Fast and simple constant-time hashing
to the BLS12-381 elliptic curve

(and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

August 26 2019

Motivation

Why do we need hashes to elliptic curves?

Motivation

Why do we need hashes to elliptic curves?
e Our initial motivation: BLS signatures [BLSO01]

Motivation

Why do we need hashes to elliptic curves?
e Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Motivation

Why do we need hashes to elliptic curves?
® Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

Motivation

Why do we need hashes to elliptic curves?
e Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?
e Side channels (e.g., Dragonblood [VR19])

Motivation

Why do we need hashes to elliptic curves?
e Our initial motivation: BLS signatures [BLSO1]

® Also: VREs, fixed-modulus arithmetic only

Why|simple|and constant timer
e Side channels (e.g., Dragonblood [VR19])

Motivation

Why do we need hashes to elliptic curves?
® Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?
e Side channels (e.g., Dragonblood [VR19])

® Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Motivation

Why do we need hashes to elliptic curves?
® Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?
e Side channels (e.g., Dragonblood [VR19])

® Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

e Widely used curve for ~120-bit security level

Motivation

Why do we need hashes to elliptic curves?
® Our initial motivation: BLS signatures [BLSO01]
e Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?
e Side channels (e.g., Dragonblood [VR19])

® Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?
e Widely used curve for ~120-bit security level
ww /K proofs, signatures, IBE, ABE, ...

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time
v Applies to essentially any prime-field curve

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time
v Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time
v Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
v/ 1.3-2x faster than prior constant-time hashes,
< 9% slower than non-CT deterministic hashes

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
v/ On par with the fastest existing maps
v Fast impls are simple and constant time
v Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
v/ 1.3-2x faster than prior constant-time hashes,
< 9% slower than non-CT deterministic hashes
== Open-source impls in C, Rust, Python, ...

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

Notation

[F,, is the finite field of integers mod a prime p

Notation

[F,, is the finite field of integers mod a prime p

H, : {0,1}* — F, modeled as a random oracle

Notation

[F,, is the finite field of integers mod a prime p

H, : {0,1}* — F, modeled as a random oracle

E(F,) is the elliptic curve group with identity O
and points {(x,y) : x,y € F,, y> = x> + ax + b}
= multiplicative notation

Notation

[F,, is the finite field of integers mod a prime p

H, : {0,1}* — F, modeled as a random oracle

E(F,) is the elliptic curve group with identity O
and points {(x,y) : x,y € F,, y> = x> + ax + b}
= multiplicative notation

G C E(F,) is a subgroup of prime order q.
#E(FF,) = hq; h is the cofactor.

Hash and check

HashToCurvepgc(msg):
ctr <0
y <+ L1
while y = L:

x <— Hp(ctr || msg)

ctr <—ctr+1

ySq ¢+ x3+ax+ b

y < sqrt(ySq) // L if ySq is non-square
P—(xy)
return P" // map to G via cofactor mul

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

X — Hp(ctr || msg)
ctr <—ctr+1
ySq ¢+ x3+ax+ b
y < sqrt(ySq) // L if ySq is non-square
P (xy)
return P" // map to G via cofactor mul

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)

ctr <—ctr+1

ySq <+ x3+ax+ b

y < sqrt(ySq) /] L if ySq is non-square
P+ (x,y)
return P" // map to G via cofactor mul

s E(Fp) = {(x,y) i x,y € Fp,y* = x>+ ax + b}

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)
ctr <—ctr+1
ySq ¢+ x3+ax+ b
y < sqrt(ySq) // L if ySq is non-square
P (xy)
return P” // map to G via cofactor mul

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)

ctr <—ctr+1

ySq ¢+ x3+ax+ b

y < sqrt(ySq) // L if ySq is non-square
P—(xy)
return P" // map to G via cofactor mul

Not constant time; “bad” inputs are easy to find.

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)

ctr <—ctr+1

ySq ¢+ x3+ax+ b

y < sqrt(ySq) // L if ySq is non-square
P—(xy)
return P" // map to G via cofactor mul

Not constant time; “bad” inputs are easy to find.
Loop a fixed number of times?

Hash and check

HashToCurvepgc(msg):
ctr <0
y+— L
while y = L:

x <— Hp(ctr || msg)
ctr <—ctr+1
ySq ¢+ x3+ax+ b
y < sqrt(ySq) // L if ySq is non-square
P (xy)
return P" // map to G via cofactor mul

Not constant time; “bad” inputs are easy to find.
X Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M | Restrictions Cost

[BFO1] | p=2mod3,a=0 |lexp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M | Restrictions Cost

[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWU [Ulas07] p=3mod4,ab+#0|3exp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWU [Ulas07] p=3mod4,ab+#0|3exp
[Icart09] p=2mod3 1 exp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWU [Ulas07] p=3mod4,ab+#0|3exp
[Icart09] p=2mod3 1 exp
SSWU [BCIMRT10]| p=3mod4, ab+0 |2 exp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWU [Ulas07] p=3mod4,ab+#0|3exp
[Icart09] p=2mod3 1 exp
SSWU [BCIMRT10]| p=3mod4, ab+£0|2 exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWu [Ulas07] p=3mod4 ab#0|3exp
[Icart09] p=2mod3 1 exp
S-SWU IBCIMRT10] | p=3mod4,ab#0|2exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWu [Ulas07] p=3mod4 ab#0|3exp
[Icart09] p=2mod3 1 exp

S-SWU IBCIMRT10] | p=3mod4,ab#0|2exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp

This work ab#0 1 exp
none 1T exp

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] p=2mod3,a=0 |1exp

[SWO06] none 3 exp

SWU [Ulas07] p=3mod4,ab+#0|3exp
[Icart09] p=2mod3 1 exp

S-SWU IBCIMRT10] | p=3mod4,ab#0|2exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp
This work ab#0 1 exp
none 1T exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] Xp=2mod3,a=0 |1exp

[SWO06] none 3 exp

SWU [Ulas07] p=3mod4,ab+#0|3exp
[Icart09] X p=2mod3 1 exp

SSWU [BCIMRT10]| p=3mod4, ab+£0|2 exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp
This work ab#0 1 exp
none 1T exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] Xp=2mod3,a=0 |1exp

[SWO06] none 3 exp

SWuU [Ulas07] Xp=3mod4 ab+#0|3exp
[Icart09] X p=2mod3 1 exp

S-SWU [BCIMRT10] |X p=3mod 4, ab+#0 |2 exp
Elligator [BHKL13] b#0,2|#E(F,) 1 exp
This work ab#0 1 exp
none 1T exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] Xp=2mod3,a=0 |1exp
[SWO06] none 3 exp
SWuU [Ulas07] Xp=3mod4 ab+#0|3exp
[Icart09] X p=2mod3 1 exp

SSSWU [BCIMRTL0] |X p=3mod 4,ab#0| 2 exp
Elligator [BHKL13] X b#0,2|#E(F)) 1 exp

This work ab#0 1 exp
none 1T exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] Xp=2mod3,a=0 |1exp
[SWO06] v none 3 exp
SWuU [Ulas07] Xp=3mod4,ab#0|3exp
[Icart09] X p=2mod3 1 exp

SSSWU [BCIMRTL0] |X p=3mod 4,ab#0| 2 exp
Elligator [BHKL13] X b#0,2|#E(F)) 1 exp

This work ab#0 1 exp
none 1T exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves
M :TF, — E(F,), where E : y> = x>+ ax + b and p > 5:

Map M Restrictions Cost
[BFO1] Xp=2mod3,a=0 |1exp
[SWO06] v none 3 exp
SWuU [Ulas07] Xp=3mod4,ab#0|3exp
[Icart09] X p=2mod3 1 exp

SSSWU [BCIMRTL0] |X p=3mod 4,ab#0| 2 exp
Elligator [BHKL13] X b#0,2|#E(F)) 1 exp

This work X ab#0 1 exp
v/ none 1t exp

BLS12-381: p=1mod3, a=0, 2{#E(F,)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Farll,FT12,FJT13,BLMP19. . .]

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P« M(t) /] ¥, — E(F,)

return P" /] E(F,) — G

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) /] {0,1}* =T,
P« M(t) /] ¥, — E(F,)

return P" /] E(F,) — G

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P <« M(t) /] Fp— E(F,)

return P" /] E(F,) — G

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P < M(t) /] Fp— E(F,)

return P” /] E(F,) — G

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P < M(t) /] By — E(F,)
return P" /] E(F,) — G

Possible issue: M is not a bijection: #E(F,) # p
i output distribution is nonuniform

Hash functions from deterministic maps

Compose H, and M in a natural way:

HashToCurveyy(msg) :
t <— Hp(msg) //{0,1}* - F,
P < M(t) /] By — E(F,)
return P" /] E(F,) — G

Possible issue: M is not a bijection: #E(F,) # p
i output distribution is nonuniform

This could be OK—but what if we need uniformity?

Uniform hashing from deterministic maps
For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :
Py M(H,(0 || msg))
Py = M(Hy(1]| msg))
P+ P P

return Ph

Uniform hashing from deterministic maps
For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :
P1 <= M(H,(0 || msg))
Py = M(Hy(1]| msg))
P+ P P

return Ph

i M needs to be well distributed: “not too lumpy”
v All of the M we've seen are well distributed.

Uniform hashing from deterministic maps
For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :
P M(H,(0|| msg))
Py = M(Hy(1]| msg))
P < P1 . P2

return Ph

i M needs to be well distributed: “not too lumpy”
v All of the M we've seen are well distributed.

s HashToCurve is indifferentiable from RO [MRHO5]

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

The Simplified SWU map [BCIMRT10]
E:y?>=f(x)=x>+ax+b, ab#0.

ldea: pick x s.t. f(ux) = u3f(x).
= For u non-square € F,, f(x) or f(ux) is square.

The Simplified SWU map [BCIMRT10]
E:y?>=f(x)=x>+ax+b, ab#0.

ldea: pick x s.t. f(ux) = u3f(x).
= For u non-square € F,, f(x) or f(ux) is square.

wBx® 4 aux + b= u3(x® + ax + b)

=
x=—=|1+4+—
a us+u

The Simplified SWU map [BCIMRT10]
E:y?>=f(x)=x>+ax+b, ab#0.

ldea: pick x s.t. f(ux) = u3f(x).
= For u non-square € F,, f(x) or f(ux) is square.

wBx® 4 aux + b= u3(x® + ax + b)

=
x=—=|1+4+—
a us+u

i If p=3mod4, u= —t?is non-square

The Simplified SWU map [BCIMRT10]
E:y?>=f(x)=x>+ax+b, ab#0.

ldea: pick x s.t. f(ux) = u3f(x).
= For u non-square € F,, f(x) or f(ux) is square.

wBx® 4 aux + b= u3(x® + ax + b)

=
x=—=|1+4+—
a us+u

i If p=3mod4, u= —t?is non-square, so:

Xo(t) £ —g (1 + 3 i t2> Xi(t) 2 —t2Xo(t)

Evaluating the S-SWU map

a) (Xo(2), /F(Xo(t))) if F(Xo(t)) is square
>roWU) = {(Xl(t), Vv f(X1(t))) otherwise

Evaluating the S-SWU map

A {(Xo(w, VFC(E)) if F(Xo(t)) is square
S-SWU(t) = _
(X1(t), v/f(X1(t))) otherwise
Attempt #1 (assume p = 3 mod 4):

Xp < Xo(t)

Yo < f(XO)pTH // X expensive
X1 — —t°xg /] aka. Xy(t)
1< f(Xl)%1 /] X expensive

if y¢ = f(x0): return (xo, o)
else: return (xi, y1)

Evaluating the S-SWU map

a) (Xo(2), /F(Xo(t))) if F(Xo(t)) is square
>roWU) = {(Xl(t), Vv f(X1(t))) otherwise

Attempt #1 (assume p = 3 mod 4):

xo < Xo(t)

Yo < f(XO)pTJr1 // X expensive
X1 4 —t?Xg // aka. X(t)
y1 f(Xl)pT‘1 // X expensive

if y¢ = f(x0): return (xo, o)
else: return (xi, y1)

Evaluating the S-SWU map

a) (Xo(2), /F(Xo(t))) if F(Xo(t)) is square
>roWU) = {(Xl(t), Vv f(X1(t))) otherwise

Attempt #1 (assume p = 3 mod 4):

xo < Xo(t)

Yo < f(XO)pTJr1 // X expensive
X1 — —t°xg /] aka. Xy(t)
y1 f(Xl)%1 /] X expensive

if y02 — f(xo): return (Xo,yo)
else: return (xi, y1)

Evaluating the S-SWU map

a) (Xo(2), /F(Xo(t))) if F(Xo(t)) is square
>roWU) = {(Xl(t), Vv f(X1(t))) otherwise

Attempt #1 (assume p = 3 mod 4):

xo < Xo(t)

Yo f(Xo)pTH // X expensive
X1 — —t°xg /] aka. Xy(t)
y1 f(Xl)pTJrl // X expensive

if y¢ = f(x0): return (xo, o)
else: return (xi, y1)

Requires two exponentiations! Can we do better?

Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

1 p+1
pt =

I((Xl)T = (—t6f(X0))

Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

Fx)5 = (—t(x)) ™

+1
b= 3

= 3 (—f(Xo)) o=t —f(Xo)

Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

1 p+1
Pt =

I((Xl)T = (—t6f(X0))
ot 3

= 3 (—f(Xo)) o=t —f(Xo)

= We have f(x)% . Can we use this?

Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

Fx)+ = (—15F(x0)) "
p+1

=13 (—f(Xo) T =3 —f(Xo)

= We have f(x)% . Can we use this?

(F0)) " = ()" = Fl) - Fx0) "7

Eliminating an exponentiation
Recall: f(x1) = —t°f(xp). So:
)" = (—(x)) *

+1
& 3

= 83 (—f(30))" = 3/ F(x0)

s= We have f(xp)" . Can we use this?

(Foa ™) = #00)"' = F(30) {£00) ™

@

Legendre symbol!

Eliminating an exponentiation
Recall: f(x;) = —t°f(xg). So:

Fx)+ = (—15F(x0)) "
p+1

=13 (—f(Xo) T =3 —f(Xo)

= We have f(x)% . Can we use this?

p+1

(F0)) " = ()" = Fl) - Fx0) "7

= —f(x) if f(xp) is non-square

v f(xo)pT+1 is \/—f(xg) when f(xp) is non-square!

Evaluating the S-SWU map—faster!

Attempt #2 (assume p = 3 mod 4):

X0 < Xo(t)

Yo f(XO)(p+1)/4 // X expensive
X1 — —t°xg /] aka. Xy(t)
yi < tyg /] v cheap!

if y& = f(x0): return (xo, o)
else: return (xi, y1)

Evaluating the S-SWU map—faster!

Attempt #2 (assume p = 3 mod 4):

X0 < Xo(t)

Yo f(XO)(p+1)/4 // X expensive
X1 — —t°xg /] aka. Xy(t)
Y1 By /] v cheap!

if y& = f(x0): return (xo, o)
else: return (xi, y1)

v Prior work [BDLSY12] lets us avoid inversions.

Evaluating the S-SWU map—faster!

Attempt #2 (assume p = 3 mod 4):

X0 < Xo(t)

Yo f(XO)(p+1)/4 // X expensive
X1 — —t°xg /] aka. Xy(t)
< 3y /] ¥ cheap!

if y& = f(x0): return (xo, o)
else: return (xi, y1)

v Prior work [BDLSY12] lets us avoid inversions.
v’ Straightforward to generalize to p = 1 mod 4.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
s> Rules out pairing-friendly curves [BLS03,BNO06,. . . |

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
s> Rules out pairing-friendly curves [BLS03,BN06,. . . |

Idea: map to a curve E' having ab # 0 and an
efficiently-computable homomorphism to E.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
s> Rules out pairing-friendly curves [BLS03,BN06,. . . |

Idea: map to a curve E' having ab # 0 and an
efficiently-computable homomorphism to E.

Specifically: Find E'(F,,) d-isogenous to E, d small.
i Defines a degree ~d rational map E'(F,) — E(F,)

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
s> Rules out pairing-friendly curves [BLS03,BN06,. . . |

Idea: map to a curve E' having ab # 0 and an
efficiently-computable homomorphism to E.

Specifically: Find E'(F,,) d-isogenous to E, d small.
i Defines a degree ~d rational map E'(F,) — E(F,)

Then: S-SWU to E'(F,), isogeny map to E(IF,).
v Preserves well-distributedness of S-SWU.

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F).

Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F).

For G; and G,, we implement:
Maps: hash-and-check; [SWO06]; this work
Styles: full bigint; field ops only, non-CT and CT
Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F).

For G; and G,, we implement:
Maps: hash-and-check; [SWO06]; this work
Styles: full bigint; field ops only, non-CT and CT
Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F).

For G; and G,, we implement:
Maps: hash-and-check; [SWO06]; this work
Styles: full bigint; field ops only, non-CT and CT
Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Implementation, baselines, setup, method

BLS12-381 defines G; C E(FF,) and G, C Ey(F).

For G; and G,, we implement:
Maps: hash-and-check; [SWO06]; this work
Styles: full bigint; field ops only, non-CT and CT
Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10° times: record #cycles.

BLS12-381 Gy, uniform hash function

time, kCycles (lower is better)

1000 A

800 A

600 -

400 1

200 A

319

965

712
564
459
389
348
M Full bigint
7 Field ops (non-CT)
Bl Field ops (CT)
: : I 2 | . |
H&C H&C SW This work

(worst 10%)

Recap and conclusion

Contributions:

v/ Optimizations to the map of [BCIMRT10]
v" “Indirect” approach to expand applicability
v Fast impls are simple and constant time

Recap and conclusion

Contributions:

v/ Optimizations to the map of [BCIMRT10]
v" “Indirect” approach to expand applicability
v Fast impls are simple and constant time

Result: hash-to-curve costs 1T exponentiation for
essentially any prime-field elliptic curve.

Recap and conclusion

Contributions:

v/ Optimizations to the map of [BCIMRT10]
v" “Indirect” approach to expand applicability
v Fast impls are simple and constant time

Result: hash-to-curve costs 1T exponentiation for
essentially any prime-field elliptic curve.
i State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or lcart.

Recap and conclusion

Contributions:

v/ Optimizations to the map of [BCIMRT10]
v" “Indirect” approach to expand applicability
v Fast impls are simple and constant time

Result: hash-to-curve costs 1T exponentiation for
essentially any prime-field elliptic curve.
i State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or lcart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

