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Why we need reconfigurable PUF?
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How to reconfigure an RRAM PUF?
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RRAMs are unique in practice

▪ Device dependent bias exists

▪ Usually overlooked since the distribution is narrower
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Same problem exists for this method

▪ Needs different time to SET different RRAMs
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Non-ideal uniqueness of other implementations
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Conclusion

▪ True reconfigurability is not achievable for RRAM PUFs

▪ The impact on uniqueness cannot be neglected 
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