
Fast and simple constant-time hashing
to the BLS12-381 elliptic curve

Riad S. Wahby and Dan Boneh

Stanford University
rsw@cs.stanford.edu, dabo@cs.stanford.edu

Abstract. Pairing-friendly elliptic curves in the Barreto-Lynn-Scott family are seeing
a resurgence in popularity because of the recent result of Kim and Barbulescu
that improves attacks against other pairing-friendly curve families. One particular
Barreto-Lynn-Scott curve, called BLS12-381, is the locus of significant development
and deployment effort, especially in blockchain applications. This effort has sparked
interest in using the BLS12-381 curve for BLS signatures, which requires hashing to
one of the groups of the bilinear pairing defined by BLS12-381.
While there is a substantial body of literature on the problem of hashing to elliptic
curves, much of this work does not apply to Barreto-Lynn-Scott curves. Moreover,
the work that does apply has the unfortunate property that fast implementations are
complex, while simple implementations are slow.
In this work, we address these issues. First, we show a straightforward way of
adapting the “simplified SWU” map of Brier et al. to BLS12-381. Second, we describe
optimizations to this map that both simplify its implementation and improve its
performance; these optimizations may be of interest in other contexts. Third, we
implement and evaluate. We find that our work yields constant-time hash functions
that are simple to implement, yet perform within 9% of the fastest, non–constant-time
alternatives, which require much more complex implementations.
Keywords: pairing-friendly · elliptic curves · hashing · Barreto-Lynn-Scott · BLS12-381

1 Introduction
The Barreto-Lynn-Scott family of pairing-friendly elliptic curves [BLS03], and in particular
the elliptic curve BLS12-381 [Bow17] (§2.1), has recently seen widespread adoption (e.g.,
in pairing-based SNARKs [GGPR13, PHGR13, BCTV14, Gro16]), largely because of the
recent result of Kim and Barbulescu [KB16] that speeds up attacks on the discrete log
problem in finite field extensions (for more information, see [MSS16]).

The availability of high-quality BLS12-381 implementations combined with the desire
for aggregatable signatures [BGLS03] has sparked interest [Chi, Eth, BGWZ19, YKS19]
in using BLS12-381 for BLS signatures [BLS01] (§2.2). The BLS signature scheme requires
a hash function to points in a prime-order subgroup of a pairing-friendly curve. For this
purpose, the authors suggest a method based on folklore that they call MapToGroup [BLS01,
§3.3] (we call this method “hash-and-check”), which works roughly as follows: pick a random
element in the elliptic curve’s base field and check whether it is the x-coordinate of a
rational point on the curve. If it is, return that point, otherwise try again.

While hash-and-check is simple to implement and fast in expectation, it is not without
downsides. Most importantly, it is not possible to make hash-and-check run in constant
time—that is, time independent of the hash input—with both good performance and
low failure probability. For BLS signatures, a constant-time hash function is not strictly
necessary for security. On the other hand, because hash-and-check on a random message

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 4, pp. 154–179
DOI:10.13154/tches.v2019.i4.154-179

mailto:rsw@cs.stanford.edu
mailto:dabo@cs.stanford.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i4.154-179

Riad S. Wahby and Dan Boneh 155

takes k checks with probability ≈2−k, it is relatively easy to (accidentally or adversarially)
choose messages that are difficult to hash, which wastes verifiers’ and signers’ time.
Moreover, in practice cryptographic primitives often see “mission creep,” meaning that a
constant-time hash function is desirable as a defense against future (mis)use.

Several lines of work in both the number theory and cryptography literature have
considered the problem of deterministically mapping to rational points on elliptic curves;
we briefly survey in Section 1.1. Unfortunately, most of these constructions do not apply
to BLS12-381, because they are restricted to, e.g., elliptic curves of particular shapes or
over base fields of specific characteristic.

One exception is the seminal work of Shallue and van de Woestijne [SvdW06] (§2.3),
which applies to essentially any elliptic curve. This map can be used for BLS12-381, but
fast implementations are complex, while simple ones are slow—especially for constant-
time implementations or for embedded applications that rely on special-purpose field
arithmetic accelerators (§6). At a high level, this is because evaluating the map requires
evaluating Legendre symbols, for which the simple algorithm is an exponentiation (which
is expensive) while the fast algorithm involves reductions modulo essentially random
integers [Coh93, §1.4.2] (which entails substantial implementation complexity for good
performance). Fouque and Tibouchi give an explicit construction tailored to the Barreto-
Naehrig curve family, but it is undefined at several points when applied to BLS12-381,
further increasing complexity (i.e., to detect and handle the undefined cases) and making
implementations with input-independent runtime yet more difficult.

Ulas [Ula07] describes a simpler version of the Shallue–van de Woestijne map; Brier
et al. [BCI+10, §7] give a further simplification and name it the “simplified SWU” map.
This map is attractive because it has somewhat reduced computational cost and is easier
to describe and implement compared to the original Shallue–van de Woestijne map. But
it only applies to curves with j-invariant 6∈ {0, 1728}, almost surgically preventing its
application to most pairing-friendly curve families (including Barreto-Lynn-Scott), which
have j-invariant either 0 or 1728 for efficiency reasons [BN06, HSV06].

A second issue is that the description by Brier et al. is (somewhat artificially) restricted
to curves over fields F where #F ≡ 3 mod 4, meaning that it does not apply to curves
over extension fields of even degree (since p2k ≡ 1 mod 4). This is a concern because, for
Barreto-Lynn-Scott and other pairing-friendly curves, one group of the bilinear pairing is a
subgroup of an elliptic curve over an even-order extension field (for BLS12-381, a quadratic
extension; §2.1). Thus, the simplified SWU map as described does not work for this group.

Our contributions. We show that careful design choices and optimizations yield hash
functions that admit fast, simple, and constant-time implementations. Our focus is on the
BLS12-381 elliptic curve, but we describe our design methods and optimizations with an
eye to straightforward application to other curves. Our specific contributions are:

• In Section 3, we give explicit Shallue and van de Woestijne maps tailored to the
BLS12-381 curve. We also describe a simple method for designing exception-free
maps of this type, which applies generically to other elliptic curves.

• In Section 4, we give “indirect” maps for BLS12-381 based on the simplified SWU
map, which work by mapping to an isogenous curve with nonzero j-invariant, then
evaluating the isogeny map. To do so, we extend the simplified SWU map to
#F ≡ 1 mod 4, and thus to even-order extension fields. We also describe several
optimizations that make the SWU map simpler to implement and faster to evaluate,
including in constant time. Our optimizations apply generically, and can be used to
speed up any implementation of the simplified SWU map.

• In Section 5 we describe explicit hash functions built on the above maps, based on
known constructions. We briefly discuss security and efficiency in our context.

156 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

• In Section 6, we implement and evaluate.
We find that, for implementations built on a rich multi-precision library like GMP [GMP]
(in particular, one that supports fast reductions modulo arbitrary integers, and pro-
vides fast Legendre symbol and extended Euclidean algorithms), hashes using the
map of Section 3 are up to ≈9% faster than hashes that use the map of Section 4.
For implementations restricted to using only field operations—typical restrictions
for small cryptographic libraries or for compatibility with hardware accelerators
(§6)—hashes that use the map of Section 4 are ≈1.3–2× faster than hashes that
use the map of Section 3. More surprisingly, our optimizations yield constant-time
hashes based on the map of Section 4 that are at worst ≈9% slower than the fastest
non–constant-time implementations of the Section 3 map.

1.1 Related work
Deterministic maps to rational points on elliptic curves. Schinzel and Skałba [SS04] give
the first deterministic method of constructing rational points on elliptic curves. For curves
E(F) : y2 = xn +k with x ∈ {3, 4} and F of characteristic greater than 3, their construction
yields at most four points, which are parameterized by k. Skałba [Ska05] subsequently
gives a more general construction for points on curves of the form E(F) : y2 = x3 + ax+ b
where a 6= 0 and F has characteristic greater than 3.

Shallue and van de Woestijne [SvdW06] generalize and simplify Skałba’s construction,
giving concretely efficient rational maps to essentially any elliptic curve. Ulas [Ula07]
further simplifies the construction, at the cost of restricting it to curves of the form
E(Fp) : y2 = x3 + ax + b, ab 6= 0, i.e., curves with j-invariant 6∈ {0, 1728}; the author
also generalizes the results to some hyperelliptic curves. Brier et al. [BCI+10] give yet a
further simplification, and Fouque and Tibouchi [FT10] tweak this version to simplify their
analysis of the size of its image. In Section 4, we further optimize this map. Fouque and
Tibouchi [FT12] also analyze the original construction of Shallue and van de Woestijne
specifically for the case of Barreto-Naehrig curves [BN06]; in Section 3, we give a very
similar construction tailored to the BLS12-381 curve.

Icart [Ica09] describes a different approach for elliptic curves over fields of characteristic
p ≡ 2 mod 3, for which Farashahi et al. [FSV09] and Fouque and Tibouchi [FT10] give
improved analyses. Kammerer et al. [KLR10] generalize this approach to Hessian curves
and certain hyperelliptic curves. Farashahi [Far11] also independently gives a map to
Hessian curves based on Icart’s approach. Couveignes and Kammerer [CK11] give a further
generalization to an infinite family of such maps. Because of their restriction on field
characteristic, none of these maps apply to BLS12-381.

Following the work of Farashahi [Far11], Fouque et al. [FJT13] study injective encodings
to elliptic curves. Their results apply to curves E(Fp), p ≡ 3 mod 4 with 4 |#E(Fp).
Bernstein et al. [BHKL13] extend this work, giving a related encoding to all curves over
fields of odd characteristic having a point of order 2. All of these restrictions rule out
application to BLS12-381.

Hash functions to curves as random oracles. Brier et al. [BCI+10] study hash functions
to elliptic curves in the indifferentiability framework of Maurer et al. [MRH04].1 The authors
build two indifferentiable hash functions by composing random oracles H : {0, 1}? → F
with deterministic maps F→ E(F). Their first construction is tailored to Icart’s map; the
second applies to essentially all known deterministic maps, but is roughly five times more
costly to evaluate. We describe and evaluate both constructions in Sections 5 and 6.

1Informally, an implementation is indifferentiable from an ideal primitive if no PPT Turing machine
can distinguish between the two with non-negligible probability, even with access to internals of the
implementation. This generalization of indistinguishability sidesteps certain impossibility results.

Riad S. Wahby and Dan Boneh 157

More recently, Farashahi et al. [FFS+13] give a new analysis showing that the more
efficient hash construction of Brier et al. is indifferentiable from a random oracle for
essentially any deterministic map. Fouque and Tibouchi [FT12] give a different analysis for
a particular version of the map of Shallue and van de Woestijne tailored to Barreto-Naehrig
curves. Both of the above analyses apply to the maps of Sections 3 and 4.

Kim and Tibouchi [KT15] further improve the analyses of Brier et al. and Farashahi et
al. Notably, they refine the analysis of the costlier of the two maps of Brier et al., adding a
degree of freedom that allows implementers to trade off cost and security. We describe and
evaluate hashes based on this construction in Sections 5 and 6. They also show that replacing
the random oracle H in the constructions of Brier et al. with Ĥ : {0, 1}? → {0, 1}blog #Fc

preserves indifferentiability with little security loss; this improves efficiency.

Fast cofactor multiplication when hashing to G2. Barreto-Lynn-Scott curves define
two groups G1 and G2, where #G1 = #G2, G1 is a subgroup of E1(Fp), and G2 is a
subgroup of E2(Fp2k) (k = 1 for BLS12-381). Hasse’s theorem [Has] dictates that the
cofactor is much larger for E2(Fp2k) than for E1(Fp), so exponentiating by this cofactor to
obtain an element of G2 is much costlier than the corresponding computation for G1.

Scott et al. [SBC+09] show how to reduce this cost by exploiting efficiently-computable
endomorphisms, building on prior methods [GLV01, IMCT02, GS08]. Fuentes-Castañeda et
al. [FKR12] describe another approach exploiting the same endomorphism, reducing costs
for some curves. Budroni and Pintore [BP17] study both methods for Barreto-Lynn-Scott
curves and give explicit constructions, which all of our hashes to G2 (§5) use.

2 Background
Notation. We write E(F) for the group (in multiplicative notation) of rational points on
elliptic curve E over field F of order #E(F). a || b is the concatenation of a and b.

χ(·) is a quadratic character. For α ∈ Fp, this is the Legendre symbol, which can be
computed as α(p−1)/2. For δ ∈ Fp2 , this can be computed as δ(p2−1)/2 = (δpδ)(p−1)/2, i.e.,
the Legendre symbol of the norm ‖δ‖. For any field F, ∀ρ, τ ∈ F, χ(ρ · τ) = χ(ρ) · χ(τ).

Sgn0(β) is a function that returns the “sign” of β. For β ∈ Fp, let Sgn0(β) = −1
if β > (p− 1)/2, and 1 otherwise. For γ = γ0 + γ1

√
d ∈ Fp2 , Fp[

√
d]/(x2 − d), let

Sgn0(γ) = Sgn0(γ1) if γ1 6= 0, and Sgn0(γ0) otherwise.
We regard the square root in F as a function, so we fix a canonical representation. For

Fp, p ≡ 3 mod 4,
√
α , α(p+1)/4 ∈ Fp. Otherwise, β ,

√
α ∈ F such that Sgn0(β) = 1.

Jacobian coordinates. It is often convenient to represent points (x, y) on E(F) in Jacobian
projective coordinates (X : Y : Z), which are defined as follows:

(x, y) 7→ (x : y : 1) (X : Y : Z) 7→ (X/Z2, Y/Z3)

Projective coordinates are generally useful to avoid computing inversions, and Jacobian
coordinates give some of the fastest group operations for this curve shape [EFD]. Moreover,
the point addition law in this representation is independent of the coefficients of the curve
equation. Looking ahead, this fact will be useful for SWU-based hash functions (§4, §5).

2.1 The BLS12-381 elliptic curve
Barreto-Lynn-Scott curves [BLS03] are a pairing-friendly family with j-invariant = 0,
parameterized by a value z ≡ 1 mod 3 (see also [FST10, AFK+13]). BLS12-381 [Bow17]
is a member of this family with parameter z = −0xd201000000010000 that defines the
following bilinear group pair G1, G2 [BLS01, Definition 2.2]:

158 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

G1 is the order-q subgroup of E1(Fp) : y2 = x3 + 4, #E1(Fp) = h1q, where

p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f624

1eabfffeb153ffffb9feffffffffaaab = z +
(
z4 − z2 + 1

)
(z − 1)2

/3
q = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

= z4 − z2 + 1
h1 = 0x396c8c005555e1568c00aaab0000aaab = (z − 1)2

/3

G2 is the order-q subgroup of E2(Fp2) : y2 = x3+4(1+
√
−1), where Fp2 , Fp[

√
−1]/(x2+1).

#E2(Fp2) = h2q, where

h2 = 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa

628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5

2.2 BLS signatures
This description follows the one due to Boneh et al. [BLS01]; it uses the following primitives:

• G1 and G2 are cyclic groups of prime order q with generators g1 and g2, respectively.

• ψt : G2 → G1 is an efficiently computable isomorphism with ψt(g2) = g1. If such a
ψt does not exist, a stronger assumption is necessary for security [BDN18].

• e : G1 ×G2 → GT is a bilinear map.

• The groups G1, G2 and the maps ψt, e comprise a bilinear group pair.

• H : {0, 1}? → G1 is a hash function modeled as a random oracle.

The BLS signature scheme is the triple of algorithms (genBLS, signBLS, verifyBLS) defined as

genBLS()→ (pk, sk) : Sample x ←R {0, . . . , q − 1}, compute gx
2 ∈ G2, and output

(gx
2 , x).

signBLS(sk, msg)→ sig : Output H(msg)sk ∈ G1.

verifyBLS(pk, msg, sig)→ {OK,⊥} : OK if e(H(msg), pk) = e(sig, g2), else ⊥.

It is also possible to swap the functions of G1 and G2 in the above. This reduces the
size of public keys at the cost of longer signatures; in practice, when using aggregatable
signatures this tradeoff may be desirable. In this case, signing and verifying requires a
hash function H : {0, 1}? → G2. This work considers hashing to both G1 and G2.

2.3 The Shallue–van de Woestijne map
For any elliptic curve E(F) : y2 = f(x) = x3 +ax+b, #F > 5, Shallue and van de Woestijne
give a map from L ⊆ F to the curve E(F) [SvdW06]. They observe, generalizing and
simplifying the result of Skałba [Ska05], that for any rational point on the threefold

V (F) : f(x1)f(x2)f(x3) = x2
4

such that x4 6= 0, at least one of f(xj), j ∈ {1, 2, 3} must be a square. This implies that
one of the xj is the x-coordinate of a rational point on E(F).

To construct a rational point on V (F), the authors define the surface S(F) and the
rational map φ1 : S(F) 7→ V (F), which is invertible on its image [SvdW06, Lemma 6]:

S(F) : y2 (u2 + uv + v2 + a
)

= −f(u)

Riad S. Wahby and Dan Boneh 159

φ1 : (u, v, y) 7→
(
v,−u− v, u+ y2, f(u+ y2) · y

2 + uv + v2 + a

y

)
.

Next, the authors observe [SvdW06, Lemma 7] that fixing u = u0 satisfying f(u0) 6= 0
and 3u2

0 + 4a 6= 0 specializes S(F) to a curve that is birational to a conic with a rational
parameterization. This gives a rational map φ2 : A1 7→ S(F) that is invertible on its image.

Putting it all together, define L = {t ∈ F : φ1(φ2(t)) is defined}. Then, to map t ∈ L to
E(F), first compute φ1(φ2(t)), which is a rational point (x1, x2, x3, x4) on V (F), so at least
one f(xj), j ∈ {1, 2, 3} is square. Choose the smallest j where this is the case, compute
the corresponding y-coordinate, and return (xj , y).

2.4 The simplified Shallue–van de Woestijne–Ulas map of Brier et al.
Brier et al. [BCI+10] define the simplified SWU map (with a small modification due to
Fouque and Tibouchi [FT10]) as follows. Let E(Fp) : y2 = g(x) = x3 + ax + b, ab 6= 0,
p ≡ 3 mod 4, and

X0(t) = − b
a

(
1 + 1

t4 − t2

)
X1(t) = −t2X0(t)

Then the simplified SWU map is given by

t 7→

∞ if t ∈ {−1, 0, 1}(
X0(t),

√
g(X0(t))

)
if χ(g(X0(t))) = 1(

X1(t),−
√
g(X1(t))

)
otherwise

To see why this map works, assume u is non-square and assume we have x such that
g(ux) = u3g(x). Since u is non-square, either g(x) or g(ux) is square, and thus either x or
ux is the x-coordinate of a rational point on E(Fp). Expanding and solving for x,

u3x3 + aux+ b = u3(x3 + ax+ b)
aux+ b = u3(ax+ b)

x = − b
a
· u

3 − 1
u3 − u

= − b
a

(
u3 − u− 1
u3 − u

+ u

u3 − u

)
= − b

a

(
1 + u− 1

u (u2 − 1)

)
= − b

a

(
1 + 1

u2 + u

)
Since p ≡ 3 mod 4, −1 is non-square, so u = −t2 is, too. Substituting yields X0 and X1.

3 A Shallue–van de Woestijne map for BLS12-381
We construct an explicit Shallue–van de Woestijne map (§2.3) for the BLS12-381 curves
E1(Fp) and E2(Fp2) (§2.1), Our description follows the one by Fouque and Tibouchi [FT12].

For both of the BLS12-381 curves, we have E(F) : y2 = fi(x) = x3 + bi (§2.1), so we
restrict our analysis to the case a = 0. For now, we work with S(F) generically in terms of
u = u0; we discuss convenient choices of u0 below. Rewriting [SvdW06, Lemma 7]:

y2
(

3
4u

2
0 +

(
v + u0

2

)2
)

= −fi(u0)

z2 + fi(u0)w2 = −3
4u

2
0 where z = v + u0

2 , w = 1
y

160 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

−3 is square in Fp (and thus in Fp2), so (z0, w0) , (
√
−3u2

0/4, 0) is a rational point on
this conic. Parameterizing in t by setting z = z0 + tw and substituting gives

t
√
−3u2

0 + (t2 + fi(u0))w = 0 w 6= 0

Solving for y and v,

y = 1
w

= − t
2 + fi(u0)
t
√
−3u2

0

v = z0 + tw − u0

2 =
√
−3u2

0 − u0

2 − t2
√
−3u2

0
t2 + fi(u0)

Finally, from the map φ1 (§2.3), we have

x1 = v =
√
−3u2

0 − u0

2 − t2
√
−3u2

0
t2 + fi(u0)

x2 = −u0 − v = t2
√
−3u2

0
t2 + fi(u0) −

√
−3u2

0 + u0

2

x3 = u0 + y2 = u0 −
(
t2 + fi(u0)

)2

3u2
0t

2

This map is undefined when t = 0 or t2 + fi(u0) = 0. Fouque and Tibouchi [FT12] choose
u0 such that −fi(u0) is non-square (ensuring t2 + fi(u0) 6= 0) and add a special case for
t = 0. We take a slightly different approach in order to avoid an explicit special case.

First, notice that, once we have fixed u0, we can evaluate the map using only one inver-
sion by applying Montgomery’s trick [Mon87], i.e., inverting the product t2

(
t2 + fi(u0)

)
.

Evaluating the xj then entails a few inexpensive arithmetic operations involving t2 and
precomputed constants. Computing Legendre symbols and a square root yields y.

Now we can handle the exceptional cases. Notice that when applying Montgomery’s
trick, the map is undefined just when the value being inverted is zero. If we use an inversion
algorithm that returns zero on input zero (which is true, e.g., for inversion by Fermat’s
little theorem), the resulting value of x1 will be x0 , (

√
−3u2

0 − u0)/2. Choosing u0 such
that fi(x0) is square then yields an exception-free map. For E1(Fp), the smallest u0 in
absolute value for which this holds is u0 = −3; for E2(Fp2), it is u0 = −1.

Finally, Fouque and Tibouchi observe that the xj values depend only on t2, i.e., t and
−t map to the same x-coordinate. They suggest choosing the sign of y to be the sign
of χ(t), but this costs an extra Legendre symbol evaluation and does not work in Fp2

(because −1 is square). A more easily computed choice that works for both Fp and Fp2 is
y = Sgn0(t) ·

√
fi(xj). This fully specifies both maps.

Putting it all together. Precompute fi(u0), (
√
−3u2

0 ± u0)/2,
√
−3u2

0, and 1/3u2
0. On

input t, compute α = 1/(t2
(
t2 + fi(u0)

)
setting α = 0 if t2

(
t2 + fi(u0)

)
= 0. Use α to

compute x1, x2, and x3 (e.g., x1 = (
√
−3u2

0 − u0)/2− αt4
√
−3u2

0). Choose the smallest
j ∈ {1, 2, 3} such that χ(fi(xj)) = 1, compute y = Sgn0(t) ·

√
fi(xj), and return (xj , y).

Computing this map in constant time requires evaluating all xj and all χ(fi(xj)), all
in constant time. Note that fast Legendre symbol and inversion algorithms [Coh93, §1.3.2,
§1.4.2] are not constant time. Fouque and Tibouchi suggest blinding the Legendre symbol
by choosing random rj and computing χ(r2

jfi(xj)) [FT12, §6]; a similar trick for inversion
is standard (to invert β, choose random r, invert rβ and then multiply by r). Of course,
computing Legendre symbols or inversions by exponentiation is easily made constant time,
but is also far more costly. Our constant-time implementations using only field operations
take an approach that we describe in the Section 4; we discuss specifics in Section 6.

Riad S. Wahby and Dan Boneh 161

4 An optimized SWU map for BLS12-381
The simplified SWU map of Brier et al. [BCI+10] (§2.4) applies only to curves of the form
E(F) : y2 = g(x) = x3 + ax+ b where ab 6= 0 and #F ≡ 3 mod 4. For BLS12-381 (§2.1),
E1(Fp) meets the second requirement but not the first; E2(Fp2) meets neither requirement.
As a result, this map cannot be applied directly to either curve.

In this section we show how to solve these problems. To avoid the requirement that
#F ≡ 3 mod 4, we tweak the map’s definition. To sidestep the issue that a = 0 for both
curves, we construct an “indirect” map, with two steps: first, map to some E′(F) isogenous
to E(F) with ab 6= 0, and second, apply the isogeny map to obtain a point on E(F).

One potential issue with the indirect approach is that, for an isogeny of degree d, the
resulting map is to the points {P d : P ∈ E(F)}—that is, it maps only to a subset of
E(F). Our concern is twofold: first, recall from Section 2.2 that our goal is to hash to a
subgroup of E(F), in particular the order-q subgroup whose elements are {Ph : P ∈ E(F)}
for #E(F) = hq, so we must ensure that this subgroup is in the map’s image. Second, in
Section 5 we will construct hash functions that rely on the statistical properties of the
SWU map, so we must ensure that the indirect approach does not alter those properties.

Fortunately, both concerns are easily dispensed with. For the first, we choose an isogeny
of degree d coprime to q; exponentiation by h yields {Phd : P ∈ E(F)} ' {Ph : P ∈ E(F)}.
For the second, since choosing d in this way induces the above isomorphism, it suffices to
show that exponentiation by h preserves the relevant statistical properties. Boneh and
Franklin [BF03, §5.2] (and, in the same vein, Brier et al. [BCI+10, §6.1]) show that this is
the case as long as q -h, which is true for BLS12-381.

In the remainder of this section, we generalize the SWU map to #F 6≡ 3 mod 4 (§4.1);
describe two optimizations that make the map simpler to implement and faster to evaluate
(§4.2); and give explicit curves E′1(Fp) 11-isogenous to E1(Fp) and E′2(Fp2) 3-isogenous to
E2(Fp2), plus a small hint for evaluating the isogeny maps quickly (§4.3). Finally, we put
all of the above together, yielding the SWU maps to E1(Fp) and E2(Fp2) (§4.4).

4.1 Generalizing the map to E(F), #F 6≡ 3 mod 4
Recall from Section 2.4 that for an elliptic curve E′(F) : y2 = g(x) = x3 + ax + b, the
SWU map uses a parameterization of x in terms of u such that g(ux) = u3g(x), for u a
non-square. When #F ≡ 3 mod 4 (as in §2.4), −1 is non-square, so u = −t2 is a convenient
choice. More generally, for some non-square ξ ∈ F, let u = ξt2. Then we have

g(X0(t)) · g(X1(t)) = (g(X0(t)))2
ξ3t6 =

(
t3g(X0(t))

)2
ξ3

Since ξ3—and thus the right-hand side—is non-square, exactly one of g(X0(t)) and g(X1(t))
must be square, and thus either X0(t) or X1(t) , ξt2X0(t) is the x-coordinate of a rational
point on E′(F). In the next section, it will be convenient for g(b/ξa) to be square. For
E′1(Fp), ξ1 , −1 ∈ Fp satisfies this requirement; for E′2(Fp2), ξ2 , 1 +

√
−1 ∈ Fp2 does.

4.2 Optimizing the map
As described in Section 2.4, the SWU map requires computing a field inversion, a quadratic
character, and a square root. We now describe how to avoid computing both the quadratic
character and the inversion, in a way that is amenable to constant-time implementation.
We describe each optimization for E′1(Fp), then show how they apply to E′2(Fp2).

Notation. In this section we use the generic g(·), a, b, and ξ in expressions that apply to
both E′1(Fp) and E′2(Fp2). These correspond to the curve equation y2 = g(x) = x3 + ax+ b
and the map’s distinguished non-square. We give the ξi, ai, and bi in Sections 4.1 and 4.3.

162 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

Eliminating the quadratic character computation. For E′1(Fp), p ≡ 3 mod 4, so one can
evaluate the y-coordinate as follows: compute α = g1(X0(t))(p+1)/4. If g1(X0(t)) is square,
α is its square root; this is easily checked by comparing α2 with g1(X0(t)). If they are
equal, α is the y-coordinate (up to sign; §4.4). Otherwise, compute the y-coordinate as√
g1(X1(t)) = t3α. To see why this works, assume g1(X0(t)) is non-square in Fp; then(

t3 · g1(X0(t))(p+1)/4
)2

= t6 · g1(X0(t)) · g1(X0(t))(p−1)/2 = −t6 · g1(X0(t))

The final equality comes from the fact that g1(X0(t))(p−1)/2 = χ(g1(X0(t))) = −1. Recall
(§2.4) that g(ux) = u3g(x), X1(t) = uX0(t), and u = −t2, establishing the claim.

Avoiding inversions. We borrow and adapt a trick from Bernstein et al. [BDL+12, §5]
that merges an inversion and a square root computation into a single exponentiation:

(U/V)(p+1)/4 = U (p+1)/4 · V p−1−(p+1)/4 = U (p+1)/4 · V (3p−5)/4 = UV
(
UV 3)(p−3)/4

We can rewrite g(X0(t)) into the required form as follows:

X0(t) , N

D
=
b
(
ξ2t4 + ξt2 + 1

)
−a (ξ2t4 + ξt2) g(X0(t)) , U

V
= N3 + aND2 + bD3

D3

The above is undefined just when D = 0. To facilitate constant-time evaluation in this
case, set N and D to predefined “good” values and continue. Recall (§4.1) that we chose ξ
such that g(b/ξa) is square, and notice that if D = 0, then N = b (since ξ2t4 + ξt2 = 0).
Thus, all that is required to recover from the exception is to set D = ξa.

Finally, the x-coordinate is either N/D or ξt2N/D. To avoid inverting D, return a
point in Jacobian projective coordinates (§2); we give specifics in Section 4.4.

The E′
2(Fp2) case is only slightly more complicated. In particular, we need to show both

how to take one square root in Fp2 in constant time, and how to avoid taking a second. For
p2 ≡ 9 mod 16, we recall a standard trick for computing

√
δ ∈ Fp2 . For square δ, define

γ = δ(p2+7)/16 =
(
δ · δ(p2−1)/8

)1/2
= δ1/2

(
δ(p2−1)/2

)1/8
= δ1/2 · 11/8

The final equality comes from the fact that δ(p2−1)/2 = χ(δ) = 1. This implies that
√
δ

must be one of ±γ, ±γ
√
−1, or ±γ

√
±
√
−1 (all exist). Exponentiating and checking in

constant time is straightforward if the three constants are precomputed.2
This gives us an analogous approach to the E′1(Fp) case: compute γ = g2(X0(t))(p2+7)/16

and check the four possible square roots. If none is found, g2(X0(t)) is non-square, and one
of the four possible values t3γη =

√
g2(X1(t)), where η2 = ξ3

2 (−1)−1/4. This is because(
ηt3 · g2(X0(t))(p2+7)/16

)2
= η2t6 · g2(X0(t)) · g2(X0(t))(p−1)/8 = η2t6 · g2(X0(t)) · (−1)1/4

Recalling (§4.1) that g(X1(t)) = ξ3t6g(X0(t)), we have η2 = ξ3
2 (−1)−1/4 as claimed. Note

that (−1)−1/4 and ξ3
2 are non-square in Fp2 , so four unique values of η exist (along with

their negations). Once again, for efficiency these values should be precomputed.
Finally, this requires computing γ = (U/V)(p2+7)/16 for U and V defined above. In this

case, the trick of Bernstein et al. yields γ = UV 7 (UV 15)(p2−9)/16, avoiding an inversion.
2Adj and Rodríguez-Henríquez describe a different algorithm for computing square roots in Fp2 ,

p ≡ 3 mod 4 [AR12], which essentially always requires two exponentiations in Fp2 with exponents of size
≈log p. The method we describe uses one exponentiation in Fp2 with an exponent of size ≈2log p. The
costs are almost the same; the method we describe is slightly easier to implement in constant time.

Riad S. Wahby and Dan Boneh 163

4.3 The isogeny maps
Recall from above that we want an isogeny of degree d coprime to q. Small d is best for
efficiency. For E1(Fp), the smallest prime d giving a curve in the base field for which a 6= 0
is 11; thus, we use the 11-isogenous curve3 E′1(Fp) : y2 = x3 + a1x+ b1 where

a1 = 0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98

936f8da0e0f97f5cf428082d584c1d

b1 = 0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef5

5a23215a316ceaa5d1cc48e98e172be0

The 11-isogeny from E′1(Fp) to E1(Fp) is given by the following map due to Vélu [Vél71]:

(x, y) 7→

11∑

i=0
k1,ix

i

10∑
i=0

k2,ixi

, y

15∑
i=0

k3,ix
i

15∑
i=0

k4,ixi

The E2(Fp2) case is much nicer: there is a 3-isogenous curve E′2(Fp2) : y2 = x3 +a2x+b2

where a2 = 240
√
−1 and b2 = 1012 + 1012

√
−1. The 3-isogeny from E′2(Fp2) to E2(Fp2) is

given by a map similar to the map for E′1(Fp), but with polynomials of degree at most 3.
Appendix A gives Sage [SM] scripts for constructing the isogeny maps.

Avoiding inversions. Above, we mentioned that returning a point in Jacobian projective
coordinates saves an inversion when computing the SWU map. Fortunately, it is easy to
evaluate the isogeny maps on points in Jacobian coordinates without an inversion. For
example, given (X : Y : Z) on E′1(Fp), where x = X/Z2 and y = Y/Z3, we evaluate the
isogeny map to give a point (Xo : Yo : Zo) in Jacobian coordinates on E1(Fp), as follows.

Rewriting the x-coordinate map given above in terms of the projective coordinates:

X

Z2 7→
Nx

Dx
,

11∑
i=0

k1,i

(
X
Z2

)i

10∑
i=0

k2,i

(
X
Z2

)i
=

11∑
i=0

k1,i

(
Z2)11−i

Xi

Z2
10∑

i=0
k2,i (Z2)10−i

Xi

Similarly, for the y-coordinate map:

Y

Z3 7→
Ny

Dy
,

Y

Z3

15∑
i=0

k3,i

(
X
Z2

)i

15∑
i=0

k4,i

(
X
Z2

)i
=

Y
15∑

i=0
k3,i

(
Z2)15−i

Xi

Z3
15∑

i=0
k4,i (Z2)15−i

Xi

To evaluate the above maps, first compute Z2i, i ∈ {1, . . . , 15}. Then, to evaluate, for
example, the numerator of the X map, compute the products k1,i

(
Z2)11−i

, i ∈ {1, . . . , 11}
and then evaluate the polynomial using Horner’s method [Knu97].

Finally, after evaluating the numerator and denominator of each map, compute

Zo = DxDy Xo = NxDyZo Yo = NyDxZ
2
o

Then yo = Yo/Z
3
o = Ny/Dy and xo = Xo/Z

2
o = Nx/Dx, as required.

3Alternatively, we might map to a curve isogenous to E1 over an extension field in which there are
suitable isogenies of lower degree, then map to E1(Fp) via the trace map (see, e.g., [GR04, §3]). But this
entails costly arithmetic in the extension—and in particular, a much costlier square-root computation—so
it is almost certainly much more expensive than using the 11-isogenous curve (e.g., see Tables 2 and 3, §6).

164 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

4.4 Putting it all together
We slightly modify the SWU map of Section 2.4. In particular, since X0(t) and X1(t)
only depend on t2, we can arbitrarily choose the sign of the resulting y-coordinate; we set
y = Sgn0(t) ·

√
g(Xj(t)), which we justified in Section 3.

Thus, the map to a point on E1(Fp) is computed as follows on input t ∈ Fp:

(1) Compute N , D, U , V (§4.2) and α , UV
(
UV 3)(p−3)/4.

(2) If α2V −U = 0, then g1(X0(t)) is square in Fp, so (x, y) = (N/D,Sgn0(t)·α) ∈ E′1(Fp).
Set (X : Y : Z) = (ND : Sgn0(t) · αD3 : D).

(3) Otherwise, g1(X1(t)) is square in Fp, so (x, y) = (ξt2N/D, t3α) ∈ E′1(Fp). (No Sgn0(·)
is necessary in this case, because multiplication by t3 preserves the sign of t.)
Set (X : Y : Z) = (ξt2ND : t3αD3 : D).

(4) Evaluate the 11-isogeny map on (X : Y : Z) (§4.3) and return the resulting point.
The map to E2(Fp2) is analogous.

As a final optimization, if one is computing this map multiple times and summing the
results (§5), one can avoid repeatedly evaluating the isogeny map by summing the points
on E′1(Fp) or E′2(Fp2) and then applying the isogeny map to the sum. This optimization
comes essentially for free: the point addition law in Jacobian coordinates is independent
of the coefficients in the curve equation (§2), meaning that one can use the same point
addition routine for E1(Fp) and E′1(Fp), and similarly for E2(Fp2) and E′2(Fp2) [EFD].

5 Hashing to the groups G1 and G2 of BLS12-381
We describe six hash functions that use the maps of Sections 3 and 4 to output elements of
G1 or G2 (§2.1). All but the first and fourth are based on the work of Brier et al. [BCI+10],
Farashahi et al. [FFS+13], and Kim and Tibouchi [KT15], who show that they are
indifferentiable from a random oracle (§1.1). The hashes use the following primitives:4

• The functions Hp : {0, 1}? → Fp, Hp2 : {0, 1}? → Fp2 , and H128 : {0, 1}? → {0, 1}128

are hashes that we model as random oracles.

• Map1 : Fp → E1(Fp) and Map2 : Fp2 → E2(Fp2) can be either of the maps given in
Sections 3 and 4.

• z is the Barreto-Lynn-Scott parameter for the BLS12-381 curve (§2.1).

• Ψ : E2(Fp2)→ E2(Fp2) is the endomorphism of Budroni and Pintore [BP17, §4.1],
based on the work of Scott et al. [SBC+09] and Fuentes-Castañeda et al. [FKR12].
This is effectively a fast method of exponentiating by the cofactor h2 of E2(Fp2).

Clearing cofactors. The maps of Sections 3 and 4 output elements of E1(Fp) or E2(Fp2),
but we want elements of G1 or G2. For G2, we use the endomorphism Ψ (see above). For G1,
Scott observes [Sco19] that there is a faster way than exponentiating by h1. Recall (§2.1)
that h1 = (z − 1)2

/3; for BLS12-381, 1−z = 3
∏

k pk for primes pk, i.e., h1 = 3
∏

k p
2
k. It is

easy to check that E1(Fp) has no points of order p2
k for any k. As a result, exponentiating

by 1− z ≈
√
h1 gives an element of G1. This speeds up cofactor clearing by more than 2×

versus exponentiating by h1, in part because 1− z has low Hamming weight.
4For constant-time hash functions, these primitives must be constant time, too. Reducing a 2 log p–bit

integer modulo p gives an element of Fp with negligible bias. Alternatively, Kim and Tibouchi [KT15] show
that Hp can be replaced with Hp̂ : {0, 1}? → {0, 1}blog pc. Hp2 can be implemented via two evaluations of
Hp or Hp̂. All of these are easily built from a PRG (e.g., AES-CTR or ChaCha20 [Ber08]) seeded with a
hash of the input. Ψ is a straight-line computation, so it is constant time if field operations are.

Riad S. Wahby and Dan Boneh 165

Construction #1. The hash function H1 : {0, 1}? → G1 is given by

H1(msg) , Map1(Hp(msg))1−z

Since the maps of Sections 3 and 4 are to to a subset of E1(Fp), and since both maps
are invertible on their image, this function is easily distinguished from a random oracle.
We note that a random oracle is not necessary for BLS signatures—hashing to a constant
fraction of G1 suffices (see also [BCI+10, Section 5.2]). Still, we recommend using one of
the other hash functions in this section, for three reasons. First, a random oracle simplifies
the BLS security proof. Second, an indifferentiable hash function is suitable for uses beyond
signatures (another defense against “mission creep”; §1). And third, as discussed above,
an exponentiation is anyway necessary to clear the cofactor; this high fixed cost helps
moderate the (relative) overheads of the other hash constructions (§6).

Construction #2. The hash function H2 : {0, 1}? → G1 is given by

H2(msg) , (Map1(Hp(msg || 0)) ·Map1(Hp(msg || 1)))1−z

As mentioned in Section 4.4, when using that section’s map it is most efficient to evaluate
the map to E′1(Fp) twice, sum the resulting points, and then apply the isogeny map.

Construction #3. Let g3 be a generator of G1 with unknown discrete log relation to the
base point g1 of the BLS signature scheme (§2.2). Then H3 : {0, 1}? → G1 is given by

H3(msg) , Map1(Hp(msg))1−z · gH128(msg)
3

This is an aggressive choice of parameters: we estimate that this function’s outputs have
statistical distance from uniform only ≈2−56 for either choice of Map1 [KT15, Cor. 1].
Increasing the range of H128 improves uniformity at the cost of performance.

For BLS12-381, 1− z is a 64-bit integer, so directly using multi-exponentiation [Möl01]
to compute H3 gives little savings (because computing gH128(msg)

3 requires about twice as
many squarings as computing Map1(Hp(msg))1−z). This can be addressed straightforwardly
as follows. First, compute r1 and r2 at most 64 bits such that H128(msg) = r2 · 264 + r1.
Then, letting g3,64 = g264

3 (which can be precomputed, because g3 is fixed),

H3(msg) , Map1(Hp(msg))1−z · gr1
3 · g

r2
3,64

This saves squarings because 1− z, r1, and r2 are all the same size in bits.
Finally, it is very important that the discrete log relation between the generator g3 and

the BLS base point g1 is unknown. To see why, assume the discrete log of g3 base g1 is `,
and recall (§2.2) that for key (pk, sk) = (gx

2 , x), a signature on msg is H3(msg)x. Then

H3(msg)x = Map1(Hp(msg))(1−z)·x · gH128(msg)·x
3

= Map1(Hp(msg))(1−z)·x · ((g`
1)x)H128(msg)

= Map1(Hp(msg))(1−z)·x · (ψt(pk)`)H128(msg) (ψt is defined in §2.2)

Knowing ` renders moot the multiplication by gH128(msg)
3 in H3: since (ψt(pk)`)H128(msg) is

public, forging a signature for H3(msg) just requires forging one for Map1(Hp(msg))1−z.

Construction #4. The hash function H4 : {0, 1}? → G2 is given by

H4(msg) , Ψ
(
Map2(Hp2(msg))

)
This is the equivalent of construction #1 for G2, and the same caveats apply.

166 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

Construction #5. The hash function H5 : {0, 1}? → G2 is given by

H5(msg) , Ψ
(
Map2(Hp2(msg || 0)) ·Map2(Hp2(msg || 1))

)
This is the equivalent of construction #2 for G2. As in that case, when using the map of
Section 4, it is faster to add points on E′2(Fp2) and then apply the isogeny.

Construction #6 Let g4 be a generator of G2 with unknown discrete log relation to the
base point g2 of the BLS signature scheme (§2.2). Then H6 : {0, 1}? → G2 is given by

H6(msg) , Ψ
(
Map2(Hp2(msg))

)
· gH128(msg)

4

This is like construction #3, but for G2; as there, parameter choices are aggressive for
performance, and the discrete log relation between g4 and g2 must be unknown.

To evaluate H6 quickly, we integrate the exponentiation of g4 into the evaluation of Ψ.
For ψ : E2(Fp2)→ E2(Fp2) the “untwist-Frobenius-twist” endomorphism of Galbraith and
Scott [GS08, §5], Budroni and Pintore define Ψ [BP17, §4.1] as

Ψ(P) , P z2−z−1 · ψ (P)z−1 · ψ
(
ψ
(
P 2))

Letting P = Map2
(
Hp2(msg)

)
, H128(msg) = r2 · 264 + r1, and g4,64 = g264

4 ,

H6(msg) ,
(
P z−1 · ψ (P)

)z · gr1
4 · g

r2
4,64 · P−1 · ψ (P)−1 · ψ

(
ψ
(
P 2))

This lets us use a multi-exponentiation to evaluate the product of the leftmost three terms.

6 Implementation and evaluation
We implement and evaluate hash-and-check, plus the hashes of Section 5 using the maps
of Sections 3 and 4. We compare performance for three implementation styles of varying
complexity. The most complex style uses rich functionality from a full-featured multi-
precision library, and is not constant time. The other two styles are simpler: they are
restricted to using only field operations, i.e., fixed-modulus arithmetic. They differ in that
one is constant time and one is not. We justify our interest in simplicity below.

In sum, we find that our optimizations to the map of Section 4 yield hash functions that
are at worst only ≈9% slower than the fastest alternatives, yet are considerably simpler
to implement. Moreover, when comparing implementations restricted to field operations
and constant-time execution, the map of Section 4 is faster by ≈1.3–2× than the map of
Section 3. Our experiments show that this speed advantage is due to our optimizations.

Implementation complexity: why restrict to field operations? We are interested in im-
plementations restricted to field operations because this is the bare minimum functionality
required for elliptic curve operations—so these primitives are guaranteed to be available and
likely to be highly optimized. This is especially germane in hardware implementations and
embedded cryptographic co-processors (e.g., [Gui10, CDF+11, SLA]), which are usually
restricted to field arithmetic because general multi-precision arithmetic is too expensive
in terms of area or energy. Such restrictions are also typical of small software libraries
(e.g., [NaC, Pai]); reasons include ease of optimization and constant-time implementation,
and a simpler codebase, which generally leads to easier maintenance and fewer bugs.

Special-purpose arithmetic libraries like GMP [GMP] and large cryptographic libraries
like Botan [Bota], Crypto++ [Cry], and OpenSSL [Opea] do implement full-featured multi-
precision arithmetic—but at best only the very basic operations are constant time [Opeb,
Botb]. This means that implementations aiming for input-independent runtime that use

Riad S. Wahby and Dan Boneh 167

rich functionality from these libraries must resort to techniques like blinding [Koc96, FT12,
Bos14]. But this is no silver bullet: such techniques increase complexity, require a good
source of randomness, and must be carefully analyzed to ensure that all leaks are plugged.

Still, it is reasonable to wonder about the performance of implementations with input-
independent runtime built on full-featured multi-precision libraries. Since the main cost
of blinding is in complexity rather than execution time, a good first-order estimate is
that such implementations would be similar in speed to their unblinded counterparts. A
performance comparison with a blinded variant of the map of Section 3 is future work.

As a rough comparison of complexity, our routines for constant-time arithmetic in Fp

and Fp2 (briefly described below) comprise 342 lines of C code plus 614 lines of headers,
constants, and automatically-generated addition chains. In contrast, the bare-bones mini-
GMP library [GMP] (a subset of GMP’s integer arithmetic that, e.g., does not include the
Legendre symbol function) comprises about 3600 lines of C.5 The multi-precision arithmetic
implementations of Botan, Crypto++, and OpenSSL weigh in at about 10800 lines of
C++, 5500 lines of C++, and 11700 lines of C, respectively (not including necessary
support code, e.g., for memory management). Obviously, these libraries provide much
richer functionality than ours! But our interest is in hash functions that are fast without
rich functionality, so that they can be implemented in simple, compact code or hardware.

Implementation. We implement four hash-and-check variants and 30 variants of the
hash functions of Section 5 (detailed below) in 3520 lines of C, including constant-time
field arithmetic and curve operations for BLS12-381 (§2.1). Our field operations use
reduced-radix Montgomery arithmetic geared to 64-bit processors. Our curve operations
use the “slothful reduction” approach due to Scott [Sco17]. For exponentiations by fixed
exponents (e.g., for square roots, etc.) we automatically generate addition chains by
trying the methods of Bos and Coster [BC90], Bergeron et al., [BBBD89, BBB94], and
Yacobi [Yac91, Yac98], and selecting the best result [Add]. For hashing and PRG we use
the OpenSSL version 1.1.1.c implementations of SHA-256 and AES-CTR [Opea]. We use
GMP version 6.1.2 [GMP] as our full-featured multi-precision library.

We have released our implementation under an open-source license [BH].

Benchmarks and baselines. For each of the hash functions of Section 5 plus the hash-
and-check method, we evaluate up to three variants. The first uses GMP for modular
arithmetic, Legendre symbols, and field inversions. The second also uses GMP, but is
restricted to using only field operations. The third uses our constant-time field arithmetic
library, and executes with input-independent runtime and memory access patterns. We
discuss implementation specifics immediately below.

• For hash-and-check using full GMP functionality, we use mpz_legendre for χ(·);
in microbenchmarks, this is orders of magnitude faster than an exponentiation in
Fp. When using only field operations, we avoid computing Legendre symbols by
computing β = α(p+1)/4 and checking whether β2 = α (and analogously for Fp2).

• For the Shallue–van de Woestijne maps (§3) using full GMP functionality, we imple-
ment as suggested in Section 3 (i.e., using Montgomery’s trick). We use mpz_legendre
for χ(·), and compute inversions with the mpz_invert function; in our microbench-
marks, this costs an order of magnitude less than an exponentiation in Fp. Since it
is not constant time, this implementation computes each xj only if necessary.
For the Shallue–van de Woestijne implementations that do not use rich functionality,
we avoid inversions and Legendre symbol computations using the trick of Bernstein

5The full GMP is faster because it includes optimized assembly, but it is also almost two orders of
magnitude more code and includes unneeded functionality, e.g., rational and floating-point support.

168 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

et al. [BDL+12] described in Section 4: to check xj we compute the numerator Uj

and denominator Vj of f(xj), compute UjVj

(
UjV

3
j

)(p−3)/4, and check whether we
have found a square root (and analogously for Fp2). The constant-time Shallue–van
de Woestijne map thus requires three exponentiations.

• Our SWU map (§4) needs neither inversions nor Legendre symbol computations, so
there is no implementation that uses full GMP functionality. Also, the constant-time
versions require only one exponentiation because of our optimizations (§4).

• We do not implement constant-time hash-and-check, because it would either be very
slow or have high failure probability.

• All hash functions return points in Jacobian projective coordinates (§2), meaning they
do not need to compute an inversion after clearing the cofactor. Our implementation
of Ψ (§5) also works in projective coordinates to avoid inversions. This is reasonable
for BLS signatures because another exponentiation would immediately follow, and
its input would be in Jacobian projective form in any case.6

Setup and method. We measure each hash function’s cost by executing it 106 times. We
give all hash functions the same sequence of inputs, which we generate by hashing a seed.
Each execution invokes the SHA-256 compression function once, uses the result to seed an
AES-CTR PRG, extracts one or more field elements as required by the construction, and
executes the hash function on the extracted field element(s).

We report cost an Intel Xeon E3-1535M v6 with hyperthreading and dynamic frequency
scaling disabled. Our testbench machine runs Arch Linux [Arc] (current as of July 10,
2019) with kernel version 5.2 and GCC version 9.1.0 [GCC].

Results. Table 1 shows the results.

• Hash-and-check, for both G1 and G2, is reasonably fast in the average case, even
when restricted to field operations. As discussed in Section 1, however, it is relatively
easy to find messages that take many iterations to hash. To illustrate this, we report
the mean of the worst 10% of runtimes for each hash-and-check experiment. When
hash-and-check is implemented using a full-featured multi-precision library, the
worst decile is within ≈3–9% of the average case, because additional iterations (i.e.,
Legendre symbol computations) are inexpensive.
When hash-and-check is restricted to field operations, worst-decile performance is
considerably worse than the average case: ≈83% worse for G1, ≈87% for G2. In other
words, about 10% of the time on a random message hash-and-check performs almost
as badly as the slowest of the alternatives that we consider. For adversarially-chosen
messages, the performance could easily be even worse.

• Construction #1, when built on either of the maps of Sections 3 and 4 (hereafter
“SW” and “SWU”, respectively), gives roughly similar performance to average-case
hash-and-check, whether implemented either using a full-featured multi-precision
library or restricted to field operations.
For constant-time implementations of construction #1, SW is≈60% slower than SWU;
this is because the SW map’s cost is dominated by three exponentiations, whereas

6In principle, exponentiating a point P is slightly faster when Z = 1, because it allows using a mixed
addition law [EFD], which is less expensive. In practice there is little difference, because fast exponentiation
routines usually precompute small powers of P , and the resulting points have Z 6= 1 whether or not P
does. Such an exponentiation routine using mixed addition would anyway require one inversion (to clear
denominators of the precomputed points via Montgomery’s trick), meaning that P ’s denominator can be
cleared for free. The difference in cost is thus only in the precomputation, which is negligible.

Riad S. Wahby and Dan Boneh 169

Table 1: Cost in thousands of CPU cycles for hash-and-check and the constructions of
Section 5 applied to the maps of Sections 3 (“SW”) and 4 (“SWU”). For hash-and-check,
“worst 10%” is the mean of the slowest 10% of runtimes. “Full MP lib” implementations use
complex functionality from GMP (§6), “Field ops only” implementations are restricted to
field operations, and “Constant time” implementations are further restricted to executing
in time independent of the value (but not the length) of the hash input.

Group Hash function Map Full MP lib Field ops only Constant time
G1 Hash-and-check — 319 389 —

(worst 10%) — 348 712 —
Construction #1 SW 330 376 577

SWU — 341 361
Construction #2 SW 459 564 965

SWU — 456 496
Construction #3 SW 675 721 944

SWU — 694 735

G2 Hash-and-check — 2327 3123 —
(worst 10%) — 2390 5833 —

Construction #4 SW 2345 2954 3990
SWU — 2372 2364

Construction #5 SW 3259 4474 6555
SWU — 3280 3264

Construction #6 SW 3759 4363 5482
SWU — 3767 3822

the SWU map requires only one because of our optimizations (§4). Without our
optimizations, the constant-time SWU map also requires three exponentiations (one
inversion and two square roots), so we expect its performance to be almost identical
to the constant-time SW map’s. We confirmed this hypothesis by implementing and
measuring an unoptimized constant-time SWU map.

Importantly, the gap in performance between the constant-time SWU-based hash
and the fastest non–constant-time SW-based hash is only ≈9%. In other words,
even if blinding had no cost, a constant-time SW-based hash built on a full-featured
multi-precision library would be only slightly faster than our SWU-based hash, even
though a blinded SW-based hash entails much more implementation complexity.

• Construction #2 is slower than construction #1 by ≈34–67%, depending on the map
and implementation style. Ignoring the constant-time SW map, which is an outlier,
the range is ≈34–50%; roughly speaking, this is the cost of making the hash function
indifferentiable from a random oracle without the downsides of hash-and-check.

The SW and SWU maps are about the same speed when the SW map’s implemen-
tation uses rich multi-precision functionality. When restricted to field operations,
however, the SW map is ≈24% slower than the SWU map. The constant-time imple-
mentation of the SW map is dramatically worse: ≈95% slower than the constant-time
SWU map. The gap is bigger than in construction #1 because this construction
entails two map evaluations rather than one.

Similarly to construction #1, the constant-time SWU-based hash is only ≈8% slower
than the fastest non–constant-time SW-based hash.

170 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

• Construction #3 is the slowest hash for G1, ≈28–52% slower than #2, in spite of
aggressive parameter selection (§5). Improving uniformity to match construction #2
would make the situation even worse.
The exception is the constant-time SW-based hash: constructions #2 and #3 are
similar in (lack of) speed, because the cost of evaluating the constant-time SW map
twice (in #2) is similar to the cost of the constant-time multi-exponentiation (in #3).
For the other variants, the multi-exponentiation dominates execution time, so the
differences between the SW and SWU map and between full-featured and restricted
multi-precision operations are small.

• Construction #4, like #1, is roughly competitive with hash-and-check in G2 when
both are implemented with the full-featured multi-precision library.
For implementations using only field arithmetic, however, the much higher cost of
square root computations (≈7×: compared to Fp, a square-root computation in Fp2

is an exponentiation of twice the length, where each step is 3–4× more expensive)
means that SW and hash-and-check are ≈25–32% slower than SWU. This difference
is even more pronounced in the constant-time case: SW is ≈69% slower.
In this and the next construction, the constant-time SWU hash is—somewhat
counterintuitively—slightly faster than the non–constant-time one. Microbenchmarks
show that the constant-time and non–constant-time field operations have similar
costs, so all else equal we should expect the constant-time hash to be slightly slower.
We traced this anomaly to function call overhead: whereas the non–constant-time
field operations entail calls into a shared library, the constant-time field operations
are defined locally, so they are aggressively inlined by the compiler. This effect is
especially pronounced for G2 because each operation over Fp2 entails three or four
operations over Fp and thus three or four times higher function call overhead.

• Construction #5 continues the trend: the constant-time SWU map is about as fast
as the fastest SW map, ≈36% faster than the SW map restricted to field operations,
and ≈2× faster than the constant-time SW map.

• Construction #6, like construction #3, has generally poor performance in spite of
the aggressive parameter choice. The constant-time SW-based hash is the exception:
construction #6 is faster than #5, because in Fp2 the cost of the extra SW map
evaluation (in #5) is much higher than the cost of the multi-exponentiation (in #6).

Costs in more detail. Tables 2 and 3 give detailed cost breakdowns for the constant-time
versions of constructions #1, #2, #4, and #5. Each table lists costs in terms of field
operations, plus estimates of total costs expressed in terms of Fp multiplications under the
assumption that a squaring costs 80% as much as a multiplication in Fp. (Costs of Fp2

operations in terms of Fp operations are given in the caption of Table 3.)
As expected, clearing the cofactor is a major contributor to overall cost. For SWU-based

hashes it accounts for ≈38–53% of the cost for G1 and ≈44–61% for G2. (Relative figures
are lower for SW-based hashes because of the greater cost of the SW map.)

For SWU-based hashes to G1 (Table 2), the cost of evaluating the 11-isogeny map is
almost a third of the cost of a square root in Fp, in part because evaluating the isogeny
on a point in projective coordinates (§4.3) nearly doubles the number of multiplications
required (in exchange for saving an inversion, a worthwhile tradeoff). Nevertheless, the
isogeny map is only about 11% of the total cost in the worst case (construction #1). The
isogeny for hashes to G2 (Table 3) costs only about 5% as much as a square root in Fp2

(primarily because the square root in Fp2 is much more costly than in Fp) and comprises
less than 2% of the total cost in the worst case (construction #4).

Riad S. Wahby and Dan Boneh 171

Table 2: Costs for constant-time hash constructions #1 and #2 to G1 (Table 1). mul is
one multiplication in Fp; sqr is one squaring. The rightmost column estimates the total
cost assuming that a sqr costs 80% of a mul.

mul sqr total
Basic operations√

U/V (§4.2, [BCI+10]) 85 379 388
11-isogeny map (§4.3) 120 5 124
point addition 12 5 16
point doubling 4 5 8
cofactor clearing: P 1−z (§5) 320 340 592

point addition ×6 + point doubling ×62
SW-Map1 (§3) 268 1146 1185√

U/V ×3 + mul ×13 + sqr ×9
SWU-Map1 without 11-isogeny map (§4) 99 383 405√

U/V + mul ×14 + sqr ×4

Hash construction #1
§3 map 588 1486 1777

SW-Map1 + cofactor clearing
§4 map 539 728 1121

SWU-Map1 + 11-isogeny map + cofactor clearing

Hash construction #2
§3 map 868 2637 2978

SW-Map1 ×2 + point addition + cofactor clearing
§4 map 650 1116 1543

SWU-Map1 ×2 + point addition + 11-isogeny map + cofactor clearing

256-bit scalar multiplication 1908 1645 3224
point addition ×74 + point doubling ×255

Finally, both tables list the cost of a 256-bit scalar multiplication on the respective
curves, as would be used to generate a BLS signature (§2.2). (The listed figures are for
a 4-bit windowed exponentiation, including the cost of precomputation.) For signatures
on G1 (i.e., hash evaluation plus scalar multiplication), the SWU-based maps result in a
savings of ≈15–30% compared to the SW-based maps. For G2, the savings is ≈27–47%.

Discussion. In sum, our optimizations yield a constant-time SWU map that is at worst
≈9% slower than the fastest SW map implementation, even though our optimized SWU
map’s implementation is very simple—it uses only field operations—while the SW map’s
implementation requires a much richer multi-precision arithmetic implementation.

We also find that our optimizations are effective: in their absence, a constant-time SWU
implementation using only field operations requires three exponentiations (an inversion
and two square roots). Our experiments show that this puts its cost on par with the cost
of our constant-time SW map implementation, whose execution time is also dominated by
three exponentiations. In other words, our optimizations give roughly a 1.3–2× speed-up.

Finally, we argue that a few percent performance overhead is a worthwhile trade for
the simplicity of our optimized SWU map. In fact, even implementations that already have
a full-featured multi-precision integer library might prefer the constant-time SWU map to
a blinded SW map: as previously discussed, blinded implementations require a good source
of randomness, or the blinding may be rendered ineffective; and they are intrinsically more
complex to maintain and debug, e.g., because blinded execution is nondeterministic.

172 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

Table 3: Costs for constant-time hash constructions #4 and #5 to G2 (Table 1). mul2 is
one multiplication in Fp2 , sqr2 is one squaring, and mulh is a multiplication by an element
of Fp. mul2 costs 4 Fp multiplications, mulh costs 2 Fp multiplications, and sqr2 costs one
multiplication and two squarings in Fp. The rightmost column estimates the total cost in
Fp multiplications, assuming that squaring costs 80% of multiplication in Fp.

mul2 mulh sqr2 total
Basic operations√

U/V (§4.2, [BCI+10]) 156 0 761 2603
3-isogeny map (§4.3) 30 0 3 128
point addition 11 3 5 63
point doubling 2 3 5 27
ψ, “untwist-Frobenius-twist” (§5, [GS08, §5]) 11 5 2 59
Ψ, cofactor clearing (§5, [BP17, §4.1]) 448 435 706 4498

ψ ×3 + point addition ×15 + point doubling ×125
SW-Map2 (§3) 477 6 2292 7879√

U/V ×3 + mul2 ×9 + mulh ×6 + sqr2 ×9
SWU-Map2 without 3-isogeny map (§4) 176 10 769 2723√

U/V + mul2 ×20 + mulh ×10 + sqr2 ×8

Hash construction #4
§3 map 925 441 2998 12377

SW-Map2 + Ψ
§4 map 654 445 1478 7349

SWU-Map2 + 3-isogeny map + Ψ

Hash construction #5
§3 map 1413 450 5295 20319

SW-Map2 ×2 + point addition + Ψ
§4 map 841 458 2252 10135

SWU-Map2 ×2 + point addition + 3-isogeny map + Ψ

256-bit scalar multiplication 1324 987 1645 11547
point addition ×74 + point doubling ×255

7 Conclusion
We tackled the problem of hashing to Barreto-Lynn-Scott pairing-friendly elliptic curves [BLS03],
focusing on BLS12-381 [Bow17]. To do so, we revisited the Shallue–van de Woestijne
[SvdW06] and “simplified” Shallue–van de Woestijne–Ulas [Ula07, BCI+10] maps.

We proposed an “indirect” SWU map for Barreto-Lynn-Scott curves. Specifically, we
showed a simple way of extending the SWU map to curves with j-invariant ∈ {0, 1728},
by mapping to an isogenous curve and then evaluating the isogeny map. We also proposed
a small change that extends the SWU map to curves over fields where #F 6≡ 3 mod 4.

We then described several optimizations that make the SWU map simpler to implement
and faster to evaluate, including in constant time. Specifically, our optimizations eliminate
field inversions and quadratic character computations in the SWU map, and make it
possible to evaluate the map in constant time by computing just one modular square root.

Finally, we implemented and evaluated 34 hash function variants built on the Shallue–
van de Woestijne and optimized SWU maps. All told, we found that our optimizations to
the SWU map yield hash functions that are fast, simple to implement, and constant time.
Specifically, constant-time hash functions based on this map implemented using only field
arithmetic are within 9% of the best-performing non–constant-time hash functions, which
require significantly more complex implementations.

Riad S. Wahby and Dan Boneh 173

Acknowledgments
This work was supported in part by the NSF, the ONR, the Simons Foundation, the
Stanford Center for Blockchain Research, and the Ripple Foundation. We thank Michael
Scott for describing the trick in Section 5 for quickly clearing the cofactor on E1(Fp), Fraser
Brown for detailed comments, and the anonymous reviewers for their valuable feedback.

References
[Add] kwantam/addchain. https://github.com/kwantam/addchain.

[AFK+13] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes,
and Francisco Rodríguez-Henríquez. Implementing pairings at the 192-bit
security level. In Michel Abdalla and Tanja Lange, editors, PAIRING 2012,
volume 7708 of LNCS, pages 177–195. Springer, Heidelberg, May 2013.

[AR12] Gora Adj and Francisco Rodríguez-Henríquez. Square root computation over
even extension fields. Cryptology ePrint Archive, Report 2012/685, 2012.
http://eprint.iacr.org/2012/685.

[Arc] Arch Linux. https://www.archlinux.org.

[BBB94] F. Bergeron, J. Berstel, and S. Brlek. Efficient computation of addition chains.
Journal de Théorie des Nombres de Bordeaux, 6(1):21–38, 1994.

[BBBD89] F. Bergeron, J. Berstel, S. Brlek, and C. Duboc. Addition chains using
continued fractions. J. Algorithms, 10(3):403–412, September 1989.

[BC90] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 400–407. Springer,
Heidelberg, August 1990.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Ran-
driam, and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary
elliptic curves. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 237–254. Springer, Heidelberg, August 2010.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable
zero knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276–
294. Springer, Heidelberg, August 2014.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering,
2(2):77–89, September 2012.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 435–464. Springer,
Heidelberg, December 2018.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. https://cr.yp.to/
chacha/chacha-20080128.pdf, January 2008.

[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the
Weil pairing. SIAM Journal on Computing, 32(3):586–615, 2003.

https://github.com/kwantam/addchain
http://eprint.iacr.org/2012/685
https://www.archlinux.org
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf

174 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Eli Biham, editor, EU-
ROCRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer, Heidelberg,
May 2003.

[BGWZ19] Dan Boneh, Sergey Gorbunov, Hoeteck Wee, and Zhenfei Zhang. Bls signature
scheme. Technical Report draft-boneh-bls-signature-00, Internet Engineering
Task Force, February 2019.

[BH] bls12-381_hash: Fast and constant-time hashing to the BLS12-381 elliptic
curve. https://github.com/kwantam/bls12-381_hash.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elliga-
tor: elliptic-curve points indistinguishable from uniform random strings. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 967–980. ACM Press, November 2013.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS,
pages 514–532. Springer, Heidelberg, December 2001.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic
curves with prescribed embedding degrees. In Stelvio Cimato, Clemente Galdi,
and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 257–267.
Springer, Heidelberg, September 2003.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume
3897 of LNCS, pages 319–331. Springer, Heidelberg, August 2006.

[Bos14] Joppe W. Bos. Constant time modular inversion. Journal of Cryptographic
Engineering, 4(4):275–281, November 2014.

[Bota] Botan: Crypto and TLS for modern C++. https://botan.randombit.net.

[Botb] Botan: Side channels. https://botan.randombit.net/manual/side_
channels.html.

[Bow17] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction. https:
//electriccoin.co/blog/new-snark-curve/, March 2017.

[BP17] Alessandro Budroni and Federico Pintore. Efficient hash maps to G2 on BLS
curves. Cryptology ePrint Archive, Report 2017/419, 2017. http://eprint.
iacr.org/2017/419.

[CDF+11] Ray C. C. Cheung, Sylvain Duquesne, Junfeng Fan, Nicolas Guillermin, Ingrid
Verbauwhede, and Gavin Xiaoxu Yao. FPGA implementation of pairings using
residue number system and lazy reduction. In Bart Preneel and Tsuyoshi
Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 421–441. Springer,
Heidelberg, September / October 2011.

[Chi] Chia-network/bls-signatures. https://github.com/Chia-Network/
bls-signatures.

[CK11] Jean-Marc Couveignes and Jean-Gabriel Kammerer. The geometry of flex
tangents to a cubic curve and its parameterizations. Cryptology ePrint Archive,
Report 2011/033, 2011. http://eprint.iacr.org/2011/033.

https://github.com/kwantam/bls12-381_hash
https://botan.randombit.net
https://botan.randombit.net/manual/side_channels.html
https://botan.randombit.net/manual/side_channels.html
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
http://eprint.iacr.org/2017/419
http://eprint.iacr.org/2017/419
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
http://eprint.iacr.org/2011/033

Riad S. Wahby and Dan Boneh 175

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-
Verlag, 1993.

[Cry] Crypto++ Library. https://www.cryptopp.com/.

[EFD] Explicit formulas database: Genus-1 large-characteristic short weierstrass
curves. http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html.

[Eth] Etherium 2.0 spec: Bls signatures. https://github.com/ethereum/eth2.
0-specs/blob/master/specs/bls_signature.md.

[Far11] Reza Rezaeian Farashahi. Hashing into hessian curves. In Abderrahmane Nitaj
and David Pointcheval, editors, AFRICACRYPT 11, volume 6737 of LNCS,
pages 278–289. Springer, Heidelberg, July 2011.

[FFS+13] Reza R. Farashahi, Pierre-Alain Fouque, Igor E. Shparlinski, Mehdi Tibouchi,
and J. Felipe Voloch. Indifferentiable deterministic hashing to elliptic and
hyperelliptic curves. AMS Mathematics of Computation, 82(281):491–512,
2013.

[FJT13] Pierre-Alain Fouque, Antoine Joux, and Mehdi Tibouchi. Injective encodings
to elliptic curves. In Colin Boyd and Leonie Simpson, editors, ACISP 13,
volume 7959 of LNCS, pages 203–218. Springer, Heidelberg, July 2013.

[FKR12] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodríguez-Henríquez.
Faster hashing to G2. In Ali Miri and Serge Vaudenay, editors, SAC 2011,
volume 7118 of LNCS, pages 412–430. Springer, Heidelberg, August 2012.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-
friendly elliptic curves. Journal of Cryptology, 23(2):224–280, April 2010.

[FSV09] Reza R. Farashahi, Igor E. Shparlinski, and Jos’e Felipe Voloch. On hashing
into elliptic curves. Journal of Mathematical Cryptology, 3(4):353–360, 2009.

[FT10] Pierre-Alain Fouque and Mehdi Tibouchi. Estimating the size of the image of
deterministic hash functions to elliptic curves. In Michel Abdalla and Paulo
S. L. M. Barreto, editors, LATINCRYPT 2010, volume 6212 of LNCS, pages
81–91. Springer, Heidelberg, August 2010.

[FT12] Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to Barreto-
Naehrig curves. In Alejandro Hevia and Gregory Neven, editors, LATIN-
CRYPT 2012, volume 7533 of LNCS, pages 1–17. Springer, Heidelberg, October
2012.

[GCC] GCC, the GNU compiler collection. https://gcc.gnu.org/.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 190–200. Springer,
Heidelberg, August 2001.

[GMP] The GNU Multi-Precision arithmetic library. https://gmplib.org/.

https://www.cryptopp.com/
http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
https://github.com/ethereum/eth2.0-specs/blob/master/specs/bls_signature.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/bls_signature.md
https://gcc.gnu.org/
https://gmplib.org/

176 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

[GR04] Steven D. Galbraith and Victor Rotger. Easy decision Diffie-Hellman groups.
London Mathematical Society Journal of Computation and Mathematics, 7:201–
218, 2004.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[GS08] Steven D. Galbraith and Michael Scott. Exponentiation in pairing-friendly
groups using homomorphisms. In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 211–224. Springer,
Heidelberg, September 2008.

[Gui10] Nicolas Guillermin. A high speed coprocessor for elliptic curve scalar multipli-
cations over Fp. In Stefan Mangard and François-Xavier Standaert, editors,
CHES 2010, volume 6225 of LNCS, pages 48–64. Springer, Heidelberg, August
2010.

[Has] Helmut Hasse. Zur Theorie der abstrakten elliptischen Funktionenkörper, I–III.
Journal für die reine und angewandte Mathematik, 1936(175).

[HSV06] F. Hess, N.P. Smart, and F. Vercauteren. The eta pairing revisited. Cryptology
ePrint Archive, Report 2006/110, 2006. http://eprint.iacr.org/2006/110.

[Ica09] Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 303–316. Springer, Heidelberg,
August 2009.

[IMCT02] Tsutomu Iijima, Kazuto Matsuo, Jinhui Chao, and Shigeo Tsujii. Construction
of Frobenius maps of twists [of] elliptic curves and its application to elliptic
scalar multiplication. In Proc. SCIS, January 2002.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
543–571. Springer, Heidelberg, August 2016.

[KLR10] Jean-Gabriel Kammerer, Reynald Lercier, and Guénaël Renault. Encoding
points on hyperelliptic curves over finite fields in deterministic polynomial
time. In Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors, PAIRING 2010,
volume 6487 of LNCS, pages 278–297. Springer, Heidelberg, December 2010.

[Knu97] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming, chapter 4.6.4. Addison-Wesley, 3rd edition, 1997.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KT15] Taechan Kim and Mehdi Tibouchi. Improved elliptic curve hashing and point
representation. In Proc. Workshop on Coding and Cryptography, April 2015.

[Möl01] Bodo Möller. Algorithms for multi-exponentiation. In Serge Vaudenay and
Amr M. Youssef, editors, SAC 2001, volume 2259 of LNCS, pages 165–180.
Springer, Heidelberg, August 2001.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comp., 48(177):243–264, 1987.

http://eprint.iacr.org/2006/110

Riad S. Wahby and Dan Boneh 177

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing
the impact of NFS advances on the security of pairing-based cryptography. In
Mycrypt, December 2016.

[NaC] NaCL. https://nacl.cr.yp.to.

[Opea] OpenSSL: Cryptography and SSL/TLS toolkit. https://www.openssl.org/.

[Opeb] BIGNUM code is not constant-time due to bn_correct_top. https://github.
com/openssl/openssl/issues/6640.

[Pai] GitHub: zkcrypto/pairing BLS12-381 implementation. https://github.com/
zkcrypto/pairing/tree/master/src/bls12_381.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Security
and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.

[SBC+09] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez,
and Ezekiel J. Kachisa. Fast hashing to G2 on pairing-friendly curves. In
Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of
LNCS, pages 102–113. Springer, Heidelberg, August 2009.

[Sco17] Michael Scott. Slothful reduction. Cryptology ePrint Archive, Report 2017/437,
2017. http://eprint.iacr.org/2017/437.

[Sco19] Michael Scott. Personal communication, April 2019.

[Ska05] Mariusz Skałba. Points on elliptic curves over finite fields. Acta Arithmetica,
117(3):293–301, 2005.

[SLA] Silicon Labs EFM32PG12 Pearl Gecko Microcontroller Reference Man-
ual. https://www.silabs.com/documents/public/reference-manuals/
efm32pg12-rm.pdf.

[SM] SageMath. http://www.sagemath.org/.

[SS04] Andrzej Schinzel and Mariusz Skałba. On equations y2 = xn + k in a finite
field. Bulletin of the Polish Academy of Sciences Mathematics, 52(3):223–226,
2004.

[SvdW06] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational
points on elliptic curves over finite fields. In Algorithmic Number Theory
Symposium, July 2006.

[Ula07] Maciej Ulas. Rational points on certain hyperelliptic curves over finite fields.
Bulletin of the Polish Academy of Sciences Mathematics, 55(2):97–104, 2007.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes rendus de l’Académie
des Sciences de Paris, Série A, 273:238–241, 1971.

[Yac91] Yacov Yacobi. Exponentiating faster with addition chains. In Ivan Damgård,
editor, EUROCRYPT’90, volume 473 of LNCS, pages 222–229. Springer,
Heidelberg, May 1991.

https://nacl.cr.yp.to
https://www.openssl.org/
https://github.com/openssl/openssl/issues/6640
https://github.com/openssl/openssl/issues/6640
https://github.com/zkcrypto/pairing/tree/master/src/bls12_381
https://github.com/zkcrypto/pairing/tree/master/src/bls12_381
http://eprint.iacr.org/2017/437
https://www.silabs.com/documents/public/reference-manuals/efm32pg12-rm.pdf
https://www.silabs.com/documents/public/reference-manuals/efm32pg12-rm.pdf
http://www.sagemath.org/

178 Fast and simple constant-time hashing to the BLS12-381 elliptic curve

[Yac98] Yacov Yacobi. Fast exponentiation using data compression. SIAM J. Comput.,
28(2):700–703, 1998.

[YKS19] Shoko Yonezawa, Tetsutaro Kobayashi, and Tsunekazu Saito. Pairing-friendly
curves. Technical Report draft-yonezawa-pairing-friendly-curves-02, Internet
Engineering Task Force, July 2019.

A The isogeny maps
The following Sage [SM] script shows one way to find a suitable isogeny for use with the
map of Section 4.

#!/usr/bin/env sage

import sage.schemes.elliptic_curves.isogeny_small_degree as isd

look for isogenous curves having j-invariant not in {0, 1728}
Caution: this can take a while!
def find_iso(E):

for p_test in primes(30):
isos = [i for i in isd.isogenies_prime_degree(E, p_test)

if i.codomain().j_invariant() not in (0, 1728)]
if len(isos) > 0:

return isos[0].dual()
return None

BLS12-381 parameters
z = -0xd201000000010000
h = (z - 1) ** 2 // 3
q = z ** 4 - z ** 2 + 1
p = z + h * q
assert is_prime(p)
assert is_prime(q)

E1
F = GF(p)
Ell = EllipticCurve(F, [0, 4])
assert Ell.order() == h * q

E2
F2.<X> = GF(p^2, modulus=[1,0,1])
Ell2 = EllipticCurve(F2, [0, 4 * (1 + X)])
assert Ell2.order() % q == 0

iso_G1 = find_iso(Ell) # an isogeny from E’ to E,
Ell_prime = iso_G1.domain() # where this is E’
assert iso_G1(Ell_prime.random_point()).curve() == Ell

iso_G2 = find_iso(Ell2) # an isogeny from E2’ to E2,
Ell2_prime = iso_G2.domain() # where this is E2’
assert iso_G2(Ell2_prime.random_point()).curve() == Ell2

Riad S. Wahby and Dan Boneh 179

The following Sage script prints the rational maps E′1(Fp) 7→ E1(Fp) and E′2(Fp2) 7→ E2(Fp2)
used in the evaluation of Section 6.

#!/usr/bin/env sage

z = -0xd201000000010000
h = (z - 1) ** 2 // 3
q = z ** 4 - z ** 2 + 1
p = z + h * q
F = GF(p)
F2.<X> = GF(p^2, modulus=[1,0,1])

##
Ell1’ -> Ell1
##
the following integers are base36-encoded to compress horizontally
vv = [’12rutfybsn0bkhh9qg5qlfrpugmxe5czd757bmomkcfj8qj94vfcibfpfz6778pphed5apz4t’

, ’74t8nxvndcq4fsu3byqf2ubacd8zpfj5htxn621zauzk8jeti9eg3iakb1qzc44dbo59g94ue8’
, ’793jv4j16d1k90qpfb51iyn9gbkoakins8196hj0rcw750ya3xz7bklkkyi2zsf1alzxka0q2v’
, ’wjf4r8fn0t5ud2l8mj6qtxj6vwqkfv403p6t8rrlalpyli69k7yrbkyfqv3h3k4bup3ef0vqo’
, ’798csdr2a2qwd6hz4bjkll53bbxbr7ndhgwi663wezfptv82hqp2iae52dm4atf4z2xgzaar09’
, ’3i0ielgn7to06ad2bvkigqmaxy3k9yn6fqgkh2hks4qt2xrlsgy6s45tc32fwk2ar4e8yajsjo’
, ’1rqju5l2fizu0w476g37nhlfwgbsfyyltl53doespo31onzy21q72irl9s7s4p051r2160gw3p’
, ’1’]

a_prime = int(vv[0], base=36)
b_prime = int(vv[1], base=36)
kernel_poly = [int(v, base=36) for v in vv[2:]]
Ell = EllipticCurve(F, [0, 4])
EllP = EllipticCurve(F, [a_prime, b_prime])
iso11 = EllipticCurveIsogeny(EllP, kernel_poly, codomain=Ell, degree=11)
choose isogeny with opposite sign for y (this is arbitrary)
iso11.switch_sign()

##
Ell2’ -> Ell2
##
Ell2 = EllipticCurve(F2, [0, 4 * (X + 1)])
Ell2p = EllipticCurve(F2, [240 * X, 1012 * (X + 1)])
iso3 = EllipticCurveIsogeny(Ell2p, [6 * (1 - X), 1], codomain=Ell2)

print rational maps
print iso11.rational_maps()
print iso3.rational_maps()

you can also access the rational maps separately
xmap = iso.rational_maps[0]
ymap = iso.rational_maps[1]

and also their numerators and denominators
xmap_num = xmap.numerator()
xmap_den = xmap.denominator()
ymap_num = ymap.numerator()
ymap_den = ymap.denominator()

	Introduction
	Related work

	Background
	The BLS12-381 elliptic curve
	BLS signatures
	The Shallue–van de Woestijne map
	The simplified Shallue–van de Woestijne–Ulas map of Brier et al.

	A Shallue–van de Woestijne map for BLS12-381
	An optimized SWU map for BLS12-381
	Generalizing the map to E(F), #F3-5mumod5mu-4
	Optimizing the map
	The isogeny maps
	Putting it all together

	Hashing to the groups G1 and G2 of BLS12-381
	Implementation and evaluation
	Conclusion
	The isogeny maps

