Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols

Utsav Banerjee*, Tenzin S. Ukyab, Anantha P. Chandrakasan

*<u>utsav@mit.edu</u>

Massachusetts Institute of Technology

Post-Quantum Cryptography

Current public key cryptography vulnerable to quantum attacks

- NIST post-quantum crypto standardization in progress
- Round 2 has 26 candidates:
 - Lattice-based (9 KEM + 3 Sign)
 - Code-based (7 KEM)
 - Hash-based (1 Sign)
 - Multivariate (4 Sign)
 - Supersingular isogeny (1 KEM)
 - Zero-knowledge proofs (1 Sign)

Learning with Errors

Learning with Errors (LWE) and its variants:

Computational requirements (apart from standard arithmetic):

- Modular arithmetic over various small primes
- Polynomial arithmetic for Ring-LWE and Module-LWE
- Sampling of matrices and polynomials from discrete distributions

Sapphire Crypto-Processor

Energy-efficient configurable lattice-crypto-processor

Outline

□ Efficient Lattice-Crypto Hardware Implementation

- Configurable Modular Multiplier
- Area-Efficient NTT
- Energy-Efficient Sampler
- **Chip Architecture**
- Measurement Results
- □ Side-Channel Analysis

Modular Multiplication

Algorithm Modular Multiplication with Barrett Reduction Require: $x, y \in \mathbb{Z}_q$, m and k such that $m = \lfloor 2^k/q \rfloor$ Ensure: $z = x \cdot y \mod q$ 1: $z \leftarrow x \cdot y$ 2: $t \leftarrow (z \cdot m) \gg k$ 3: $z \leftarrow z - (t \cdot q)$ 4: if $z \ge q$ then 5: $z \leftarrow z - q$ 6: end if 7: return z

Reduction with fully configurable modulus:

 \Box configurable parameters *m*, *k*, *q*

 \square *m* and *q* up to 24 bits

 $\Box 16 \le k \le 48$

□ requires 2 explicit multipliers for reduction

Modular Multiplication

Algorithm Modular Multiplication with Barrett Reduction Require: $x, y \in \mathbb{Z}_q$, m and k such that $m = \lfloor 2^k/q \rfloor$ Ensure: $z = x \cdot y \mod q$ 1: $z \leftarrow x \cdot y$ 2: $t \leftarrow (z \cdot m) \gg k$ 3: $z \leftarrow z - (t \cdot q)$ 4: if $z \ge q$ then 5: $z \leftarrow z - q$ 6: end if 7: return z

Reduction with pseudo-configurable modulus:

- \Box choice of *q* from a set of primes
- □ reduction coded in digital logic
- □ requires no explicit multiplier for reduction
- □ up to 6× more energy-efficient

Unified Butterfly

Number Theoretic Transform

NTT memory banks using dual-port SRAMs have large area overheads

□ Proposed single-port SRAM-based NTT

Based on constant geometry FFT data-flow [Pease, J. ACM, 1968]

Polynomials split among four single-port SRAMs based on address parity:

Achieves > 30% area savings compared to dual-port implementation (without loss in throughput)

NTT Data Flow

#11

R

R

W

W

#11 #12

R

R

W

w

w

W

#12

R

W

W

• One butterfly per cycle

□ No read / write hazards

□ No energy overheads

Energy-Efficient PRNG

Standard CS-PRNG: D SHAKE-128 / 256 **D** AES-128 / 256 **D** ChaCha20

Keccak-based PRNG:

24-cycles and 2.33 nJ per round @ 1.1V

Discrete Distribution Sampler

Test Chip Overview

□ Crypto core integrated with RISC-V processor

Chip Micrograph

Protocol Implementations

□ Following NIST Round 2 protocols were implemented on our test chip:

CCA-KEM	LWE	Frodo		Ring-LWE	aTesla	
	Ring-LWE	NewHope	Signature		CRYSTALS-Dilithium	
	Module-LWE	CRYSTALS-Kyber		Module-LWE		

□ Computations shared between crypto core and RISC-V processor:

PKE / KEM:

Sign:

Enc	oding / Compression	Ence	oding / Compression		
	CCA-KEM		Sign		
	CPA-PKE				
	RISC-	Lattice-Crypto H/W			

Implementation of RLWE and MLWE

□ Efficient utilization of 24 KB polynomial memory with 8192 elements

- Crypto core used to accelerate sampling and polynomial arithmetic
- □ Protocol scheduling, compression and encoding performed on RISC-V processor

Implementation of LWE

Polynomial memory tiled to support non-power-of-two-size matrix manipulation

- Crypto core used to accelerate sampling and matrix arithmetic
- □ Protocol scheduling, compression and encoding performed on RISC-V processor

Protocol Evaluation Results

* Cycle counts for CCA-KEM-Encaps and Sign

Order of magnitude improvement in energy-efficiency and performance

Protocol Evaluation Results

* Measured using test chip operating at 1.1 V and 72 MHz

Performance Comparison

Design	Platform	Tech (nm)	VDD (V)	Freq (MHz)	Protocol	Area (kGE)	Cycles	Energy (μJ)
					NewHope-512-CCA-KEM-Encaps NewHope-1024-CPA-PKE-Encrypt		136,077 106,611	10.02 12.00
This work	ASIC	40	1.1	72	Kyber-512-CCA-KEM-Encaps Kyber-768-CPA-PKE-Encrypt Kyber-768-CCA-KEM-Encaps Frodo-640-CCA-KEM-Encaps Dilithium-II-Sign	106	131,698 94,440 177,540 11,609,668 514 246	9.37 10.31 12.80 1129.95 54.82
Basu et al. [BSNK19] [†]	ASIC	65	1.2	169 200 158	NewHope-512-CCA-KEM-Encaps Kyber-512-CCA-KEM-Encaps Dilithium-II-Sign	1273 1341 1603	307,847 31,669 155,166	69.42 6.21 50.42
Albrecht et al. [AHH+18]	SLE 78	-	-	50	Kyber-768-CPA-PKE-Encrypt Kyber-768-CCA-KEM-Encaps	-	4,747,291 5,117,996	-
Oder et al. [OG17]	FPGA	-	-	117	NewHope-1024-Simple-Encrypt	-	179,292	-
Howe et al. [HOKG18]	FPGA	-	-	167	Frodo-640-CCA-KEM-Encaps	-	3,317,760	-
Fritzmann et al. [FSM+19]	FPGA	-	-	-	NewHope-1024-CPA-PKE-Encrypt	-	589,285	-

[†] Only post-synthesis area and energy consumption reported

Side-Channel Analysis Setup

Timing and SPA Side-Channels

□ All key building blocks constant-time by design

- □ Energy consumption of sampling and polynomial arithmetic follows a narrow distribution with coefficient of variation ≤ 0.5% (= σ/μ)
- □ SPA attacks target polynomial arithmetic:
 - Number Theoretic Transform
 - Coefficient-wise Multiplication
 - Coefficient-wise Addition
- SPA resistance of polynomial arithmetic evaluated using difference-of-means test with 99.99% confidence interval

Masking for DPA Security

□ Protocol evaluations without any DPA countermeasures

□ Masked NewHope-CPA-PKE-Decrypt based on additively homomorphic property:

- 1. Generate secret message μ_r
- 2. Encrypt μ_r to its corresponding ciphertext $c_r = (\hat{u}_r, v'_r)$
- 3. Compute $c_m = (\hat{u} + \hat{u}_r, v' + v'_r)$ where $c = (\hat{u}, v')$ is the original ciphertext
- 4. Decrypt c_m to obtain $\mu_m = \mu \oplus \mu_r$ where μ is the original message
- 5. Recover original message as $\mu = \mu_m \oplus \mu_r$

□ Masked decryption using same hardware; 3× slower than unmasked version

□ Masking increases decryption failure rate, which can be resolved by decreasing std. dev. σ of error distribution (at the cost of slightly lower security level)

□ Leakage tests and CCA-KEM masking – work in progress

[Reparaz et al, PQCrypto, 2016]

Conclusion

- Configurable crypto-processor for LWE, Ring-LWE and Module-LWE protocols
- Area-efficient NTT, energy-efficient sampler and flexible parameters
- ASIC demonstration of NIST Round 2 CCA-KEM and signature protocols: Frodo, NewHope, Kyber, qTesla, Dilithium
- Order of magnitude improvement in performance and energy-efficiency compared to state-of-the-art software and hardware
- Hardware building blocks constant-time and SPA-secure by design; masking can also be implemented for DPA security

Acknowledgements

Texas Instruments for funding

□ TSMC University Shuttle Program for chip fabrication

Questions

