
Sapphire: A Configurable Crypto-Processor for
Post-Quantum Lattice-based Protocols

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan

Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Public key cryptography protocols, such as RSA and elliptic curve cryp-
tography, will be rendered insecure by Shor’s algorithm when large-scale quantum
computers are built. Cryptographers are working on quantum-resistant algorithms,
and lattice-based cryptography has emerged as a prime candidate. However, high
computational complexity of these algorithms makes it challenging to implement
lattice-based protocols on low-power embedded devices. To address this challenge,
we present Sapphire – a lattice cryptography processor with configurable parameters.
Efficient sampling, with a SHA-3-based PRNG, provides two orders of magnitude
energy savings; a single-port RAM-based number theoretic transform memory ar-
chitecture is proposed, which provides 124k-gate area savings; while a low-power
modular arithmetic unit accelerates polynomial computations. Our test chip was
fabricated in TSMC 40nm low-power CMOS process, with the Sapphire cryptographic
core occupying 0.28 mm2 area consisting of 106k logic gates and 40.25 KB SRAM.
Sapphire can be programmed with custom instructions for polynomial arithmetic and
sampling, and it is coupled with a low-power RISC-V micro-processor to demonstrate
NIST Round 2 lattice-based CCA-secure key encapsulation and signature protocols
Frodo, NewHope, qTESLA, CRYSTALS-Kyber and CRYSTALS-Dilithium, achieving
up to an order of magnitude improvement in performance and energy-efficiency
compared to state-of-the-art hardware implementations. All key building blocks of
Sapphire are constant-time and secure against timing and simple power analysis
side-channel attacks. We also discuss how masking-based DPA countermeasures can
be implemented on the Sapphire core without any changes to the hardware.
Keywords: Lattice-based Cryptography · LWE · Ring-LWE · Module-LWE · post-
quantum · NIST Round 2 · Number Theoretic Transform · Sampling · energy-efficient
· low-power · constant-time · side-channel security · ASIC · hardware implementation

1 Introduction
Modern public key cryptography relies on hard mathematical problems such as integer
factorization, discrete logarithms over finite fields and discrete logarithms over elliptic
curve groups. However, these problems can be solved by a large-scale quantum computer in
polynomial time using Shor’s algorithm [Sho97], thus making today’s public key protocols
like RSA and ECC vulnerable to quantum attacks. Given the rapid advancement in
quantum computing technology over the past few years, cryptographers are developing
quantum-secure public key algorithms to protect today’s data from tomorrow’s threats.
Lattice-based cryptography is being considered one of the most promising candidates for
post-quantum cryptographic protocols because of its extensive security analysis as well as
small public key and signature sizes.

The National Institute of Standards and Technology (NIST) formally initiated the
process of standardizing post-quantum cryptography in 2016 [CJL+16]. The first round
of candidates were announced in late 2017, with lattice-based cryptography accounting

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 4, pp. 17–61
DOI:10.13154/tches.v2019.i4.17-61

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i4.17-61

18 Sapphire: A Configurable Lattice Crypto-Processor

for 48% of the public-key encryption and key encapsulation (PKE/KEM) schemes and
25% of the signature schemes. In early 2019, the candidates moving on to the second
round were announced [AAA+19], and lattice-based cryptography accounts for 53% (9
out of 17) and 33% (3 out of 9) of the candidates for PKE/KEM and signature schemes
respectively. The theoretical foundation of several of these lattice-based protocols lies in the
learning with errors (LWE) problem [Reg05] and its variants such as Ring-LWE [LPR13]
and Module-LWE [LS15], and the hardness of LWE has been well-studied in the presence
of both classical and quantum adversaries [BLP+13, Reg04]. This has been accompanied
by several software and hardware implementations [RVM+14, dRVV15, AJS16, KLC+17,
OG17, NDBC18, BFM+18, HOKG18, STCZ18, AHH+18, LZL+19, BSNK19] of LWE and
Ring-LWE-based public key encryption and key encapsulation protocols, each supporting
specific lattice parameters chosen for increased performance and efficiency. Existing
lattice-based cryptography implementations, both in software and hardware, have been
thoroughly surveyed in [NDR+19]. Most of the hardware implementations focus on FPGA
demonstration in order to support reconfigurability of lattice parameters, which is especially
important for a fast evolving field like lattice-based cryptography, while existing ASIC
implementations either lack configurability or have power and area overheads. Some of the
key challenges of implementing lattice-based cryptography in ASICs have been discussed
in [OGV+16], and this work presents a solution using a combination of architectural and
algorithmic techniques.

Our contributions: In this work, we present Sapphire – a configurable lattice cryp-
tography processor – which combines low-power modular arithmetic, area-efficient memory
architecture and fast sampling techniques to achieve high energy-efficiency and low cycle
count, ideal for securing low-power embedded systems. The key technical aspects of our
work are as follows:

1. A low-power modular arithmetic core, with configurable prime modulus, is used to
accelerate polynomial arithmetic operations; a pseudo-configurable modular multiplier
is also implemented, which provides up to 3× improvement in energy-efficiency.

2. A single-port SRAM-based number theoretic transform (NTT) memory architecture
provides 124k-gate area savings without any loss in performance or energy-efficiency.

3. An efficient Keccak core is combined with fast sampling techniques to speed up poly-
nomial sampling, while supporting a wide variety of discrete distribution parameters
suitable for lattice-based schemes.

4. These efficient hardware building blocks are integrated together with an instruction
memory and decoder to build our crypto-processor, which can be programmed with
custom instructions for polynomial sampling and arithmetic.

5. The Sapphire crypto-processor is coupled with an efficient RISC-V micro-processor
to demonstrate several NIST Round 2 lattice-based key encapsulation and signa-
ture protocols such as Frodo [NAB+19], NewHope [PAA+19], qTESLA [BAA+19],
CRYSTALS-Kyber [SAB+19] and CRYSTALS-Dilithium [LDK+19], achieving more
than an order of magnitude improvement in performance and energy-efficiency com-
pared to state-of-the-art assembly-optimized software and hardware implementations.

6. All the key building blocks, such as NTT, polynomial arithmetic and binomial sam-
pling, are constant-time and secure against timing and simple power analysis attacks.
While our baseline protocol implementations are not secure against differential power
analysis attacks, we discuss how the programmability of our crypto-processor can be
utilized to implement masking-based countermeasures.

7. Our ASIC implementation was fabricated in the TSMC 40nm low-power CMOS
process, and all protocol-level demonstrations and side-channel measurements have
been conducted on our test chip.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 19

The rest of the paper is organized as follows: Section 2 provides a brief mathematical
background on LWE and associated computations; in Section 3, we present our implemen-
tation of energy-efficient modular arithmetic along with an area-efficient NTT memory
architecture; in Section 4, we describe our discrete distribution sampler accelerated by a
low-power SHA-3 core; Section 5 describes the overall chip architecture; Section 6 presents
detailed measurement results obtained from evaluating lattice-based protocols on our test
chip, comparison with state-of-the-art software and hardware implementations as well
as side-channel analysis; a summary of our key conclusions along with future research
directions are discussed in Section 7.

2 Background
In this section, we provide a brief introduction to LWE, Ring-LWE and Module-LWE
along with the associated computations. We use bold lower-case symbols to denote vectors
and bold upper-case symbols to denote matrices. The symbol lg is used to denote all
logarithms with base 2. The set of all integers is denoted as Z and the quotient ring of
integers modulo q is denoted as Zq. For two n-dimensional vectors a and b, their inner
product is written as 〈a, b〉 =

∑n−1
i=0 ai · bi. The concatenation of two vectors a and b is

written as a || b.

2.1 LWE and Related Lattice Problems
The Learning with Errors (LWE) problem [Reg05] acts as the foundation for several modern
lattice-based cryptography schemes. The LWE problem states that given a polynomial
number of samples of the form (a, 〈a, s〉+ e), it is difficult to determine the secret vector
s ∈ Znq , where the vector a ∈ Znq is sampled uniformly at random and the error e is
sampled from the appropriate error distribution χ. Examples of secure LWE parameters
are (n, q) = (640, 215) and (n, q) = (976, 216) for Frodo [NAB+19].

LWE-based cryptosystems involve large matrix operations which are computationally
expensive and also result in large key sizes. To solve this problem, the Ring-LWE problem
[LPR13] was proposed, which uses ideal lattices. Let Rq = Zq[x]/(xn + 1) be the ring of
polynomials where n is power of 2. The Ring-LWE problem states that given samples
of the form (a, a · s+ e), it is difficult to determine the secret polynomial s ∈ Rq, where
the polynomial a ∈ Rq is sampled uniformly at random and the coefficients of the error
polynomial e are small samples from the error distribution χ. Examples of secure Ring-LWE
parameters are (n, q) = (512, 12289) and (n, q) = (1024, 12289) for NewHope [PAA+19].

Module-LWE [LS15] provides a middle ground between LWE and Ring-LWE. By using
module lattices, it reduces the algebraic structure present in Ring-LWE and increases
security while not compromising too much on the computational efficiency. The Module-
LWE problem states that given samples of the form (a,aTs + e), it is difficult to determine
the secret vector s ∈ Rkq , where the vector a ∈ Rkq is sampled uniformly at random and
the coefficients of the error polynomial e are small samples from the error distribution
χ. Examples of secure Module-LWE parameters are (n, k, q) = (256, 2, 7681), (n, k, q) =
(256, 3, 7681) and (n, k, q) = (256, 4, 7681) for CRYSTALS-Kyber [SAB+19].

2.2 Number Theoretic Transform
While the protocols based on standard lattices (LWE) involve matrix-vector operations
modulo q, all the arithmetic is performed in the ring of polynomials Rq = Zq[x]/(xn + 1)
when working with ideal and module lattices. There are several efficient algorithms for
polynomial multiplication [Ber08b], and the Number Theoretic Transform (NTT) is one
such technique widely used in lattice-based cryptography.

20 Sapphire: A Configurable Lattice Crypto-Processor

The NTT is a generalization of the well-known Fast Fourier Transform (FFT) where all
the arithmetic is performed in a finite field instead of complex numbers. Instead of working
with powers of the n-th complex root of unity exp(−2πj/n), NTT uses the n-th primitive
root of unity ωn in the ring Zq, that is, ωn is an element in Zq such that ωnn = 1mod q
and ωin 6= 1mod q for i 6= n. In order to have elements of order n, the modulus q is
chosen to be a prime such that q ≡ 1modn. A polynomial a(x) ∈ Rq with coefficients
a(x) = (a0, a1, · · · , an−1) has the NTT representation â(x) = (â0, â1, · · · , ˆan−1), where

âi =
n−1∑
j=0

ajω
ij
n mod q ∀ i ∈ [0, n− 1]

The inverse NTT (INTT) operation converts â(x) = (â0, â1, · · · , ˆan−1) back to a(x) as

ai = 1
n

n−1∑
j=0

âjω
−ij
n mod q ∀ i ∈ [0, n− 1]

Note that the INTT operation is similar to NTT, except that ωn is replaced by ω−1
n mod q

and the final results is divided by n. An iterative in-place version of the NTT algorithm is
provided in Algorithm 1 [CLRS09, DB16]. The PolyBitRev function performs a permuta-
tion on the input polynomial a such that â[i] = PolyBitRev(a)[i] = a[BitRev(i)], where
BitRev is formally defined as BitRev(i) =

∑lgn−1
j=0 (((i � j) & 1) � (lgn − 1 − i)) (for

positive integer i and power-of-two n), that is, bit-wise reversal of the binary representation
of the index i. Since there are lgn stages in the NTT outer loop, with O(n) operations in
each stage, its time complexity is O(n lgn). The factors ω are called the twiddle factors,
similar to FFT.

The NTT provides a fast multiplication algorithm in Rq with time complexity O(n lgn)
instead of O(n2) for schoolbook multiplication. Given two polynomials a, b ∈ Rq, their
product c = a · b ∈ Rq can be computed as

c = INTT (NTT(a) � NTT(b))

where � denotes coefficient-wise multiplication of the polynomials. Since the product of a
and b, before reduction modulo f(x) = xn+1, has 2n coefficients, using the above equation

Algorithm 1 Iterative In-Place NTT [CLRS09]
Require: Polynomial a(x) ∈ Rq and n-th primitive root of unity ωn ∈ Zq
Ensure: Polynomial â(x) ∈ Rq such that â(x) = NTT(a(x))

1: â← PolyBitRev(a)
2: for (s = 1; s ≤ lgn; s = s+ 1) do
3: m← 2s
4: ωm ← ω

n/m
n

5: for (k = 0; k < n; k = k +m) do
6: ω ← 1
7: for (j = 0; j < m/2; j = j + 1) do
8: t← ω · â[k + j +m/2] mod q
9: u← â[k + j]

10: â[k + j]← u+ t mod q
11: â[k + j +m/2]← u− t mod q
12: ω ← ω · ωm mod q
13: end for
14: end for
15: end for
16: return â

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 21

directly to compute a · b will require padding both a and b with n zeros. To eliminate this
overhead, the negative-wrapped convolution [How12] is used, with the additional requirement
q ≡ 1mod 2n so that both the n-th and 2n-th primitive roots of unity modulo q exist,
respectively denoted as ωn and ψ = √ωnmod q. By multiplying a and b coefficient-wise by
powers of ψ before the NTT computation, and by multiplying INTT(NTT(a)�NTT(b))
coefficient-wise by powers of ψ−1 mod q, no zero padding is required and the n-point NTT
can be used directly.

Similar to FFT, the NTT inner loop involves butterfly computations. There are two
types of butterfly operations – Cooley-Tukey (CT) and Gentleman-Sande (GS) [LN16].
The CT butterfly-based NTT requires inputs in normal order and generates outputs in
bit-reversed order, similar to the decimation-in-time FFT. The GS butterfly-based NTT
requires inputs to be in bit-reversed order while the outputs are generated in normal order,
similar to the decimation-in-frequency FFT. Using the same butterfly for both NTT and
INTT requires a bit-reversal permutation. However, the bit-reversal can be avoided by
using CT for NTT and GS for INTT [LN16].

2.3 Sampling
In lattice-based protocols, the public vectors a are generated from the uniform distribution
over Zq through rejection sampling. The secret vectors s and error terms e are sampled
from the distribution χ typically with zero mean and appropriate standard deviation σ.
Accurate sampling of s and e is critical to the security of these protocols, and the sampling
must be constant-time to prevent side-channel leakage of the secret information. Although
the original LWE proof used discrete Gaussian distributions for sampling the error terms,
several lattice-based schemes use binomial, uniform and ternary distributions for efficiency.
A detailed survey of different sampling techniques is available in [NDR+19].

3 Modular Arithmetic and NTT
The core arithmetic and logic unit (ALU) of Sapphire consists of a 24-bit data-path, with
modular operations in Fq for configurable q. In this section, we describe the details of our
energy-efficient modular arithmetic implementation, the ALU design and our area-efficient
NTT memory architecture.

3.1 Modular Arithmetic Implementation
The modular arithmetic core consists of a 24-bit adder, a 24-bit subtractor and a 24-
bit multiplier along with associated modular reduction logic. Our modular adder and
subtractor designs are shown in Fig. 1, and the corresponding pseudo-codes are shown in
Algorithms 2 and 3. Both designs use a pair of adder and subtractor, with the sum, carry
bit, difference and borrow bit denoted as s, c, d and b respectively. Modular reduction is
performed using conditional subtraction and addition, which are computed in the same
cycle to avoid timing side-channels. The synthesized areas of the adder and the subtractor
are around 550 GE (gate equivalent) each in area.

For modular multiplication, we use a 24-bit multiplier followed by Barrett reduction
[Bar86] modulo a prime q of size up to 24 bits. Barrett reduction does not exploit any
special property of the modulus q, thus making it ideal for supporting configurable moduli.
Let z be the 48-bit product to be reduced to Zq, then Barrett reduction computes zmod q
by estimating the quotient bz/qc without performing any division, as shown in Algorithm
4. Barrett reduction involves two multiplications, one subtraction, one bit-shift and one
conditional subtraction. The value of 1/q is approximated as m/2k, with the error of
approximation being e = 1/q −m/2k, therefore the reduction is valid as long as ze < 1.

22 Sapphire: A Configurable Lattice Crypto-Processor

Figure 1: Design of our modular adder and subtractor with configurable modulus q.

Algorithm 2 Modular Addition
Require: x, y ∈ Zq
Ensure: z = x+ y mod q

1: (c, s)← x+ y
2: (b, d)← s− q
3: if c = 1 or b = 0 then
4: z ← d
5: else
6: z ← s
7: end if
8: return z

Algorithm 3 Modular Subtraction
Require: x, y ∈ Zq
Ensure: z = x− y mod q

1: (b, d)← x− y
2: (c, s)← d+ q
3: if b = 1 then
4: z ← s
5: else
6: z ← d
7: end if
8: return z

Since z < q2, k is set to be the smallest number such that e = 1/q − (b2k/qc/2k) < 1/q2.
Typically, k is very close to 2 dlg qe, that is, the bit-size of q2.

In order to understand the trade-offs between flexibility and efficiency in modular
multiplication, we have implemented two different architectures of Barrett reduction
logic: (1) with fully configurable modulus (q can be an arbitrary prime) and (2) with
pseudo-configurable modulus (q belongs to a specific set of primes), as shown in Fig. 2.

Apart from the prime q (which can be up to 24 bits), the fully configurable version
requires two additional inputs m and k such that m = b2k/qc (m and k are allowed to
be up to 24 bits and 6 bits respectively). It consists of total 3 multipliers, as shown
in Fig. 2a, the first two being used to compute z = x · y and z · m respectively. For
obtaining t = (z ·m)� k, the bit-wise shift is implemented purely using combinational logic
(multiplexers) because shifting bits sequentially in registers can be extremely inefficient
in terms of power consumption. We assume that 16 ≤ k ≤ 48 since q is not larger than
24 bits, q is typically not smaller than 8 bits and we know that k ≈ 2 dlg qe. The third
multiplier is used to compute t · q, and a pair of subtractors is used to calculate z − (t · q)

Algorithm 4 Modular Multiplication with Barrett Reduction [Bar86]
Require: x, y ∈ Zq, m and k such that m = b2k/qc
Ensure: z = x · y mod q

1: z ← x · y
2: t← (z ·m)� k
3: z ← z − (t · q)
4: if z ≥ q then
5: z ← z − q
6: end if
7: return z

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 23

Figure 2: Two different single-cycle modular multiplier architectures with (a) fully config-
urable and (b) pseudo-configurable modulus for Barrett reduction.

and perform the final reduction step. All the steps are computed in a single cycle to
avoid any potential timing side-channels. The design was synthesized at 100 MHz (with
near-zero slack) and occupies around 11k GE area, which includes the area (around 4k
GE) of the 24-bit multiplier used to compute z = x · y.

The pseudo-configurable modular multiplier implements Barrett reduction logic for
the following primes used by NIST Round 1 lattice-based candidates: 7681 (CRYSTALS-
Kyber) [SAB+19], 12289 (NewHope) [PAA+19], 40961 (R.EMBLEM) [SPL+17], 65537
(pqNTRUSign) [CHWZ17], 120833 (Ding Key Exchange) [DTGW17], 133121 / 184321
(LIMA) [ALO+17], 8380417 (CRYSTALS-Dilithium) [LDK+19], 8058881 (qTESLA v1.0)
and 4205569 / 4206593 / 8404993 (qTESLA v2.0) [BAA+19]. As shown in Fig. 2b, there
is dedicated reduction block for each of these primes, and the qSEL input is used to select
the output of the appropriate block while the inputs to the other blocks are data-gated to
save power. Since the reduction blocks have the parameters m, k and q coded in digital
logic and do not require explicit multipliers, they involve lesser computation than the
fully configurable reduction circuit from Fig. 2a, albeit at the cost of some additional
area and decrease in flexibility. The reduction becomes particularly efficient when at least
one of m and q or both can be written in the form 2l1 ± 2l2 ± · · · ± 1, where l1, l2, · · · are
not more than four positive integers. For example, we consider the CRYSTALS primes:
for q = 7681 = 213 − 29 + 1 we have k = 21 and m = 273 = 28 + 24 + 1, and for
q = 8380417 = 223 − 213 + 1 we have k = 46 and m = 8396807 = 223 + 213 + 23 − 1.
Therefore, the multiplications by q and m can be converted to significantly cheaper bit-
shifts and additions / subtractions, as shown in Algorithms 5 and 6. Implementation
details and reduction parameters for each customized modular reduction block are provided
in Appendix A. This design also performs modular multiplication in a single cycle. It was
synthesized at 100 MHz (with near-zero slack) and occupies around 19k GE area, including
the area of the 24-bit multiplier.

Algorithm 5 Reduction mod 7681
Require: q = 7681, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 8) + (x� 4) + x
2: t← t� 21
3: t← (t� 13)− (t� 9) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm 6 Reduction mod 8380417
Require: q = 8380417, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 23) + (x� 13) + (x� 3)− x
2: t← t� 46
3: t← (t� 23)− (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

24 Sapphire: A Configurable Lattice Crypto-Processor

Figure 3: Comparison of modular multiplication energy for the two reduction architectures.

In Fig. 3, we compare the simulated energy consumption of the fully configurable and
pseudo-configurable modular multiplier architectures for all the primes mentioned earlier.
As expected, the multiplication itself consumes the same energy in both cases, but the
modular reduction energy is up to 6× lower for the pseudo-configurable design. The overall
decrease in modular multiplication energy, considering both multiplication and reduction
together, is up to 3×, clearly highlighting the benefit of the dedicated modular reduction
data-paths when working with prime moduli. For reduction modulo 2m (m < 24), e.g.,
in the case of Frodo, the output of the 24-bit multiplier is simply bit-wise AND-ed with
2m − 1 implying that the modular reduction energy is negligible.

3.2 Butterfly Unit and ALU
Next, we elaborate how the modular arithmetic units described earlier are integrated
together to build the butterfly module. As discussed in Section 2, NTT computations
involve butterfly operations similar to the Fast Fourier Transform, with the only difference
being that all arithmetic is performed modulo q instead of complex numbers. There are
two butterfly configurations – Cooley-Tukey (or DIT) and Gentleman-Sande (or DIF). In
terms of arithmetic, the DIT butterfly computes (a + ωb mod q, a − ωb mod q) and the
DIF butterfly computes (a+ b mod q, (a− b)ω mod q), where a and b are the inputs to the
butterfly and ω is the twiddle factor. The DIT butterfly requires inputs to be in bit-reversed
order and the DIF butterfly generates outputs in bit-reversed order, thus making DIF and
DIT suitable for NTT and INTT respectively. While software implementations have the

Figure 4: Unified butterfly in Cooley-Tukey and Gentleman-Sande configurations.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 25

flexibility to program both configurations, hardware designs typically implement either
DIT or DIF, thus requiring bit-reversals. To solve this problem, we have implemented
a unified butterfly architecture [BPC19] which can be configured as both DIT and DIF,
as shown in Fig. 4. It consists of two sets of modular adders and subtractors along
with some multiplexing circuitry to select whether the multiplication with ω is performed
before or after the addition and subtraction. Since the critical path of the design is inside
the modular multiplier, there is no impact on system performance. The associated area
overhead is also negligible.

The modular arithmetic blocks inside the butterfly are re-used for coefficient-wise poly-
nomial arithmetic operations as well as for multiplying polynomials with the appropriate
powers of ψ and ψ−1 during negative-wrapped convolution. Apart from butterfly and
arithmetic modulo q, the Sapphire ALU also supports the following bit-wise operations –
AND, OR, XOR, left shift and right shift.

3.3 NTT Memory Architecture
Hardware architectures for polynomial multiplication using NTT consist of memory banks
for storing the polynomials along with the ALU which performs butterfly computations.
Since each butterfly needs to read two inputs and write two outputs all in the same cycle,
these memory banks are typically implemented using dual-port RAMs [RVM+14, CMV+15,
DB16, LZL+19] or four-port RAMs [STCZ18]. Although true dual-port memory is easily
available in state-of-the-art commercial FPGAs in the form of block RAMs (BRAMs),
use of dual-port SRAMs in ASIC can pose large area overheads in resource-constrained
devices. Compared to a simple single-port SRAM, a dual-port SRAM has double the
number of row and column decoders, write drivers and read sense amplifiers. Also, the
bit-cells in a low-power dual-port SRAM consist of ten transistors (10T) compared to the
usual six transistor (6T) bit-cells in a single-port SRAM [NOI+08]. Therefore, the area of
a dual-port SRAM can be as much as double the area of a single-port SRAM with the
same number of bits and column muxing. To reduce this area overhead, we implement an
area-efficient NTT memory architecture [BPC19] which uses the constant-geometry FFT
data-flow [Pea68] and consists of single-port SRAMs only.

The constant geometry NTT is described in Algorithm 7 [Pol71, CMV+15]. Clearly, the
coefficients of the polynomial are accessed in the same order for each stage, thus simplifying
the read/write control circuitry. For constant geometry DIT NTT, the butterfly inputs are
a[2j] and a[2j + 1] and the outputs are â[j] and â[j + n/2], while the inputs are a[j] and

Algorithm 7 Constant Geometry Out-of-Place NTT [Pol71]
Require: Polynomial a(x) ∈ Rq and n-th primitive root of unity ωn ∈ Zq
Ensure: Polynomial â(x) ∈ Rq such that â(x) = NTT(a(x))

1: a← PolyBitRev(a)
2: for (s = 1; s ≤ lgn; s = s+ 1) do
3: for (j = 0; j < n/2; j = j + 1) do
4: k ← bj/2lg (n−s)c · 2lg (n−s)

5: â[j]← a[2j] + a[2j + 1] · ωkn mod q
6: â[j + n/2]← a[2j]− a[2j + 1] · ωkn mod q
7: end for
8: if s 6= lgn then
9: a← â

10: end if
11: end for
12: return â

26 Sapphire: A Configurable Lattice Crypto-Processor

Figure 5: (a) Memory bank construction using single-port SRAMs and (b) proposed
area-efficient NTT architecture using two such memory banks.

Figure 6: Data-flow of our NTT memory architecture in the first two cycles (butterfly
inputs are in yellow and outputs are in green).

a[j + n/2] and the outputs are â[2j] and â[2j + 1] for DIF NTT. However, the constant
geometry NTT is inherently out-of-place, therefore requiring storage for both polynomials
a and â. For our hardware implementation, we create two memory banks – left and right –
to store these two polynomials while allowing the butterfly inputs and outputs to ping-pong
between them during each stage of the transform. Although out-of-place NTT requires
storage for both the input and output polynomials, this does not affect the total memory
requirements of the crypto-processor because the total number of polynomials required
to be stored during the protocol execution is greater than two, e.g., four polynomials are
involved in any computation of the form b = a · s+ e.

Next, we describe how these memory banks are constructed using single-port SRAMs so
that each butterfly can be computed in a single cycle without causing read/write hazards.
As shown in Fig. 5a, each polynomial is split among four single port SRAMs Mem 0-3 on
the basis of the least and most significant bits (LSB and MSB) of the coefficient index
(or address addr). This allows simultaneously accessing coefficient index pairs of the form
(2j, 2j + 1) and (j, j + n/2). Our NTT memory architecture is shown in Fig. 5b, which
consists of two such memory banks labelled as LWE Poly Cache. In every cycle, the
butterfly inputs are read from two different single-port SRAMs (out of four SRAMs in the
input memory bank) and the outputs are also written to two different single-port SRAMs
(out of four SRAMs in the output memory bank), thus avoiding hazards. The data flow in

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 27

Figure 7: Memory access patterns for 8-point DIT and DIF NTT using our single-port
SRAM-based memory architecture (R and W denote read and write respectively).

the first two cycles of NTT is shown in Fig. 6, where the input polynomial a is stored
in the left bank and the output polynomial â is stored in the right bank. As the input
and output polynomials exchange their memory banks from one stage to the next, our
NTT control circuitry ensures that the same data-flow is maintained. To illustrate this,
the memory access patterns for all three stages of an 8-point NTT are shown in Fig. 7 for
both decimation-in-time and decimation-in-frequency.

The two memory banks consist of four 1024× 24-bit single-port SRAMs each (24 KB
total). Together they store 8192 entries, which can be split into four 2048-dimension
polynomials or eight 1024-dimension polynomials or sixteen 512-dimension polynomials
or thirty-two 256-dimension polynomials or sixty-four 128-dimension polynomials or one-
hundred-twenty-eight 64-dimension polynomials. By constructing this memory using single-
port SRAMs (and some additional read-data multiplexing circuitry), we have achieved area
savings equivalent to 124k GE compared to a dual-port SRAM-based implementation. This
is particularly important since SRAMs account for a large portion of the total hardware
area in ASIC implementations of lattice-based cryptography [STCZ18, FS19].

In order to allow configurable parameters, our NTT hardware also requires additional
storage (labelled as NTT Constants RAM in Fig. 5) for the pre-computed twiddle factors:
ωj2i , ω−j2i mod q for i ∈ [1, lgn] and j ∈ [0, 2i−1) and ψi, n−1ψ−imod q for i ∈ [0, n). Since
n ≤ 2048 and q < 224, this would require another 24 KB of memory. To reduce this
overhead, we exploit the following properties of ω and ψ: ωn/2 = ω2

n, ω−jn = ωn−jn and
ω = ψ2 [DB16]. Then, it’s sufficient to store only ωjn for j ∈ [0, n/2) and ψi, n−1ψ−imod q
for i ∈ [0, n), thus reducing the twiddle factor memory size by 37.5% down to 15 KB.

Finally, we compare the energy-efficiency and performance of our NTT with state-
of-the-art software and ASIC hardware implementations in Table 1. For the software

28 Sapphire: A Configurable Lattice Crypto-Processor

Table 1: Comparison of our NTT performance with state-of-the-art

implementation, we have used assembly-optimized code for ARM Cortex-M4 from the
PQM4 crypto library [KRSS18], and measurements were performed using the NUCLEO-
F411RE development board [STM]. Total cycle count of our NTT is (n2 + 1) lgn+ (n+ 1),
including the multiplication of polynomial coefficients with powers of ψ. All measurements
for our NTT implementation were performed on our test chip operating at clock frequency
72 MHz and nominal supply voltage 1.1 V. Our hardware-accelerated NTT is up to 11×
more energy-efficient than the software implementation, after accounting for voltage scaling.
It is 2.5× more energy-efficient compared to the fast NTT design from [NDBC18] with
similar cycle count, and 1.5× more energy-efficient compared to the slow NTT design
from [NDBC18] with 4× cycle count. Our NTT is almost twice as fast as [FS19], since
our memory architecture allows computing one butterfly per cycle even with single-port
SRAMs, while having similar energy consumption. The energy-efficiency of our NTT
implementation is largely due to the careful design of low-power modular arithmetic, as
discussed earlier, which decreases overall modular reduction complexity and simplifies
the logic circuitry. However, our NTT is still about 4× less energy-efficient compared to
[STCZ18], primarily due to the fact that [STCZ18] uses 16 parallel butterfly units along
with dedicated four-port scratch-pad buffers to achieve higher parallelism and lower energy
consumption at the cost of significantly larger chip area (2.05 mm2) compared to our
design (0.28 mm2). As will be discussed in Section 6, sampling accounts for majority of
the computational cost in Ring-LWE and Module-LWE schemes, therefore justifying our
choice of area-efficient NTT architecture at the cost of some energy overhead.

4 Discrete Distribution Sampler
Hardness of the LWE problem is directly related to statistical properties of the error
samples. Therefore, an accurate and efficient sampler is a critical component of any
lattice cryptography implementation. Sampling accounts for a major portion of the
computational overhead in software implementations of ideal and module lattice-based

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 29

Table 2: Comparison of CS-PRNG designs

Figure 8: Analysis of SHAKE-128, SHAKE-256, AES-128-CTR, AES-256-CTR and
ChaCha20 in terms of energy per bit, bits per cycle and area-energy product.

protocols [OSPG18]. A cryptographically secure pseudo-random number generator (CS-
PRNG) is used to generate uniformly random numbers, which are then post-processed to
convert them into samples from different discrete probability distributions. In this section,
we describe our design of energy-efficient CS-PRNG along with fast sampling techniques
for configurable distribution parameters.

4.1 Energy-Efficient CS-PRNG
Some of the standard choices for CS-PRNG are SHA-3 in the SHAKE mode [NIS15], AES
in counter mode [NIS01] and ChaCha20 [Ber08a]. In order to identify the most efficient
among these, we have compared them in terms of area, pseudo-random bit generation
performance and energy consumption, as shown in Table 2. Only place-and-route area
and measured energy are considered for all analysis, and synthesis area is reported for
reference. For fair comparison, all the three primitives – SHA-3, AES and ChaCha20 – were
implemented as full data path architectures. From Fig. 8, we observe that although all
three primitives have comparable area-energy product, SHA-3 is 2× more energy-efficient
than ChaCha20 and 3× more energy-efficient than AES; and this is largely due to the fact

Figure 9: Architecture of discrete distribution sampler with Keccak-based PRNG core.

30 Sapphire: A Configurable Lattice Crypto-Processor

that SHA-3 generates the highest number of pseudo-random bits per round.
The basic building block of SHA-3 is the Keccak permutation function [BDPV09].

Therefore, our PRNG consists of a 24-cycle Keccak-f[1600] core [BPC19] which can be
configured in different SHA-3 modes and consumes 2.33 nJ per round at nominal voltage
of 1.1 V (and 0.89 nJ per round at 0.68 V). Its 1600-bit state is processed in parallel, thus
avoiding expensive register shifts and multiplexing required in serial architectures. Fig. 9
shows the overall architecture our discrete distribution sampler with the energy-efficient
SHA-3 core. Pseudo-random bits generated by SHAKE-128 or SHAKE-256 are stored in
the 1600-bit Keccak state register, and shifted out 32 bits at a time as required by the
sampler. The sampler then feeds these bits, AND-ed with the appropriate bit mask to
truncate them to desired size, to the post-processing logic to perform one of the following
five types of operations – rejection sampling in [0, q), binomial sampling with standard
deviation σ, discrete Gaussian sampling with standard deviation σ and desired precision
up to 32 bits, uniform sampling in [−η, η] for η < q and trinary sampling in {−1, 0,+1}
with specified weights for the +1 and −1 samples.

4.2 Rejection Sampling
The public polynomial a in Ring-LWE and the public vector a in Module-LWE have
their coefficients uniformly drawn from Zq through rejection sampling, where uniformly
random numbers of desired bit size are obtained from the PRNG as candidate samples
and only numbers smaller than q are accepted. The probability that a random number is
not accepted is known as the rejection probability.

Table 3: Rejection probabilities for different primes with and without fast sampling

Prime Bit Rej. Prob. Scaling Rej. Prob. Decrease in
Size (w/o. scaling) Factor (w. scaling) Rej. Prob.

7681 13 0.06 1 0.06 -
12289 14 0.25 5 0.06 0.19
40961 16 0.37 3 0.06 0.31
65537 17 0.50 7 0.12 0.38
120833 17 0.08 1 0.08 -
133121 18 0.49 7 0.11 0.38
184321 18 0.30 11 0.03 0.27
8380417 23 ≈ 0 1 ≈ 0 -
8058881 23 0.04 1 0.04 -
4205569 23 0.50 7 0.12 0.38
4206593 23 0.50 7 0.12 0.38
8404993 24 0.50 7 0.12 0.38

For prime q, the rejection probability is calculated as (1 − q/2dlg qe). In Table 3, we
list the rejection probabilities for primes mentioned earlier in Section 3. Clearly, different
primes have very different rejection probabilities, often as high as 50%, which can be a
bottleneck in lattice-based protocols. To solve this problem, we refer to [GS16] where
pseudo-random numbers smaller than 5q are accepted for q = 12289, thus reducing the
rejection probability from 25% to 6%. We extend this technique for any prime q by scaling
the rejection bound from q to kq, for appropriate small integer k, so that the rejection
probability is now (1− kq/2dlg kqe). We list these scaling factors for the primes in Table 3
along with the corresponding decrease in rejection probability.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 31

Table 4: Comparison of rejection sampling with software

Although this method reduces rejection rates, the output samples now lie in [0, kq)
instead of [0, q). In [GS16], for q = 12289 and k = 5, the accepted samples are reduced to Zq
by subtracting q from them up to four times. Since k is not fixed for our rejection sampler,
we employ Barrett reduction [Bar86] for this purpose. Unlike modular multiplication,
where the inputs lie in [0, q2), the inputs here are much smaller; so the Barrett reduction
parameters are also quite small, therefore requiring little additional logic. In Table 4, we
compare our rejection sampler performance (SHAKE-128 used as PRNG) with software
implementation on ARM Cortex-M4 using assembly-optimized Keccak [KRSS18].

4.3 Binomial Sampling

For binomial sampling, we take two k-bit chunks from the PRNG and computes the
difference of their Hamming weights, as proposed in [PAA+19]. The resulting samples
follow a binomial distribution with standard deviation σ =

√
k/2. We allow configuring k

to any value up to 32, thus providing the flexibility to support different standard deviations.
We compare our binomial sampling performance (SHAKE-256 used as PRNG) with

state-of-the-art software and hardware implementations in Table 5. Our sampler is more
than two orders of magnitude more energy-efficient compared to the software implemen-
tation on ARM Cortex-M4 which uses assembly-optimized Keccak [KRSS18]. It is also
14× more efficient than [STCZ18] which uses Knuth-Yao sampling [KY76] for binomial
distributions with ChaCha20 as PRNG.

Table 5: Comparison of binomial sampling with state-of-the-art

32 Sapphire: A Configurable Lattice Crypto-Processor

Algorithm 8 Discrete Gaussian Sampling using Inversion Method [NAB+19]
Require: Random inputs r0 ∈ {0, 1}, r1 ∈ [0, 2r) and table Tχ = (Tχ[0], · · · , Tχ[s])
Ensure: Sample e ∈ Z from χ

1: e← 0
2: for (z = 0; z < s; z = z + 1) do
3: if r1 > Tχ[z] then
4: e← e+ 1
5: end if
6: end for
7: e← (−1)r0 · e
8: return e

Table 6: Comparison of discrete Gaussian sampling with software

4.4 Discrete Gaussian Sampling
Our discrete Gaussian sampler implements the inversion method of sampling [Fol14] from a
discrete symmetric zero-mean distribution χ on Z with small support which approximates
a rounded continuous Gaussian distribution, e.g., in Frodo [NAB+19] and R.EMBLEM
[SPL+17]. For a distribution with support Sχ = {−s, · · · ,−1, 0, 1, · · · , s}, where s is a
small positive integer, the probabilities Pr(z) for z ∈ Sχ, such that Pr(z) = Pr(−z) can
be derived from the cumulative distribution table (CDT) Tχ = (Tχ[0], Tχ[1], · · · , Tχ[s]),
where 2−r · Tχ[0] = Pr(0)/2− 1 and 2−r · Tχ[z] = Pr(0)/2− 1 +

∑i=z
i=1 Pr(i) for z ∈ [1, s]

for a given precision r. Given random inputs r0 ∈ {0, 1}, r1 ∈ [0, 2r) and the distribution
table Tχ, a sample e ∈ Z from χ can be obtained using Algorithm 8 [NAB+19].

The sampling must be constant-time in order to eliminate timing side-channels, therefore
the algorithm does a complete loop through the entire table Tχ. The comparison r1 > Tχ[z]
must also be implemented in a constant-time manner. Our implementation adheres to these
requirements and uses a 64× 32 RAM to store the CDT, allowing the parameters s ≤ 64
and r ≤ 32 to be configured according to the choice of the distribution. In Table 6, we have
compared our Gaussian sampler performance (SHAKE-256 used as PRNG) with software
implementation on ARM Cortex-M4 using assembly-optimized Keccak [KRSS18], and we
observe up to 40× improvement in energy-efficiency after accounting for voltage scaling.
Hardware architectures for Knuth-Yao sampling have been proposed by [RVM+14] and
[STCZ18], but they are for discrete Gaussian distributions with larger standard deviation
and higher precision, which we do not support.

4.5 Other Distributions
Several lattice-based protocols, such as CRYSTALS-Dilithium [LDK+19] and qTESLA

[BAA+19], require polynomials to be sampled with coefficients uniformly distributed in
the range [−η, η] for a specified bound η < q. For this, we again use rejection sampling.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 33

Unlike rejection sampling from Zq, we do not require any special techniques since η is
typically small or an integer close to a power of two.

Finally, we have also implemented a trinary sampler for polynomials with coefficients
from {−1, 0,+1}. We classify these polynomials into three categories: (1) with m non-
zero coefficients, (2) with m0 +1’s and m1 −1’s, and (3) with coefficients distributed as
Pr(x = 1) = Pr(x = −1) = ρ/2 and Pr(x = 0) = 1− ρ for ρ ∈ {1/2, 1/4, 1/8, · · · , 1/128}.
Their implementations are described in Algorithms 9, 10 and 11. For the first two cases,
we start with a zero-polynomial s of size n. Then, uniformly random coefficient indices
∈ [0, n) are generated, and the corresponding coefficients are replaced with −1 or +1 if
they are zero [BAA+19, CHWZ17]. For the third case, sampling of the coefficients is based
on the observation [CPL+17] that for a uniformly random number x ∈ [0, 2k) we have
Pr(x = 0) = 1/2k, Pr(x = 1) = 1/2k and Pr(x ∈ [2, 2k)) = 1 − 1/2k. Therefore, for the
appropriate value of k ∈ [1, 7], we can generate samples from the desired trinary distribution
with ρ = 1/2k. For all three algorithms, the symbol ∈R denotes pseudo-random number
generation using the PRNG.

Algorithm 9 Trinary Sampling withm non-
zero coefficients (+1’s and −1’s)
Require: m < n and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: s← (0, 0, · · · , 0) ; i← 0
2: while i < m do
3: pos ∈R [0, n)
4: sign ∈R {0, 1}
5: if spos = 0 then
6: if sign = 0 then
7: spos ← 1
8: else
9: spos ← −1

10: end if
11: i← i+ 1
12: end if
13: end while
14: return s

Algorithm 10 Trinary Sampling with m0
+1’s and m1 −1’s
Require: m0 +m1 < n and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: s← (0, 0, · · · , 0) ; i← 0
2: while i < m0 do
3: pos ∈R [0, n)
4: if spos = 0 then
5: spos ← +1 ; i← i+ 1
6: end if
7: end while
8: while i < m0 +m1 do
9: pos ∈R [0, n)

10: if spos = 0 then
11: spos ← −1 ; i← i+ 1
12: end if
13: end while
14: return s

Algorithm 11 Trinary Sampling with coefficients from {−1, 0,+1} distributed according
to Pr(x = 1) = Pr(x = −1) = ρ/2 and Pr(x = 0) = 1− ρ
Require: k ∈ [1, 7], ρ = 1/2k and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: for (i = 0; i < n; i = i+ 1) do
2: x ∈R [0, 2k)
3: if x = 0 then
4: si ← 1
5: else if x = 1 then
6: si ← −1
7: else
8: si ← 0
9: end if

10: end for
11: return s

34 Sapphire: A Configurable Lattice Crypto-Processor

5 Chip Architecture
The top-level architecture of Sapphire is shown in Fig. 10. The efficient building blocks
described in Sections 3 and 4 are integrated with a 1 KB instruction memory and an
instruction decoder to form the core of our crypto-processor. It can be programmed
using 32-bit custom instructions to perform different polynomial arithmetic, transform and
sampling operations, as well as simple branching. For example, the following instructions
generate polynomials a, s, e ∈ Rq, and calculate a · s+ e, which is a typical computation in
the Ring-LWE-based scheme NewHope-1024:

config (n = 1024, q = 12289)
sample_a
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 0, poly = 0)
sample_s
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 0, k = 8, poly = 1)
sample_e
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 1, k = 8, poly = 2)
ntt_s
mult_psi (poly = 1)
transform (mode = DIF_NTT, poly_dst = 4, poly_src = 1)
a_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 4)
intt_a_mul_s
transform (mode = DIT_INTT, poly_dst = 5, poly_src = 0)
mult_psi_inv (poly = 5)
a_mul_s_plus_e
poly_op (op = ADD, poly_dst = 1, poly_src = 5)

The config instruction is first used to configure the protocol parameters n and q which,
in this example, are the parameters from NewHope-1024. For n = 1024, the polynomial
cache is divided into 8 polynomials, which are accessed using the poly argument in all
instructions. For sampling, the seed can be chosen from a pair of 256-bit registers r0 and r1,

Figure 10: Sapphire lattice crypto-processor top-level architecture.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 35

while two 16-bit registers c0 and c1 are used as counters for sampling multiple polynomials
from the same seed. For coefficient-wise operations poly_op, the poly_src argument
indicates the first source polynomial while the poly_dst argument is used to denote the
second source (and destination) polynomial. Similarly, the following set of instructions are
used to generate matrix of polynomials A ∈ R2×2

q and vectors of polynomials s, e ∈ R2
q ,

and calculate A · s + e, which is a typical computation in the Module-LWE-based scheme
CRYSTALS-Kyber-512:

config (n = 256, q = 7681)
sample_s
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 0, k = 3, poly = 4)
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 1, k = 3, poly = 5)
sample_e
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 2, k = 3, poly = 24)
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 3, k = 3, poly = 25)
ntt_s
mult_psi (poly = 4)
transform (mode = DIF_NTT, poly_dst = 16, poly_src = 4)
mult_psi (poly = 5)
transform (mode = DIF_NTT, poly_dst = 17, poly_src = 5)
sample_A0
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 0, poly = 0)
rej_sample (prng = SHAKE-128, seed = r0, c0 = 1, c1 = 0, poly = 1)
A0_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 16)
poly_op (op = MUL, poly_dst = 1, poly_src = 17)
init (poly = 20)
poly_op (op = ADD, poly_dst = 20, poly_src = 0)
poly_op (op = ADD, poly_dst = 20, poly_src = 1)
sample_A1
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 1, poly = 0)
rej_sample (prng = SHAKE-128, seed = r0, c0 = 1, c1 = 1, poly = 1)
A1_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 16)
poly_op (op = MUL, poly_dst = 1, poly_src = 17)
init (poly = 21)
poly_op (op = ADD, poly_dst = 21, poly_src = 0)
poly_op (op = ADD, poly_dst = 21, poly_src = 1)
intt_A_mul_s
transform (mode = DIT_INTT, poly_dst = 8, poly_src = 20)
mult_psi_inv (poly = 8)
transform (mode = DIT_INTT, poly_dst = 9, poly_src = 21)
mult_psi_inv (poly = 9)
A_mul_s_plus_e
poly_op (op = ADD, poly_dst = 24, poly_src = 8)
poly_op (op = ADD, poly_dst = 25, poly_src = 9)

In this example, parameters from CRYSTALS-Kyber-512 have been used. For n = 256,
the polynomial cache is divided into 32 polynomials, which are again accessed using the
poly argument. The init instruction is used to initialize a specified polynomial with
all zero coefficients. The matrix A is generated one row at a time, following a just-in-
time approach [KBRV18] instead of generating and storing all the rows together, to save

36 Sapphire: A Configurable Lattice Crypto-Processor

memory, which becomes especially useful when dealing with larger matrices such as in
CRYSTALS-Kyber-1024 and CRYSTALS-Dilithium-IV. We have written a Perl script to
parse such plain-text programs and convert them into 32-bit binary instructions which can
be decoded by the Sapphire crypto-processor. A complete list of supported instructions is
provided in Appendix B.

We use dedicated clock gates for fine-grained power savings during program execution,
and an interrupt pin is used to indicate completion of the program. Its memory and
data registers can be accessed through a simple memory-mapped interface. Using the
same interface, it is also coupled with a low-power RISC-V micro-processor [BJW+18],
with 32 KB instruction memory and 64 KB data memory, which implements the RV32IM
instruction set [WLPA14] and has Dhrystone performance similar to ARM Cortex-M0.
When executing cryptographic workloads in the Sapphire core, the RISC-V core can be
clock-gated using the wait-for-interrupt (wfi) instruction. The processor is woken up by
a dedicated interrupt from the Sapphire core, which is raised when the cryptographic
operation is complete. Using the memory-mapped interface ensures that the cryptographic
core can be accessed through simple load and store instructions, without requiring any
custom instructions or changes to the compilation toolchain. While the cryptographic core
is used to accelerate all lattice cryptography computations, the RISC-V processor is used
for scheduling the cryptographic workloads as well as for compression and decompression
of public keys and ciphertexts. The Keccak-f[1600] core inside Sapphire can be accessed
standalone through RISC-V software, and is used to accelerate SHA-3 hashing and
extendable output functions according to the requirements of the protocol.

Our test chip was fabricated in the TSMC 40nm LP CMOS process, and the chip
micrograph is shown in Fig. 11 with the key design components highlighted. The final
placed-and-routed design of our Sapphire core consists of 106k logic gates (76 kGE for
synthesized design) and 40.25 KB SRAM, with a total area of 0.28 mm2 (logic and memory
combined). Our test chip supports supply voltage scaling from 0.68 V to 1.1 V. Although
one of our key design objectives was to demonstrate a configurable lattice cryptography
processor, our architecture can be easily scaled for more specific parameter sets. For
example, in order to accelerate only NewHope-512 (n = 512, q = 12289), size of the
polynomial cache can be reduced to 6.5 KB (= 8× 512× 13 bits) and the pre-computed
NTT constants can be hard-coded in logic or stored in a 2.03 KB ROM (= 2.5× 512× 13
bits) instead of the 15 KB SRAM. Also, the modular arithmetic logic in the ALU can be
simplified significantly to work with a single prime only.

Figure 11: Chip micrograph and test chip specifications.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 37

We use the on-chip software-configurable clock gates (shown in Fig. 10) to accurately
measure power consumption of different sub-modules inside the Sapphire core, e.g., sam-
pling, NTT, arithmetic, etc. For example, the following instructions are executed to
measure the average power consumption of NTT over 1000 executions:

clock_config (keccak = GATE, ntt = UNGATE, sampler = GATE)
c0 = 0
loop: mult_psi (poly = 0)

transform (mode = DIF_NTT, poly_dst = 4, poly_src = 0)
c0 = c0 + 1
flag = compare (c0, 1000)
if (flag == -1) goto loop

The clock_config instruction is used to control the clock gates, e.g., the PRNG and
sampler clocks are gated when measuring NTT power (the RISC-V core is clock-gated using
wfi as explained earlier). A simple loop is implemented using labels, comparison and condi-
tional jump instructions, similar to assembly programs in general-purpose micro-controllers
(please refer to Appendix B for details of our custom instructions). One of the chip GPIO
pins is kept high during the execution of this program to indicate the measurement window,
and the power consumption is measured using a source meter. This still includes leakage
power from the rest of the chip, but it is only a small fraction of the total power compared
to the dynamic power of the operation being measured. Similarly, power consumption of
the RISC-V core is measured by clock-gating the Sapphire cryptographic core through
software. Finally, leakage power of the chip is measured by externally gating the clock
signal being supplied to the chip, so that all logic inside the chip is inactive.

The RISC-V processor consumes 45 µW/MHz at 1.1 V (18 µW/MHz at 0.68 V) when
running the Dhrystone 2.1 benchmark. Power consumption of the cryptographic core is
a strong function of the protocols being executed along with the associated parameters.
Average power consumption of the lattice crypto-processor was measured to be around 8
mW at 1.1 V and 72 MHz (520 µW at 0.68 V and 12 MHz). Total leakage power of the
chip was measured to be 391 µW at 1.1 V (70 µW at 0.68 V). Since our chip operates on a
single power domain, it is not possible to measure leakage power of different components of
the chip. We report the individual module-wise leakage and dynamic power consumption,
as obtained from post-place-and-route simulations of our design operating at 1.1 V and
72 MHz, in the table below:

Module Pleak (µW) Pdyn (µW) Ptot (µW)
Butterfly + ALU 18.28 9210.04 9228.32
LWE Polynomial Cache 120.28 1660.18 1780.46
NTT Constants RAM 76.50 661.61 738.11
Keccak Core + Sampler 41.15 1053.58 1094.73
RISC-V Processor + Memory 320.15 2745.68 3065.83

Before moving on to the protocol implementations and measurements, we summarize
some key architectural design techniques we have used to achieve energy-efficiency:

• We have employed increased parallelism in the modular arithmetic and CS-PRNG
modules in the form of single-cycle butterfly computation and 1600-bit 24-cycle
Keccak data-path respectively. This reduces cycle count as well as data movement
and control circuitry, thus decreasing overall energy consumption.

• Based on overall computational complexity, we know that additions are much cheaper
than multiplications. Therefore, we have exploited special properties of prime q

38 Sapphire: A Configurable Lattice Crypto-Processor

and parameter m, wherever possible, during Barrett reduction to convert expensive
multiplications into cheaper bit-shifts and additions / subtractions.

• Reading data from registers involves much smaller energy consumption compared to
reading from SRAMs. We have used registers for storing PRNG seeds, temporary
values and the Keccak state, and SRAMs are used to store only the polynomials.
This significantly reduces overall energy consumption, especially for the Keccak core.

• Software-controlled clock gates (explicitly inserted in RTL, apart from tool-inserted
clock gates) for the sampler, PRNG and NTT allow fine-grained dynamic power
savings by gating inactive modules as required during program execution.

• The crypto-processor internal memory is efficiently utilized to store polynomials
during protocol execution, thus avoiding access to the main processor’s data memory
as much as possible and reducing energy consumption.

6 Protocol Implementations and Measurement Results
To measure the efficiency of our design, we have implemented the following NIST Round 2
lattice-based cryptography protocols on our test chip:

Algorithm Lattice Prob. NIST Sec. Parameter Set
CCA-KEM Algorithms

NewHope Ring-LWE 1 NewHope-512
5 NewHope-1024

CRYSTALS-Kyber Module-LWE
1 Kyber-512
3 Kyber-768
5 Kyber-1024

Frodo LWE 1 Frodo-640
3 Frodo-976

Signature Algorithms

qTESLA Ring-LWE
1 qTESLA-I
3 qTESLA-III-size
3 qTESLA-III-speed

CRYSTALS-Dilithium Module-LWE
1 Dilithium-II
2 Dilithium-III
3 Dilithium-IV

where NIST security levels 1-6 indicate brute-force security matching or exceeding that
of AES-128, SHA3-256, AES-192, SHA3-384, AES-256 and SHA3-512 respectively. Fig.
12 shows our test board and measurement setup. The test chip is housed in a QFN64
socket soldered to the board, an Opal Kelly XEM7001 FPGA development board is used
to interface with the chip, and a Keithley 2602A source meter supplies power to the chip.
Both the FPGA and the source meter are controlled from a host computer through USB
and GPIB interfaces respectively. The FPGA is used to transfer programs from the host
computer to the instruction memory of our test chip. Also, a small ring-oscillator-based
true random number generator [DG07] implemented on the FPGA is connected to our test
chip through GPIO pins for providing fresh random inputs to the randombytes function
which is part of the NIST API. All lattice cryptography programs are written using custom
instructions and compiled with our script, while all RISC-V software is written in C and
compiled using the riscv-gcc toolchain.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 39

Figure 12: Measurement setup with our test chip.

6.1 Protocol Implementations and Evaluation Results
Next, we describe some key aspects of our protocol implementations along with timing and
energy profiling results. All polynomial arithmetic, transforms and sampling operations
are accelerated using custom programs running in the Sapphire core, and all SHA-3
computations utilize the Keccak core inside Sapphire. The RISC-V processor is used
only to read / write data and programs from / to the cryptographic core (both when
executing polynomial computations and when utilizing the fast Keccak core for SHA-3
operations), generate initial randomness using the randombytes function, encode / decode
messages and compress / decompress public keys and ciphertexts. For polynomials which
need to be read from the polynomial cache and encoded (or decoded and written to the
polynomial cache), we directly post-process the outputs (or pre-process the inputs) of
the crypto-processor’s internal memory, instead of first storing the data in intermediate
temporary arrays and then processing them. This saves around 10-20% cycles in overall
protocol run-time. Also, the internal clock gates are strategically enabled and disabled
during program execution using the clock_config instruction (please refer to Appendix
B for details of our custom instructions) to reduce overall energy consumption.

For the NewHope and CRYSTALS-Kyber key exchange schemes, each of the CPA-
secure public key encryption functions – CPA-PKE.KeyGen, CPA-PKE.Encrypt and CPA-
PKE.Decrypt – has been written entirely (excluding the encoding and decoding operations)
using Sapphire custom instructions with each of the corresponding programs fitting
completely in its 1 KB instruction memory. The CCA-secure key encapsulation functions –
CCA-KEM.KeyGen, CCA-KEM.Encaps and CCA-KEM.Decaps – involve calls to SHA-3 and
the CPA-PKE functions (according to the Fujisaki-Okamoto transform [FO13]), which are
implemented in software. Since the signature schemes qTESLA and CRYSTALS-Dilithium
both involve probabilistic rejection of intermediate values, the associated polynomial
computations are split into multiple custom programs instead of one each for the KeyGen,
Sign and Verify functions. These blocks of code are scheduled using RISC-V software,
which also handles encoding and decoding operations. The only exception is the KeyGen
step in qTESLA, where high-precision discrete Gaussian sampling using large CDT tables
is implemented in software, with the SHA-3 functions accelerated in hardware.

Since Module-LWE algorithms involve working with vectors or matrices of polynomials,
it is particularly important to ensure that these polynomials fit inside the crypto-processor
memory as much as possible (because reads and writes to the internal memory through
software are not cheap). When multiplying the public matrix A with the secret vector s,
the matrix A is generated through rejection sampling, one row at a time, following the
just-in-time approach from [KBRV18]. This reduces memory footprint so that the entire
computation can fit in the polynomial cache.

In Table 7, we compare cycle count and energy consumption of our implementations of

40 Sapphire: A Configurable Lattice Crypto-Processor

Table 7: Measured energy and performance of public key encryption schemes

Protocol Cortex-M4 [KRSS18] This work †

Cycles Energy (µJ) Cycles Power (mW) Energy (µJ)
NewHope-512-CPA-PKE

KeyGen - - 18,667 7.15 1.85
Encrypt - - 53,499 7.79 5.79
Decrypt - - 29,099 6.81 2.77

NewHope-1024-CPA-PKE
KeyGen 1,179,353 725.30 38,012 7.39 3.90
Encrypt 1,663,023 1022.76 106,611 8.10 12.00
Decrypt 194,439 119.58 56,061 9.31 7.26

CRYSTALS-Kyber-512-CPA-PKE
KeyGen 609,923 375.10 46,187 7.61 4.90
Encrypt 721,925 443.98 66,851 8.33 7.74
Decrypt 95,894 58.97 32,198 7.67 3.45

CRYSTALS-Kyber-768-CPA-PKE
KeyGen 1,001,328 615.82 72,245 7.40 7.43
Encrypt 1,116,540 686.67 94,440 7.87 10.31
Decrypt 129,560 79.68 40,202 7.75 4.34

CRYSTALS-Kyber-1024-CPA-PKE
KeyGen 1,610,114 990.22 100,453 7.95 11.09
Encrypt 1,747,687 1074.83 124,142 7.94 13.70
Decrypt 162,204 99.76 48,205 8.42 5.65
† Includes program execution and read/write from/to crypto-processor

the Ring-LWE and Module-LWE CPA-PKE schemes with assembly-optimized software on
ARM Cortex-M4 micro-processor (from PQM4 [KRSS18]), with average cycle counts for
100 executions. The energy consumption of our test chip has been measured at 1.1 V and
72 MHz, while the energy consumption of the Cortex-M4 processor is estimated from cycle
counts using average power (61.5 mW or 615 pJ/cycle at 3.0 V and 100 MHz) measured
on NUCLEO-F411RE operating at 100 MHz. The cycle count and energy consumption
for our implementation include program execution as well as the additional overhead of
writing inputs to and reading outputs from the Sapphire cryptographic core. For both
NewHope and CRYSTALS-Kyber, we observe up to an order of magnitude improvement
in energy-efficiency compared to state-of-the-art software, after accounting for voltage
scaling.

Although our lattice crypto-processor architecture primarily targets Ring-LWE and
Module-LWE schemes, we also implement the LWE-based Frodo KEM protocol to demon-
strate its flexibility. Since LWE-based algorithms require large matrix multiplications, the
arithmetic operations dominate total computation cost unlike Ring-LWE and Module-LWE
where sampling is the most expensive operation. Since the matrix dimensions are not
powers of two, we tile the rows or columns so that we can use the crypto-processor’s array
operations effectively. For Frodo-640, we split each 640-element array into two arrays
of size 512 and 128. For Frodo-976, we simply use arrays of size 1024 with the last 48
elements zeroed out or ignored, as applicable. However, this tiling scheme makes our
version of Frodo incompatible with the reference software implementation.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 41

Frodo involves three large matrix multiplications: AS, S′A and S′B, where A, S, S′
and B have dimensions n×n, n× n̄, m̄×n and n× n̄ respectively with n ∈ {640, 976} and
m̄ = n̄ = 8. We ensure that S′ is stored in row-major form and B is stored in column-major
form, which simplifies calculating S′B using the schoolbook matrix multiplication tech-
nique. The poly_op instruction is used to coefficient-wise multiply a row of the multiplier
matrix with a column of the multiplicand matrix, and the sum_elems instruction computes
the sum of its elements to generate one element of the output matrix (please refer to
Appendix B for details of our custom instructions). For calculating the matrix AS, we
generate A in row-major form (using rejection sampling, with zero chance of rejection since
q is a power of two) and S in column major form (using CDT-based discrete Gaussian
sampling) so that the same techniques still work. The matrix S is generated two columns at
a time to reduce the number of outer loop iterations, as illustrated in the pseudo-code below:

for (j = 0; j < nbar/2; j = j + 2) {
generate (j)-th column of S
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 0)
generate (j+1)-th column of S
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 1)
for (i = 0; i < n; i = i + 1) {

generate (i)-th row of A
rej_sample (prng = SHAKE-128, seed = r0, ..., poly = 4)
poly_copy (poly_dst = 5, poly_src = 4)
poly_op (op = MUL, poly_dst = 4, poly_src = 0)
poly_op (op = MUL, poly_dst = 5, poly_src = 1)
compute [i][j]-th and [i][j+1]-th elements of AS
AS[i][j] = sum_elems (poly = 4)
AS[i][j+1] = sum_elems (poly = 5)

}
}

Since both matrices S′ and A are generated on-the-fly in row-major fashion, this makes
calculating S′A a bit complicated. We multiply each element of the i-th row of A with
the i-th element of the j-th row of S′ to generate a partial sum. These i partial sums are
incrementally added together to compute the j-th row of the output matrix S′A. Once
again, we generate S two columns at a time to reduce the number of outer loop iterations.
The corresponding pseudo-code is shown below:

for (j = 0; j < nbar/2; j = j + 2) {
generate (j)-th row of S’
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 0)
generate (j+1)-th row of S’
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 1)
initialize rows of S’A with zeros
init (poly = 6)
init (poly = 7)
for (i = 0; i < n; i = i + 1) {

generate (i)-th row of A
rej_sample (prng = SHAKE-128, seed = r0, ..., poly = 4)
compute partial sum of (j)-th row of S’A
reg = (poly = 0)[i]
poly_op (op = CONST_MUL, poly_dst = 2, poly_src = 4)
poly_op (op = ADD, poly_dst = 6, poly_src = 2)

42 Sapphire: A Configurable Lattice Crypto-Processor

compute partial sum of (j+1)-th row of S’A
reg = (poly = 1)[i]
poly_op (op = CONST_MUL, poly_dst = 3, poly_src = 4)
poly_op (op = ADD, poly_dst = 7, poly_src = 3)

}
}

where the reg = (poly)[i] instruction is used to save the i-th element of the array
in the 24-bit internal register reg, the init (poly) instruction creates an array of zeros
and the CONST_MUL operation multiplies each element of an array with the value stored in
reg (please refer to Appendix B for details of our instructions). The AS + E and S′A +
E′ computations require 10.9M and 9.9M cycles respectively for Frodo-640, and 25.3M and
23.2M cycles respectively for Frodo-976, which constitute majority of the total cycle count.
This is quite different from the Ring-LWE and Module-LWE schemes, where polynomial
sampling accounts for 60-70% of the total computation cost.

In Tables 8 and 9, we have compared cycle count and energy consumption of assembly-
optimized Cortex-M4 software [KRSS18] with our hardware-accelerated implementation on
our test chip operating at 1.1 V and 72 MHz, with average cycle counts for 100 executions.
Clearly, our design achieves up to an order of magnitude improvement in energy-efficiency
and performance compared to state-of-the-art software. We note that Module-LWE
schemes, although a bit slower compared to Ring-LWE, offer parameters with better
scalability in terms of security and efficiency compared to Ring-LWE schemes. Among the
key encapsulation schemes, NewHope and CRYSTALS-Kyber are two orders of magnitude
more efficient than Frodo, owing to the inherent structure in ideal and module lattices
where the key operation is polynomial multiplication as opposed to matrix multiplication
in standard lattices. Among the digital signature schemes evaluated, qTESLA allows
faster signature generation and verification compared to CRYSTALS-Kyber. However,
our implementation of the key generation step in qTESLA is quite expensive since it uses
CDT-based discrete Gaussian sampling with large tables and high precision. This is not a
big concern since signature key-pairs are generated infrequently; also, more specialized
hardware can be added to our architecture to support such distribution parameters, albeit
at the cost of logic area.

In Fig. 13, we plot the measured energy consumption of the Ring-LWE and Module-
LWE-based CCA-KEM-Encaps and Sign algorithms at different post-quantum security
levels, as implemented on our test chip operating at at 1.1 V and 72 MHz. Due to the
configurability of our lattice crypto-processor, we are able to implement all these different
modes and achieve energy scalability through efficiency versus security trade-offs.

Figure 13: Energy consumption of Ring-LWE and Module-LWE-based (a) CCA-KEM-
Encaps and (b) Sign algorithms at different post-quantum security levels.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 43

Table 8: Measured energy and performance of key encapsulation schemes

Protocol Cortex-M4 [KRSS18] This work

Cycles Energy Cycles Power Energy

(µJ) (mW) (µJ)

NewHope-512-CCA-KEM

KeyGen - - 52,063 6.04 4.37

Encaps - - 136,077 5.30 10.02

Decaps - - 142,295 5.80 11.46

NewHope-1024-CCA-KEM

KeyGen 1,243,729 764.89 97,969 6.13 8.35

Encaps 1,963,184 1207.34 236,812 5.05 16.59

Decaps 1,978,982 1217.07 258,872 5.89 21.17

CRYSTALS-Kyber-512-CCA-KEM

KeyGen 726,921 447.06 74,519 5.77 5.97

Encaps 987,864 607.54 131,698 5.12 9.37

Decaps 1,018,946 626.65 142,309 5.69 11.25

CRYSTALS-Kyber-768-CCA-KEM

KeyGen 1,200,291 738.18 111,525 5.28 8.19

Encaps 1,446,284 889.46 177,540 5.19 12.80

Decaps 1,477,365 908.58 190,579 5.86 15.52

CRYSTALS-Kyber-1024-CCA-KEM

KeyGen 1,771,729 1089.61 148,547 5.95 12.27

Encaps 2,142,912 1317.89 223,469 5.25 16.3

Decaps 2,188,917 1346.18 240,977 5.91 19.76

Frodo-640-CCA-KEM

KeyGen 81,293,476 49995.49 11,453,942 6.65 1057.65

Encaps 86,178,252 52999.62 11,609,668 7.01 1129.95

Decaps 87,170,982 53610.15 12,035,513 6.88 1150.83

Frodo-976-CCA-KEM

KeyGen - - 26,005,326 6.70 2420.97

Encaps - - 29,749,417 7.05 2912.95

Decaps - - 30,421,175 6.94 2932.13

44 Sapphire: A Configurable Lattice Crypto-Processor

Table 9: Measured energy and performance of digital signature schemes

Protocol Cortex-M4 [KRSS18] This work

Cycles Energy Cycles Power Energy

(µJ) (mW) (µJ)

qTESLA-I

KeyGen 17,545,901 10790.73 4,846,949 7.89 531.55

Sign 6,317,445 3885.23 168,273 9.99 23.34

Verify 1,059,370 651.51 38,922 7.99 4.32

qTESLA-III-size

KeyGen 58,227,852 35810.13 11,479,190 7.71 1229.18

Sign 19,869,370 12219.66 348,429 9.97 48.23

Verify 2,297,530 1412.98 69,154 7.59 7.27

qTESLA-III-speed

KeyGen 30,720,411 18893.05 11,898,241 7.64 1262.39

Sign 11,987,079 7372.05 317,083 9.97 43.91

Verify 2,225,296 1368.56 67,712 7.30 6.86

CRYSTALS-Dilithium-I

KeyGen - - 95,202 6.82 9.00

Sign - - 376,392 6.77 35.41

Verify - - 142,576 7.73 15.31

CRYSTALS-Dilithium-II

KeyGen - - 130,022 7.24 13.08

Sign - - 514,246 7.68 54.82

Verify - - 184,933 7.49 19.23

CRYSTALS-Dilithium-III

KeyGen 2,322,955 1428.62 167,433 7.36 17.11

Sign 9,978,000 6136.47 634,763 7.40 65.26

Verify 2,322,765 1428.50 229,481 7.41 23.63

CRYSTALS-Dilithium-IV

KeyGen - - 223,272 6.89 21.38

Sign - - 815,636 6.93 78.53

Verify - - 276,221 7.44 28.55

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 45

Table 10: Comparison of our design with state-of-the-art hardware

In Table 10, we compare our design with existing hardware-accelerated implementations
of NIST Round 2 lattice-based protocols. Our crypto-processor is significantly smaller
than the multiple designs generated using high-level synthesis in [BSNK19], and is also
more flexible and energy-efficient. Our Kyber implementation is faster than [AHH+18]
which uses RSA, AES and SHA hardware accelerators on the SLE 78 security controller
platform to accelerate lattice cryptography. Efficiency of our design is greater than or
comparable to state-of-the-art FPGA implementations of Ring-LWE [OG17, FSM+19].
Notably, [FSM+19] also uses a RISC-V processor with NTT and SHA accelerators to
implement the NewHope protocol. However, our implementation of Frodo, which re-
purposes the Ring/Module-LWE hardware for LWE computations, is not as efficient as
the dedicated LWE accelerator in [HOKG18]. Finally, we also compare our design with
state-of-the-art pre-quantum elliptic curve cryptography hardware [BJW+18, HSSW15],
and we observe our implementation of CCA-secure lattice-based key encapsulation using
NewHope-512 to be around 5× more efficient compared to elliptic curve Diffie-Hellman
key exchange using the NIST P-256 curve at comparable pre-quantum security level.

6.2 Side-Channel Analysis
Side-channel security is an important aspect of all public-key cryptography implementations
and lattice-based cryptography is not an exception. In order to prevent information leakage
through timing side channels, the most important requirement is to ensure that the timing
and memory access patterns of underlying computations are independent of the secret
data being computed upon. In our implementation, this is achieved either by making the
computations constant-time, e.g., binomial sampling, discrete Gaussian sampling, NTT
and polynomial arithmetic, or by using rejection sampling, e.g, sampling numbers from
[0, q) or [−η, η] or probabilistic rejection during signature schemes. Since our cryptographic
core and RISC-V processor both have a single-level memory hierarchy, the possibility of
cache timing attacks is also eliminated.

46 Sapphire: A Configurable Lattice Crypto-Processor

Figure 14: Measured power waveforms for different polynomial sampling, transform and
arithmetic operations along with histograms of energy consumption for 10,000 measure-
ments for each operation, obtained from our test chip operating at 1.1 V and 12 MHz.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 47

Figure 15: Power side-channel measurement setup.

Our power side-channel measurement setup is shown in Fig. 15. Our test board has
an 18 Ω resistor connected in series between the power supply and the VDD pin of our
test chip. The voltage across this resistor, proportional to the chip’s current draw, is
magnified using a non-inverting differential amplifier (consists of an AD8001 op-amp chip,
with 6 dB flat gain up to 100 MHz, in the non-inverting configuration with resistors of
appropriate sizes) and then observed through a 2.5 GS/s Tektronix MDO3024 mixed
domain oscilloscope.

The execution times of binomial sampling, discrete Gaussian sampling, NTT, polynomial
coefficient-wise multiplication and addition (with n = 1024 and q = 12289) were measured
for 10,000 random executions to verify that these computations are indeed constant-time.
The corresponding power waveforms and energy consumption histograms, measured from
our test chip operating at 1.1 V and 12 MHz, are shown in Fig. 14.

Typical simple power analysis (SPA) attacks on lattice cryptography implementations
exploit information leakage through conditional branching or data-dependent execution
times during the modular arithmetic computations in NTT or polynomial coefficient-wise
multiplication [PH16, PPM17, AOT18]. As explained in Fig. 14, our implementation
of polynomial arithmetic is constant-time. To quantitatively evaluate SPA resistance of
our design, we perform a difference-of-means test [KJJR11, AOT18, EBM19] on three
polynomial operations – NTT, coefficient-wise multiplication and coefficient-wise addition
– which are traditionally used as attack points. In this test, we try to differentiate two
sets of measurements – those with a particular coefficient (‘0’-th coefficient in our case)
in the input polynomial set to 0 (denoted as set ‘0’ or S0) versus the same coefficient set
to q − 1 (denoted as set ‘1’ or S1) – by comparing their means separately for each point
in the mean power trace. The difference-of-means is calculated for increasing number of
measurements and plotted as a function of the number of traces N . The corresponding
99.99% confidence interval for having a zero difference of means between these two sets is
calculated as tc ·

√
(σ2

0 + σ2
1)/N , where σ0 and σ1 are the standard deviations of the two

sets S0 and S1 respectively and tc is the critical t-statistic for N − 1 degrees of freedom
and cumulative probability = 1 − (1 − 0.9999)/2 = 0.99995. As long as the absolute
difference-of-means is smaller than the confidence interval, it is a strong indicator that the
sets S0 and S1 are indistinguishable.

48 Sapphire: A Configurable Lattice Crypto-Processor

Figure 16: Difference-of-means test for polynomial NTT with representative power traces
from set S0 (top left) and S1 (top right), difference waveform (bottom left) and difference
of means versus number of traces with 99.99% confidence interval (bottom right).

Figure 17: Difference-of-means test for polynomial coefficient-wise multiplication with
representative power traces from set S0 (top left) and S1 (top right), difference waveform
(bottom left) and difference of means versus number of traces with 99.99% confidence
interval (bottom right).

Figure 18: Difference-of-means test for polynomial coefficient-wise addition with represen-
tative power traces from set S0 (top left) and S1 (top right), difference waveform (bottom
left) and difference of means versus number of traces with 99.99% confidence interval
(bottom right).

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 49

In Figures 16, 17 and 18, we provide preliminary difference-of-means test results for
three polynomial operations (with n = 1024 and q = 12289) as measured from our test
chip operating at 1.1 V and 10 MHz. Sampling rate of the oscilloscope was set to 500
MS/s for NTT and 2.5 GS/s for coefficient-wise multiplication and addition. The red lines
denote measured difference-of-means, and the dashed lines mark the 99.99% confidence
interval for ideal zero difference-of-means. These results validate that our design is secure
against SPA side-channel attacks.

The protocol implementations discussed earlier do not have any explicit countermea-
sures against differential power analysis (DPA) attacks. Although DPA attacks can be
mitigated by using ephemeral keys, it is still important to analyze how these proto-
cols can be made DPA-secure. Masking-based countermeasures have been proposed in
[RRVV15, RRVV16, OSPG18] for Ring-LWE encryption. Since our crypto-processor is
programmable, such masked protocols can be implemented using the right mix of software
and hardware acceleration. For example, we consider NewHope-CPA-PKE and discuss
how the masked decryption algorithm, inspired by [RRVV15, RRVV16, OSPG18], can
be implemented using our hardware. A simplified version of the CPA-PKE scheme, ex-
cluding any key / ciphertext compression / decompression and encoding / decoding and
implementation-specific details, is provided below:

function NewHope-CPA-PKE.KeyGen(seed):
Sample â, s, e ∈ Rq
b̂← â� ŝ+ ê
return (pk = (â, b̂), sk = ŝ)

function NewHope-CPA-PKE.Encrypt(pk, coin, µ ∈ {0, · · · , 255}32):
Sample s′, e′, e′′ ∈ Rq
û← â� ŝ′ + ê′

v ← Encode(µ) ∈ Rq
v′ ← b · s′ + e′′ + v
return c = (û, v′)

function NewHope-CPA-PKE.Decrypt(sk, c):
v′′ ← v′ − u · s
µ← Decode(v′′) ∈ {0, · · · , 255}32

return µ

where µ is the 32-byte message to be encrypted, x̂ is the NTT representation of polynomial
x ∈ Rq, � denotes coefficient-wise multiplication (in the transform domain) and · denotes
polynomial multiplication in Rq. The Encode function converts message µ into a polynomial
in Rq. To allow robustness against errors, each bit of the 256-bit message is encoded into
bn/256c coefficients. For example, for n = 1024, the i-th, (256 + i)-th, (512 + i)-th and
(768 + i)-th coefficients are set to 0 or bq/2c depending on whether the i-th bit in µ is 0 or
1 respectively, for i ∈ {0, · · · , 255}. The Decode function maps bn/256c coefficients of a
polynomial back to the original message bit. For example, for n = 1024, it takes the i-th,
(256 + i)-th, (512 + i)-th and (768 + i)-th coefficients (each in the range {0, · · · , q − 1},
subtracts bq/2c from each of them, accumulates their absolute values, and finally sets the
i-th message bit to 0 if the sum is larger than q or to 1 otherwise, for i ∈ {0, · · · , 255}.
Further details about these functions are available in the NewHope specification document
[PAA+19]. The Decrypt algorithm requires one polynomial coefficient-wise multiplication
û � ŝ, one inverse NTT (including multiplication with n−1ψ−i) to compute u · s, and
one polynomial coefficient-wise subtraction v′ − u · s. Figure 19 shows the corresponding
measured power waveform for n = 1024.

50 Sapphire: A Configurable Lattice Crypto-Processor

Figure 19: Power trace for the NewHope-1024-CPA-PKE.Decrypt algorithm, measured
from our test chip operating at 1.1 V and 12 MHz.

Similar to the encryption scheme studied in [RRVV16], we note that NewHope-CPA-
PKE is also additively homomorphic, that is, if c1 = (û1, v

′
1) and c2 = (û2, v

′
2) are the

ciphertexts corresponding to messages µ1 and µ2 respectively, under the same key-pair,
then (û1 + û2, v

′
1 + v′2) will be the ciphertext corresponding to µ1 ⊕ µ2. Following the

works of [RRVV15, RRVV16, OSPG18], this property can be exploited to randomize the
decryption algorithm (as a first-order DPA countermeasure) as explained below:

1. Generate a secret random message µr
2. Encrypt µr to its corresponding ciphertext cr = (ûr, v′r)
3. Compute cm = (û+ ûr, v

′ + v′r), where c = (û, v′) is the original ciphertext
4. Decrypt masked ciphertext cm to obtain µm = µ⊕µr, where µ is the original message
5. Recover original message µ = µm ⊕ µr

Therefore, the masked decryption now requires generation of a random message along with
invocations of both the Encrypt and Decrypt functions. As explained earlier, these functions
can be implemented entirely using Sapphire custom programs, so the masking involves
minimal software overheads. Referring to the cycle counts and energy consumption of
NewHope-1024-CPA-PKE in Table 7, we note that the masked decryption is about 3×
less efficient compared to the unmasked version, both in terms of energy and performance.
Since µr is independent from the original message µ, the ciphertext cr can be pre-computed
offline in order to reduce online computation time and energy consumption. As explained
in [RRVV16], this technique does not require any modifications to the Decode function.
However, addition of ciphertexts increases the noise in them, thus increasing the decryption
failure rate. Each of the two polynomials in the ciphertext contains one noise term whose
coefficients are derived from the zero-mean binomial distribution with support [−k, k]
and standard deviation σ =

√
k/2 (k = 8 for NewHope). When two such ciphertexts are

added, the resulting noise distribution (still binomial) now has support [−2k, 2k] with
standard deviation σ =

√
2k/2 =

√
k, that is, the noise variance is doubled. For k = 16,

which is also used in NewHope-Simple, the decryption failure probability will go up from
2−216 [PAA+19] to 2−60 [ADPS16]. As discussed in [RRVV16], standard deviation of the
error distribution can be decreased to allow correct decryptions at the cost of a minor
deterioration in security. So, one possibility is to set k = 4 in the unmasked scheme (so that
k = 8 for masked decryption and failure probability remains 2−216). The corresponding
decrease in security level is from 289 bits to 268 bits, as obtained from the LWE hardness
estimator [APS15] using the following Sage module:

load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")
n = 1024; q = 12289; stddev = sqrt(4/2); alpha = sqrt(2*pi)*stddev/q
_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 51

7 Conclusion and Future Work
In this work, we have presented a configurable lattice cryptography processor supporting
different parameters for NIST Round 2 lattice-based key encapsulation and digital signature
protocols such as NewHope, qTESLA, CRYSTALS-Kyber, CRYSTALS-Dilithium and
Frodo. Efficient modular arithmetic, sampling and NTT memory architectures together
provide an order of magnitude improvement in performance and energy-efficiency compared
to state-of-the-art software and hardware implementations. Our ASIC implementation
was fabricated in a 40nm low-power CMOS process and all measurement results are
obtained from our test chip operating at 1.1 V and 72 MHz. Our protocol implementations
are secure against timing and simple power analysis attacks, and we also discuss how
masking countermeasures against differential power analysis can be implemented using the
programmability of our crypto-processor.

Since our design supports configurable lattice parameters, it will be interesting to
explore other lattice-based protocols such as Saber [DKRV19] and Round5 [GZB+19],
which are based on the LWR (learning with rounding) problem [BPR12]. More concrete
analysis of DPA-secure masked implementations, for CPA-PKE, CCA-KEM and signature
schemes, along with leakage tests and impact on performance and energy-efficiency, will
also be performed in the future. Finally, non-lattice-based post-quantum protocols can
also be implemented on our platform, using a mix of hardware acceleration and software,
since they can still benefit from our efficient implementation of modular arithmetic and
SHA-3 computations.

Acknowledgements
The authors would like to thank Texas Instruments for funding this work, the TSMC
University Shuttle Program for chip fabrication support, and Bluespec, Xilinx, Cadence,
Synopsys and Mentor Graphics for providing CAD tools. The authors also thank the
anonymous reviewers for their valuable comments and suggestions.

References
[AAA+19] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, C. Miller,

D. Moody, R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone, and Y. Liu.
Status Report on the First Round of the NIST Post-Quantum Cryptogra-
phy Standardization Process. Technical Report 8240, National Institute of
Standards and Technology, Jan. 2019.

[ADPS16] E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe. NewHope without
Reconciliation. Cryptology ePrint Archive, Report 2016/1157, 2016. https:
//eprint.iacr.org/2016/1157.

[AHH+18] M. Albrecht, C. Hanser, A. Holler, T. Poppelmann, F. Virdia, and A. Wallner.
Implementing RLWE-based Schemes Using an RSA Co-Processor. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(1):169–
208, Nov. 2018.

[AJS16] E. Alkim, P. Jakubeit, and P. Schwabe. NewHope on ARM Cortex-M. In
Security, Privacy, and Applied Cryptography Engineering – SPACE 2016,
pages 332–349, Dec. 2016.

[ALO+17] M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson, G. Peer,
and N. P. Smart. LIMA — A PQC Encryption Scheme. Technical report,

https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2016/1157

52 Sapphire: A Configurable Lattice Crypto-Processor

National Institute of Standards and Technology, 2017. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

[AOT18] A. Aysu, M. Orshansky, and M. Tiwari. Binary Ring-LWE Hardware with
Power Side-Channel Countermeasures. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1253–1258, Mar. 2018.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the Concrete Hardness of Learning
with Errors. Journal of Mathematical Cryptology, 9(3):169–203, Oct. 2015.

[BAA+19] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann,
E. Eaton, G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E. Ricardini,
and G. Zanon. Lattice-based Digital Signature Scheme qTESLA – Sub-
mission to NIST’s Post-Quantum Project. Technical report, National Institute
of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[Bar86] P. Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In Advances in
Cryptology – CRYPTO 86, pages 311–323, Aug. 1986.

[BDPV09] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak Specifications,
2009.

[Ber08a] D. J. Bernstein. ChaCha, a variant of Salsa20, Jan. 2008. https://cr.yp.
to/chacha/chacha-20080128.pdf.

[Ber08b] D. J. Bernstein. Fast Multiplication and its Applications. Algorithmic Number
Theory, 44:325–384, 2008.

[BFM+18] J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam. Fly, you
fool! Faster Frodo for the ARM Cortex-M4. Cryptology ePrint Archive,
Report 2018/1116, 2018. https://eprint.iacr.org/2018/1116.

[BJW+18] U. Banerjee, C. Juvekar, A. Wright, Arvind, and A. P. Chandrakasan. An
Energy-Efficient Reconfigurable DTLS Cryptographic Engine for End-to-End
Security in IoT Applications. In 2018 IEEE International Solid-State Circuits
Conference (ISSCC), pages 42–44, Feb. 2018.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehle. Classical
Hardness of Learning with Errors. In Proceedings of the Forty-fifth Annual
ACM Symposium on Theory of Computing (STOC), pages 575–584, Jun. 2013.

[BPC19] U. Banerjee, A. Pathak, and A. P. Chandrakasan. An Energy-Efficient Con-
figurable Lattice Cryptography Processor for the Quantum-Secure Internet of
Things. In 2019 IEEE International Solid-State Circuits Conference (ISSCC),
pages 46–48, Feb. 2019.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom Functions and Lattices.
In Advances in Cryptology – EUROCRYPT 2012, pages 719–737, Apr. 2012.

[BSNK19] K. Basu, D. Soni, M. Nabeel, and R. Karri. NIST Post-Quantum Cryptography
- A Hardware Evaluation Study. Cryptology ePrint Archive, Report 2019/047,
2019. https://eprint.iacr.org/2019/047.

[CHWZ17] C. Chen, J. Hoffstein, W. Whyte, and Z. Zhang. NIST PQ Submission:
pqNTRUSign – A Modular Lattice Signature Scheme. Technical report,
National Institute of Standards and Technology, 2017. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2019/047
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 53

[CJL+16] L. Chen, S. Jordan, Y. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone. Report on Post-Quantum Cryptography. Technical Report 8105,
National Institute of Standards and Technology, Apr. 2016.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

[CMV+15] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao,
and I. Verbauwhede. High-Speed Polynomial Multiplication Architecture for
Ring-LWE and SHE Cryptosystems. IEEE Transactions on Circuits and
Systems I: Regular Papers, 62(1):157–166, Jan. 2015.

[CPL+17] J. H. Cheon, S. Park, J. Lee, D. Kim, Y. Song, S. Hong, D. Kim, J. Kim,
S.-M. Hong, A. Yun, J. Kim, H. Park, E. Choi, K. Kim, J.-S. Kim, and
J. Lee. Lizard Public Key Encryption. Technical report, National Institute
of Standards and Technology, 2017. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

[DB16] C. Du and G. Bai. Towards Efficient Polynomial Multiplication for Lattice-
based Cryptography. In 2016 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1178–1181, May 2016.

[DG07] M. Dichtl and J. D. Golic. High-Speed True Random Number Generation
with Logic Gates Only. In Cryptographic Hardware and Embedded Systems -
CHES 2007, pages 45–62, Sep. 2007.

[DKRV19] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER: Mod-LWR
based KEM. Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions.

[dRVV15] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient Software
Implementation of Ring-LWE Encryption. In 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 339–344, Mar. 2015.

[DTGW17] J. Ding, T. Takagi, X. Gao, and Y. Wang. Ding Key Ex-
change. Technical report, National Institute of Standards and Technology,
2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[EBM19] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani. Post-Quantum
Cryptoprocessors Optimized for Edge and Resource-Constrained Devices in
IoT. IEEE Internet of Things Journal, 6(3):5500–5507, Jun. 2019.

[FO13] E. Fujisaki and T. Okamoto, Tatsuaki. Secure Integration of Asymmetric and
Symmetric Encryption Schemes. Journal of Cryptology, 26(1):80–101, Jan.
2013.

[Fol14] J. Follath. Gaussian Sampling in Lattice Based Cryptography. Tatra Moun-
tains Mathematical Publications, 60(1):1–23, Sep. 2014.

[FS19] T. Fritzmann and J. Sepúlveda. Efficient and Flexible Low-Power NTT for
Lattice-Based Cryptography. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 141–150, May 2019.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

54 Sapphire: A Configurable Lattice Crypto-Processor

[FSM+19] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlicht-
mann, and J. Sepulveda. Towards Reliable and Secure Post-Quantum Co-
Processors based on RISC-V. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1148–1153, Mar. 2019.

[GS16] S. Gueron and F. Schlieker. Speeding up R-LWE Post-Quantum Key Exchange.
Cryptology ePrint Archive, Report 2016/467, 2016. https://eprint.iacr.
org/2016/467.

[GZB+19] O. Garcia-Morchon, Z. Zhang, S. Bhattacharya, R. Rietman, L. Tolhuizen,
J.-L. Torre-Arce, H. Baan, M.-J. O. Saarinen, S. Fluhrer, T. Laarhoven,
and R. Player. Round5: KEM and PKE based on (Ring) Learning with
Rounding. Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions.

[HOKG18] J. Howe, T. Oder, M. Krausz, and T. Guneysu. Standard Lattice-Based Key
Encapsulation on Embedded Devices. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):372–393, Aug. 2018.

[How12] R. R. Howell. Algorithms: A Top-Down Approach. Draft, 2012. http:
//people.cs.ksu.edu/~rhowell/algorithms-text.

[HSSW15] M. Hutter, J. Schilling, P. Schwabe, and W. Wieser. Nacl’s crypto_box in
hardware. In Cryptographic Hardware and Embedded Systems – CHES 2015,
pages 81–101, Sep. 2015.

[KBRV18] A. Karmakar, J. M. Bermudo Mera, S. S. Roy, and I. Verbauwhede. Saber on
ARM. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(3):243–266, Aug. 2018.

[KJJR11] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to Differential Power
Analysis. Journal of Cryptographic Engineering, 1(1):5–27, Apr. 2011.

[KLC+17] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng, and
B.-Y. Yang. High Performance Post-Quantum Key Exchange on FPGAs.
Cryptology ePrint Archive, Report 2017/690, 2017. https://eprint.iacr.
org/2017/690.

[KRSS18] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. PQM4: Post-
quantum crypto library for the ARM Cortex-M4, 2018. https://github.
com/mupq/pqm4.

[KY76] D. E. Knuth and A. C. Yao. Algorithms and Complexity: New Directions and
Recent Results, chapter The Complexity of Non-Uniform Random Number
Generation. Academic Press, 1976.

[LDK+19] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler,
and D. Stehle. CRYSTALS-Dilithium – Algorithm Specifications And
Supporting Documentation. Technical report, National Institute of
Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[LN16] P. Longa and M. Naehrig. Speeding up the Number Theoretic Transform for
Faster Ideal Lattice-Based Cryptography. Cryptology ePrint Archive, Report
2016/504, 2016. https://eprint.iacr.org/2016/504.

https://eprint.iacr.org/2016/467
https://eprint.iacr.org/2016/467
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
http://people.cs.ksu.edu/~rhowell/algorithms-text
http://people.cs.ksu.edu/~rhowell/algorithms-text
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2017/690
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://eprint.iacr.org/2016/504

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 55

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning
with Errors over Rings. Journal of the ACM, 60(6):43:1–43:35, Nov. 2013.

[LS15] A. Langlois and D. Stehle. Worst-case to Average-case Reductions for Module
Lattices. Designs, Codes and Cryptography, 75(3):565–599, Jun. 2015.

[LZL+19] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang. A Resource-Efficient and
Side-Channel Secure Hardware Implementation of Ring-LWE Cryptographic
Processor. IEEE Transactions on Circuits and Systems I: Regular Papers,
66(4):1474–1483, Apr. 2019.

[NAB+19] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Ste-
bila. FrodoKEM: Learning With Errors Key Encapsulation – Algorithm Speci-
fications And Supporting Documentation. Technical report, National Institute
of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[NDBC18] H. Nejatollahi, N. Dutt, I. Banerjee, and R. Cammarota. Domain-specific
Accelerators for Ideal Lattice-based Public Key Protocols. Cryptology ePrint
Archive, Report 2018/608, 2018. https://eprint.iacr.org/2018/608.

[NDR+19] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota.
Post-Quantum Lattice-Based Cryptography Implementations: A Survey. ACM
Computing Surveys, 51(6):129:1–129:41, Jan. 2019.

[NIS01] NIST. Advanced Encryption Standard (AES). Technical Report FIPS PUB
197, National Institute of Standards and Technology, Nov. 2001.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Technical Report FIPS PUB 202, National Institute of Standards
and Technology, Aug. 2015.

[NOI+08] H. Noguchi, S. Okumura, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii,
H. Kawaguchi, and M. Yoshimoto. Which is the Best Dual-Port SRAM
in 45-nm Process Technology? — 8T, 10T Single End, and 10T Differential
—. In 2008 IEEE International Conference on Integrated Circuit Design and
Technology and Tutorial, pages 55–58, Jun. 2008.

[OG17] T. Oder and T. Guneysu. Implementing the NewHope-Simple Key Exchange on
low-cost FPGAs. In International Conference on Cryptology and Information
Security in Latin America, – LATINCRYPT 2017, pages 371–391, Sep. 2017.

[OGV+16] T. Oder, T. Guneysu, F. Valencia, A. Khalid, M. O’Neill, and F. Regazzoni.
Lattice-based Cryptography: From Reconfigurable Hardware to ASIC. In
2016 International Symposium on Integrated Circuits (ISIC), pages 1–4, Dec.
2016.

[OSPG18] T. Oder, T. Schneider, T. Poppelmann, and T. Guneysu. Practical CCA2-
Secure and Masked Ring-LWE Implementation. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2018(1):142–174, Feb. 2018.

[PAA+19] T. Poppelmann, E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra,
P. Schwabe, D. Stebila, M. R. Albrecht, E. Orsini, V. Osheter, K. G.
Paterson, G. Peer, and N. P. Smart. NewHope – Algorithm Specifica-
tions And Supporting Documentation. Technical report, National Institute
of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://eprint.iacr.org/2018/608
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

56 Sapphire: A Configurable Lattice Crypto-Processor

[Pea68] M. C. Pease. An Adaptation of the Fast Fourier Transform for Parallel
Processing. Journal of the ACM, 15(2):252–264, Apr. 1968.

[PH16] A. Park and D. Han. Chosen Ciphertext Simple Power Analysis on Software
8-bit Implementation of Ring-LWE Encryption. In 2016 IEEE Asian Hardware-
Oriented Security and Trust (AsianHOST), pages 1–6, Dec 2016.

[Pol71] J. M. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of
Computation, 25(114):365–374, May 1971.

[PPM17] R. Primas, P. Pessl, and S. Mangard. Single-Trace Side-Channel Attacks on
Masked Lattice-Based Encryption. In Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 513–533, Sep. 2017.

[Reg04] O. Regev. Quantum Computation and Lattice Problems. SIAM Journal of
Computing, 33(3):738–760, Mar. 2004.

[Reg05] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing (STOC), pages 84–93, May 2005.

[RRVV15] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A Masked Ring-
LWE Implementation. In Cryptographic Hardware and Embedded Systems –
CHES 2015, pages 683–702, Sep. 2015.

[RRVV16] O. Reparaz, R. de Clercq S. S. Roy, F. Vercauteren, and I. Verbauwhede.
Additively homomorphic ring-lwe masking. In Post-Quantum Cryptography,
pages 233–244, Feb. 2016.

[RVM+14] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Com-
pact Ring-LWE Cryptoprocessor. In Cryptographic Hardware and Embedded
Systems – CHES 2014, pages 371–391, Sep. 2014.

[SAB+19] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, G. Seiler, and D. Stehle. CRYSTALS-Kyber – Algorithm Speci-
fications And Supporting Documentation. Technical report, National Institute
of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[Sho97] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal of Computing, 26(5):1484–
1509, Oct. 1997.

[SPL+17] M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. EMBLEM and
R.EMBLEM – Error-blocked Multi-Bit LWE-based Encapsulation Mecha-
nism. Technical report, National Institute of Standards and Technology,
2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[STCZ18] S. Song, W. Tang, T. Chen, and Z. Zhang. LEIA: A 2.05mm2 140mW Lattice
Encryption Instruction Accelerator in 40nm CMOS. In 2018 IEEE Custom
Integrated Circuits Conference (CICC), pages 1–4, Apr. 2018.

[STM] STMicroelectronics. NUCLEO-F411RE Development Board. https://os.
mbed.com/platforms/ST-Nucleo-F411RE.

[WLPA14] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The RISC-V
Instruction Set Manual, 2014.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://os.mbed.com/platforms/ST-Nucleo-F411RE
https://os.mbed.com/platforms/ST-Nucleo-F411RE

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 57

Appendix A Modular Reduction Parameters
As mentioned in Section 3, our modular multiplier with pseudo-configurable prime modulus
uses efficient Barrett reduction, with the parameters m, k and q coded in digital logic, for a
set of chosen primes. These parameters and the corresponding reduction implementations
are detailed here. Please note that m and q are written in the form 2l1 ± 2l2 ± · · · ± 1 only
when the number of such integers l1, l2, · · · is less than 5.

Algorithm Reduction mod 7681
Require: q = 213 − 29 + 1,m = 273 = 28 + 24 + 1, k = 21, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 8) + (x� 4) + x
2: t← t� 21
3: t← (t� 13)− (t� 9) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 12289
Require: q = 213 + 212 + 1,m = 10921, k = 27, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 10921 · x
2: t← t� 27
3: t← (t� 13) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 40961
Require: q = 215 + 213 + 1,m = 52427, k = 31, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 52427 · x
2: t← t� 31
3: t← (t� 15) + (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

58 Sapphire: A Configurable Lattice Crypto-Processor

Algorithm Reduction mod 120833
Require: q = 217 − 214 + 213 − 211 + 1,m = 71089, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 71089 · x
2: t← t� 33
3: t← (t� 17)− (t� 14) + (t� 13)− (t� 11) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 133121
Require: q = 217 + 211 + 1,m = 64527 = 216 − 210 + 24 − 1, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 16)− (x� 10) + (x� 4)− x
2: t← t� 33
3: t← (t� 17) + (t� 11) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 184321
Require: q = 217 + 215 + 214 + 212 + 1,m = 46603, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 46603 · x
2: t← t� 33
3: t← (t� 17) + (t� 15) + (t� 14) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 8380417
Require: q = 223 − 213 + 1,m = 8396807 = 223 + 213 + 23 − 1, k = 46, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 23) + (x� 13) + (x� 3)− x
2: t← t� 46
3: t← (t� 23)− (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 59

Algorithm Reduction mod 8058881
Require: q = 8058881,m = 8731825, k = 46, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 8731825 · x
2: t← t� 46
3: t← 8058881 · t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 4205569
Require: q = 222 + 213 + 211 + 210 + 1,m = 4183069, k = 44, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 4183069 · x
2: t← t� 44
3: t← (t� 22) + (t� 13) + (t� 11) + (t� 10) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 4206593
Require: q = 222 +213 +212 +1,m = 2091025 = 221−213 +211 +24 +1, k = 43, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 21)− (x� 13) + (x� 11) + (x� 4) + x
2: t← t� 43
3: t← (t� 22) + (t� 13) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 8404993
Require: q = 223 + 214 + 1,m = 4186127 = 222 − 213 + 24 − 1, k = 45, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 22)− (x� 13) + (x� 4)− x
2: t← t� 45
3: t← (t� 23) + (t� 14) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

60 Sapphire: A Configurable Lattice Crypto-Processor

For the prime q = 65537 = 216 + 1, we employ an easier reduction technique owing to
the special structure of q. Any integer x ∈ [0, q2) can be written as x = x2232 + x1216 + x0
where x0 and x1 are 16-bit numbers and x2 ∈ {0, 1}. Since 216 ≡ −1mod q, we have
x ≡ x0 − x1 + x2 mod q, which must be followed by a conditional addition to bring back
the result to [0, q).

Algorithm Reduction mod 65537
Require: q = 216 + 1, x = x2232 + x1216 + x0 ∈ [0, q2)
Ensure: z = x mod q

1: z ← x0 − x1 + x2
2: if z < 0 then
3: z ← z + q
4: end if
5: return z

Appendix B Custom Instruction Set Summary
In this section, we briefly describe all the custom instructions supported by our crypto-
processor. Apart from the polynomials stored in its memory and the 256-bit seed registers
r0 and r1, these are the core internal registers that can also be manipulated:

• 24-bit temporary registers reg and tmp

• 16-bit counter registers c0 and c1

• 2-bit flag register to store comparison results (-1, 0 or +1)

Following is the list of instructions along with short descriptions:

Configuration: set parameters and clock gates
config (n, q)

clock_config (keccak, ntt, sampler)

Register Operations: register assignments and arithmetic
c0 = #VAL / c0 + #VAL / c0 - #VAL

c1 = #VAL / c1 + #VAL / c1 - #VAL

reg = #VAL / tmp

tmp = #VAL / tmp (OP) reg

where #VAL can be any unsigned integer of appropriate size, and (OP) is one of the
following operations: {ADD, SUB, MUL, AND, OR, XOR, RSHIFT, LSHIFT}

Register-Polynomial Operations: register and polynomial interactions
reg = max (poly)

reg = sum_elems (poly)

reg = (poly)[#VAL] / (poly)[c0] / (poly)[c1]

(poly)[#VAL] / (poly)[c0] / (poly)[c1] = reg

Transforms: number theoretic transform and related computations
transform (mode, poly_dst, poly_src)

mult_psi (poly) / mult_psi_inv (poly)

where mode is one of the following: {DIF_NTT, DIF_INTT, DIT_NTT, DIT_INTT}

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 61

Sampling: polynomial sampling from various distributions
bin_sample (prng, seed, c0, c1, k, poly)

cdt_sample (prng, seed, c0, c1, r, s, poly)

rej_sample (prng, seed, c0, c1, poly)

uni_sample (prng, seed, c0, c1, eta, bitlen, poly)

tri_sample_1 (prng, seed, c0, c1, m, poly)

tri_sample_2 (prng, seed, c0, c1, m0, m1, poly)

tri_sample_3 (prng, seed, c0, c1, rho, poly)

where prng can be SHAKE-128 or SHAKE-256, seed can be r0 or r1, and k, r, s,
eta, bitlen, m, m0, m1, rho are the distribution parameters
Polynomial Computations: polynomial initialization and other operations
init (poly)

poly_copy (poly_dst, poly_src)

poly_op (op, poly_dst, poly_src)

shift_poly (ring, poly)

where op can be one of the following: {ADD, SUB, MUL, BITREV, CONST_ADD,
CONST_SUB, CONST_MUL, CONST_AND, CONST_OR, CONST_XOR, CONST_RSHIFT,
CONST_LSHIFT}, and ring can be either x^N+1 or x^N-1

Comparison and Branching: simple branching operations
flag = eq_check (poly, poly)

flag = inf_norm_check (poly, bound)

flag = compare (reg / tmp, c0 / c1, #VAL)

if (flag == / != -1 / 0 / +1) goto <label>

where the flag register stores -1, 0 and +1 for the register comparison result being
“lesser than”, “equal to” and “greater than” respectively, and it stores 1 or 0 depending
on whether the equality check and infinity norm check has passed or failed respectively
SHA-3 Computations: hashing operations
sha3_init

sha3_256_absorb (poly)

sha3_512_absorb (poly)

sha3_256_absorb (r0 / r1)

sha3_512_absorb (r0 / r1)

r0 / r1 = sha3_256_digest

r0 || r1 = sha3_512_digest

where the seed registers are used to store the hash outputs – either r0 or r1 for
SHA-3-256, and both r0 and r1 together for SHA-3-512

	Introduction
	Background
	LWE and Related Lattice Problems
	Number Theoretic Transform
	Sampling

	Modular Arithmetic and NTT
	Modular Arithmetic Implementation
	Butterfly Unit and ALU
	NTT Memory Architecture

	Discrete Distribution Sampler
	Energy-Efficient CS-PRNG
	Rejection Sampling
	Binomial Sampling
	Discrete Gaussian Sampling
	Other Distributions

	Chip Architecture
	Protocol Implementations and Measurement Results
	Protocol Implementations and Evaluation Results
	Side-Channel Analysis

	Conclusion and Future Work
	Modular Reduction Parameters
	Custom Instruction Set Summary

