New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

Alexander Maximov and Patrik Ekdahl Ericsson Research

Preliminaries

AES Round Function

- SubBytes is the only non-linear part
- 168×8 SBoxes needed for a full implementation
- Forward only or combined SBox
- In ASICs
- Look-up table
- Gate implementation

What to remember:

- New improved methods for circuit minimization.
- New SBox architecture which improves the critical path.

Preliminaries

Basic flow of AES SBox

Direct implementation of inversion over Rijndael field is very complex.

Previous work (low area)

Rijmen [Rij00] proposed (based on Itoh and Tsujii [IT88]) to use a composite field and do the inversion in GF(2^4) instead.

- Satoh et al [SMT01] reduced inversion to GF(2²).
- Canright [Can05] investigated the importance of subfield representation.

Previous work (low depth)

Boyar, Peralta et al ([BP10a,BP10b,BP12,BFP18]) used a normal base $A=a_{9} Y+a_{1} Y^{16}$ and $A^{-1}=\left(A A^{16}\right)^{-1} A^{16}$ (also based on Itoh and Tsujii [IT88]) to derive another implementation.

Several papers followed:

- Nogami et al [NNT+10], looking at mixed bases.
- Ueno et al [UHS+15], looking at redundant bases.
- Reyhani et al [RMTA18a,b], improving Boyar-Peralta (BP) search algorithm.
- Li et al [LSL+19], incorporating depth into BP algorithm.

Previous work (low depth)

Boyar, Peralta et al ([BP10a,BP10b,BP12,BFP18]) used a normal base $A=a_{9} Y+a_{1} Y^{16}$ and $A^{-1}=\left(A A^{16}\right)^{-1} A^{16}$ (also based on Itoh and Tsujii [IT88]) to derive another implementation.

Several papers followed:

- Nogami et al [NNT+10], looking at mixed bases.
- Ueno et al [UHS+15], looking at redundant bases.
- Reyhani et al [RMTA18a,b], improving Boyar-Peralta (BP) search algorithm.
- Li et al [LSL+19], incorporating depth into BP algorithm.

Architectural starting point [BP12]

Base conversion and

Base back-conversion and
generation of linear parts
of multiplications
the affine transformation of the AES SBox.

Basic problem statement:
Given a binary matrix $M_{m x n}$ and the maximum allowed depth maxD,
find the circuit of depth $\mathrm{D} \leq \operatorname{maxD}$ with the minimum number of 2-input XOR gates such that it computes $Y=M \cdot X$.

$y_{0}=x_{0}$	
$y_{1}=$	$+x_{2}+x_{3}+x_{4}$
$y_{2}=$	$x_{1}+x_{2}+x_{1}$
$x_{1}+x_{3}+x_{4}$	

0 \& 1 \& 1 \& 0 \& 1

1 \& 1 \& 0 \& 1 \& 1\end{array}\right)\)

Additional Input Requirement (AIR)

- Input signals may arrive with different delay d_{i}

Additional Output Requirement (AOR)

- Output signals may need to be ready earlier, $e_{i} \leq \max D$

Our contributions

- New techniques for minimizing the Top and Bottom matrices (area with delay constraints).
- Introduced a probabilistic heuristic approach to the cancellation-free algorithm by Paar [Paa97].
- New cancellation-allowed exhaustive search algorithm, based on BP-algorithm [BP10a].
- Floating Multiplexers for the combined SBox.
- New generalization of BP-algorithm, allowing other types of gates.
- New metrics, with lots of speed up tricks for the distance function.
- Stack algorithm with a search tree.
- New architecture that removes the Bottom matrix and reduces the overall depth.
- New circuit for the inverse operation.
- Additional Transformation Matrices.

Combined SBox with multiplexers

Combined SBox with multiplexers

Example:

$$
\begin{aligned}
& Y^{F}=X_{0}+X_{1} \\
& Y^{I}=X_{0}+X_{2}
\end{aligned}
$$

$Y=\operatorname{MUX}\left(\right.$ select, $\left.X_{0}+X_{1}, X_{0}+X_{2}\right)$
Replace with:
$Y=\operatorname{MUX}\left(\right.$ select, $\left.X_{1}, X_{2}\right)+X_{0}$

Generally:

$Y=\mathrm{A}+\operatorname{MUX}($ select $, B, C) \rightarrow$
$Y=\mathrm{A}+\Delta+\operatorname{MUX}($ select, $\mathrm{B}+\Delta, C+\Delta)$

Boyar-Peralta algorithm [BP10a]

- Notion of a "point".
- In original algorithm, this is a linear combination of input signals. Set of gates used $G=\{X O R\}$.
- Base set of known points S .

$$
S_{0}=\left(x_{0}, x_{1}, \ldots, x_{4}\right)=([1,0,0,0,0],[0,1,0,0,0], \ldots,[0,0,0,0,1])
$$

- Set of target points T, the rows y_{i} of M.

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) \\
& \Delta=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right) .
\end{aligned}
$$

- Metric using a distance function $\delta_{i}\left(S, y_{i}\right)$.
- Set of candidates C.
- Try all base pair s_{i}, s_{j} in S_{t} and form a candidate $c=g\left(s_{i}, s_{j}\right)$, in this case: $c=s_{i}+s_{j}$
- Calculate the new distance vector Δ based on $S_{t} \cup c$
- We save the candidate c that gives the lowest distance $S_{t+1}=S_{t} \cup c$
- Repeat until the distance vector is all-zero.

BP for Linear Circuits with Floating Multiplexers

- Include MUX, NMUX in the set of gates.
- A point is now a tuple $p=(F, I)$
- F and I are linear combinations of input signals
- Translated into $\operatorname{MUX}(Z F, F \cdot X, I \cdot X)$

The six gates	
$\operatorname{MUX}(\mathrm{v}, \mathrm{w})$	$\operatorname{MUX}(w, v)$
$\operatorname{NMUX}(\mathrm{v}, \mathrm{w})$	$\operatorname{NMUX}(w, v)$
$\operatorname{XOR}(\mathrm{v}, \mathrm{w})$	$\operatorname{XNOR}(\mathrm{v}, \mathrm{w})$

- Input points $X_{k}=\left(2^{k}, 2^{k}\right), k=0, \ldots n-1$
- Target points $Y_{k}=\left(Y_{k}^{F}, Y_{k}^{I}\right), k=0, \ldots, m-1$
- Improved metrics and new algorithm (with lots of speed up) to calculate $\delta_{i}\left(S, y_{i} \mid D \max \right)$.
- We keep track of AIR, and AOR at each stage.
- For the full Affine transformation, define the point as $p=(f, F, i, I) \rightarrow M U X(Z F, F \cdot X+f, I \cdot X+i)$

BP for any Nonlinear Circuit

- Allow all kinds of gates in G (XOR, AND, MUX, ... 2-input, 3-input...).
- A point is now the truth table of a Boolean function.
- Combine points using truth tables and gate functionality.
- Target points are the truth table for every output signal of the nonlinear block.
- Applicable to circuits of maximum 4-5 input signals, and the number of output signals is not limited.
- Used to derive a smaller inversion circuit over GF(2²).

Search Tree

- Try to keep leaves from as many different branches as possible

Search Tree

- Try to keep leaves from as many different branches as possible

New architecture for lower depths

The Bottom matrix only depends on the multiplication of the 4-bit signal Y with some linear combination of the input signal U

$$
\boldsymbol{R}=Y_{0} \cdot M_{0} \cdot \boldsymbol{U}+\cdots+Y_{3} \cdot M_{3} \cdot \boldsymbol{U}
$$

where M_{i} is an 8×8 matrix to be scalar multiplied by the Y_{i} bit.

Calculate M_{i} in parallel in Top matrix.
Assembling requires 56 gates (32NAND, 24XOR)

New circuit for the inversion in GF(24)

$$
\begin{aligned}
& Y_{0}=X_{1} X_{2} X_{3}+X_{0} X_{2}+X_{1} X_{2}+X_{2}+X_{3} \\
& Y_{1}=X_{0} X_{2} X_{3}+X_{0} X_{2}+X_{1} X_{2}+X_{1} X_{3}+X_{3} \\
& Y_{2}=X_{0} X_{1} X_{3}+X_{0} X_{2}+X_{0} X_{3}+X_{0}+X_{1} \\
& Y_{3}=X_{0} X_{1} X_{2}+X_{0} X_{2}+X_{0} X_{3}+X_{1} X_{3}+X_{1}
\end{aligned}
$$

- In [BP12] they found a circuit of 17 gates and depth 4 (with base gates \{AND, XOR\}).
- By applying the BP-algorithm for general non-linear circuits,

$$
\begin{array}{lll}
\mathrm{T} 0=\operatorname{NAND}(X 0, X 2) & \mathrm{T} 3=\operatorname{MUX}(\mathrm{X} 1, \mathrm{X} 2,1) & \mathrm{Y} 1=\operatorname{MUX}(\mathrm{T} 2, \mathrm{X} 3, \mathrm{~T} 3) \\
\mathrm{T} 1=\operatorname{NOR}(X 1, X 3) & \mathrm{T} 4=\operatorname{MUX}(X 3, X 0,1) & \mathrm{Y} 2=\operatorname{MUX}(X 0, \mathrm{~T} 2, X 1) \\
\mathrm{T} 2=\mathrm{XNOR}(\mathrm{~T} 0, \mathrm{~T} 1) & \mathrm{Y} 0=\operatorname{MUX}(X 2, \mathrm{~T} 2, X 3) & \mathrm{Y} 3=\operatorname{MUX}(\mathrm{T} 2, X 1, \mathrm{~T} 4)
\end{array}
$$

We also found a small conventional (no MUXes) circuit of 15 gates and depth 3 .

Additional Transformation Matrices

Excluding the final constant from the affine transformation, we can write the SBox as:

$$
\operatorname{SBox}(x)=x^{-1} \cdot A_{8 x 8}
$$

In any field of characteristic 2 , squaring, square root, and multiplication by a constant are linear functions. Thus, for any choice of $\alpha=1 \ldots 255$, and $\beta=0 \ldots 7$ we have:

$$
\begin{aligned}
Z(x)=\left(\alpha \cdot x^{2^{\beta}}\right)^{-1} & \text { Top matrix } \\
\operatorname{SBox}(x)=\sqrt[2^{\beta}]{\alpha \cdot Z(x)} \cdot A_{8 x 8} & \text { Bottom matrix }
\end{aligned}
$$

- For Forward (Inverse) we have 2040 choices. Tried all!
- For Combined we have $2040^{2}=4,161,600$ choices. Based on the heuristic algorithm, we selected candidates to run the full generic floating multiplexer algorithm.

A similar approach was independently proposed in [UHNA19] but they only considered multiplication.

Forward SBox Results

Combined SBox Results

Combined SBox	Area Size/Gates	Critical Path/Depth
	Std. gates Tech. GE	Std. gates Tech. XORs
Previous Results		
Canright [Can05] most famous design	$94 \mathrm{XO}+34 \mathrm{ND}+6 \mathrm{NR}+16 \mathrm{MX}$ (+2IV)	$20 \mathrm{XO}+3 \mathrm{ND}+20 \mathrm{R}+5 \mathrm{NR}$
	$150(+2) \quad 297.64$	$30 \quad 25.644$
Reyhani et al [RMTA18b]	$81 \mathrm{XO}+32 \mathrm{ND}+40 \mathrm{R}+16 \mathrm{NR}+16 \mathrm{MI}$ (+8IV)	$17 \times 0+2 \mathrm{ND}+30 \mathrm{R}+6 \mathrm{NR}$
	$149(+8) \quad 290.13$	$28 \quad 23.608$
Ueno et al [UHNA19] recent result	$112 \mathrm{XO}+7 \mathrm{XN}+100 \mathrm{R}+45 \mathrm{AN}+16 \mathrm{MX}$ (+10IV)	11XO+3AN+10R+2MX (+1IV)
	$190(+10) \quad 393.40$	$17(+1) \quad 15.681$
Our Results		
Combined (fast) fast with depth 14	$77 \mathrm{XO}+27 \mathrm{XN}+41 \mathrm{ND}+6 \mathrm{NR}+13 \mathrm{MX}+12 \mathrm{MI}$	$6 \mathrm{XO}+3 \mathrm{XN}+1 \mathrm{ND}+2 \mathrm{NR}+1 \mathrm{MX}+1 \mathrm{MI}$
	176 351.65	$14 \quad 12.312$
Combined (tradeoff) area/speed tradeoff	$70 \times 0+21 \mathrm{XN}+27 \mathrm{ND}+5 \mathrm{NR}+17 \mathrm{MX}+5 \mathrm{MI}$	$7 \mathrm{XO}+4 \mathrm{XN}+1 \mathrm{ND}+2 \mathrm{NR}+1 \mathrm{MX}+1 \mathrm{MI}$
	$145 \quad 296.99$	$16 \quad 14.305$
Combined (bonus) new record smallest	70XO+9XN+27ND+5NR+16MX	15X0+4XN+2ND+1NR+3MX
	$127 \quad 253.35$	$25 \quad 22.675$

AES MixColumns results

Alexander also applied the algorithms to the AES MixColumns circuits

Previous results (XORs):
103 Jean et al, CHES 2017

97 Krantz et al, ToSC 2017
95
94
Banik et al, ePrint Archive Report 2019/856
Tan and Peyrin, ePrint Archive Report 2019/847
Alexander's result:
92 (depth 6)
Alexander Maximov, ePrint Archive Report 2019/833

Thank you.

www.ericsson.com

