. GoldwasserRothblum2012
- efficient polynomial evaluation e.g.

CarletGoubinProuffQuisquater-
Rivain2012, CoronProuffRoche2012, CoronRoyVivek2014

- etc.
- ($n, d)$-SSS: polynomial formulation;
- generate a random degree- d polynomial

$$
P_{Z}(X)=Z+R_{1} X+R_{2} X^{2}+\ldots+R_{d} X^{d}
$$

with R_{1}, \ldots, R_{d} chosen at random in the base field.

- (n, d)-SSS: polynomial formulation;
- generate a random degree- d polynomial

$$
P_{Z}(X)=Z+R_{1} X+R_{2} X^{2}+\ldots+R_{d} X^{d}
$$

with R_{1}, \ldots, R_{d} chosen at random in the base field.

- build the shares Z_{i} such that

$$
Z_{i}=P_{Z}\left(\alpha_{i}\right)
$$

for n different public constant values α_{i}.

- ($n, d)$-SSS: polynomial formulation;
- generate a random degree- d polynomial

$$
P_{Z}(X)=Z+R_{1} X+R_{2} X^{2}+\ldots+R_{d} X^{d}
$$

with R_{1}, \ldots, R_{d} chosen at random in the base field.

- build the shares Z_{i} such that

$$
Z_{i}=P_{Z}\left(\alpha_{i}\right)
$$

for n different public constant values α_{i}.
■ Reconstruction with Lagrange's Formula and a subset U of $d+1$:

$$
Z=\sum_{Z_{i} \in U} Z_{i} \times \beta_{i}
$$

where the constants β_{i} are defined as

$$
\beta_{i}=\prod_{k=1, k \neq i}^{n} \frac{\alpha_{k}}{\alpha_{i}+\alpha_{k}}
$$

Choice of the Public Points α_{i}

Does the choice of the public points impact the security of SSS in the context of Side-Channel Analysis?

Optimal Number of Shares to Observe

In a Side-Channel Anlaysis context, what is the optimal number of shares to observe?

Choice of the Public Points α_{i}

Does the choice of the public points impact the security of SSS in the context of Side-Channel Analysis?

No influence on the effectiveness of Lagrange's reconstruction BUT the mutual information $(d+1)$-tuple of shares Z_{i} and Z seems to depend on the α_{i} BalashFaustGierlichs15, WangStandaertYu +16 .

Optimal Number of Shares to Observe

In a Side-Channel Anlaysis context, what is the optimal number of shares to observe?

Choice of the Public Points α_{i}

Does the choice of the public points impact the security of SSS in the context of Side-Channel Analysis?

Optimal Number of Shares to Observe

In a Side-Channel Anlaysis context, what is the optimal number of shares to observe?

Since the knowledge of $d+1$ shares Z_{i} is sufficient to recover Z, it is commonly assumed that the optimal number is $d+1$.

Test of template attacks against a $(5,2)-\operatorname{SSS}\left(Z_{0}, Z_{1}, \ldots, Z_{4}\right)$ of Z

Figure: Number of observations to achieve a success rate of 100% wrt noise standard deviation for two different sets of public points.

Test of template attacks against a $(5,2)-\operatorname{SSS}\left(Z_{0}, Z_{1}, \ldots, Z_{4}\right)$ of Z

Figure: For different choices of tuples of shares, the number of observations required to achieve a 100% success rate vs the standard deviation of the noise.
Conclusions And Perspect

Experiments Conclusions

- Observation 1: the choice of the public points impacts the attack efficiency!

Experiments Conclusions

- Observation 1: the choice of the public points impacts the attack efficiency!
- Observation 2: for some SNR, it is better to target strictly more than the sufficient number of shares needed to recover Z !

Experiments Conclusions

- Observation 1: the choice of the public points impacts the attack efficiency!
- Observation 2: for some SNR, it is better to target strictly more than the sufficient number of shares needed to recover Z !

■ Rest of this talk: explain this phenomenon.

■ Actually, we have to change the question: - how many shares do I need to rebuild Z ?

- how much information do I need to rebuild Z ?

■ Actually, we have to change the question:

- how many shares do I need to rebuild Z ?
- how much information do I need to rebuild Z ?

Guruswami \& Wootters's Result

The number of bits needed to recover $Z \in \operatorname{GF}\left(2^{m}\right)$ from its (n, d)-sharing can be much lower than $(d+1) \times m$!

■ Actually, we have to change the question:

- how many shares do I need to rebuild Z ?
- how much information do I need to rebuild Z ?

Guruswami \& Wootters's Result

The number of bits needed to recover $Z \in \operatorname{GF}\left(2^{m}\right)$ from its (n, d)-sharing can be much lower than $(d+1) \times m$!

- Recall that Lagrange's formula needs exactly $(d+1) \times m$ bits (or equiv. $d+1$ shares Z_{i}).
- Actually, we have to change the question:
- how many shares do I need to rebuild Z ?
- how much information do I need to rebuild Z ?

Guruswami \& Wootters's Result

The number of bits needed to recover $Z \in \operatorname{GF}\left(2^{m}\right)$ from its (n, d)-sharing can be much lower than $(d+1) \times m$!

- Recall that Lagrange's formula needs exactly $(d+1) \times m$ bits (or equiv. $d+1$ shares Z_{i}).
- Example GuruswamiWootters16:
- for some (14, 9)-SSS sharing
- Z can be recovered with only 64 bits of information on the Z_{i}
- instead of $80=10 \times 8$ bits (if 10 shares are targeted)

a in GF $\left(2^{m}\right)$

$(5,2)$ Shamir's Secret Sharing

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}

Figure: Side-channel and linear repairing codes for Shamir's sharing.
Z shared into $\left(Z_{1}, \ldots, Z_{n}\right)$ s.t. $Z_{i}=P_{Z}\left(\alpha_{i}\right)$ and $Z=P_{Z}(0)$.

$$
Z=\sum_{i=1}^{n} \beta_{i} \times Z_{i}=
$$

Z shared into $\left(Z_{1}, \ldots, Z_{n}\right)$ s.t. $Z_{i}=P_{Z}\left(\alpha_{i}\right)$ and $Z=P_{Z}(0)$.

$$
Z=\sum_{i=1}^{n} \beta_{i} \times Z_{i}=\left\{\begin{array}{c}
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{1} \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{1} \times \beta_{i} \times Z_{i}\right) \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{2} \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{2} \times \beta_{i} \times Z_{i}\right) \\
\vdots \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{t} \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(\mu_{t} \times \beta_{i} \times Z_{i}\right)
\end{array}\right.
$$

■ Main Idea in GuruswamiWootters16: change the projections and, for each coordinate, interpolate $p_{j}(X) \times P_{Z}(X)$ instead of $P_{Z}(X)$ for well chosen polynomials $p_{j}(X)$.
Z shared into $\left(Z_{1}, \ldots, Z_{n}\right)$ s.t. $Z_{i}=P_{Z}\left(\alpha_{i}\right)$ and $Z=P_{Z}(0)$.

$$
Z=\sum_{i=1}^{n} \beta_{i} \times Z_{i}=\left\{\begin{array}{c}
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{1}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{1}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right) \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{2}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{2}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right) \\
\vdots \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{t}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{t}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right)
\end{array}\right.
$$

■ Main Idea in GuruswamiWootters16: change the projections and, for each coordinate, interpolate $p_{j}(X) \times P_{Z}(X)$ instead of $P_{Z}(X)$ for well chosen polynomials $p_{j}(X)$.
Z shared into $\left(Z_{1}, \ldots, Z_{n}\right)$ s.t. $Z_{i}=P_{Z}\left(\alpha_{i}\right)$ and $Z=P_{Z}(0)$.

$$
Z=\sum_{i=1}^{n} \beta_{i} \times Z_{i}=\left\{\begin{array}{c}
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{1}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{1}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right) \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{2}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{2}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right) \\
\vdots \\
\operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{t}(0) \times Z\right)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{K} / \mathbb{F}}\left(p_{t}\left(\alpha_{i}\right) \times \beta_{i} \times Z_{i}\right)
\end{array}\right.
$$

■ Main Idea in GuruswamiWootters16: change the projections and, for each coordinate, interpolate $p_{j}(X) \times P_{Z}(X)$ instead of $P_{Z}(X)$ for well chosen polynomials $p_{j}(X)$.

■ Necessary Condition: $p_{1}(0), p_{2}(0), \ldots, p_{t}(0)$ spans vector space of dimension t.

■ Illustration for $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$

■ Illustration for $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
■ Values obtained for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$p_{1}\left(\alpha_{i}\right)$	0	0	76	68	0	238	57	157	220	80	115	204	131
$p_{2}\left(\alpha_{i}\right)$	248	21	120	0	127	0	211	56	0	171	33	147	45

■ in Grey, values linearly dependent over GF(16)

■ Illustration for $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
■ Values obtained for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$p_{1}\left(\alpha_{i}\right)$	0	0	76	68	0	238	57	157	220	80	115	204	131
$p_{2}\left(\alpha_{i}\right)$	248	21	120	0	127	0	211	56	0	171	33	147	45

■ in Grey, values linearly dependent over GF(16)
■ Total number of required bits on the shares: $64=16 * 4$ bits

■ Illustration for $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
■ Values obtained for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$p_{1}\left(\alpha_{i}\right)$	0	0	76	68	0	238	57	157	220	80	115	204	131
$p_{2}\left(\alpha_{i}\right)$	248	21	120	0	127	0	211	56	0	171	33	147	45

■ in Grey, values linearly dependent over GF(16)
■ Total number of required bits on the shares: $64=16 * 4$ bits

- For Lagrange's interpolation formula: $80=10 * 8$ bits

■ Illustration for $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
■ Values obtained for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$p_{1}\left(\alpha_{i}\right)$	0	0	76	68	0	238	57	157	220	80	115	204	131
$p_{2}\left(\alpha_{i}\right)$	248	21	120	0	127	0	211	56	0	171	33	147	45

■ in Grey, values linearly dependent over GF(16)
■ Total number of required bits on the shares: $64=16 * 4$ bits
■ For Lagrange's interpolation formula: $80=10 * 8$ bits

- Conclusion: more shares are needed (10 instead of 8) but less information is needed (64 bits instead of 80 bits)

Figure: \# of observations to achieve a 100% success rate vs the noise std.

Figure: \# of observations to achieve a 100% success rate vs the noise std.

■ Theoretically: full knowledge of 3 shares (i.e. 24 bits) is enough to rebuild Z

Figure: \# of observations to achieve a 100% success rate vs the noise std.

■ Theoretically: full knowledge of 3 shares (i.e. 24 bits) is enough to rebuild Z
■ In practice: some 4-tuple of shares leeds to recover Z more efficiently than with 3 shares

Figure: \# of observations to achieve a 100% success rate vs the noise std.

■ Theoretically: full knowledge of 3 shares (i.e. 24 bits) is enough to rebuild Z
■ In practice: some 4-tuple of shares leeds to recover Z more efficiently than with 3 shares
■ Explanation: from those 4 shares, the attack needs to recover strictly less than 24 bits

Figure: \# of observations to achieve a 100% success rate vs the noise std.

■ Theoretically: full knowledge of 3 shares (i.e. 24 bits) is enough to rebuild Z
■ In practice: some 4-tuple of shares leeds to recover Z more efficiently than with 3 shares
■ Explanation: from those 4 shares, the attack needs to recover strictly less than 24 bits
■ Only effective till' some noise amount!

- $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
- $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
- Values of the reconstruction coefs for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$\mu_{i, 1}$	0	0	76	68	0	238	57	157	220	80	115	204	131
$\mu_{i, 2}$	248	21	120	0	127	0	211	56	0	171	33	147	45

- $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
- Values of the reconstruction coefs for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$\mu_{i, 1}$	0	0	76	68	0	238	57	157	220	80	115	204	131
$\mu_{i, 2}$	248	21	120	0	127	0	211	56	0	171	33	147	45

- To enable reconstruction, only 64 bits are required instead of 80 (in state of the art)
- $n=14, d=9, \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}(256)$ and $t=2$
- Values of the reconstruction coefs for some polynomials $p_{1}(X)$ and $p_{2}(X)$ found by exhaustive search:

	1	2	3	4	5	6	7	8	9	10	11	12	13
$\mu_{i, 1}$	0	0	76	68	0	238	57	157	220	80	115	204	131
$\mu_{i, 2}$	248	21	120	0	127	0	211	56	0	171	33	147	45

- To enable reconstruction, only 64 bits are required instead of 80 (in state of the art)
- In the paper, we combine this property with GoubinMartinelli11 and CastagnosRennerZémor13 to improve the efficiency of the secure multiplication over data shared with SSS
Ben-OrGoldwasserWigderson88.

Secret Sharing for Secure Implem.l Shamir's Schemel LERS Schemel New Constructionl Conclusions And Perspecti
Conclusions

Conclusions

- Shamir's Sharing Scheme is interesting to get implementations secure against HoSCA in the presence of glitches

Conclusions

■ Shamir's Sharing Scheme is interesting to get implementations secure against HoSCA in the presence of glitches

- Because of the algebraic complexity of the sharing (polynomial evaluation/interpolation), the relation between the shares and the shared datum is difficult to analyze

Conclusions

- Shamir's Sharing Scheme is interesting to get implementations secure against HoSCA in the presence of glitches
- Because of the algebraic complexity of the sharing (polynomial evaluation/interpolation), the relation between the shares and the shared datum is difficult to analyze
■ We confirmed previous observations and exhibited new ones related to the difference with Boolean Sharing:
- the choice of the public points matters from a security point of view
- it can be sound to target more shares than strictly necessary
- it exists more efficient reconstruction schemes than Lagrange's interpolation GuruswamiWootters16

Conclusions

■ Shamir's Sharing Scheme is interesting to get implementations secure against HoSCA in the presence of glitches

- Because of the algebraic complexity of the sharing (polynomial evaluation/interpolation), the relation between the shares and the shared datum is difficult to analyze
■ We confirmed previous observations and exhibited new ones related to the difference with Boolean Sharing:
- the choice of the public points matters from a security point of view
- it can be sound to target more shares than strictly necessary
- it exists more efficient reconstruction schemes than Lagrange's interpolation GuruswamiWootters16
■ We used the theory of Linear Exact Repairing Schemes (LERS) to improve the secure multiplication between data shared with SSS

Conclusions

■ Shamir's Sharing Scheme is interesting to get implementations secure against HoSCA in the presence of glitches

- Because of the algebraic complexity of the sharing (polynomial evaluation/interpolation), the relation between the shares and the shared datum is difficult to analyze
■ We confirmed previous observations and exhibited new ones related to the difference with Boolean Sharing:
- the choice of the public points matters from a security point of view
- it can be sound to target more shares than strictly necessary
- it exists more efficient reconstruction schemes than Lagrange's interpolation GuruswamiWootters16
■ We used the theory of Linear Exact Repairing Schemes (LERS) to improve the secure multiplication between data shared with SSS
- More works needed to study how to design efficient LERS for given n and d

Thank you for your attention! Questions/Remarks?

