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Post-Quantum Cryptography

ServerClient

Post-Quantum Crypto

RSA, ECC, …

Quantum Adversary

❑ Current public key cryptography 

vulnerable to quantum attacks

❑ NIST post-quantum crypto 

standardization in progress

❑ Round 2 has 26 candidates:

▪ Lattice-based (9 KEM + 3 Sign)

▪ Code-based (7 KEM)

▪ Hash-based (1 Sign)

▪ Multivariate (4 Sign)

▪ Supersingular isogeny (1 KEM)

▪ Zero-knowledge proofs (1 Sign)
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Learning with Errors

❑ Learning with Errors (LWE) and its variants:
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Module-LWE

(Module Lattices)

❑ Computational requirements (apart from standard arithmetic):

▪ Modular arithmetic over various small primes

▪ Polynomial arithmetic for Ring-LWE and Module-LWE

▪ Sampling of matrices and polynomials from discrete distributions
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Sapphire Crypto-Processor

❑ Energy-efficient configurable lattice-crypto-processor
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Outline

❑ Efficient Lattice-Crypto Hardware Implementation

▪ Configurable Modular Multiplier

▪ Area-Efficient NTT

▪ Energy-Efficient Sampler

❑ Chip Architecture

❑ Measurement Results

❑ Side-Channel Analysis
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Modular Multiplication

Reduction with fully configurable modulus:

Modular Multiplier

Arch #1

Mult. 1

Mult. 2

Mult. 3

❑ configurable parameters 𝑚, 𝑘, 𝑞

❑ 𝑚 and 𝑞 up to 24 bits

❑ 16 ≤ 𝑘 ≤ 48

❑ requires 2 explicit multipliers for reduction
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Modular Multiplication

Reduction with pseudo-configurable modulus:

❑ choice of 𝑞 from a set of primes

❑ reduction coded in digital logic

❑ requires no explicit multiplier for reduction

❑ up to 6× more energy-efficient

Modular Multiplier

Arch #2

Mult.

Reduction Logic
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Unified Butterfly
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Number Theoretic Transform

❑ NTT memory banks using dual-port SRAMs 

have large area overheads

❑ Proposed single-port SRAM-based NTT

❑ Based on constant geometry FFT data-flow 

❑ Polynomials split among four single-port 

SRAMs based on address parity:

❑ Achieves > 30% area savings compared to 

dual-port implementation (without loss in 

throughput)

MSB(addr) = 0

LSB(addr) = 0

Mem #0

MSB(addr) = 0

LSB(addr) = 1

Mem #1

MSB(addr) = 1

LSB(addr) = 0

Mem #2

MSB(addr) = 1

LSB(addr) = 1

Mem #3
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[Pease, J. ACM, 1968]



NTT Data Flow

❑ One butterfly per cycle

❑ No read / write hazards

❑ No energy overheads
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Energy-Efficient PRNG

Standard CS-PRNG: ❑ SHAKE-128 / 256 ❑ AES-128 / 256 ❑ ChaCha20

Keccak-based PRNG:

24-cycles and 2.33 nJ per round @ 1.1V
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Discrete Distribution Sampler
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Test Chip Overview
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Chip Micrograph
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❑ Crypto core integrated with RISC-V processor



Protocol Implementations
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CCA-KEM

LWE Frodo

Ring-LWE NewHope

Module-LWE CRYSTALS-Kyber

Signature

Ring-LWE qTesla

Module-LWE CRYSTALS-Dilithium

❑ Following NIST Round 2 protocols were implemented on our test chip:

❑ Computations shared between crypto core and RISC-V processor:

PKE / KEM:

Encoding / Compression

CCA-KEM

CPA-PKE

Sign:

Encoding / Compression

Sign

RISC-V S/W with SHA-3 H/W Lattice-Crypto H/W



Implementation of RLWE and MLWE
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❑ Efficient utilization of 24 KB polynomial memory with 8192 elements

n = 256

32 polynomials

n = 512

16 polynomials

n = 1024

8 polynomials

CRYSTALS-Kyber

CRYSTALS-Dilithium

NewHope-512

qTesla-I

NewHope-1024

qTesla-III

❑ Crypto core used to accelerate sampling and polynomial arithmetic

❑ Protocol scheduling, compression and encoding performed on RISC-V processor



Implementation of LWE
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❑ Polynomial memory tiled to support non-power-of-two-size matrix manipulation

❑ Crypto core used to accelerate sampling and matrix arithmetic

❑ Protocol scheduling, compression and encoding performed on RISC-V processor

Frodo-640 Frodo-976

n = 128 / 512 / 1024 n = 1024



Protocol Evaluation Results
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Order of magnitude improvement in energy-efficiency and performance
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Protocol Evaluation Results
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CCA-KEM-Encaps Sign

* Measured using test chip operating at 1.1 V and 72 MHz



Performance Comparison

Design Platform
Tech 

(nm)

VDD 

(V)

Freq 

(MHz)
Protocol

Area 

(kGE)
Cycles

Energy 

(µJ)

This work ASIC 40 1.1 72

NewHope-512-CCA-KEM-Encaps

NewHope-1024-CPA-PKE-Encrypt

Kyber-512-CCA-KEM-Encaps

Kyber-768-CPA-PKE-Encrypt

Kyber-768-CCA-KEM-Encaps

Frodo-640-CCA-KEM-Encaps

Dilithium-II-Sign

106

136,077

106,611

131,698

94,440

177,540

11,609,668

514,246

10.02

12.00

9.37

10.31

12.80

1129.95

54.82

Basu et al. [BSNK19] † ASIC 65 1.2

169

200

158

NewHope-512-CCA-KEM-Encaps

Kyber-512-CCA-KEM-Encaps

Dilithium-II-Sign

1273

1341

1603

307,847

31,669

155,166

69.42

6.21

50.42

Albrecht et al. [AHH+18] SLE 78 - - 50
Kyber-768-CPA-PKE-Encrypt

Kyber-768-CCA-KEM-Encaps
-

4,747,291

5,117,996
-

Oder et al. [OG17] FPGA - - 117 NewHope-1024-Simple-Encrypt - 179,292 -

Howe et al. [HOKG18] FPGA - - 167 Frodo-640-CCA-KEM-Encaps - 3,317,760 -

Fritzmann et al. [FSM+19] FPGA - - - NewHope-1024-CPA-PKE-Encrypt - 589,285 -
† Only post-synthesis area and energy consumption reported 19 of 25



Side-Channel Analysis Setup

Test Board

Test Chip
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Timing and SPA Side-Channels

Binomial Sampling

Number Theoretic Transform

Polynomial Coefficient-wise Multiplication

Polynomial Coefficient-wise Addition

❑ All key building blocks constant-time by design

❑ Energy consumption of sampling and polynomial 

arithmetic follows a narrow distribution with coefficient 

of variation ≤ 0.5% (= 𝜎/𝜇)

❑ SPA attacks target polynomial arithmetic:

▪ Number Theoretic Transform

▪ Coefficient-wise Multiplication

▪ Coefficient-wise Addition

❑ SPA resistance of polynomial arithmetic evaluated 

using difference-of-means test with 99.99% 

confidence interval
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Masking for DPA Security
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❑ Protocol evaluations without any DPA countermeasures

❑ Masked NewHope-CPA-PKE-Decrypt based on additively homomorphic property:

1. Generate secret message 𝜇𝑟

2. Encrypt 𝜇𝑟 to its corresponding ciphertext 𝑐𝑟 = (ො𝑢𝑟 , 𝑣𝑟
′)

3. Compute 𝑐𝑚 = ො𝑢 + ො𝑢𝑟 , 𝑣
′ + 𝑣𝑟

′ where c = ො𝑢, 𝑣′ is the original ciphertext

4. Decrypt 𝑐𝑚 to obtain 𝜇𝑚 = 𝜇 ⊕ 𝜇𝑟 where 𝜇 is the original message

5. Recover original message as 𝜇 = 𝜇𝑚 ⊕𝜇𝑟

❑ Masked decryption using same hardware; 3× slower than unmasked version

❑ Masking increases decryption failure rate, which can be resolved by decreasing 

std. dev. 𝜎 of error distribution (at the cost of slightly lower security level)

❑ Leakage tests and CCA-KEM masking – work in progress

[Reparaz et al, PQCrypto, 2016]



Conclusion
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❑ Configurable crypto-processor for LWE, Ring-LWE and Module-LWE protocols

❑ Area-efficient NTT, energy-efficient sampler and flexible parameters

❑ ASIC demonstration of NIST Round 2 CCA-KEM and signature protocols: 

Frodo, NewHope, Kyber, qTesla, Dilithium

❑ Order of magnitude improvement in performance and energy-efficiency 

compared to state-of-the-art software and hardware

❑ Hardware building blocks constant-time and SPA-secure by design; masking 

can also be implemented for DPA security
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Questions
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