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Abstract. To strengthen the resistance of countermeasures based on secret sharing,
several works have suggested to use the scheme introduced by Shamir in 1978, which
proposes to use the evaluation of a random d-degree polynomial into n > d + 1
public points to share the sensitive data. Applying the same principles used against
the classical Boolean sharing, all these works have assumed that the most efficient
attack strategy was to exploit the minimum number of shares required to rebuild
the sensitive value; which is d 4+ 1 if the reconstruction is made with Lagrange’s
interpolation. In this paper, we highlight first an important difference between
Boolean and Shamir’s sharings which implies that, for some signal-to-noise ratio, it is
more advantageous for the adversary to observe strictly more than d + 1 shares. We
argue that this difference is related to the existence of so-called linear exact repairing
codes, which themselves come with reconstruction formulae that need (much) less
information (counted in bits) than Lagrange’s interpolation. In particular, this result
implies that the choice of the public points in Shamir’s sharing has an impact on the
countermeasure strength, which confirms previous observations made by Wang et al.
at CARDIS 2016 for the so-called inner product sharing which is a generalization
of Shamir’s scheme. As another contribution, we exhibit a positive impact of the
existence of linear exact repairing schemes; we indeed propose to use them to improve
the state-of-the-art multiplication algorithms dedicated to Shamir’s sharing. We
argue that the improvement can be effective when the multiplication operation in the
sub-fields is at least two times smaller than that of the base field.

Keywords: Side-Channel Analysis - Countermeasures - Masking - Shamir’s Sharing -
Linear Exact Repairing Schemes - Coding Theory - Reed-Solomon Codes

1 Introduction

In the late nineties, attacks called Side-Channel Analysis (SCA) have been exhibited against
cryptosystems implemented in embedded devices. Since the seminal works [Koc96, KJJ99],
the attacks have been refined and, in particular, the initial principle has been generalized
in order to exploit several instantaneous leakage points simultaneously. This led to the
introduction of the higher-order SCA [Mes00]. To defeat the latter ones, whose practicality
has been argued in several papers [LPR13, OMHT06, SVCO™10], secret sharing techniques
(aka masking) are currently the most promising type of countermeasures. They can indeed
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be applied to get implementations with a scalable security, parametrized by the number of
shares and some physical properties of the device [CJRR99, PR13]. The core idea of secret
sharing, originally introduced in [Sha79], is to split any sensitive variable a manipulated
by the device into several (say n) shares a;, and to process elementary operations on them
while maintaining the property that any tuple of d < n intermediate results is independent
of any secret-dependent value. The latter property is usually called d**-order security
property and the set of all the tuples of shares allowing for the reconstruction of a is called
reconstruction set and is denoted by R, (it contains all the tuples I C [1..n] such that a
may be reconstruced from (a;);er)!. Let L= (Ly,...,Ly) denote the random variable in
R™ associated to the noisy observation of the sharing @ = (ay,...,a,) (itself viewed as
a random variable) and let MI denote the mutual information operator. The core idea
behind the d*"-order security is that the complexity of extracting information from a
sharing satisfying the latter property increases linearly with minsex, ([T;c; MI(ai; L)) 2.
For a given order d the security challenge is therefore to minimize the product of mutual
information for every I € R,. In the literature, the most classical sharing is the Boolean
one in which n is chosen equal to d + 1 and the shares a; satisfy a = a1 + - - - + a,, with
+ being the Boolean (xor) addition. To recover a from a Boolean sharing, the adversary
needs information on all the coordinates of @ (i.e. R, is reduced to the tuple {1,2,...,n})
and the attack complexity, quantified by the minimum number 75, of realizations of @
that must be observed to succeed with some probability 3, hence satisfies:

_1
2

TBoot > ax | [[  Mi(as; Ly) : (1)
i€[1..d+1]

where « is a some constant term depending on both 8 and the cardinality of the definition
set of the a; [DFS15, PR13].

1.0.1 State of the Art.

The simplicity of the Boolean sharing is an advantage from an implementation complexity
point of view but, on the flip side, it helps the attacker: the information on the shared
data is relatively easy to rebuild from the observed shares. Starting from this remark,
Prouff and Roche in [PR11] and Goubin and Martinelli in [GM11] proposed indepedently
to apply Shamir’s secret sharing (SSS for short) instead of Boolean sharing: the core
principle of SSS is to split any sensitive variable a into n > 2d + 1 shares a; which
correspond to the evaluation, in n distinct non-zero public elements, of a random degree-d
polynomial with constant term a [Sha79]. The d'"-order security property comes as a
direct consequence of the so-called collusion resistance of Shamir’s sharing which essentially
ensures that at least d + 1 evaluations (aka shares a;) must be involved to recover a. For
an (n,d)-SSS of a; (namely a splitting with n shares and a degree-d polynomial), R, is
exactly {I C [1..n]; #I > d} and the reconstruction is done by polynomial interpolation.
At the cost of an increase of the implementation timing complexity (compared to that
obtained for Boolean sharing), the authors of [GM11, PR11] argue, with simulations
and experiments, that the intrinsic1 complexity of SSS significantly increases the value
miner,;#1=d+1 ([L;ie; MI(a;; Li)) * and hence the security. This type of informational
argumentation is also the cornerstone of Balasch et al. ’s work [BFG15], which is based on
the concept of Inner Product (IP) sharing [DF12], or of Wang et al. ’s work [WSY*16].
Implicitely, it assumes that the minimum of the product of mutual information is achieved
for a (d + 1)-tuple and, under this assumption, the mimimum number 7ggg of realizations

11t may be checked that, by construction and due to the d*?-order security, every I € R, has size at
least d 4 1.
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of the SSS sharing that must be observed to recover a should satisfiy:

1
2

i Ml(a;: L; . 2
Tggs > Qr X epn <g (ag; 2)) (2)

1.0.2 Contributions.

The previous hypothesis about the lower bound on 7ggg is motivated by the assumption
that the most efficient way to attack an (n,d)-SSS is to observe exactly d + 1 shares.
The underlying remarks are that (1) observing strictly less than d + 1 shares leaks no
information on the shared variable (by security property of SSS) and (2) observing strictly
more than d + 1 shares will merely provide the attacker with more noise than information
since d + 1 shares are already sufficient to rebuild a (by interpolation)?. One of the goals
of this paper essentially aims at coming back on the second point which has been assumed,
without being proved, in all previous works studying SSS in the SCA context. We actually
highlight in the first part of this paper an important difference between Boolean and SSS
sharings which implies that, for some signal-to-noise ratio, it is more advantageous for the
adversary to observe strictly more than d + 1 shares®. This observation is illustrated in
Section 3 and it is confirmed by real attack experiments on an ATMega328p architecture.
For instance, Fig. 1 hereafter shows that for a noise standard deviation o € [0.2;0.5], it
is more interesting for the adversary to target 4 shares instead of 3 when attacking a
(5,2)-SSS.

Our observation implies that the complexity of attacks against SSS may be lower than
what was believed in previous studies (i.e. (2)) since the minimum of the product of
mutual information must be processed over the full reconstruction set (and not only for
the tuples of size d + 1):

1
2

TeSs > @ X 1g[14.££12d+1 (g (a )> (3)

We argue that this property of SSS is directly related to the existence of linear exact
repairing structures for Reed-Solomon codes [GW16, YB16]. The latter can indeed be
viewed as polynomial interpolation formulae that optimize the amount of information
which needs to be extracted from a reconstruction tuple to recover the shared value. We
exhibit two important consequences of this observation:

e firstly, it implies that the choice of the public points in SSS plays a role in the security
(and the efficiency) of the countermeasure,

e secondly, it implies that it may be more efficient for an adversary to extract strictly
less than m bits of information on d’ > d + 1 shares, than to extract m bits of
information on exactly d + 1 shares (when Lagrange’s interpolation is applied).

2For the secure multiplication proposed in [ISWO03], recent works have shown that attacks exploiting
the n? shares a; X b; of a x b may lead to more efficient attacks than targeting only the n shares of a
or b, when n is greater than O(1/t) and ¢ is an upper bound of the mutual information for each share
[BCPZ16, DFS15]. We stress the fact that our work cannot be directly compared to these results since
it does not concern leakages from a secure multiplication (during which shares are manipulated several
times) but leakages from the sharing itself.

3Since only d + 1 shares are needed in Boolean sharing to achieve security at order d, it is obviously
not possible to observe more than d 4 1 shares of a Boolean sharing as suggested for SSS.

4Recent works (see e.g. [BCPZ16] and [GS17]) have indeed argued that several manipulations of the
same share could be used to improve the efficiency of attacks exploiting only d + 1 shares to defeat a
d-secure masking. But they cannot explain the important difference observed in Fig. 1.
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Figure 1: For a (5, 2)-SSS and different choice of tuples of shares, the number of observations
required to achieve a 100% success rate (in y-axis) versus the standard deviation of the
noise (in z-axis).

The first point confirms previous observations made by Wang et al. in [WSY116] and by
Balasch et al. in [BFG'17] on Inner Product sharing which is a generalization of Shamir’s
sharing. In those papers, the authors relate this phenomenon to the fact that the algebraic
complexity of the sharing depends on the public points (aka scalars in the IP terminology).
We complete these observations by showing that this complexity (which depends on the
public points and also on the base field) stays true for SSS. The core idea behind the second
point is that the difficulty of extracting m/t bits of information from a noisy observation of
an m-bit variable a; decreases approximately exponentially with ¢ (see the illustration of
this assertion in Appendix A). Consequently, a template attack exploiting d’ > d+ 1 shares,
but needing only em bits of information, € € [0 : 1), for 7y of them (and exactly m bits for
the remaining d’ — v) with v > d’ — d — 1,° may be more efficient than a classical template
attack exploiting m bits of information on exactly d + 1 shares. Of course, this efficiency
gain cannot be true for any amount of noise since it is known that the complexity of a
side-channel attack increases exponentially with the number of exploited shares, the basis
of the exponentiation being the noise standard deviation o (assumed to be the same for
all the shares). Figure 2 illustrates our argumentation in the particular case (n,d) = (5, 2),
d =4,y =3and € = 0.5. It corresponds to the attack results reported in Fig. 1.

In the second part of the paper, we exhibit a positive impact of the existence of linear
exact repairing schemes for SSS by proposing an improvement of the state-of-the-art
multiplication algorithms dedicated to this sharing. Our new proposal continues the line
of studies made e.g. in [GM11] and [CRZ13] on the original scheme by Ben-Or et al.
[BOGWSS], and improves them when the multiplication operation in GF(2™) is at least
two times smaller than in the sub-fields.

5This condition implies that the amount of information (counted in bits) exactly used to rebuild the
shared value is bounded above by (d' — v)m + yem which is lower than (d + 1)m.
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‘ (5,2) Shamir’s Secret Sharing
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Figure 2: Side-channel and linear repairing codes for Shamir’s sharing.

2 Preliminaries on Shamir’s Secret Sharing and Coding
Theory

In this section we introduce the concepts involved in the subsequent sections. In particular,
we recall the principles of linear exact repair schemes and we specify the recent constructions
introduced in [GW16] to fit with our context (where we are focussing on the problem of
secret reconstruction and not on the problem of decoding which is more general).

2.1 Shamir’s Secret Sharing and Reed-Solomon Codes

In a seminal paper [Sha79], Shamir proposed to split a secret a € GF(2™) into n shares
such that no tuple of shares with cardinality lower than a so-called threshold d < n
depends on a. Shamir’s protocol consists in associating a with a random polynomial
P(X)=a+ 2?21 u; X of degree lower than d and with constant term a = P,(0) (this
essentially amount to randomly generate the d coefficients u; in GF(2™)). Then, the
polynomial P, (X) is evaluated in n distinct public non-zero elements a;, ..., a, in GF(2™)
to define a so-called (n,d)-sharing (a1,a2, -+ ,a,) of a such that a; = P,(«;). To re-
construct a from its sharing, polynomial interpolation is first applied to re-construct the
polynomial from a subset U of at least d + 1 among its n evaluations a; and then, it is
evaluated in 0. Actually, using Lagrange’s interpolation formula, the two steps can be
combined in a single one thanks to the equality:

GZZaiX5i7 (4)

a; €U

where the (public) constants ; are defined as
G I -2 (5)

The set U is sometimes called reconstruction set. The vector composed of the n weights f3;
is denoted by 8 and (4) is called reconstruction.
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Remark 1. Inner Product masking [BFG15] generalizes the sharing defined in (4) by
relaxing the condition on the design of the public scalars 5; and by accepting any n-tuple
()i of non-zero coordinates.

As initially observed by McEliece and Sarwate in [MS81], the sharing of a described
above may be viewed as an encoding with a Reed-Solomon linear code. Generally speaking,
a linear code C of length n and dimension k over a finite field K is a k-dimensional subspace
of K™. It is denoted by C[n, k]. A Reed-Solomon code is a particular linear code whose
definition is recalled hereafter.

Definition 1 (Reed-Solomon Code). The Reed-Solomon code RS(S,d + 1) € K™ of
dimension d + 1 over a finite field K and with evaluation subset S = {ag, a1, a2, - ,an}
of K is the subspace:

RS(S,d + 1) = {(P(aw), P(a1), ..., P(an)); P(X) € K[X] and deg(P) < d} .

Reed-Solomon codes are Mazimum Distance Separable (MDS) codes, which means
that any tuple of d 4+ 1 symbols (that is, any tuple of d + 1 evaluations of a polynomial
P(X) € RS(S,d+ 1)) can be used to recover the entire codeword (that is, P(X) itself). In
terms of RS codes, the sharing of a variable a with SSS is an encoding with a Reed-Solomon
code RS({0, vy, ..., },d + 1):

(avalv'”7an):(aaula"'7ud)XG7 (6)

with G the matrix (Oég)ie[o;n},je[o;d] and o = 0 (with the convention 0° = 1). After
denoting by G; the ith column of G, it may indeed be checked that we have:

d
a; = P,(a;) :a—i—Zujag = (a,uy,...,uq) - G .

j=1

The reconstruction of a then simply corresponds to a simple decoding which will be the
matrix representation of Lagrange’s interpolation recalled in (4). For simplicity we will
sometimes say that @ = (a,a1,--- ,a,) is a sharing of a, which will mean that a can be
recovered from (a part of) {a1, -+ ,a,}.

2.2 Linear Exact Repairing Codes

The reconstruction of a by Lagrange’s interpolation (4) requires the full knowledge of at
least d + 1 shares a; € GF(2™), that is (d + 1) x m bits. The theory of Linear Exact
Repairing Schemes aims at defining methods allowing for the reconstruction of a € GF(2™)
from its sharing with strictly (much) less than (d + 1) x m bits. This goal is achieved
by exploiting partial information on strictly more than d + 1 shares. If the total amount
of partial information is strictly less than (d 4+ 1) x m, the goal is achieved. During the
last few years, there have been several publications tackling this issue in the context
of RS codes (see e.g. [DRWS11, SPDC13]), or more generally, for MDS codes (see e.g.
[CHJL11, DGW™10, SR10]). Before presenting the recent constructions of LERS for RS
codes introduced in [GW16], let us recall hereafter the definition of a field trace.

Definition 2 (Field Trace). Let ¢ be a power of a prime integer and let ¢ be a strictly
positive integer, then the field trace trg/r from K = GF(q") to F = GF(q) is defined for
every € K by

trg p(B) = B+ B9+ 5(12 4o ﬁq“l _

In a linear repairing scheme, the reconstruction of the shared value a € K involves, for
each share a;, zero or more elements of F C KK of the form trg /r(7; ja;) for some well-chosen
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field elements v; ; € K. A linear exact repair scheme can then be described by the field
elements +y; ; used for all the shares a;, along with a (linear) repair algorithm. Minimizing
the number of these elements is the main goal when designing an LERS. It is called the
Repair Bandwith RBygrs of the LERS and it is formally defined as the maximum number
of sub-symbols in F which must be exploited to recover P,(a*) when a* ranges over S.
It may be observed that, in the context of SSS, we only need an efficient reconstruction
scheme for a* =0 (i.e. for a = P,(0)) and thus, we will use RBrgrs as an upper bound
and will denote by LERS, a repairing scheme trying to minimize RBpggrs only for a* = 0.

In the following section, we give, for the specific case of Reed-Solomon codes applied for
secret sharing, the main outlines of the method recently proposed in [GW16] to construct
the field elements ; ; described previously together with an efficient repair algorithm. The
presentation is completed in Appendix D by a detailed presentation of an example given
in [GW16] and by Sage scripts that we made available at [MP17].

2.3 Explicit Constructions for Reed-Solomon Codes

In the specific case of Reed-Solomon codes RS({0,a4,...,an},d + 1) defined over K =
GF(2™), [GW16, Theorem 4] implies that the construction of a LERSy over F = GF(2%)
for some field extension ¢ is equivalent to find a set {p1,...,p:} of t polynomials of degree
n —d —1 in K such that:

dimp({p1(0),...,p:(0)}) = ¢ (7)

and

RBrERs, > Zdimﬂ“({pl(ai)w“apt(ai)}) .

Once such a family of polynomials is found with RBrgrs, < t(d + 1) (otherwise the
bandwidth is worst than the trivial one), coefficients ¢; and p;, ; with j € [1..t] are built so
that
¢ =p;(0) (3)
and
pi; = pjlaq) x Bi (9)
where the 3; are defined as in (5).
Then, the last step of the LERS( design consists in computing, for any «;, a basis
B;i = {v:,;}; for the smallest vector space over I containing {y; ;;j € [1;t]} as a subset
(by definition the size of the basis is at most ¢, and actually is frequently strictly lower,
which is a core observation to understand the soundness of the decoding with an LERS
scheme). With the bases in hand, the reconstruction of a = P,(0) for any polynomial P,
of degree lower than d consists in the following steps where we recall that each a; equals
P,(;) by SSS construction:

e for any i € [1..n]; compute® the values trg p(f1; ja;), with j € [1..¢], from the elements
in {trg/r(vi,50i); 75 € Bil,

e for any j € [1;t]; evaluate

trg/p(Cja) = ZtTK/IF(Mz‘,jai) (10)
i1

and, eventually, recover the shared value thanks to the following equality

a=Y vitrg((a) (11)
j=1

6Since (74,7); forms a basis, this can be done by only processing linear combinations of the trg /r(vi,ja:)-
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where {v1,...,14} is the dual basis of {(1,...,{}.

It may be observed that Equations (10) and (11) together give the following alternative
to Lagrange reconstruction Formula (4)

n t n t

a = ZZ l/jtrK/F(ﬂ%]‘ai) = ZZuthK/F(pj(ai)ﬁiai) . (12)

i=1 j=1 i=1 j=1

The core observation in [GW16] is that, surprisingly, for some a; (and hence some
Py (a;)) the size of all the elements required to build the set {trg /r(ita,ja:);j € [1;t]} may
be smaller than the size of a;. This implies that the total number of bits required to
recover P(0) from (10) and (11), which actually equals RBLgrs x 7, may be smaller than
(d + 1)m (corresponding to a direct polynomial interpolation).

In the following section we argue that the existence of efficient LERS for Reed-Solomon
codes impacts the security evaluation of Shamir’s sharing in the context of side-channel
analyses. In particular, we argue that the choice of the public points plays a non-negligible
role in the security provided by this sharing and we exhibit (through several simulations
and experiments) contexts in which state-of-the-art attacks are suboptimal.

3 Side-Channel Analysis of Shamir’s Secret Sharing Scheme

We first recall that a scheme is said to be d"*-order secure if any set of at most d intermediate
results during the processing reveals no information about a secret (sensitive) value. When
the (n,d)-sharing of Shamir is involved to secure the implementation, the recovery of the
shared values requires the knowledge of at least d 4 1 shares among the n = 2d + 1 possible
ones. As already discussed in the introduction, all previous works on SSS assume that
the most efficient way to attack such a sharing of a is to exploit exactly d + 1 shares. If
the shared value is assumed to belong to GF(2™), then this implies that the literature
implicitly assumes that, as for Boolean sharing/masking, (d + 1) x m bits are necessary
and sufficient to rebuild a. This section aims at coming back on this assumption and, more
precisely, at answering the two following questions while having in mind the recent results
on LERS described in the previous section:

Question 1. For a given pair of sharing parameters (n,d) and a given representation
of the base field GF(2™), does any combination of d + 1 shares (a;)icr,#1=d+1 give the
same amount of information on a. Actually, an attacker is spoilt for the choice of the
combination of d + 1 shares to use among the several available ones. Our goal here is
to check if all d + 1 combination of shares leak the same amount of information under
the same fixed noise level for each share. The result of this investigation may bring some
insights on the choice of the optimal (d + 1)-combination of shares, if any exists, that an
attacker should consider when performing his attack.

Question 2. For a given pair of sharing parameters (n,d) and a given representation of
the base field GF(2™), is there some (d + 2)-combination of shares whose observation leads
to a better attack than any other one with exactly d 4+ 1 shares? We shall see that the
answer to this question depends on the amount of noise in each observation (actually we
will argue that the answer is positive if and only if the signal-to-noise ratio is lower than
some bound).

3.1 Preliminar Observations from Simulated Leakage Measurements

To address the questions above, we performed profiling attacks against simulated traces
corresponding to the manipulation of the shares of an (n,d)-sharing for n =5 and d = 2.
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This allows us to study the impact of the noise on the attack’s efficiency, and to draw some
conclusions. Our analyses are confirmed, in Section 3.3, by practical attack experiments
against real acquisitions captured on the ChipWhisperer platform [OC14].

3.1.1 Target Implementation.

It is assumed that the adversary has access to a noisy observation of the five elements a;,
..., as of the (5,2)-sharing of a secret value a € GF(2%).

3.1.2 Leakage Model.

The observation ¢; of each share a; is assumed to be the sum of two mutually independent
parts: a deterministic function f of the share a; and a Gaussian noise N; such that
¢; = f(a;)+ N;. To generate our traces, we considered two types of deterministic functions:
the Hamming weight (which has been argued to be a sound approximation for many
device technologies — see e.g. [MOPO07]) and the identity. The noises N; are assumed to
be mutually independent, to have zero mean and to have the same fixed variance o2 (the
rationale behind this assumption is to have the same noise level for each share). It may be
checked that, under our assumptions, the distribution of ¢; | a; has a normal distribution
with mean f(a;) and variance o2. Such a normal distribution is hereafter denoted by

T €R = Ppay),02(T)-

3.1.3 Attack Strategy.

To evaluate the security of the (5,2)-sharing, we performed a higher-order template attack
following the procedure described in [LPR™14]. The idea behind this choice was to directly
address the most powerful adversary who follows a mazimum likelihood approach without
modelling error. Let £; € R® denote the 4§ observation of the 5-tuple (¢y,...,/5) and

let 41, ..., {5 denote its coordinates, then for any hypothesis a € GF(2%) on a, the
N

likelihood distinguisher” is defined as dyr,(a) = [] pa(€;), where N denotes the number
j=1

of observations and where p; denotes the probability density function (pdf) of the leakage,
which, under the Gaussian assumption, satisfies:

5
)= S o Y () | (13)

a2€GF(28) as€GF(28) i=1

where we recall that we have a; = é(& + 2;12 a; X f3;) (see (4)).

In [LPR*14] authors have demonstrated that, for a d**-order Boolean masking, (13)
can be expressed as a higher-order convolution product whose evaluation complexity is
O(d). To continue using this efficient procedure in the context of Shamir’s secret sharing,
we propose hereafter to apply the simple linear change of variables a; — a} = a; X % and

5
ﬁ so that a1 = a’ @ G%a;, which enables us to apply the convolution trick
=

to compute the score dyr, (@ X ﬁl_l).

a—a =ax

3.1.4 Attack Results.

For each possible combination of 3 shares, the left-hand side of Fig. 3 plots the number of
traces (in y-axis) required to achieve a success rate of 100% according to an increasing
noise standard deviation (in z-axis). We stress the fact that for each value of the standard

"In practice, one often makes use of the equivalent (averaged) log-likelihood distinguisher.
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Figure 3: Evolution of the number of queries (y-axis) to achieve a success rate of
100% according to an increasing noise standard deviation (in z-axis) for public points
{125,246,119,104, 150} C GF(28) (on the left-hand side) and {86,23,115,107,189} (on
the right-hand side).

deviation, the success rate has been averaged over 1.000 tries (i.e. the attacks have been
repeated 1.000 times using independent sets of traces).

It may first be observed that the different triplets of shares that have been tested leak
differently on the shared variable a (even if all the shares have been affected by the same
amount of noise). For instance, for a noise standard deviation comprised in [0.5,1.5], the
number of traces needed to always succeed in recovering the shared variable is around two
times when exploiting the triplet of shares (a1, as,as) instead of (as,as,as). To confirm
this observation, we changed the public points «; used for the sharing (see (2)). Results
are plotted in the right-hand side of Fig. 3, where our previous observation is confirmed
but for a different ordering of the triplets of shares. This simulations led us to answer
positively to Question 1: from an attack perspective, it is more efficient to target some
specific combinations of d + 1 shares in Shamir’s sharing.

To address Question 2, we performed another set of simulations to check if there exists
an SNR range for which exploiting the leakage of 4 shares is more efficient than any other
combination of 3 shares. In Fig. 4, we show a comparison between the template attack
results when considering all combination of 3 and 4 shares. The experiences are repeated
1.000 times for each combination of shares. For a specific interval of noise standard
deviation (between 0.3 and 0.5), it may be observed that some combinations of 4 shares
outperform all other combinations of 3 shares. The same observation stands when changing
the set of public points as described in the right-hand side of Fig. 4. We sum-up hereafter
our main observations:

e the shares are not leaking the same amount of leakage despite the fact that the same
quantity of noise has been added to them,

e exploiting the leakage of 4 shares is more efficient than any other attack strategy
based on 3 shares for some values of the noise standard deviation.

e when comparing the two sides of Fig. 4, it may be observed that the optimal
combination of 4 shares to recover the secret value changes with respect to the used
public points. So, the amount of information leaked by the shares depends on the
set of public points used to share the secret value.
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Figure 4: Evolution of the number of queries (in y-axis) to achieve a success rate of
100% according to an increasing noise standard deviation (z-axis) for public points
{5,237,175,221,198} C GF(2®) (on the left-hand side) and {169,63,106,49,112} (on the
left-hand side).

As already mentioned in the introduction, the first point is in-line with previous
observations made for IP masking. In [WSY"16] and [BFG*17], the authors explain this
phenomenon by the fact that the complexity of extracting information from the noisy
observation of a share a; depends on the structure® (e.g. the sparsity or the minimum
Hamming weight of its — or its inverse’s — rows) of the matrix in GF(2)™>*"™ representing
the field product a; — a; X ;. The next section aims to provide an explanation for the
second and third points.

3.2 Impact of the Existence of an LERS on the Efficiency of SCA
against SSS

The existence of efficient LERS for some choices of public points and of field representations
(aka the existence of reconstruction formulae as in (10)-(11) or in (18)) explains the obser-
vations made for previous experiments. Indeed, it implies that the statistical dependency
between the value a and the tuple of shares involved in the attack can be revealed by
extracting partial information on some of the shares, which renders the exploitation of the
noisy observations of these shares more tolerant to error. Even if the reconstructions formu-
lae are not directly involved in the template attacks we have performed, their existence is
implicitly used by the maximum likelihood distinguisher to capture the dependency. From
the designer’s point of view, a direct consequence is that the set of public points and the
field representation must be carefully chosen to make the construction of efficient LERS as
difficult as possible. Unfortunately, there today exists no method to efficiently list all the
LERS corresponding to a particular choice of publics points and of field representation.
In this respect, a designer willing to validate his choices can follow two strategies. The
first one simply consists in performing an analysis as in Fig. 4 for all the possible choices
of public points and of field representations. It stays efficient if the size 2™ of the field
is not to high (e.g. 256) and the number n is reasonably small (e.g. 10). The second
strategy consists in choosing public points that do not satisfy the necessary and sufficient
condititions given in [GW16] and recalled in Sect. 2.3 for the existence of an efficient
LERS. This consists in listing, for every divisor t of the dimension m, all the family of ¢

8This is especially true if the leakage corresponds to a noisy linear combination of the bits over R (like
the Hamming weight).
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Figure 5: Success rate of the template attack according to an increasing number of traces.

polynomials {p1, ..., p:} satisfying (7) and in choosing the public points {aq, ..., a,} such
that >0, dimp({p1(c;),...,pt(e;)}) is always strictly greater than ¢(d + 1) (if possible).
Comparing the efficiency of the two approaches is let for further research.

In Section 4, we show a constructive impact of LERS by proposing enhancements of
the secure multiplication of data shared with SSS.

3.3 Attack results on Real Device

In order to confirm our observations on simulated traces, we conducted some practical
attacks on the ChipWhisperer platform. The experimental setup is described in what
follows.

We implemented a (5, 2) secret sharing on the 8-bit AVR microprocessor atxmegal28d3
and we acquired power-consumption traces using the ChipWhisperer-Lite (CW1173) basic
board. Each trace exactly corresponds to the period of time during which the five shares
ai, ..., as are manipulated (and more precisely are accessed and read from CPU registers).
The shared variable is the same for all the traces (note that the value of the unmasked
datum has no impact on the reconstruction efficiency — the same LERS works similarly
for every datum —). For the leakage profiling step, we have collected 128.000 traces to
estimate the mean and the variance for each share. These statistical estimation results
have first been used to check that the shares observations have roughly the same variance
(i.e. are impacted by the same level of noise) which is in-line with our simulation setup.
However, the standard deviation of the noise of the acquired traces was actually outside
the suitable area where the combinations of 4 shares outperform the combination of 3
shares (indeed the estimated noise standard deviation is about 0.7 whereas it should be
lower than 0.5 to reveal the expected phenomenon). To decrease the noise level and to fit
the suitable interval, we filtered 15.000 traces among the measured ones in order to reach
a noise standard deviation value equal to 0.5. Finally, we re-performed our higher-order
template attack. The success rate of the attack for each combination of share is shown in
Fig. 5.

Fig. 5 shows that exploiting the leakage of the shares (0, 1,3,4) is more suitable in
terms of attack efficiency than exploiting any other tuple of 3 shares.
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4 Impact of LERS to Improve Existing Multiplication Schemes
for SSS

In this section we describe a constructive impact of the existence of an LERS by showing
that they can be used to improve the multiplication of data shared by SSS.

4.1 Basics on the Multiplication for SSS

To define a d'"-order masking scheme for a block cipher implementation where each
intermediate result is split with Shamir’s technique, one must specify a secure method for
the processing of field multiplications over GF(2™). Most of (if not all) existing protocols
start from a multiplication scheme introduced by Ben-Or et al. in the context of the
multi-party computation theory [BOGWS8]. For this protocol to work, the number of
shares n per variable must be at least 2d+ 1 and for n = 2d+ 1, it is proved that it satisfies
a security property encompassing the d*"-order SCA security [PR11]. We give hereafter
the adaptation of [BOGWSS] in the SCA context as proposed in [PR11, RP12)°.

Algorithm 1 Secure Multiplication For Shamir’s Secret Sharing
Input: two integers n and d such that n > 2d + 1, the (n,d)-sharings (u;); = (Pu(ay)); and (v;); =

(Py(ai))si of u and v respectively. The n distinct points o, the interpolation values 5 = (81, -, fn).
Output: the (n,d)-sharing (w;); = (Pw(a;)); of w =u X v.
> Compute a Boolean n-sharing (¢1,- -+ ,tn) of w

1: fori=1ton do
t; Bz X Pu(al) X Pv(ai)
end for

> Compute a sharing (Q;(c;));j<n for every t;
for i =1ton do
for k=1 to d do
wy, < rand(GF(2™))
end for
for j =1 ton do
Qi(aj) —t; + Zz:1 wp X a?
end for
end for

=

> Compute the share w; = Py (a;) for w =u X v
for i =1ton do
n
Wi Zj:l Qj ()

. end for

— e
B

The completeness of Algorithm 1 is discussed in [BOGWSS]. Its d*"-order SCA security
can be straightforwardly deduced from the proof given by Ben-Or et al. in [BOGWSS]
in the secure multi-party computation context. Eventually, for n = 2d 4+ 1 (which is the
parameter choice which optimizes the security/efficiency overhead), the complexity of
Algorithm 1 in terms of additions and multiplications is O(d?).

4.2 Link with Error Correcting Codes Theory and State-Of-The-Art
Improvements

Algorithm 1 may be rewritten in terms of coding theory, essentially because, as recalled in
Section 2, an (n, d)-sharing with Shamir’s scheme exactly corresponds to an encoding by a
Reed-Solomon code C with parameters [n + 1,d 4+ 1] [MS81]. Let o denote the Hadamard
product between vectors (aka the componentwise product). We denote by C* the code

9The protocol is an improved version of the protocol originally proposed by Ben-Or et al. [BOGWSS],
due to Gennaro et al. in [GRR98].
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built from C by taking all the vectors Eo cod withe,d € Cand § = (1,81, , Bn) (recall
that the (; are interpolation values specified for the Reed-Solomon code with parameters
[n+1,d+1]). The code C* is the so-called generalized Reed-Solomon code with parameters
[n 4+ 1,2d + 1] defined!® with respect to the evaluation points S and the multiplier vector

gby:
C* ={(P(0),B1P(a1),..., BnP(ay)); P(X) € GF(2™)[X] and deg(P(X)) < n} . (14)

On the one hand, the tuple (¢1,--- ,t,) in Algorithm 1 forms a sharing of w = u x v such
that we have ¢* = (w,t1, -+ ,t,) € C*, and a reconstruction algorithm is simply given
by the sum of the ¢;’s (this is a direct consequence of Lagrange’s interpolation formula).
On the other hand, loop 4-11 (over indices 7 and j) and loop 12-14 may be viewed as a
transcoding transcoding.._,, that securely transforms the sharing ¢* € C* of w into a
new sharing ¢ in C. Eventually, it can be observed that the algorithm completeness holds
because the constant term of the polynomial P, (X) = Z?:l Q;(X) associated to the
codeword ¢ equals the n-reconstruction ), t;. Algorithm 1 involves n multiplications and
the evaluations of n degree-d polynomials in n points (which makes n? x d multiplications
for a naive implementation and O(nlog® n) multiplications using FFT-based polynomial
division'! [CPR12]). In [CRZ13], the authors observe that the addition of a random sharing
A =(0,c),...,c%) € C* of 0 to ¢* makes it possible to reduce the number of polynomials
to evaluate from n to d+ 1, without compromising the security at order d. The core idea is
to precede the transcoding by a shortening of the sharing ¢ = (t; + 81 - ¥, ,tn + Bn - )
into (Z?z_ld i, Cn_di1, - ,Cn). The security essentially holds because the sharing ¢ may
correspond to any polynomial of degree lower than or equal to n, which implies that at least
n — 1 shares/evaluations are required to recover all the information about the sharing (see
[CRZ13] for more details about the proof). Eventually, a last improvement can be obtained
by applying to loop 12-14 (in Algorithm 1) an idea initially proposed in [GM11]: since
polynomials @;(X) (and hence also P, (X)) all have degree d, the evaluation can be made
in only d + 1 points (e.g. the d + 1 first public points a1, ..., ag41) and Algorithm 1 can
output only the d+1 shares wy, ..., wgy1. When needed, the remaining evaluations/shares
Wqt2, - - -, Wy can then be deduced by applying the following formula where the Lagrange’s
coefficients 5;; = HZ;;,k:l(ai — ay)/(a; — ay) have been pre-computed and can be
public!'?:
d+1
Wasipi = Y wj X B - (15)
j=1

This enables to exchange the (d 4+ 1)dn evaluations (needed for the transcoding) to
d(d+1)>+ (n—d—1)(d+1). Let ¢* and ¢ respectively denote the tuples of shares
corresponding to the codewords in C associated to v and v. Bellow, we sum-up the resulting
secure multiplication scheme and the cost in terms of field multiplications in the case
n = 2d + 1 (which is the optimal choice):

e [build the Sharing in C*] *=ctoc’of (4d + 2 mult.)
e [add the random sharing of 0 in C*] é=c*+ofj (2d + 1 mult.)
e [reduce dimension of the sharing] ¢ = (Z?;ld CiyCrodit, ,én)

e [transcode ¢~ into a sharing in C] (d(d+1)% +d(d+ 1) mult.)

10The definition obviously only makes sense iff n > 2d.

11 The constant terms being important in this complexity, the naive approach is always more efficient for
practical choices of n and d.

12 As argued in [Ren13], the processing of (15) can be simply made securely at order d without requiring
additional multiplications.
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Performances. Clearly, the complexity of the multiplication is driven by the cost of
the transcoding step which is in O(d®) while the other steps are in O(d). For efficiency
reasons, e.g. when the cost of the field multiplication is significantly lower in GF(2/2)
than in GF(2™), it is preferred to work on the vector space GF(2™/2)? instead of GF(2™).
This is for instance the case in software for m = 8, since the field multiplication can
be tabulated in GF(16) (and hence corresponds to a table access) but not in GF(256)
(and hence often takes several dozens of CPU cycles — see e.g. [GPS14] —). Working
in GF(2™/2)? instead of GF(2™) essentially amounts to representing ¢~ € GF(2m)?+!
as the pair (¢ ,&; ) € GF(2"/2)4+1 x GF(2™/2)%+1 and to process the transcoding over
GF(2™/2)2 both for ¢, and ¢, . This leads to exchange d(d -+ 1)? +d(d + 1) multiplications
over GF(2™) for the following number of multiplications over GF(2"/2):

Comp,,, = 2d(d + 1)* +2d(d + 1) .

For the randomness complexity, and assuming n = 2d + 1, we have Rand,,, = d(d +
1)m + (2d + 1)m (instead of (2d + 1)(3d + 1)m bits for the original proposal in [GRR9S]).
Assuming that the memory complexity is essentially driven by the cost of the intermediate
polynomial evaluations during the transcoding, we have Mem,, = (d + 1)?>m bits (instead
of (2d + 1)m bits for the original proposal in [GRR98]).

Before describing how the existence of efficient LERS can be used to improve the state
of the art multiplication algorithms for SSS, we specify hereafter the description made in
Section 2.3 for the particular case involved in the description of our improvement proposal.

4.3 LERS For Reed-Solomon Codes in the Particular case t = 2

Let us focus on a Reed-Solomon code RS(S,d + 1) defined over K = GF(2™) and with
S ={0,a1,...,a,}. When t = 2, the basis B; of {1, 12} defined in Section 2.3 for
every i € [1...n] is either of cardinality 2 if u; 1 and p; o are linearly independent over F,
or of cardinality 1 otherwise. In the first case, its two elements ;1 and 7; 2 may simply
be set to ;1 and p; 2 respectively. In the second case, we fix ;2 = 0 and the single basis
element v; 1 can for instance be defined such that:

pin o if i # 0,
Vi1 =1 M2 if py1=0and p;1 #0,
0 otherwise.

The set of pairs (,j) such that 7, ; has been assigned a non-zero value by the latter
process is denoted by R and is called reconstruction set. By construction, we have
R CH{(i,4); s € S\{0}, 7 € [1;2]} and #R = RBrgrs. Moreover, we denote by Ry (resp.
R2) the subset of R containing the pairs (4,7) with j = 1 (resp j = 2). They form a
partition of R and they are the same for any polynomial P of degree lower than or equal
to d.

Eventually, for the case t = 2, we may conclude that for any polynomial P, of degree
lower than or equal to d:

Fact 1 (memory) To reconstruct a = P,(0) thanks to the Formula (12), it is sufficient
to store the elements w; ; = trg /p(7s,ja;) € F with the (i,j) € R. Hence, the overall
scheme leads to replace the storage of the (d + 1) x m bits needed for the classical
reconstruction with Lagrange’s interpolation, by the storage of RBLgrs x % bits.

Fact 2 (processing) The reconstruction of a = P,(0) can always be done thanks to the
following formula which is deduced from (9)-(10):

a:Vl( Z wi,1)+V2( Z w; 2 + Z ui’gwi,l) . (16)

(i) ERy (i,2)ERs (i 1)eRy #B=1 1o
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where {v1,1} is the dual basis of {¢1,(2}. Note that the coefficients y; 2/p1; 1 belong
to IF by construction.

Fact 3 (security) The elements w; ; form a sharing of a and this sharing still satisfies the
d*™"-order security property since, by construction, at least d 4 1 shares are necessary
to rebuild w.

Remark 2. For the new multiplication protocol exhibited in Section 4.4, we will prefer to
use the following equation which is equivalent to (16):

P(O):ul( Z Tini’l)—f—VQ( Z wi’g). (17)

(4,1)ER, (4,2)ER2
————
try /r (CLw) tr /r (C2w)

where 7; is constant with respect to P(X) and is defined such that:

V1M1

14 2822 §f 4B, =1
- 18
T { 1 otherwise. (18)

In [GW16, Theorem 10] it is proved that for Reed-Solomon codes RS(S,d + 1) with
#S = n and t = 2, there always exists an LERS with the bandwidth RBrgrs being at
most 3n/2n (which leads to a reconstruction of a with strictly less than %"m bits instead
of (d+1)m).

As an illustration of the concepts presented in this section, the example given in [GW16]
is detailed in Appendix D. It corresponds to the case of a code RS(S,9 + 1) over the field
K ~ GF(256) with S = {¢°,...,¢'®} where g is a primitive element of K. This example is
completed by Sage scripts available at [MP17].

4.4 Improvement From LERS

To simplify the presentation, we apply our proposal in the particular case where the linear
exact repairing codes recalled in Sec. 2.3 are applied for K = GF(2™), F = GF(2™/2) and
t = 2. For this parameters, we assume that an LERS exists for a Reed-Solomon code with
evaluation set S = {ay,...,a, } and order 2d 4+ 1 (this implies that n’ is greater than
n = 2d + 1). We assume that the latter LERS has repair bandwidth RBrgrs < 2(2d + 1)
and we denote by ({1, (2} the basis defined in (8) and by (v, 2) the corresponding dual
basis over GF(2"™/2). For our description we assume that coefficients i, ; and 7; ;, and
also the reconstruction set R, have been defined as specified in Sec. 4.3. Eventually, to
properly define the evaluation of polynomials in GF(2% )[X] in the public elements a; € S,
we shall assume that they belong to F = GF(Qm/Q) and, when needed, that their %-bit
representation is (artificially) extended to an m-bit representation (in GF(2™)) by simply
left-padding with 0 (e.g. the element 3 € GF(2% ) becomes 03 in GF(2™)).13

For our new proposal, we assume that the two values u and v whose multiplication
has to be secured are respectively represented by the (n’,d + 1)-polynomial sharings
(Py(ai))a,es and (Py(@;))a;es (we hence have w = P,(0) and v = P,(0)). Note that
contrary to the classical SSS, we need n’ to be strictly greater than 2d + 1 in order to get
an efficient LERS.

Sharing of w = wv in C*. As in Algorithm 1, we start by building a sharing (w1, ..., w,)
of w = wv in the product code C* by simply defining w;, for i € [1;n/], such that:

w; = Py(a;) x Py(oy) = Py(y)

13This introduces the restriction #S < 2% — 1 which has no important impact in practice.
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By construction, it may be observed that C* is a sub-code of the Reed-Solomon code with
parameters [n' + 1,2d + 1]; this implies that w can be rebuild from RByggrs coordinates
w;; € GF(2"/?) of the w;’s, by applying Formula (16) (instead of 2d + 1 elements
w; € GF(2™) when classical Lagrange’s interpolation is applied). From the coefficients
~vi,; associated to our LERS for the code RS(n' + 1,2d + 1) (hence with (7,7) in the
reconstruction set R), we deduce the new shares w; ; € GF(2"/2) from the the shares
w; € GF(2™) by processing!'*:

wij = trgp(vijwi) - (19)

We recall that Ry and Rs respectively denote {(i,j) € R,j =1} and {(i,j) € R,j = 2}.
The set {w; j; (4,j) € R1} may hence be viewed as a sharing of the first coordinate
of P(0) in GF(2"™/2)? (aka try#(¢1P(0)) with the notations in Section 2.3), while the
set {w; ;; (i,§) € Ra} is the sharing of the second coordinate (aka trg r(¢2P(0))). By
construction, the sharing of w defined by evaluating (19) for (i,j) € R has size RBLERs.

Now, applying the same ideas as described in the previous section, we get the following
new procedure.

Reduce dimension of the sharings. We generate two independent Boolean sharings of 0
in GF(2/2) that we respectively denote by {c?yj; (4,7) € R1} and {c?’j; (i,7) € Ra}. Then,
we build the two following new sharings of trg,r(¢1 P(0)) and trg /r(C2P(0)) respectively:

l

[

1={C11,812,- -, G amr, } = {T X wij + ¢} (i,7) € Ra}
and
Gy = {C21,022,. . Coyr,} = {wij + ¢ (,7) € Ra}
where 7; is defined as in (18). Then, if #R; and/or #R- are greater than d+ 1, we shorten
the sharings as described in the previous section. For j = 1,2, we get:
#R;—d

= E Cjir Cj Ry —dr1s 5 G R, -
=1

>

o

Transcodings in C over GF(2%). Eventually, we conclude the processing as in the
previous section by transcoding 5{ and 55 into two new sharings in the Reed-Solomon
code with parameters [n/ 4 1,2d 4 1] over GF(2™/2) which themselves form a sharing of
w in the Reed-Solomon code with parameters [n’ + 1,2d + 1] over GF(2™) (with basis
(1/1, 1/2)).

Completeness. By construction, it may be checked that we have:

#R1—d
Zél_,i = Z 1+ G R —d+1 T+ CLgR, (20)
i =1
= Z Ti X w; j + Z c?’j = trg/r(Gw) (21)
(3,9)€ER1 (1,7)€R1

which comes at a direct consequence of (17) and the fact that the cgﬂ- forms a Boolean

sharing of 0. Since the same holds for the sharing 55 , we deduce that the input of the first
(resp. second) transcoding is a sharing of the first (resp. second) coordinate of w in GF(2%).
If one denotes by P, 1(X) (resp. P, 2(X)) the random degree-d polynomial in GF(2%)
corresponding to the sharing at input of the first (resp. second) transcoding, then it may

MNote that this processing is for free if the field representation of GF(2™) has been carefully chosen.
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be checked that P, (X) =11 Py 1(X) + 2P, 1(X) is a random degree-d polynomial over
GF(2™) and (d+1, d+1)-SSS is given by its evaluation Py, (X)(a;) = v1 Py, 1(0y)+v2 Py 2(;)
in the public elements a; € S.

Extension to ¢t > 2.The construction can be directly generalized to any extension order
t = 2% (i.e. under the assumption that there exists an efficient LERS for the Reed-Solomon
code C = RS(S,2d + 1) with K = GF(2™) and F = GF(2"/*)). This will lead to the
construction of ¢ sharings ¢, &5, ..., ¢, instead of 2, and to ¢ transcodings in the code C
over GF(2™/*). The corresponding reconstruction sets are denoted by Ry, Ra, ..., Ri.

Efficiency. A core observation here is that the size of each sharing 6}7 is min(#R;,d+1).
Hence, the complexity of the transcoding step are:

Comp,,e, = d(d +1)( Y min(#R;,d+1)) +t(n' —d—1)(d+1) ,

=1

t
Randpey = (d + 1)%(Zmin(#7€j,d +1)

j=1

t
Meey = %(Zmin(#Rj7 d+1))

j=1

which all are, in the least favourable case, comparable to the complexities Comp,,, Randso,
and Memg,, of the state-of-the-art schemes and which are better, for almost all choices of d
and n, if one of the R; has cardinality lower than d + 1.

5 Conclusion

In this paper, we highlighted an important difference between Boolean and Shamir’s
sharings which implies that, for some signal-to-noise ratio, it is more advantageous for
the adversary to observe strictly more than d + 1 shares. We argue that this difference is
related to the existence of so-called linear exact repairing codes, which themselves come
with reconstruction formulae that need (much) less information (counted in bits) than
Lagrange’s interpolation. In particular, this result implies that the choice of the public
points in Shamir’s sharing has an impact on the countermeasure strength, which confirms
previous observations made in [BFG117, WSY*16] for inner product sharing. In the
second part of the paper, we then exhibited a positive impact of the existence of linear
exact repairing schemes; we indeed proposed to use them to improve the state-of-the-art
multiplication algorithms dedicated to Shamir’s sharing. We think that this work opens
promising avenues on the design of LERS taking into account the constraints of the SCA
contexts.
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A Information Extraction from Noisy Observations of 8-bit
Values

In Fi. 6, we plot the number of queries to achieve a success rate of 100% when performing a
template attack which tries to recover, from noisy observations, either the full value of the
manipulated data a or its 4 least significant bits. The observations ¢ have been simulated to
satisfy £ = f(a) + b where b is drawn from the normal distribution A(0,0?) with o € [1, 5]
and where the deterministic part f(a) has been defined such that f(a) = 35, ali] with
the o; generated at random from the normal distribution A/(1,0.22) and kept fixed for all
the attacks'®.

B Bounds for the Bandwidth of Linear Exact Repairing
codes

When ¢ is sufficiently large, RBLgrs is bounded below by (¢t x RL)/(RL — d), where RL
denotes the repair locality and corresponds to the maximum number of o; € § that are
required to recover P(a*) whatever a* € §. For very large values of ¢, several schemes
have been proposed for which the lower bound is achieved (see e.g. [CHJL11, SR10]).

When t is small, it is clear that the lower bound above cannot be achieved since we
have RBpgrs = d +t. It must however be observed that this latter bound is much better
than the naive one ¢t x (d 4+ 1). Explicit constructions have recently been proposed that
lead to good RBLgRrs in practice (e.g. [GW16], [HB16] and [YB16]).

C Formal Definition of an Linear Exact Repairing Schemes

Definition 3 (Linear Exact Repair Scheme). Let & = {1, ag, -+, o} be an evaluation
subset of a finite field K and let RS(S,d 4+ 1) € K" be the corresponding Reed-Solomon
code. A linear exact repair scheme for this code over a subfield F of K is composed of the
following steps:

e for each o € S, and for each a € S\{a*}, a set of queries Q,(a*) C K,

15The idea was to simulate a leakage close to the Hamming weight model but with the weights associated
to the bit-coordinates of a differing with an average amplitude in [—0.2,40.2].
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Figure 6: Number of queries (in y-axis) to achieve a success rate of 100% for the extraction
of either 8 bits or 4 bits or 2 bits with respect to the noise standard deviation (in z-axis).

e for each o € § and any polynomial P(X) € K[X] with degree lower than d + 1, a
linear reconstruction algorithm that computes

t
P(Oé*) :ZAZ XV,
i=1

for coefficients \; € F and a basis {v1, 19, - , 14} for K over IF, so that the coefficients
A; are F-linear combinations of the queries in

U {treyr(y X Pa);y € Qala™)} -

aeS/{a*}

The repair bandwith RBygrs of an LERS is the maximum number of sub-symbols
which must be returned by the nodes to recover P(a*). It is defined by:

RBrprs = max > #QalaY) .
aeS/{a*}

D Example

Let us consider the example given in [GW16]. Let latter example considers the code
RS(S,9 + 1) over the field K ~ GF(256) with S = {¢°,...,¢'3} where g is a primitive
element of K (which implies n = 14 and d = 9 for the notations used in the previous
section). It is assumed that o* = ¢ = 1 and «; = ¢* for i € [1;13] and ¢t = 2 (hence
F ~ GF(16)). To build the family of two polynomials satisfying (7) and (8), [GW16]
proposes a pretty restrictive (but yet effective) approach: they randomly generate two
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polynomials p1(X) and pa(X) of degree n — d — 1 = 3 with roots'® in S and test (1) if the
space spanned by p;(a*) and pa(a*) has full rank and (2) if the sum of the dimensions of
the spaces spanned by the pairs (p1(c;), p2(e;)) when 4 ranges in [1;13] is lower than some
threshold judged as good (at least smaller than 20 in order to get a reconstruction better
than the simple interpolation which needs 10 bytes, or identically 20 nibbles, corresponding
to 10 polynomial evaluations). In the paper, the authors fix the threshold to 16.

For this example, we have (; = p1(1) and (s = pa(1). For the field representation
GF(256) ~ GF(2)[X]/(X® + X%+ X3 + X2 + 1), we found that the 3-degree polynomials
p1(X) = X34 38X2+200X +29 and pa(X) = X3 +105X2 4 213X + 58 enables to achieve
our fixed threshold (16).

1 2 3 4 5 6 7 8 9 10 11 12 13
Moz 1| O 0 76 | 68| 0 |238| [b7 | 157|220 | 80 | 115 | 204 | 131
May2 | 248 1217120 | O | 127 | O 211 | 56 0 171 | 33 | 147 | 45

By using the coefficients (1, (2 and (pq,,j)ic[1513],je[1;2) s specified in Formula (10) and
(11), it is possible to reconstruct P(1) for any polynomial P(X) of degree lower than or
equal to 9 with only 64 bits of information'” on the 14 shares P(«;) (instead of the 80
bits required by using Lagrange’s interpolation Formula). Indeed, from the table above
and Equations (10) and (11), we get that:

e the 4-bit field elements trg p(iq,,;P(a)) corresponding to fiq,,; = 0 do not need to
be stored,

o for all pairs of 4-bit field elements ji4, 1 and fin,,2 Wwhich are linearly dependent over
GF(16) (these are the elements with light-gray background), it is only necessary
to save a single trace evaluation, say trg /g (a1 P(a)), and the second one can be
deduced by simply multiplying it by the value 7; € GF(16) such that Tipa, 1 = Ha, 2
(which necessarily exists since they linearly dependent over GF(16)).

With the notations defined in Section 4.3, a reconstruction set for the code RS(S,9+ 1) is
given by:

R1=A{(3,1),(4,1),(6,1),(7,1),(8,1),(9,1),(10,1), (11, 1), (12, 1), (13, 1)}

and
Re = {(1,2),(2,2),(5,2),(8,2), (11,2), (13,2)}

and R = RURs.

Eventually, we may conclude that for any polynomial P(X) of degree lower than or
equal to 9:

Fact 1 (memory) To reconstruct w = P(1), it is sufficient to store the 4-bit elements
w; j = trgp(vi,;P(a)) with (i,j) € R. Since #R = RBLgrs = 16, the overall scheme
leads to save 10 x4 = 40 bits for the storage of the sharing of P(1) in RS(S,9+ 1)
(and the set R is the same for any P(X)).

Fact 2 (processing) The reconstruction of P(1) can always be done by evaluating (16) at
the cost of RB1grs = 16 additions over GF(16) and 2 +4 multiplications by a constant
scalar over GF(16).

16 The intuition is that having polynomials such that at least p1(c;) = 0 or p2(c;) = 0 for some i € [1;13]
automatically reduces the dimension of the corresponding set {p;(a;) : j € [1;2]}, which helps to satisfy
(8).

17always the same whatever P(X)
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