
Novel Side-Channel Attacks
on Quasi-Cyclic Code-Based Cryptography

Bo-Yeon Sim1, Jihoon Kwon2, Kyu Young Choi2, Jihoon Cho2, Aesun Park3

and Dong-Guk Han1,3,†

1 Department of Mathematics, Kookmin University, Seoul, Republic of Korea
{qjdusls,christa}@kookmin.ac.kr

2 Security Research Team, Samsung SDS, Inc., Seoul, Republic of Korea
{jihoon.kwon,ky12.choi,jihoon1.cho}@samsung.com

3 Department of Financial Information Security, Kookmin University, Seoul, Republic of Korea
aesons@kookmin.ac.kr

Abstract. Chou suggested a constant-time implementation for quasi-cyclic moderate-
density parity-check (QC-MDPC) code-based cryptography to mitigate timing attacks
at CHES 2016. This countermeasure was later found to become vulnerable to a
differential power analysis (DPA) in private syndrome computation, as described by
Rossi et al. at CHES 2017. The proposed DPA, however, still could not completely
recover accurate secret indices, requiring further solving linear equations to obtain
entire secret information. In this paper, we propose a multiple-trace attack which
enables to completely recover accurate secret indices. We further propose a single-
trace attack which can even work when using ephemeral keys or applying Rossi et
al.’s DPA countermeasures. Our experiments show that the BIKE and LEDAcrypt
may become vulnerable to our proposed attacks. The experiments are conducted
using power consumption traces measured from ChipWhisperer-Lite XMEGA (8-bit
processor) and ChipWhisperer UFO STM32F3 (32-bit processor) target boards.
Keywords: Side-Channel Attack · Quasi-Cyclic Code-Based Cryptography · QC-
MDPC · QC-LDPC · Multiple-Trace Attack · Single-Trace Attack

1 Introduction
The security of public key cryptosystems (PKCs) primarily is based on the difficulty of
number theory problems, such as factoring large integers or finding discrete logarithms.
Shor, however, proposed an algorithm that can solve such problems in polynomial time,
given a practical large-scale quantum computer [Sho94]. Since quantum computers become
critical threats to the current PKCs, such as Rivest-Shamir-Adleman (RSA) and elliptic
curve cryptography (ECC) [RSA78, Mil85, Kob87], there are an increasing needs for
post-quantum cryptography (PQC) that is secure against both quantum and classical
computers.

The National Security Agency (NSA) thus announced that the list of Suite B crypto-
graphic algorithms would be updated to PQC algorithms [Age15]. The National Institute
of Standards and Technology (NIST) also released an internal report (NISTIR) 8105:
Reports on PQC [CCJ+16], giving an analysis of the current state of quantum computing
and then discussing the need of PQC standardization. In December 2016, the NIST
†Corresponding Author. This work was supported as part of Military Crypto Research Center

(UD170109ED) funded by Defense Acquisition Program Administration (DAPA) and Agency for Defense
Development (ADD).

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 4, pp. 180–212
DOI:10.13154/tches.v2019.i4.180-212

mailto:qjduslskookmin.ac.kr,christa@kookmin.ac.kr
mailto:jihoon.kwon@samsung.com,ky12.choi@samsung.com,jihoon1.cho@samsung.com
mailto:aesons@kookmin.ac.kr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i4.180-212

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 181

announced a call for proposals for PQC standardization [NIS16]. In contrast to the
Advanced Encryption Standard (AES) and Secure Hash Algorithm version 3 (SHA-3)
competitions, which selected a single algorithm, the NIST aims to recommend several PQC
algorithms [NIS97, NIS07]. In the first-round submissions, sixty-nine proposals on public
key encryption, key establishment, and digital signature algorithms were accepted. In
the following second-round, twenty-six candidates have been survived [NIS19], and seven
candidates are code-based cryptographic algorithms.

Code-based cryptography is based on coding theory, which aims to detect and correct
errors on transmitted data through a noisy channel. McEliece proposed the first code-
based PKC based on binary Goppa codes [McE78]. The security of the cryptosystem is
based on the difficulty of the Syndrome Decoding (SD) problem and the Goppa Code
Distinguishing (GCD) problem [BMvT78, FGO+11]. The main drawback of the original
McEliece cryptosystem is the large size of its public key. For the 80-bit security level, the
public key size of the McEliece cryptosystem requires 460,647 bits, approximately 450 times
larger than the one of the RSA cryptosystem. To reduce the public key size, several variants
of the McEliece cryptosystem have been proposed, by replacing the Goppa codes of the
McEliece cryptosystem with other efficient codes, for example, generalized Reed-Solomon
(GRS), low-density parity-check (LDPC), and moderate-density parity-check (MDPC)
codes [Nie86, BS08, MTSB13, BCS13, Cho16, Cho17].

Niederreiter [Nie86] proposed a variation of the McEliece cryptosystem, using a parity-
check matrix as a secret key instead of a generator matrix, and its security has been
proven to be equivalent to that of the McEliece cryptosystem [LDW94]. Niederreiter
used the GRS code, but it can leak information much more easily than the binary Goppa
code [SS92]. Biswas and Sendrier proposed a hybrid McEliece encryption scheme [BS08],
reducing the size of public key by using a row echelon form of a generator matrix. Bernstein
et al. proposed a key encapsulation mechanism (KEM)/data encapsulation mechanism
(DEM) called McBits [BCS13], using the Niederreiter cryptosystems as the underlying
scheme. McBits provides an additive fast Fourier transform (FFT) decoding algorithm for
fast root and syndrome computations, and also a countermeasure against cache-timing
attacks by utilizing a constant-time implementation. Chou further improved performance
of McBits [Cho17] with a constant-time implementation for key generation and encryption
and internal parallelism for decryption.

The MDPC and quasi-cyclic MDPC (QC-MDPC) codes, in particular, have recently
received extensive attention due to the smaller key sizes and efficiency in terms of com-
putational complexity. Misoczki et al. [MTSB12] proposed two variants of the McEliece
cryptosystem called MDPC-McEliece, employing the MDPC and QC-MDPC codes to
realize smaller key size. For the 80-bit security level, the public key of QC-MDPC McEliece
requires only 4801 bits. Chou proposed a variant of the hybrid (KEM/DEM) Niederreiter
encryption scheme using QC-MDPC codes called QcBits [Cho16].

Kocher first presented side-channel attacks (SCAs) [Koc96], which enable to recover
secret credentials, i.e. cryptographic keys, by analyzing side-channel information such as
execution time, power consumption, electromagnetic emission, and photonic emission, when
cryptographic algorithms are running on devices. Such side-channel attacks include timing
attack (TA), simple power analysis (SPA), differential power analysis (DPA), correlation
power analysis (CPA), and profiling attack [MOP07].

Strenzke et al. [STM+08] first proposed a SCA against the McEliece cryptosystem. They
presented a TA on the degree of error locator polynomial in the Patterson algorithm [Pat75]
exploiting the fact that the difference in computation time depends on the polynomial
degree. Other types of TAs against the McEliece have been followed as in [SSMS09, Str10,
Str11, Str13, BCDR17]. Strenzke et al. [STM+08] also described power analysis against
the parity-check matrix of McEliece key generation. Various SPAs and DPAs against the
McEliece cryptosystem can be found in [HMP10, MSSS11, vMG14b, CEvMS15a, PRD+15,

182 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

PRD+16, FGH16], and fault injection attacks in [CD10, Str11].
There have been, in particular, several SCA results against cryptosystems based on

QC-MDPC code. Chou suggested a constant-time implementation for QC-MDPC code-
based cryptography to mitigate TAs [Cho16]. This countermeasure was later found to
become vulnerable to a DPA in private syndrome computation, as described by Rossi et
al. [RHHM17]. The proposed attack, however, still could not completely recover accurate
secret indices, requiring further solving linear equations to obtain entire secret information.

Our Contributions. The main contributions of this paper can be summarized as below.

1. Enhancing existing multiple-trace attack on TA countermeasure
We propose a multiple-trace attack on the constant-time multiplication intro-
duced by Chou for secure syndrome computation [Cho16]. Contrary to the attack
results by Rossi et al. [RHHM17], we demonstrate that our attack recovers entire
secret indices using multiple traces, eliminating the need of additionally solving linear
equations. Previously, it was not even feasible to solve such equations with target
cryptosystems running in 64-bit processor devices.

2. Proposing a novel single-trace attack
The proposed single-trace attack allows to recover secret indices even when using
ephemeral keys or DPA countermeasures [RHHM17, CEvMS15b]. In particular, if a
processor only provides single bit shift instructions, it is possible to find the whole
bits of secret indices. Furthermore, even if processors do not provide single bit shift
instructions, we can extract substantial parts of secret indices. The proposed attack
exploits the fact that rotation is always carried out, and also that the mask value as
determined by the value of the secret bit is used to obtain accurate results. Hence,
our attack can make the latest countermeasures proposed for secure private syndrome
computation obsolete.

3. Case study: NIST round 2 QC code-based cryptography
The BIKE and LEDAcrypt are constructed using QC-MDPC and QC-LDPC codes,
respectively, and they are the second-round candidates of the NIST PQC standard-
ization. Since syndrome computations of these two schemes were not designed to
resist SCAs, we assume that the countermeasures [Cho16, RHHM17, CEvMS15b] are
applied to remove each of TA and DPA vulnerability. Our experiment results show
that these two schemes may become vulnerable to the proposed multiple/single-trace
attacks when they use long-term key pairs. These schemes may become vulnerable
to our single-trace attack even when using ephemeral keys.

The experiment makes use of power consumption traces measured from ChipWhisperer-
Lite XMEGA (8-bit processor) and ChipWhisperer UFO STM32F3 (32-bit processor)
target boards [Inca, Incb]. The proposed multiple-trace attack with 50 traces collected at
7.38 MS/s sampling rate allows to recover the whole bits of secret indices. The experiment,
only using single-trace, describes how to recover the whole bits of secret indices with a
processors providing single bit shift instruction, and also to extract substantial part of
secret indices even with a processor not providing such single bit shift instructions. An
attack flow chart can be found as in Figure 1.

Organization. The rest of this paper is organized as follows. In Section 2, we briefly
describe the basics of coding theory and describe the literature for SCAs on QC-MDPC
code-based cryptography. In Section 3, we then explain our target algorithm and recent
DPA results. In Section 4 and Section 5, we propose a multiple-trace attack and a single-
trace attack with experiment results. We then describe how the proposed attacks could be

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 183

Start

Use the
ephemeral key?

Applied DPA
countermeasures?

Less noise?

Multiple-Trace Attack
(Section 4)

Single-Trace Attack
(Section 5)

End

no

yes

no

yes

yesno

Figure 1: Flowchart of our proposed attack

applied to other QC-MDPC/LDPC code-based cryptography in Section 6. We finally give
a conclusion in Section 7.

2 Preliminaries
2.1 Basics of Coding Theory
Code-based cryptography is based on the decoding problem of random error-correcting
codes, i.e. Syndrome Decoding, which is known to be NP-hard [BMvT78]. In other words,
it is based on the difficulty of finding the closest codeword x to a given y ∈ Fn

q , assuming
that there is a unique closest codeword. Table 1 shows the definition of notations used in
this paper.

Definition 1. [Linear Code] An (n, k)-linear code C of length n and dimension k over
a field Fq is a k-dimensional vector subspace of Fn

q .

Definition 2. [Generator Matrix] A k × n matrix G of rank k is a generator matrix
for a (n, k)-linear code C if C = {mG | m ∈ Fk

q}, i.e. the k rows of the matrix G span code
C.

Definition 3. [Parity-Check Matrix] An (n−k)×n matrix H is a parity-check matrix
for C if Hcᵀ = 0 for all c ∈ C, that is, the codewords are all the vectors in the right null
space of H.

Definition 4. [Hamming Weight] The Hamming weight of a vector x ∈ Fn
q is the

number of all its non-zero components;

wt(x) = #{i ∈ [0, n− 1] | xi 6= 0}.

184 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Table 1: Notations

Notation Description
Fq the finite field of order q
n the length of the codeword
k the dimension of the code
r the co-dimension of the code
w the Hamming weight (or simply weight) of a vector
t the number of errors that can be decoded

c codeword c = (c0, c1, · · · , cn−1) ∈ Fn
q

C a linear code, which is a k-dimensional subspace of Fn
q

gi one of k linearly independent row vectors gi ∈ Fn
q , where 0 ≤ i < k

G a k × n generator matrix of C, whose rows are gi vectors
H a (n− k)× n parity-check matrix of C

s a syndrome of a received vector e ∈ Fn
q is s = Heᵀ ∈ Fn−k

q

R the cyclic polynomial ring Fq[x]/〈xr − 1〉

Definition 5. [Hamming Distance] The Hamming distance between two vectors x, y ∈
Fn

q is the number of components in which they differ;

dist(x, y) = #{i ∈ [0, n− 1] | xi 6= yi}.

Definition 6. [Minimum Distance] The minimum distance of a linear code C is

d(C) = min{dist(x, y) | x, y ∈ C, x 6= y} = min{wt(x) | x ∈ C, x 6= 0}.

The minimum distance gives the smallest number of errors needed to change one
codeword into another. Therefore, it induces the error correction capability of the linear
code C. If the code can correct up to t errors, and changes are made at t or fewer places in
a codeword c, then the closest codeword is still c. In coding theory, if the errors occur less
than half the d(C), it could be corrected. Namely, the linear code C can correct up to t
errors if d(C) ≥ 2t+ 1.

Definition 7. [Circulant Matrix] An r × r matrix is a circulant matrix if its rows are
successive cyclic shifts of its first one. The top row (or the leftmost column) of a circulant
matrix is the generator of the circulant matrix.

Definition 8. [Quasi-Cyclic Matrix] An r × n matrix M = [M0 | M1 | · · · | Mn0−1]
where n = n0r is a QC matrix if the submatrices M0,M1, · · · ,Mn0−1 are r × r circulant
matrices.

Definition 9. [Quasi-Cyclic Code] An (n, k)-linear code C of length n = n0r, dimension
k = k0r, and co-dimension r = n− k is a QC code if every cyclic shift of a codeword by r
positions results in another codeword in C. The n0 is called the index.

There is a ring isomorphism denoted as ϕ between the r× r circulant matrices and the
quotient polynomial ring R = Fq[x]/〈xr − 1〉. Thus, a circulant matrix A whose first row
is (a0, · · · , ar−1) is mapped to the polynomial ϕ(A) = a0 + a1x+ · · ·+ ar−1x

r−1, and the
(n, k)-QC code can be viewed as a cyclic code over the ring R = Fq[x]/〈xr − 1〉.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 185

Definition 10. [QC-MDPC/LDPC Code] An (n, r, w)-linear code C of length n = n0r,
dimension k = k0r, and co-dimension r = n− k admitting a parity-check matrix H with
constant row weight w is a QC-LDPC or MDPC code. LDPC and MDPC codes only differ
in the row weight w. If the code is defined by a parity-check matrix H with constant row
weight w = O(

√
nlog(n)), it is a MDPC code; while LDPC codes have small constant row

weights, usually less than 10. The parity-check matrix H of QC-MDPC code is (n− k)×n
QC matrix.

2.2 Side-Channel Attacks on QC-MDPC Code-Based Cryptography
Maurich et al. [vMG14b] presented SPAs on QC-MDPC McEliece cryptosystem, i.e. a
message recovery attack and a private key recovery attack. For a private key recovery, they
exploited the fact that different patterns of power consumption are observed depending
on whether the conditional branch instruction is executed or not, when generating the
next row of the private key in the syndrome computation. They presented experiment
results based on two types of software implementations, i.e. AVR and ARM. They also
proposed a constant-time implementation as a countermeasure using the ARM Thumb-2
assembly language. More specifically, they adopted the mask value, which is either zero
or all bits are 1, and the logical AND instruction to choose which data to use. We classify
the property used in the attacks as follows.

Property 1. If an algorithm behaves irregularly according to the secret value, then the
algorithm is vulnerable to simple power analyses (or timing attacks).

Chen et al. [CEvMS15a] presented a horizontal DPA on the QC-MDPC McEliece
cryptosystem, which is a private key recovery attack on the asymmetric decryption
algorithm using the chosen ciphertexts. They successfully recovered substantial parts of
the private key by a DPA during syndrome computation and key rotation. They make
use of the public key to recover the whole private key or to correct remaining errors using
an algebraic step. Their attack target was the field programmable gate array (FPGA)
implementation presented at DATE 2014 [vMG14a]. Since hardware implementations
operate in parallel, they applied the chosen ciphertext DPA. They also suggested a threshold
implementation based on boolean masking as a countermeasure [CEvMS15b]. The further
analysis and countermeasure are also proposed [CEvMS16]. We classify the property used
in the attacks as follows.

Property 2. If an algorithm uses a fixed secret k, and if it is possible to calculate
hypothetical intermediate states vi,j = f(di, kj) for all D known values di and for all K
candidates kj of k, then the algorithm is vulnerable to differential power analyses (or
correlation power analyses). At this time, K should be small enough so that all hypotheses
vi,j can be exhausted.

Chaulet et al. [CS16] discussed that variable time decoders, such as bit flipping (BF)
algorithm, may leak partial information. Since the number of iterations of the algorithm
depends on the error pattern as well as the parity-check matrix, the algorithm may
leak information about a private key and consequently allow a successful TA. They thus
proposed minimizing the number of iterations by adapting threshold values as a function of
the syndrome weight to make a constant-time decoder. This attack is based on Property 1.

3 Related Works
3.1 QcBits: Constant-Time Implementation of QC-MDPC Decoding
QcBits, proposed by Chou [Cho16], is the constant-time implementation of QC-MDPC
code-based cryptography to mitigate TAs. H ∈ Fr×n

2 (n = 2r) is used as a parity-check

186 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

matrix. The random parity-check matrixH = [H0 | H1] is a private key withH0, H1 ∈ Fr×r
2

and row weight of w. QcBits uses r = 4801, w = 90, and t = 80 for the 80-bit security.

H0 =



H
(0)
0,0 H

(0)
0,1 · · · H

(0)
0,r−1

H
(0)
1,0 H

(0)
1,1 · · · H

(0)
1,r−1

...
...

. . .
...

H
(0)
r−1,0 H

(0)
r−1,1 · · · H

(0)
r−1,r−1


, H1 =



H
(1)
0,0 H

(1)
0,1 · · · H

(1)
0,r−1

H
(1)
1,0 H

(1)
1,1 · · · H

(1)
1,r−1

...
...

. . .
...

H
(1)
r−1,0 H

(1)
r−1,1 · · · H

(1)
r−1,r−1


.

Since H0 and H1 are circulant matrices, i.e. H(k)
(i+1) mod r, (j+1) mod r = H

(k)
i,j , where

k = 0, 1 and 0 ≤ i, j ≤ r − 1; the first row of H can represent the whole matrix. An array
of indices in I0 = {j | H(0)

0,j = 1} and an array of indices in I1 = {j | H(1)
0,j = 1} are enough

to represent H. Then, a syndrome of a vector c = [c(0) | c(1)] ∈ Fn
2 , i.e. Hcᵀ, is calculated

by

Hcᵀ = [H0 | H1]
[
cᵀ(0)

cᵀ(1)

]
= H0c

ᵀ
(0) +H1c

ᵀ
(1),

H0c
ᵀ
(0) =

∑
i∈I0

Ri(c(0))ᵀ, H1c
ᵀ
(1) =

∑
i∈I1

Ri(c(1))ᵀ,

where Ri(c(k)) is an i-bit left rotation of c(k). For any vector a = (a0, · · · , ar−1) ∈ Fr
2, there

exists a ring isomorphism ϕ that maps a to the polynomial ϕ(a) = a0+a1x+· · ·+ar−1x
r−1 ∈

F2[x]/〈xr − 1〉. Thus, c(k) can be considered to be a polynomial, and Ri(c(k)) can be
calculated by the multiplication xdc(k) in F2[x]/〈xr−1〉, where d = r−i. For the remainder
of this paper, c(k) is considered as a polynomial element. Here, the parity-check matrix
H is the private key. Chou then suggested a constant-time multiplication xdc(k), as
shown in the Algorithm 1. This allows secure private syndrome computation Hcᵀ as a
countermeasure against a TA.

Since 0 ≤ d ≤ r − 1, the binary representation of d is (dl−1, dl−2, · · · , d0)2, where
l = dlog2(r − 1)e. Then, one can calculate rotated intermediate values using W -bit word
unit rotation for dj from dl−1 to dlog2W . A rotation by 2j-bit, i.e. a power-of-2 shifts
operation, can be calculated by a rotation by 2j−log2W words unit, where l−1 ≤ j ≤ log2W .
To make it perform in constant-time, the rotation is always carried out independent of dj

value. Then, one of the unrotated vector and the rotated vector is chosen according to
the dj value. The author implemented the algorithm using the mask value, which is zero
when di = 0, and all the bits are 1 when di = 1. The ¬mask value is also used, where ¬
refers to negation. Therefore, the result is obtained as follows:

(rotated value & mask)⊕ (unrotated value & ¬mask).

The Algorithm 1 shows a simplified algorithm scheme, detailed algorithm scheme and
toy example are shown in Appendix A. When the bit length of the word W is 8, the mask
value is as shown below:

mask =
{

0x00 , if di = 0;
0xff , if di = 1.

The variable us indicates how many words are rotated to the left. Thus, the result w is
given by:

w[j]← (v[(j + us) mod L] & mask)⊕ (v[j] & ¬mask), (1)

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 187

Algorithm 1 Constant-Time Multiplication in F2[x]/〈xr − 1〉 (refer to [Cho16])
Input : d = (dl−1, · · · , d0)2, 0 ≤ d ≤ r − 1, c(k) = (cL−1, · · · , c0)2W , L = dr/W e

Output : xdc(k)
1: v ← 0, w ← c(k)
2: for i = l − 1 down to log2W do I word unit rotation is from 2 to 13
3: di ← (d� (l − 1− i)) & 1
4: mask ← 0− di

5: us← 1� (i− log2W)
6: ptr ← v, v ← w, w ← ptr
7: for j = 0 up to L− 1− us do
8: w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)
9: end for

10: for j = 1 up to us do
11: w[j + L− 1− us]← (v[j − 1] & mask)⊕ (v[j + L− 1− us] & ¬mask)
12: end for
13: end for
14: low ← d & ((1� log2W)− 1) I bit rotation is from 14 to 22
15: high←W − low
16: tmp← w[0]
17: for j = 0 up to L− 2 do
18: w[j]← w[j]� low
19: w[j]← w[j] | (w[j + 1]� high)
20: end for
21: w[L− 1]← w[L− 1]� low
22: w[L− 1]← w[L− 1] | (tmp� high)
23: Return w

for j from 0 to L− 1, where L = dr/W e. Based on the published source code of [Cho16],
Equation (1) is calculated by dividing into two parts: steps 7 to 9 and steps 10 to 12 of
the Algorithm 1. In those parts, one selects the rotated value v[j + us] when di = 1 and
the unrotated value v[j] when di = 0.

A sequence of logical instructions is utilized for j from log2W − 1 to 0, i.e. the shifts
inside the units, as shown in steps 14 to 22 of the Algorithm 1. In this paper, we defined
the power-of-2 shifts operation for (dl−1, dl−2, · · · , dlog2W) as a word unit rotation and
the shifts operation inside the units for (dlog2W−1, · · · , d1, d0) as a bit rotation.

3.2 A Side-Channel Assisted Cryptanalytic Attack on QcBits
Rossi et al. [RHHM17] proposed a DPA on QcBits with the Property 2 described in
Section 2, targeting private syndrome computation, i.e. constant-time multiplication
xdc(k). The authors analyzed power consumption traces acquired while the results of xdc(k)
were stored in memory. In software implementations, the power consumption is affected
by the Hamming weight of the intermediate value. They thus applied the DPA based on
the leftmost bit of each rotated result xdc(k) calculated by estimating d. Since from the
(i+ 1) to (i+W)-th bits are saved into the same register, there will be W candidates for
d. Hence, it is impossible to find accurate secret indices, merely reducing the candidates.
For each secret index d, there are 8 candidates in an 8-bit processor and 64 candidates in
a 64-bit processor. For the full recovery of the secret indices, it is thus required to solve
linear equations. As shown in the Table 2, for 128-bit security, the linear equations can be
solved within a reasonable time on 8-bit, 16-bit, and 32-bit processors. It is, however, not
feasible on 64-bit processors.

188 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Table 2: Approximate solving times of linear equations according to the operation unit of
the processors (in SAGE on one core)

8-bit 16-bit 32-bit 64-bit
80-bit security 0.4 seconds 15 seconds 16 hours ≈ 530 years
128-bit security 2 seconds 4 minutes ≈ 7 days ≈ 790,000 years

The authors also proposed a codeword masking, i.e. adding a random codeword prior
to the syndrome computation. The result of the syndrome calculation remains unchanged
due to the fact that QC-MDPC codes are linear, and they discussed that the proposed
countermeasure effectively removes the information leak against DPAs.

H · ((c | 0)⊕ cm)ᵀ = H · (c | 0)ᵀ ⊕H · cᵀm = H · (c | 0)ᵀ. (2)

Similarly, as a DPA countermeasure, Chen et al. [CEvMS15b] proposed a masked syndrome
computation, splitting H into two shares Hm and M , where M is a matrix for masking,
as below.

H · (c | 0)ᵀ = (Hm ⊕M) · (c | 0)ᵀ = (Hm · (c | 0)ᵀ)⊕ (M · (c | 0)ᵀ). (3)

In the subsequent sections, we propose multiple- and single-trace attacks on the consta
nt-time multiplication xdc(k) which entirely recover the secret index d eliminating the
need of solving linear equations. If a processor only provides single bit shift instructions,
it is possible to find the accurate secret index d using a single trace even when DPA
countermeasures, e.g. Equation (2) and Equation (3), are applied. If a processor provides
multiple bit shift operations, W candidates for d will be derived, similarly to the results
obtained in [RHHM17].

4 Proposed Multiple-Trace Attack on Constant-Time Mul-
tiplication for Syndrome Computation

In this section, we propose a multiple-trace attack on the constant-time multiplication
xdc(k). We show that it is possible to completely recover secret indices using multiple traces.
In contrast to the attack presented in Subsection 3.2 that has W candidates for each d, our
attack can extract the entire secret index d = (dl−1, dl−2, · · · , d0)2; solving linear equations
is not required anymore. Based on the structure of the constant-time multiplication
shown in the Algorithm 1, we divide the attack position into two parts to find d: the word
unit rotation to find (dl−1, dl−2, · · · , dlog2W) (Subsection 4.1), and the bit rotation to
find (dlog2W−1, · · · , d1, d0) (Subsection 4.2). Since software implementation is considered
here, the power consumption is assumed to be affected by the Hamming weight of the
intermediate value [MOP07].

4.1 Multiple-Trace Attack on the Word Unit Rotation
We here describe the multiple-trace attack methodology on the word unit rotation
and present our experiment results. For the attack methodology construction, we
first categorize properties of the word unit rotation. We then describe how to find
(dl−1, dl−2, · · · , dlog2W) based on these properties.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 189

Attack Methodology. The following operation is executed to mitigate TAs as described
in Subsection 3.1.

w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)

Accordingly, the v[j + us] and v[j] values are always loaded. In this step, one selects the
rotated value v[j + us] when di = 1 and the unrotated value v[j] when di = 0. Therefore,
when the bit length of the word W is 8,

w[j] =
{

(v[j + us] & 0x00)⊕ (v[j] & 0xff) = v[j] , if di = 0;
(v[j + us] & 0xff)⊕ (v[j] & 0x00) = v[j + us] , if di = 1.

This is shown in the steps 7 to 9 of the Algorithm 1. The index of the array v[∗] to be saved
in w[j] is determined based on the di value. We thus define the following two properties.

New Property 1. The mask value is 0− di; therefore, it is 0x00 when di = 0. Conse-
quently, in the steps 7 to 9 of the Algorithm 1, it is

w[j]← (v[j + us] & 0x00)⊕ (v[j] & 0xff).

on an 8-bit processor, i.e. v[j] is saved to w[j]. Thus, v[j] is loaded and saved, but v[j+us]
is only loaded. Contrariwise, when di = 1, the mask value is 0xff on an 8-bit processor.
Consequently, in the steps 7 to 9 of the Algorithm 1, it is

w[j]← (v[j + us] & 0xff)⊕ (v[j] & 0x00),

i.e. v[j + us] is saved to w[j]. Thus, v[j + us] is loaded and saved, but v[j] is only loaded.

New Property 2. If di = 0, then the unrotated value is chosen, i.e. v[j] is saved to w[j],
which has the same index. Contrariwise, when di = 1, the rotated value is chosen, i.e.
v[j + us] is saved to w[j], which has a different index.

During the algorithm execution, the specific power consumption pattern can be observed
depending on the intermediate values. Thus, the power consumption Ptotal at each point
can be modeled as the sum of a data-dependent component Pdata and Gaussian noise
Pnoise, i.e. Ptotal = Pdata + Pnoise [MOP07]. Since we assume that the Hamming weight
of the intermediate value contributes to the power consumption, we can remodel Ptotal as
ε ·wt(data) +Pnoise, where ε is a constant, i.e. there is a linear relationship between Ptotal

and wt(data). It is thus possible to specify the positions where the v[j] value was used by
calculating the Pearson correlation coefficient between the Hamming weight of the v[j]
values and power consumption traces. That is, the positions with high correlations are
related to the operation using the intermediate value v[j].

If di = 0, then the mask value is 0x00; therefore, the power consumption with respect
to the v[j] value occurs sequentially twice in the steps 7 to 9 of the Algorithm 1 according
to the New Property 1. Contrariwise, when di = 1, the mask value is 0xff on an 8-bit
processor; therefore, the power consumption with respect to the v[j] value occurs once in
the steps 7 to 9 of the Algorithm 1. Thus, one can find di by identifying whether a high
correlation occurs sequentially twice in the steps 7 to 9 of the Algorithm 1.

The value w[j] based on di+1 is the same with the value v[j] based on di in the steps 2
to 13 of the Algorithm 1, where log2W ≤ i < l − 1. Thus, the power consumption related
to the v[j] value occurs sequentially twice in the (j + 1)-th iteration of the steps 7 to 9 of
di+1. Besides, based on the New Property 1 and the New Property 2, if di = 0, then the
power consumption related to the v[j] value occurs sequentially twice in the (j + 1)-th
iteration of the steps 7 to 9 of di. Consequently, the power consumption associated with
the v[j] value occurs sequentially twice in the same iteration where the loaded and saved
operations are executed according to the prior key bits di+1 when di = 0.

190 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Algorithm 2 Multiple-Trace Attack on the Word Unit Rotation
Input : a trace set T = {T 1, · · · , TN} and an input value set C = {c1, c2, · · · , cN}

Output : (dl−1, dl−2, · · · , dlog2W)
1: Calculate the correlation coefficient between T and C0 = {c1[0], c2[0], · · · , cN [0]}
2: if the high correlation occurs twice at the 1st iteration then I finding dl−1
3: dl−1 ← 0
4: else
5: dl−1 ← 1
6: end if
7: for i = l−2 down to log2W do I finding (dl−2, · · · , dlog2W)
8: if the high correlation occurs twice at the same position (iteration) with di+1 then
9: di ← 0

10: else
11: di ← 1
12: end if
13: end for
14: Return (dl−1, dl−2, · · · , dlog2W)

Otherwise, the power consumption related to the v[j] value occurs sequentially twice
in a different iteration from where the loaded and saved operations are executed based
on the prior key bits di+1 when di = 1. In other words, two peaks will occur at 2i−log2W

words left-rotated position, i.e. ((j − 2i−log2W) mod L + 1)-th iteration. Thus, one can
find di by identifying whether a high correlation occurs sequentially twice in the same
iteration as di+1. In other words, one can find di by identifying the position where the
high correlation with the intermediate value v[j] occurs sequentially twice.

It is possible to find (dl−1, dl−2, · · · , dlog2W) using only the New Property 1. However,
one has to chase the intermediate value determined by di+1 when it is desired to find
di, whereas, there is no need to chase the intermediate value if one make use of the
New Property 2. Since the most significant bit can only be recovered based on the New
Property 1, we combine the New Property 1 and the New Property 2 to construct an
attack methodology.

Therefore, we recover the most significant bit dl−1 based on the New Property 1.
Afterward, we recover the following bits (dl−2, · · · , dlog2W) based on the New Property 2.
Hence, we construct the attack flow, such as the Algorithm 2. In the step 1 of the
Algorithm 2, T is a set of N traces and C0 is a set of N input words ci[0], where each
multiplication input value ci = (ci[L− 1], ci[L− 2], · · · , ci[0]) and 1 ≤ i ≤ N .

Consequently, it is possible to identify the position where the power consumption
related to the set C0 of input words occurs sequentially twice by calculating the correlation
coefficient between T and C0; the correlation coefficient represents the similarity between
the two sets. Subsequently, the most significant bit dl−1 can be recovered. Similarly, by
finding whether the power consumption related to the set C0 occurs sequentially twice
at the same position as di+1 or not, we can recover (dl−2, · · · , dlog2W) based on the New
Property 2.

In the Algorithm 2, the steps 2 to 6 for finding dl−1 are based on the New Property 1,
and the steps 7 to 13 for finding (dl−2, · · · , dlog2W) are based on the New Property 2. Thus,
(dl−2, · · · , dlog2W) is extracted by the multiple-trace attack on the word unit rotation.
We describe the attack methodology to find the last log2W -bit, (dlog2W−1, · · · , d1, d0), in
Subsection 4.2.

Experiment results on an 8-bit processor. Our experiment shows that the position with
high correlation with the intermediate value v[0], i.e. each multiplication input, is different

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 191

depending on the secret bit di value. Since the target board is equipped with an 8-bit
processor, we set r = 256 as a toy example. Thus, when W is 8, L = dr/W e = 32,
l = dlog2(r − 1)e = 8, and d = (d7, · · · , d1, d0)2. We measured 500 power consumption
traces at 7.38 MS/s sampling rate with the Algorithm 1 operating on a ChipWhisperer-Lite
XMEGA target board. Figure 2 shows one of the power consumption traces. Since
log2W = 3, we can find (d7, d6, d5, d4, d3), and 50 traces are sufficient for the attack.

Figure 2: Power consumption trace of the constant-time multiplication (W = 8)

(a) d7 = 0 (b) d7 = 1

Figure 3: Comparison of correlation coefficient values based on d7 (New Property 1)

Figure 3 shows the experimental proof of the attack methodology to find the most
significant bit dl−1 based on the New Property 1. The power consumption with respect to
C0 occurs sequentially twice in the 1st iteration of the steps 7 to 9 of the Algorithm 1
when d7 = 0, as shown in Figure 3(a). Since L = 32, l = 8, and log2W = 3, the steps 7 to
9 of the Algorithm 1 operate 16 times when d7. Thus, the first 16 patterns in Figure 3(a)
and Figure 3(b), marked from 0 to 15, are interesting domains. Contrariwise, the power
consumption with respect to C0 occurs once in the 1st iteration of the steps 7 to 9 of the
Algorithm 1 when d7 = 1, as shown in Figure 3(b).

Figure 3(b) and Figure 4 show the attack results of d = (11101010)2. Each of the
figures is a magnification of the computational portion of the corresponding bit of Figure 2.
Figure 3(b) shows that the high correlation occurs only once in the steps 7 to 9 of the
Algorithm 1 since d7 is 1. Figure 4(a) shows that the high correlation occurs sequentially
twice at a different position with d7, because d6 is 1. The same results can be observed
in Figure 4(b) and Figure 4(d). In contrast, Figure 4(c) shows that the high correlation
occurs sequentially twice at the same position with d5, because d4 is 0. Subsequently,
one can find the accurate secret bits (d7, d6, d5, d4, d3) using the Algorithm 2. The attack
methodology for finding the remaining bits (d2, d1, d0) is described in Subsection 4.2.

Experiment results on a 32-bit processor. The target board is equipped with a 32-bit
processor, and we set the parameter r = 4801 for the 80-bit security. Since r is 4801 and

192 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

(a) d6 = 1 (b) d5 = 1

(c) d4 = 0 (d) d3 = 1

Figure 4: Finding d from d6 to d3 when d = (11101010)2 (New Property 2)

W is 32, then L = dr/W e = 151, l = dlog2(r − 1)e = 13, and d = (d12, · · · , d1, d0)2. We
measured 500 power consumption traces at 7.38 MS/s sampling rate with the Algorithm 4
in Appendix A operating on a ChipWhisperer UFO STM32F3 target board. Figure 11 in
Appendix B shows one of the power consumption traces. Since log2W = 5, one can find
(d12, d11, d10, d9, d8, d7, d6, d5), and 50 traces are sufficient for the attack. The reader may
refer to Appendix B.1 for a more detailed explanation.

4.2 Multiple-Trace Attack on the Bit Rotation
We now describe the multiple-trace attack methodology on the bit rotation and present
our experiment results. To recover the remaining bits (dlog2W−1, · · · , d1, d0), we apply a
CPA based on the Property 2 in Section 2.

Attack Methodology. We guess W -bit values which are one words of the output xdc(k)
of the Algorithm 1. There is no candidate key, since we use a W -bit Hamming weight
leakage model, in contrast with [RHHM17] which makes use of a 1-bit Hamming weight
leakage model. One can calculate w, which is the result of the word unit rotation of the
Algorithm 1, because (dl−1, dl−2, · · · , dlog2W) can be found as described in Subsection 4.1.
Thus, we only guess the low value from 0 to W − 1 when we guess the leftmost word

(w[0]� (low)) | (w[1]� (W − low)) (4)

of the result of the bit rotation xdc(k) of the Algorithm 1. At this point the low value
and the last log2W -bit value of d are the same.

After the bit rotation is performed, the result of Equation (4) is saved. Besides,
after the Algorithm 1 execution, the result for calculating H0c

ᵀ
(0) or H1c

ᵀ
(1) is accumulated.

Therefore, the result of Equation (4) is loaded. Accordingly, the power consumption
associated with this intermediate value occurs in two places. We refer to these points as
points of interest (PoI). Further, we mount a CPA using these two PoIs and find the last

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 193

log2W -bit of d, i.e. (dlog2W−1, · · · , d1, d0). The intermediate value is Equation (4) which
is the leftmost word of xdc(k).

Experiment results on an 8-bit processor. Here, we demonstrate that the last 3-bit of
d can be found by an 8-bit CPA. Using the 8-bit CPA implies that we only use 8-bit of
intermediate data, which does not denote the attack complexity. The attack complexity is
23 when we target an 8-bit processor since we only need to find the last log28 = 3-bit of d.
It is 26 when we target a 64-bit processor since one has to find the last log264 = 6-bit of d.
Thus, the attack is feasible. The measurement setup for power consumption traces is as
described in Subsection 4.1, and two PoIs can be identified, as shown in Figure 5(a). Even
if the CPA uses one of these PoIs can accurately derive the last 3-bit of d, i.e. (d2, d1, d0).
Figure 5(b) confirms that 50 traces are sufficient for the attack.

(a) Points of interest (b) 8-bit CPA results

Figure 5: Correlation power analysis results when d = (11101010)2

Experiment results on a 32-bit processor. Since log2W = 5, the attack complexity is
25, and one can find (d4, d3, d2, d1, d0). As with the previous cases, 50 traces are sufficient.
An interested reader may refer to Appendix B.2 for a more detailed explanation.

4.3 Comparison with the Previous Attack

As described in Subsection 3.2, the attack suggested by Rossi et al. reduces to a certain
number of candidates for each d but still requires to solve linear equations. Such a
computation is even not feasible for 64-bit processors. Our multiple-trace attack, however,
allows to recover all secret indices regardless of word size and security level. This becomes
possible because we divided the attack position into two parts based on the structure of the
constant-time multiplication. In particular, we categorize new properties of the word
unit rotation and only need to guess the last log2W -bit of d when we attack the bit
rotation. Moreover, to the best of our knowledge, the attack presented in Subsection 3.2
requires approximately 200 power traces sampled at 96 MS/s; however, our attack only
requires 50 traces sampled at 7.38 MS/s. We measured the power consumption traces from
the same target board as used in Subsection 3.2, i.e. ChipWhipserer-Lite XMEGA.

194 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

5 Proposed Single-Trace Attack on Constant-Time Multi-
plication for Syndrome Computation

In this section, we propose a single-trace attack on the constant-time multiplication
xdc(k). We demonstrate that the proposed single-trace attack allows to extract the secret
index d = (dl−1, dl−2, · · · , d0)2, even when cryptosystems use ephemeral keys, or the DPA
countermeasures [RHHM17, CEvMS15b] are applied. Hence, the proposed attack can make
the latest countermeasures proposed for secure private syndrome computation obsolete.
As done in the proposed multiple-trace attack, we divide the attack position into two parts
to find d: the word unit rotation to find (dl−1, dl−2, · · · , dlog2W) (Subsection 5.1), and
the bit rotation to find (dlog2W−1, · · · , d1, d0) (Subsection 5.2).

5.1 Single-Trace Attack on the Word Unit Rotation
We here describe the single-trace attack methodology on the word unit rotation and
present the experiment results. To construct the attack methodology, we first categorize
properties of the word unit rotation. We then propose how to find (dl−1, · · · , dlog2W)
based on these properties.

Attack Methodology. As described in Subsection 3.1, the mask value determined by the
value di is used to check whether the rotated value is saved or not. Therefore, there exists
a phase in extracting di bit from the l-bit secret index string d = (dl−1, dl−2, · · · , d0)2
and saving it before performing the word unit rotation, such as in the step 3 of the
Algorithm 1. Then, the values mask and ¬mask are computed and saved. Besides, when
the steps 7 to 9 of the Algorithm 1 are executed, the values mask and ¬mask are loaded.
Since, in software implementations, the power consumption depends on the Hamming
weight of the intermediate value, it is possible to distinguish among the steps mentioned
above and classify the power consumption properties of the target Algorithm 1 as follows:

s.1 di ← (d� (l − 1− i)) & 1 I di is saved;

s.2 mask ← 0− di I mask is saved;

s.3 ¬mask is calculated I mask is loaded, ¬mask is saved;

s.4 w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask) I mask and ¬mask are loaded.

New Property 3. The secret bit di is 0 or 1. Thus, if di = 0, the power consumption is
associated with 0 when extracting and saving the di value. Likewise, if di = 1, then the
power consumption is associated with 1.

New Property 4. The mask value is 0− di; therefore, it is 0x00 when di = 0, and the
power consumption is related to 0. Contrariwise, when di = 1, the mask value is 0xff
on an 8-bit processor, and the power consumption is related to 8, which is the Hamming
weight of the mask value.

New Property 5. The ¬mask value is 1’s-complement of the mask value; therefore, it
is the bitwise inversion value of the mask value. Consequently, in contrast to the New
Property 4, it is 0xff on an 8-bit processor when di = 0 and the power consumption is
related to 8. Contrariwise, the power consumption is related to 0 when di = 1.

We define di, mask, and ¬mask as the reference values for each property. Additionally,
we define the New Property 3, the New Property 4, and the New Property 5 as key
bit-dependent properties. Based on these key bit-dependent properties, power consumption
traces can be classified into two groups, G1 and G2, depending on the di value. The

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 195

Algorithm 3 Single-Trace Attack on the Word Unit Rotation
Input : A trace T

Output : (dl−1, dl−2, · · · , dlog2W)
1: for i = l − 1 down to log2W do
2: Select points of interest pi of word unit rotation operation associated with di

3: end for
4: Classify pi into two groups, G1 and G2, using the k-means clustering algorithm
5: Calculate the average values AV G1 and AV G2, respectively, of G1 and G2
6: for i = l − 1 down to log2W do
7: if pi ∈ G1 then I assume that AV G1 < AV G2
8: di ← 1 I di = 1 when it follows the New Property 4
9: else

10: di ← 0 I di = 0 when it follows the New Property 4
11: end if
12: end for
13: Return (dl−1, dl−2, · · · , dlog2W)

clustering algorithms, such as k-means, fuzzy k-means, or EM algorithms, then can be
applied [Anz92].

After clustering, the average values AV G1 and AV G2 of each group G1 and G2,
respectively, are calculated. Assuming that larger the Hamming weight requires the lower
the power consumption, if AV G1 is lower than AV G2, di belonging to G1 is 1 and that
belonging to G2 is 0, based on the New Property 3. The same results are obtained when we
classify based on the New Property 4. In contrast, di belonging to G1 is 0, and di belonging
to G2 is 1 when we classify based on the New Property 5. Hence, (dl−1, dl−2, · · · , dlog2W)
can be recovered by identifying the group that di belongs to. We further describe how to
find the last log2W -bit, i.e. (dlog2W−1, · · · , d1, d0), in the following subsection.

The Algorithm 3 describes the attack flow. In the steps 1 to 3 of the Algorithm 3, we
choose the PoIs associated with one of s.1, s.2, s.3, and s.4. The step 4 is the classification
of the PoIs into two groups using the k-means clustering algorithm. Since G1 and G2 differ
in the intermediate values that affect the power consumption, the distribution of G1 is
different from that of G2. We thus can distinguish which group is associated with a certain
intermediate value using the average values of each group, as shown in the steps 7 to 11 of
the Algorithm 3. The reader may refer to experiment results for a detailed explanation.

Experiment results on an 8-bit processor. The experiment result demonstrate that the
key bit-dependent properties are enough to extract the secret bit, di, using a single trace.
The measurement setup for power consumption traces can be found in Section 4.1.

The PoIs can be identified by calculating the sum of squared pairwise t-differences
(SOST) [GLP06] of the traces and then identifying the location of the information-leaking
point, as shown in Figure 6. The SOST of two groups, G1 and G2, is calculated as below.

SOST =

 E(G1)− E(G2)√
σ(G1)2

#G1
+
σ(G2)2

#G2

2

E(·), σ(·), and # denote the mean, standard deviation, and number of elements, respectively.
In Figure 6, the five points with the high SOST values are where the com operation, which
yields a 1’s complement to calculate the ¬mask value, is performed. Figure 7 shows the
distribution of points which have the highest SOST value, near 685 points of Figure 6.
Two distributions are clearly distinguished: one is when di = 0, and the other is when

196 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Figure 6: The power consumption trace and the SOST values between two groups, G1
and G2, of each di (W = 8)

Figure 7: Distribution of PoIs which have the highest SOST value (New Property 4)

Figure 8: Finding d from d7 to d3 when d = (11101010)2 (New Property 4)

di = 1. We use five points with the high SOST value as PoIs and select these points in the
steps 1 to 3 of the Algorithm 3.

The average value for di = 0 is higher than the average value for di = 1. Therefore, if
the AV G2 is higher than the AV G1 and di belongs to G2, then di is 0. In contrast, if di

belongs to G1, it is 1. Figure 8 shows the attack results. Hence, the accurate secret bits

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 197

(d7, d6, d5, d4, d3) of indices can be found using the Algorithm 3.

Experiment results on a 32-bit processor. SinceW = 32, themask value is 0x00000000
or 0xffffffff. One can find (d12, d11, d10, d9, d8, d7, d6, d5) because log2W = 5. The
reader may refer to Appendix B.3 for the details.

5.2 Single-Trace Attack on the Bit Rotation
In this subsection, we describe the single-trace attack methodology on the bit rotation
and discuss the results of the experiment. To recover the remaining bits, (dlog2W−1, · · · , d0),
we apply a SPA based on the Property 1 presented in Section 2.

Attack Methodology. The most commonly used 8-bit AVR and 16-bit MSP430 processors
only provide single bit shift instructions. Thus, a 1-bit right shift operation is repeated
low times, and a 1-bit left shift operation is repeated high times in the steps 17 to 22 of
the Algorithm 1. A SPA thus allows to identify the number of 1-bit left shift operations.
Since the low value and the last log2W -bit value of d are the same, the remaining bits
(dlog2W−1, · · · , d1, d0) can be identified. Since the most commonly used 32-bit and 64-bit
processors support a barrel shifter, i.e. multiple bit shifts are performed within a single
clock cycle, it is difficult to identify the last log2W -bit of d. Thus, W candidates remain,
requiring to recover accurate indices with additional algebraic computations, similar as
discussed in [RHHM17]. It is still possible to extract the substantial parts of the secret
indices using only a single trace.

Experiment results on an 8-bit processor. The experiment shows that the low value
can be recovered when a processor provides 1-bit shift operations. The measurement setup
for power consumption traces is as described in Section 4.1. Vertical dot lines in Figure 91

indicate the endpoint of each bit rotation of one word, and the endpoint is the same
regardless of the index value. This is because the total number of 1-bit right and left shift
operations is always the same. As a result, the bit rotation performs in constant-time.
Through assembly analysis, we verified that the compiler handles the variable shift using
iterative procedures with the number of repetitions as a variable when it provides a 1-bit
shift operation. Thus, the 1-bit right shift operation does not occur when the last 3-bit
of d is 0, and the 1-bit right shift operation is performed 7 times when the last 3-bit of
d is 7 as shown in Figure 9. Hence, even if ephemeral keys are used or randomization
countermeasures to DPAs [RHHM17, CEvMS15b] are applied, it is possible to recover the
secret bits (d2, d1, d0) of d using a single trace.

Experiment results on a 32-bit processor. Since L = 151, the steps 17 to 19 of the
Algorithm 4 in Appendix A operate from j = 0 to j = 148. Therefore, we can identify
149 patterns indexed from 0 to 148 in the bit rotation, as shown in Figure 101. Unlike
the results on an 8-bit processor, it is impossible to distinguish how many single shift
operations are performed. This is because our target 32-bit processor STM32F3 provides
the barrel shifter. Thus, in this case, W candidates would be left, and we need to solve
some linear equations to find accurate indices, similar as discussed in [RHHM17].

Remark. In our targeted platforms, the condition of constant-time was met. Furthermore,
in this paper, we do not consider possible problems depending on compile options. We
posted scripts for the proposed attacks online 2.

1The traces were shifted by 0.2 multiple units on the y-axis for easy comparison.
2https://drive.google.com/file/d/1olIBpTXs-sZ4Beg3g69b-YVkFrRwb4lh/view?usp=sharing

https://drive.google.com/file/d/1olIBpTXs-sZ4Beg3g69b-YVkFrRwb4lh/view?usp=sharing

198 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Figure 9: Simple power analysis on the bit rotation (W = 8)

Figure 10: Simple power analysis on the bit rotation (W = 32)

6 Case Study: NIST Round 2 Code-Based Cryptography

We here discuss the applicability of our proposed attacks against LEDAcrypt and BIKE,
based on QC-LDPC and QC-MDPC codes, respectively, which are the second-round
candidates of the NIST PQC standardization [BBC+b, BBC+a, ABB+]. Both authors
of LEDAcrypt and BIKE mentioned that their primitives for indistinguishability under
chosen plaintext attack (IND-CPA) use ephemeral key pairs to prevent reaction attacks.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 199

Hence, the key generation algorithm for a public/private key pair always runs and the
generated key pair is just used one-time. Conversely, regarding indistinguishability under
the adaptive chosen ciphertext attack (IND-CCA) versions of LEDAcrypt and BIKE,
the authors suggested the use of long-term (static) key pair, meaning that several key
exchanges can take place with the same key pair.

The vulnerabilities of QC-MDPC/LDPC code-based cryptography to SCA have been
studied, mainly relating to syndrome computations [vMG14b, CEvMS15a, CEvMS16].
However, the BIKE and LEDAcrypt cryptosystems do not consider the secure syndrome
computations to SCAs. Thus, we assume that the countermeasures presented in [Cho16,
RHHM17, CEvMS15b] are applied to remove each of TA and DPA vulnerability. We briefly
describe LEDAcrypt and BIKE cryptosystems and analyze how the proposed attacks can
be applied in Subsection 6.1 and Subsection 6.2.

6.1 Case Study: LEDAcrypt
LEDAcrypt consists of LEDAcrypt KEM, designed using the Niederreiter cryptosystem,
and LEDAcrypt PKC, designed using the McEliece cryptosystem [BBC+a, BBC+b]. It
utilizes QC-LDPC codes to provide improved decoding performance and compact key
sizes. The authors of [BBC+a, BBC+b] mentioned that LEDAcrypt KEM using ephemeral
and long-term key pairs provides IND-CPA security and IND-CCA2 security. Moreover,
LEDAcrypt PKC using long-term key pairs provides IND-CCA2 security. Table 3 describes
the key pairs and syndromes of LEDAcrypt to demonstrate the applicability of our proposed
attacks.

Using Long-Term Key Pairs. LEDAcrypt KEM and LEDAcrypt PKC using long-
term key pairs cannot guarantee resistance against SCAs in private syndrome compu-
tations, as shown in [vMG14b, CEvMS15a, CEvMS16]. Therefore, the application of
SCA countermeasures might be considered. However, the countermeasures presented
in [Cho16, RHHM17, CEvMS15b] are not secure against our multiple- and single-trace
attacks. In the case of LEDAcrypt PKC, the secret indices that represent L = HQ
can be recovered with our proposed attacks during syndrome computation (see Table 3).
Therefore, we can obtain the secret L = HQ; besides, it can be used to perform BF
decoding to extract a secret message from a received vector over a public code. In the case
of LEDAcrypt KEM, Ln0−1 can be recovered by our proposed attacks; consequently, it is
possible to derive L = HQ using the recovered Ln0−1 and the public key P (see Table 3).
Hence, L = HQ can be used to perform BF decoding to find secret information, the same
as LEDAcrypt PKC.

Table 3: Keys and syndromes of LEDAcrypt

Public key Private key Syndrome

LEDAcrypt KEM P = [M | Ir] = L−1
n0−1L H,Q

Ln0−1c
ᵀ

LEDAcrypt PKC P = [Z | [M0 | · · · |Mn0−2]ᵀ] (HQ)cᵀ

∗ Ir is an r × r identity matrix
∗ Z is a diagonal block matrix with n0 − 1 replicas of the block Ir

∗ Mi is an r × r dense circulant matrix, 0 ≤ i < n0 − 1, M = [M0 | · · · |Mn0−2]
∗ Q is an n× n sparse circulant matrix composed of n0 × n0 sparse circulant blocks
∗ Hi is an r × r sparse circulant matrix, 0 ≤ i ≤ n0 − 1, H = [H0 | · · · | Hn0−1]
∗ Li is an r × r sparse circulant matrix, 0 ≤ i ≤ n0 − 1, L = HQ
∗ c is a received row vector, c = [c0 | · · · | cn−1]

200 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

Using Ephemeral Key Pairs. LEDAcrypt KEM using ephemeral key pairs inherently
provides resistance against multiple-trace attacks. Notwithstanding, it would be still
vulnerable to TAs in private syndrome computation, as shown in [vMG14b]. Thus, adopting
the constant-time multiplication as a countermeasure might be considered. However,
this countermeasure is still vulnerable to our proposed single-trace attack. Therefore, we
can also derive not only secret L = HQ using our single-trace attack but also the secret
message.

6.2 Case Study: BIKE

BIKE is a suite of KEM algorithms based on QC-MDPC codes [ABB+]. The authors of
[ABB+] present three IND-CPA variants of BIKE, called BIKE-1, BIKE-2, and BIKE-3,
which use ephemeral key pairs. BIKE-1, BIKE-2, and BIKE-3 follow the framework of the
McEliece cryptosystem, Niederreiter cryptosystem, and Ouroboros, respectively [DGZ17].
They also present three indistinguishability under the chosen ciphertext attack (IND-CCA)
variants of BIKE, called BIKE-1-CCA, BIKE-2-CCA, and BIKE-3-CCA, designed to use
long-term key pairs. To demonstrate the applicability of our proposed attacks, we describe
the key pairs and syndromes of BIKE in Table 4.

Using Long-Term Key Pairs. All the IND-CPA variants of BIKE using long-term key
pairs cannot guarantee resistance against SCAs in private syndrome computations, as
mentioned in Subsection 6.1. Therefore, similar to LEDAcrypt, our proposed multiple-
and single-trace attacks could be applied. In the case of BIKE-1, we can find H with our
proposed attacks during syndrome computation, whereas in the case of BIKE-2 and 3, we
can find H0; then it is possible to calculate H1 using the recovered H0 and the public key
F (see Table 4). The secret message from the received vector can also be extracted using
BF decoding and the recovered H.

Using Ephemeral Key Pairs. All the IND-CCA variants of BIKE using ephemeral
key pairs also inherently provide resistance against multiple-trace attacks. However, as
described in Subsection 6.1, our single-trace attack can be applied. Accordingly, not only
H but also the secret message can be retrieved.

Table 4: Keys and syndromes of BIKE

Public key Private key Syndrome

BIKE-1 F = [F0 | F1] F0 = G ·H0

H

Hcᵀ
F1 = G ·H1

BIKE-2 F = [F0 | F1] F0 = Ir H0c
ᵀ

F1 = H1 ·H−1
0

BIKE-3 F = [F0 | F1] F0 = G ·H0 +H1 cᵀ0 +H0c
ᵀ
1F1 = G

∗ Ir is an r × r identity matrix
∗ G is an r × r dense circulant matrix
∗ Hi is an r × r sparse circulant matrix, H = [H0 | H1]
∗ c is a received row vector, c = [c0 | c1]

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 201

7 Conclusion
We proposed a multiple-trace attack which enables to completely recover accurate secret
indices, and also a single-trace attack which can even work when using ephemeral keys or
applying existing DPA countermeasures. We also discussed that the BIKE and LEDAcrypt
become vulnerable to our proposed attacks.

The proposed multiple-trace attack can be prevented by applying randomization
countermeasures, such as intermediate data masking [RHHM17, CEvMS15b], prior to
syndrome computations. As for the single-trace attack, the hiding methods, such as
random noise and dummy operation, can be applied to increase attack complexity. It
would be one of the interesting future research topics to construct theoretically-sound
countermeasure against the single-trace attack proposed in this paper.

Acknowledgments
The authors would like to thank the anonymous reviewers and the shepherds Diego F.
Aranha and Mehdi Tibouchi for their useful comments that improved the quality of the
paper. We also thank Dukjae Moon of Samsung SDS for his valuable feedback and many
helpful discussions.

References
[ABB+] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zemor, and Valentin Vasseur. BIKE (Bit
Flipping Key Encapsulation). https://bikesuite.org/.

[Age15] National Security Agency. Cryptography Today. https://www.nsa.gov/
ia/programs/suiteb_cryptography/, 2015.

[Anz92] Yuichiro Anzai. Pattern Recognition & Machine Learning. Elsevier, 1992.

[BBC+a] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDAkem (Low dEnsity coDe-bAsed key encapsulation
mechanism). https://www.ledacrypt.org/LEDAkem/.

[BBC+b] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDApkc (Low-dEnsity parity-check coDe-bAsed public-key
cryptosystem). https://www.ledacrypt.org/LEDApkc/.

[BCDR17] Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, and Tania Richmond.
Improved timing attacks against the secret permutation in the mceliece pkc.
International Journal of Computers Communications & Control, 12(1):7–25,
2017.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-
time code-based cryptography. In Cryptographic Hardware and Embedded
Systems - CHES 2013 - 15th International Workshop, Santa Barbara, CA,
USA, August 20-23, 2013. Proceedings, pages 250–272, 2013.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On
the inherent intractability of certain coding problems (corresp.). IEEE Trans.
Information Theory, 24(3):384–386, 1978.

https://bikesuite.org/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.ledacrypt.org/LEDAkem/
https://www.ledacrypt.org/LEDApkc/

202 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

[BS08] Bhaskar Biswas and Nicolas Sendrier. The Hybrid McEliece Encryp-
tion Scheme (HyMES). https://www.rocq.inria.fr/secret/CBCrypto/
index.php?pg=hymes, 2008. source code published.

[CCJ+16] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography. US Department of Commerce, National Institute of Standards
and Technology, 2016.

[CD10] Pierre-Louis Cayrel and Pierre Dusart. Mceliece/niederreiter pkc: Sensitivity
to fault injection. In 2010 5th International Conference on Future Information
Technology, pages 1–6. IEEE, 2010.

[CEvMS15a] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Differential power analysis of a mceliece cryptosystem. In Applied Cryptogra-
phy and Network Security - 13th International Conference, ACNS 2015, New
York, NY, USA, June 2-5, 2015, Revised Selected Papers, pages 538–556,
2015.

[CEvMS15b] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Masking large keys in hardware: A masked implementation of mceliece. In
Selected Areas in Cryptography - SAC 2015 - 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pages
293–309, 2015.

[CEvMS16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Horizontal and vertical side channel analysis of a mceliece cryptosystem.
IEEE Trans. Information Forensics and Security, 11(6):1093–1105, 2016.

[Cho16] Tung Chou. Qcbits: Constant-time small-key code-based cryptography.
In Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, pages 280–300, 2016.

[Cho17] Tung Chou. Mcbits revisited. In Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 213–231, 2017.

[CS16] Julia Chaulet and Nicolas Sendrier. Worst case QC-MDPC decoder for
mceliece cryptosystem. CoRR, abs/1608.06080, 2016.

[DGZ17] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros:
A simple, secure and efficient key exchange protocol based on coding theory.
In Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, pages 18–34,
2017.

[FGH16] Tomáš Fabšič, Ondrej Gallo, and Viliam Hromada. Simple power anal-
ysis attack on the QC-LDPC McEliece cryptosystem. Tatra Mountains
Mathematical Publications, 67(1):85–92, sep 2016.

[FGO+11] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. A distinguisher for high rate mceliece
cryptosystems. In 2011 IEEE Information Theory Workshop, ITW 2011,
Paraty, Brazil, October 16-20, 2011, pages 282–286, 2011.

https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 203

[GLP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13,
2006, Proceedings, pages 15–29, 2006.

[HMP10] Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis
attacks on software implementations of mceliece. In Post-Quantum Cryptog-
raphy, Third International Workshop, PQCrypto 2010, Darmstadt, Germany,
May 25-28, 2010. Proceedings, pages 108–125, 2010.

[Inca] NewAE Techonology Inc. ChipWhisperer-Lite. https://wiki.newae.com/
CW1173_ChipWhisperer-Lite.

[Incb] NewAE Techonology Inc. ChipWhisperer UFO. https://wiki.newae.com/
CW308T-STM32F.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, pages 104–113, 1996.

[LDW94] Yuan Xing Li, Robert H Deng, and Xin Mei Wang. On the equivalence of
mceliece’s and niederreiter’s public-key cryptosystems. IEEE Transactions
on Information Theory, 40(1):271–273, 1994.

[McE78] Robert J McEliece. A public-key cryptosystem based on algebraic coding
theory. Coding Thv, 4244:114–116, 1978.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,
1985, Proceedings, pages 417–426, 1985.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MSSS11] H. Gregor Molter, Marc Stöttinger, Abdulhadi Shoufan, and Falko Stren-
zke. A simple power analysis attack on a mceliece cryptoprocessor. J.
Cryptographic Engineering, 1(1):29–36, 2011.

[MTSB12] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. Mdpc-mceliece: New mceliece variants from moderate density
parity-check codes. IACR Cryptology ePrint Archive, 2012:409, 2012.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. Mdpc-mceliece: New mceliece variants from moderate density parity-
check codes. In Proceedings of the 2013 IEEE International Symposium on
Information Theory, Istanbul, Turkey, July 7-12, 2013, pages 2069–2073,
2013.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Prob. Control and Inf. Theory, 15(2):159–166, 1986.

[NIS97] NIST. AES Competition. http://csrc.nist.gov/archive/aes/, 1997.

https://wiki.newae.com/CW1173_ChipWhisperer-Lite
https://wiki.newae.com/CW1173_ChipWhisperer-Lite
https://wiki.newae.com/CW308T-STM32F
https://wiki.newae.com/CW308T-STM32F
http://csrc.nist.gov/archive/aes/

204 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

[NIS07] NIST. SHA-3 Competition. http://csrc.nist.gov/groups/ST/hash/sha-
3/, 2007.

[NIS16] NIST. Post-Quantum Cryptography. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography, 2016.

[NIS19] NIST. Post-Quantum Cryptography, Round 2 Submissions, NIST Com-
puter Security Resource Center. https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Round-2-Submissions, 2019.

[Pat75] Nicholas J. Patterson. The algebraic decoding of goppa codes. IEEE Trans.
Information Theory, 21(2):203–207, 1975.

[PRD+15] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel,
and Viktor Fischer. Countermeasure against the spa attack on an embedded
mceliece cryptosystem. In 2015 25th International Conference Radioelek-
tronika (RADIOELEKTRONIKA), pages 462–466. IEEE, 2015.

[PRD+16] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel,
and Viktor Fischer. Differential power analysis attack on the secure bit
permutation in the mceliece cryptosystem. In 2016 26th International Con-
ference Radioelektronika (RADIOELEKTRONIKA), pages 132–137. IEEE,
2016.

[RHHM17] Melissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson. A
side-channel assisted cryptanalytic attack against qcbits. In Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 3–23,
2017.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124–134,
1994.

[SS92] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based
on generalized Reed-Solomon codes. Discrete Mathematics and Applications,
2(4):439–444, 1992.

[SSMS09] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger.
A timing attack against patterson algorithm in the mceliece PKC. In
Information, Security and Cryptology - ICISC 2009, 12th International
Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers,
pages 161–175, 2009.

[STM+08] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Ab-
dulhadi Shoufan. Side channels in the mceliece PKC. In Post-Quantum
Cryptography, Second International Workshop, PQCrypto 2008, Cincinnati,
OH, USA, October 17-19, 2008, Proceedings, pages 216–229, 2008.

[Str10] Falko Strenzke. A timing attack against the secret permutation in the
mceliece PKC. In Post-Quantum Cryptography, Third International Work-
shop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings,
pages 95–107, 2010.

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 205

[Str11] Falko Strenzke. Message-aimed side channel and fault attacks against public
key cryptosystems with homomorphic properties. J. Cryptographic Engineer-
ing, 1(4):283–292, 2011.

[Str13] Falko Strenzke. Timing attacks against the syndrome inversion in code-
based cryptosystems. In Post-Quantum Cryptography - 5th International
Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings,
pages 217–230, 2013.

[vMG14a] Ingo von Maurich and Tim Güneysu. Lightweight code-based cryptography:
QC-MDPC mceliece encryption on reconfigurable devices. In Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE 2014, Dresden,
Germany, March 24-28, 2014, pages 1–6, 2014.

[vMG14b] Ingo von Maurich and Tim Güneysu. Towards side-channel resistant imple-
mentations of QC-MDPC mceliece encryption on constrained devices. In
Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014,
Waterloo, ON, Canada, October 1-3, 2014. Proceedings, pages 266–282, 2014.

206 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

A Constant-Time Multiplication
The Algorithm 4 is a detailed algorithm scheme for the Algorithm 1.

Algorithm 4 Constant-Time Multiplication in F2[x]/〈xr − 1〉 (refer to [Cho16])
Input : d = (dl−1, · · · , d0)2, 0 ≤ d ≤ r − 1, c(k) = (cL−1, · · · , c0)2W , L = dr/W e

Output : xdc(k)
1: v ← 0, w ← c(k), tail← r mod W
2: for i = l − 1 down to log2W do I word unit rotation is from 2 to 16
3: di ← (d� (l − 1− i)) & 1
4: mask ← 0− di

5: us← 1� (i− log2W)
6: ptr ← v, v ← w, w ← ptr
7: for j = 0 up to L− 1− us− 1 do
8: w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)
9: end for

10: w[L− 1− us]← ((v[L− 1] | (v[0]� tail)) & mask)⊕ (v[L− 1− us] & ¬mask)
11: for j = 1 up to us− 1 do
12: w[j + L− 1− us]← (((v[j]� tail) | (v[j − 1]� (W − tail))) & mask)
13: ⊕(v[j + L− 1− us] & ¬mask)
14: end for
15: w[L− 1]← ((v[us− 1]� (W − tail)) & mask)⊕ (v[L− 1] & ¬mask)
16: end for
17: low ← d & ((1� log2W)− 1) I bit rotation is from 17 to 30
18: mask ← ((low − 1)� (W − 1))− 1
19: high←W − low
20: tmp← w[0]
21: for j = 0 up to L− 3 do
22: w[j]← w[j]� low
23: w[j]← w[j] | ((w[j + 1]� high) & mask)
24: end for
25: w[L− 2]← w[L− 2]� low
26: w[L− 1]← w[L− 1] | (tmp� tail)
27: w[L− 2]← w[L− 2] | ((w[L− 1]� high) & mask)
28: w[L− 1]← w[L− 1]� low
29: w[L− 1]← w[L− 1] | ((tmp� high) & mask)
30: w[L− 1]← w[L− 1] & ((1� tail)− 1)
31: Return w

Toy example for the case r = 40,W = 8, a vector c(k) = (c0, c1, · · · , c39) ∈ F40
2 can be

represented as the polynomial c(k) = c0 + c1x+ c2x
2 + · · · c39x

39 ∈ F2[x]/〈x40 − 1〉. Let
the polynomial c(k) be

(x39+x38+x37+x36)+(x27+x26+x25+x24)+(x21+x20+x17+x16)+(x14+x12+x10+x8),

which can be expressed as a 5-byte array as below:

v[0] v[1] v[2] v[3] v[4]
(00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 207

Let d = 19; then it is represented by 6-bit (010011)2 because l = dlog2(40− 1)e = 6.
Since W = 8 and log2W = 3, it is possible to calculate the rotated intermediate values
using 8-bit word unit rotation for di from d5 to d3. For the last 3-bit, (d2, d1, d0)2 =
(011)2, a sequence of logical instructions is used, combining the most significant 5-bit of
v[i] and the least significant 3-bit of v[(i + 1) mod l]. Accordingly, the multiplication
xd = x(010011)2 = x0·25 · x1·24 · x0·23 · x(011)2 and c(k) is given by:

c(k) · (x0·25 · x1·24 · x0·23 · x(011)2) = ((((c(k) · x0·25) · x1·24) · x0·23) · x(011)2).

Firstly, the computation is started from the multiplication with x25 which can be
acquired by 4-byte left rotations. However, the d5 is 0, so the unrotated value is saved.

v[0] v[1] v[2] v[3] v[4]
unrotated (00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

rotated (00000000)2 (00001111)2 (11110000)2 (11001100)2 (10101010)2

Secondly, the multiplication with x24 can be acquired by 2-byte left rotations. Since
the d4 is 1, the rotated value is saved.

v[0] v[1] v[2] v[3] v[4]
unrotated (00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

rotated (11001100)2 (10101010)2 (00000000)2 (00001111)2 (11110000)2

Thirdly, the multiplication with x23 can be obtained by 1-byte left rotations. However,
the d3 is 0, so the unrotated value is saved.

v[0] v[1] v[2] v[3] v[4]
unrotated (11001100)2 (10101010)2 (00000000)2 (00001111)2 (11110000)2

rotated (10101010)2 (00000000)2 (00001111)2 (11110000)2 (11001100)2

Lastly, the multiplication with x(011)2 can be acquired by the sequence of logical
instructions which combines the most significant 5-bit of v[i] and the least significant 3-bit
of v[(i+ 1) mod l].

v[0] v[1] v[2] v[3] v[4]
rotated (01011001)2 (00010101)2 (11100000)2 (00000001)2 (10011110)2

208 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

B Experiment Results on a 32-bit Processor
B.1 Multiple-Trace Attack on the Word Unit Rotation
We measured 500 power consumption traces at 7.38 MS/s sampling rate when the Algo-
rithm 4 in Appendix A is operating on a ChipWhisperer UFO STM32F3 target board.
Figure 11 shows one of the power consumption traces.

Figure 11: Power consumption trace of the constant-time multiplication (W = 32)

Figure 12 shows the experimental proof of the attack methodology to find the most
significant bit dl−1 based on the New Property 1. Since L = 151, l = 13, and log2W = 5,
the steps 7 to 9 of the Algorithm 4 operate 22 times when d12. Thus, the first 22 patterns
in Figure 12(a) and Figure 12(b), marked from 0 to 21, are interesting domains. The
power consumption with regard to C0 occurs sequentially twice in the 1st iteration of the
steps 7 to 9 of the Algorithm 4 when d12 = 0, as shown in Figure 12(a). Contrariwise, the
power consumption with regard to C0 occurs once in the 1st iteration of the steps 7 to 9
of the Algorithm 4 when d12 = 1, as shown in Figure 12(b).

(a) d12 = 0 (b) d12 = 1

Figure 12: Comparison of correlation coefficient values based on d12 (New Property 1)

Figure 13 shows the attack results of d = (0101011001101)2. Each of the figures
is a magnification of the computational portion of the corresponding bit of Figure 11.
Figure 13(a) shows that the high correlation occurs sequentially twice in the steps 7 to
9 of the Algorithm 4 since d12 is 0. Figure 13(b) shows that the high correlation occurs
sequentially twice at a different position3 with d12, because d11 is 1. The same results can
be observed in Figure 13(d), Figure 13(f), and Figure 13(g). In contrast, Figure 4(c) shows
that the high correlation occurs sequentially twice in the same position with d11, because
d10 is 0. The same results can be observed in Figure 13(e) and Figure 13(h). Further,

3Two peaks will occur at 2i−log2W words left-rotated position, i.e. ((j−2i−log2W) mod L+
∨l−1

k=i+1 dk)-
th iteration when W cannot divide r.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 209

one can find the accurate secret bits (d12, d11, d10, d9, d8, d7, d6, d5) using the Algorithm 2.
The attack methodology for finding the remaining bits (d4, d3, d2, d1, d0) is described in
Subsection 4.2.

(a) d12 = 0 (b) d11 = 1

(c) d10 = 0 (d) d9 = 1

(e) d8 = 0 (f) d7 = 1

(g) d6 = 1 (h) d5 = 0

Figure 13: Finding d from d12 to d5 when d = (0101011001101)2 (New Property 2)

B.2 Multiple-Trace Attack on the Bit Rotation
Here, we demonstrate that the last 5-bit of d can be found by a 32-bit CPA. Using the
32-bit CPA implies that we only use 32-bit of intermediate data. The attack complexity is
25 when we target a 32-bit processor since we only need to find the last log232 = 5-bit of

210 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

d. Thus, the attack is feasible. Two PoIs can be identified, as shown in Figure 14(a). Even
if the CPA uses one of these PoIs, the last 5-bit (d4, d3, d2, d1, d0) of d can accurately be
derived. Figure 14(b) confirms that 50 traces are sufficient for the attack.

(a) Points of interest (b) 32-bit CPA results

Figure 14: Correlation power analysis results when d = (0101011001101)2

B.3 Single-Trace Attack on the Word Unit Rotation
The PoIs can be identified by calculating the SOST of the traces and then identifying the
location of the information-leaking point, as shown in Figure 15. In the figure, the eight
points with the high SOST values are where the ¬mask is loaded in the step 10 of the
Algorithm 4. Since L = 151, l = 13, and log2W = 5, the steps 7 to 9 of the Algorithm 4
operate 22 times when di = d12. Thus, we deduce that the point with the high SOST
value is the step 10 of the Algorithm 4, since it appears after the first 22 patterns which
are the steps 7 to 9 of the Algorithm 4 as shown in Figure 16.

Figure 15: The power consumption trace and the SOST values between two groups G1
and G2 of each di (W = 32)

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 211

Figure 16: The power consumption trace and the SOST values between two groups, G1
and G2, of each d12 (W = 32)

Figure 17: Distribution of PoIs which have the highest SOST value (New Property 4 and
New Property 5)

Figure 18: Finding d from d12 to d5 when d = (0101011000000)2 (New Property 4 and
New Property 5)

Figure 17 shows the distribution of points which have the highest SOST value, near
1615 points of Figure 15. Two distributions are clearly distinguished: one is when di = 0,
and the other is when di = 1. We use five points with the high SOST value as PoIs and

212 Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

select these points in the steps 1 to 3 of the Algorithm 3. Since we target the points
where the ¬mask is loaded, the average value when di = 0 is less that when di = 1 (see
Figure 17). Therefore, if the AV G2 is less than the AV G1 and di belongs to G2, then di

is 0. In contrast, if di belongs to G1, it is 1. Figure 8 shows the attack results. Hence, the
accurate secret bits (d12, d11, d10, d9, d8, d7, d6, d5) of indices can be found.

C Multiple-Trace Attack on the Word Unit Rotation Algo-
rithm Version 2

We can construct an attack methodology such as the Algorithm 5 because the word unit
rotation is not performed while

∑l−1
i di = 0, where log2W ≤ i ≤ l − 1.

Algorithm 5 Multiple-Trace Attack on the Word Unit Rotation (version 2)

Input : a trace set T = {T 1, · · · , TN} and an input value set C = {c1, c2, · · · , cN}
Output : (dl−1, dl−2, · · · , dlog2W)

1: Calculate the correlation coefficient between T and C0 = {c1[0], c2[0], · · · , cN [0]}
2: i← l
3: do I finding (dl−1, · · · , di)
4: i← i− 1
5: if the high correlation occurs twice at the 1st iteration then
6: di ← 0
7: else
8: di ← 1
9: end if

10: while di = 0
11: for i = i−1 down to log2W do I finding (di−1, · · · , dlog2W)
12: if the high correlation occurs twice at the same position (iteration) with di+1 then
13: di ← 0
14: else
15: di ← 1
16: end if
17: end for
18: Return (dl−1, dl−2, · · · , dlog2W)

	Introduction
	Preliminaries
	Basics of Coding Theory
	Side-Channel Attacks on QC-MDPC Code-Based Cryptography

	Related Works
	QcBits: Constant-Time Implementation of QC-MDPC Decoding
	A Side-Channel Assisted Cryptanalytic Attack on QcBits

	Proposed Multiple-Trace Attack on Constant-Time Multiplication for Syndrome Computation
	Multiple-Trace Attack on the Word Unit Rotation
	Multiple-Trace Attack on the Bit Rotation
	Comparison with the Previous Attack

	Proposed Single-Trace Attack on Constant-Time Multiplication for Syndrome Computation
	Single-Trace Attack on the Word Unit Rotation
	Single-Trace Attack on the Bit Rotation

	Case Study: NIST Round 2 Code-Based Cryptography
	Case Study: LEDAcrypt
	Case Study: BIKE

	Conclusion
	Constant-Time Multiplication
	Experiment Results on a 32-bit Processor
	Multiple-Trace Attack on the Word Unit Rotation
	Multiple-Trace Attack on the Bit Rotation
	Single-Trace Attack on the Word Unit Rotation

	Multiple-Trace Attack on the Word Unit Rotation Algorithm Version 2

