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Motivation

Why do we need hashes to elliptic curves?
® Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?
e Side channels (e.g., Dragonblood [VR19])

® Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?
e Widely used curve for ~120-bit security level
ww /K proofs, signatures, IBE, ABE, ...
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Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time
v Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
v/ 1.3-2x faster than prior constant-time hashes,
< 9% slower than non-CT deterministic hashes
== Open-source impls in C, Rust, Python, ...



Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results
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Notation

[F,, is the finite field of integers mod a prime p

H, : {0,1}* — F, modeled as a random oracle

E(F,) is the elliptic curve group with identity O
and points {(x,y) : x,y € F,, y> = x> + ax + b}
= multiplicative notation

G C E(F,) is a subgroup of prime order q.
#E(FF,) = hq; h is the cofactor.
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Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)
ctr <—ctr+1
ySq ¢+ x3+ax+ b
y < sqrt(ySq) // L if ySq is non-square
P (xy)
return P" // map to G via cofactor mul

Not constant time; “bad” inputs are easy to find.
X Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.
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Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P < M(t) /] By — E(F,)
return P" /] E(F,) — G

Possible issue: M is not a bijection: #E(F,) # p
i output distribution is nonuniform

This could be OK—but what if we need uniformity?
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Uniform hashing from deterministic maps
For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :
P M(H,(0|| msg))
Py = M(Hy(1]| msg))
P < P1 . P2

return Ph

i M needs to be well distributed: “not too lumpy”
v All of the M we've seen are well distributed.

s HashToCurve is indifferentiable from RO [MRHO5]
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2. Optimizing the map of [BCIMRT10]
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E:y?>=f(x)=x>+ax+b, ab#0.

ldea: pick x s.t. f(ux) = u3f(x).
= For u non-square € F,, f(x) or f(ux) is square.

wBx® 4 aux + b= u3(x® + ax + b)

=
x=—=|1+4+—
a us+u

i If p=3mod4, u= —t?is non-square, so:

Xo(t) £ —g (1 + 3 i t2> Xi(t) 2 —t2Xo(t)
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Evaluating the S-SWU map

a ) (Xo(2), /F(Xo(t))) if F(Xo(t)) is square
>roWU) = {(Xl(t), Vv f(X1(t))) otherwise

Attempt #1 (assume p = 3 mod 4):

xo < Xo(t)

Yo f(Xo)pTH // X expensive
X1 — —t°xg /] aka. Xy(t)
y1 f(Xl)pTJrl // X expensive

if y¢ = f(x0): return (xo, o)
else: return (xi, y1)

Requires two exponentiations! Can we do better?
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Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

Fx)+ = (—15F(x0)) "
p+1

=13 (—f(Xo) T =3 —f(Xo)

= We have f(x)% . Can we use this?

p+1

(F0)) " = ()" = Fl) - Fx0) "7

= —f(x) if f(xp) is non-square

v f(xo)pT+1 is \/—f(xg) when f(xp) is non-square!
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Evaluating the S-SWU map—faster!

Attempt #2 (assume p = 3 mod 4):

X0 < Xo(t)

Yo f(XO)(p+1)/4 // X expensive
X1 — —t°xg /] aka. Xy(t)
< 3y /] ¥ cheap!

if y& = f(x0): return (xo, o)
else: return (xi, y1)

v Prior work [BDLSY12] lets us avoid inversions.
v’ Straightforward to generalize to p = 1 mod 4.
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Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
s> Rules out pairing-friendly curves [BLS03,BN06,. . . |

Idea: map to a curve E' having ab # 0 and an
efficiently-computable homomorphism to E.

Specifically: Find E'(F,,) d-isogenous to E, d small.
i Defines a degree ~d rational map E'(F,) — E(F,)

Then: S-SWU to E'(F,), isogeny map to E(IF,).
v Preserves well-distributedness of S-SWU.



Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results
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Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F ).

For G; and G,, we implement:
Maps: hash-and-check; [SWO06]; this work
Styles: full bigint; field ops only, non-CT and CT
Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10° times: record #cycles.



BLS12-381 Gy, uniform hash function

time, kCycles (lower is better)

1000 A

800 A

600 -

400 1

200 A

319

965

712
564
459
389
348
M Full bigint
7 Field ops (non-CT)
Bl Field ops (CT)
: : I 2 | . |
H&C H&C SW This work

(worst 10%)
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Contributions:

v/ Optimizations to the map of [BCIMRT10]
v" “Indirect” approach to expand applicability
v Fast impls are simple and constant time

Result: hash-to-curve costs 1T exponentiation for
essentially any prime-field elliptic curve.
i State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or lcart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu



