

A Cautionary Note When Looking For a Truly Reconfigurable Resistive RAM PUF

Kai-Hsin Chuang, Robin Degraeve, Andrea Fantini, Guido Groeseneken, Dimitri Linten, Ingrid Verbauwhede

Outline

- Introduction
- Reconfigurable PUF
- Variability of RRAM
- RRAM PUF implementations
- Non-ideal reconfigurability
- Conclusion

וןес

PUF-based key generation

PUF-based key generation

PUF-based key generation

Re-enrollment \rightarrow new golden data \rightarrow new helper data \rightarrow new key

Why we need reconfigurable PUF?

PUF-based key generation with 100% stable entropy source

> Re-enrollment \rightarrow always the same key

Why we need reconfigurable PUF?

PUF-based key generation with 100% stable entropy source

- Problems for re-enrollment:
- Not suitable if readout is 100% stable, e.g. RRAM, MRAM or anti-fuse based PUFs
- Relies on the unstable cells \rightarrow difficult for security analysis

Why we need reconfigurable PUF?

Re-enrollment \rightarrow always the same key

Need reconfiguration!

PUF-based key generation with 100% stable entropy source

- Problems for re-enrollment:
- Not suitable if readout is 100% stable, e.g. RRAM, MRAM or anti-fuse based PUFs
- Relies on the unstable cells \rightarrow difficult for security analysis

Operating the Oxygen-vacancy based RRAM

$\mathrm{HfO}_{\mathrm{x}}$ RRAM

Operating the Oxygen-vacancy based RRAM

- LRS: low resistance state
- HRS: high resistance state

$\mathrm{HfO}_{\mathrm{x}}$ RRAM

Operating the Oxygen-vacancy based RRAM

- LRS: low resistance state
- HRS: high resistance state

$\mathrm{HfO}_{\mathrm{x}}$ RRAM
Unpredictable particle movement
\rightarrow Different shape and number for each set/reset cycle

How to reconfigure an RRAM PUF?

How to reconfigure an RRAM PUF?

- Conventional PUFs: cell-to-cell, chip-to-chip and read-to-read variations
- Not an issue for most RRAM PUFs [YKO+16, LWP +16, CPB14]

How to reconfigure an RRAM PUF?

- Conventional PUFs: cell-to-cell, chip-to-chip and read-to-read variations
- Not an issue for most RRAM PUFs [YKO+16, LWP+16, CPB14]

How to reconfigure an RRAM PUF?

- Conventional PUFs: cell-to-cell, chip-to-chip and read-to-read variations
- Not an issue for most RRAM PUFs [YKO+16, LWP+16, CPB14]
- Focus: Configuration-to-configuration variation

Is there sufficient config-to-config variation?

HRS
Less conductive
vacancies \rightarrow higher R

Is there sufficient config-to-config variation?

HRS
Less conductive
vacancies \rightarrow higher \mathbf{R}

HRS
More conductive
vacancies \rightarrow lower R

Is there sufficient config-to-config variation?

HRS
Less conductive
vacancies \rightarrow higher \mathbf{R}

RESET

HRS
More conductive
vacancies \rightarrow lower R

$$
\mathbf{R}_{0} \neq \mathbf{R}_{2} \text { and } \mathbf{R}_{1} \neq \mathbf{R}_{3}
$$

under the same SET/RESET conditions

Randomness

Is there sufficient config-to-config variation?

HRS
Less conductive vacancies \rightarrow higher \mathbf{R}

RESET

HRS
More conductive vacancies \rightarrow lower R

1 set/reset cycle

$$
\mathbf{R}_{0} \neq \mathbf{R}_{2} \text { and } \mathbf{R}_{1} \neq \mathbf{R}_{3}
$$

under the same SET/RESET conditions

Statistics and modeling

Randomness

Outline

- Introduction
- RRAM PUF implementations
- Non-ideal reconfigurability
- Conclusion

ורור

Resistance based RRAM PUF implementations

Typical resistance distribution and modeling

Resistance based RRAM PUF implementations

Typical resistance distribution and modeling

Resistance based RRAM PUF implementations

Typical resistance distribution and modeling

- " 0 " and " 1 " bits determined based on resistance threshold of LRS or HRS

Resistance based RRAM PUF implementations

Typical resistance distribution and modeling

- " 0 " and "1" bits determined based on resistance threshold of LRS or HRS
- Reconfiguration : perform 1 set/reset cycle

RRAMs are unique in practice

RRAMs are unique in practice

RRAMs are unique in practice

- Device dependent bias exists

RRAMs are unique in practice

$\mathbf{N}_{\text {sat }}$: minimum
number of vacancies

- Device dependent bias exists

RRAMs are unique in practice

$\boldsymbol{N}_{\text {sat }}$: minimum
Reproduced number of vacancies

HRS

- Device dependent bias exists

RRAMs are unique in practice

$\mathbf{N}_{\text {sat }}$: minimum number of vacancies

HRS

- Device dependent bias exists
- Usually overlooked since the distribution is narrower

Resistance splitting using half-SET

Resistance splitting using half-SET

" HRS \rightarrow " 0 ", LRS \rightarrow " $1 "$

Resistance splitting using half-SET

" HRS \rightarrow "0", LRS \rightarrow "1"

- Reconfiguration: perform 1 reset and half-set cycle

Same problem exists for this method

Same problem exists for this method

- Needs different time to SET different RRAMs

Outline

- Introduction
- RRAM PUF implementations
- Non-ideal reconfigurability
- Conclusion

ורור

Uniqueness between configurations is not ideal

Inter-chip hamming distance

Ideally ~0.5
(normalized)

Uniqueness between configurations is not ideal

Inter-chip hamming distance

Ideally ~0.5 (normalized)

Inter-configuration hamming distance

- Target: as good as inter-chip HD

Uniqueness between configurations is not ideal

Inter-chip hamming distance

Ideally ~0.5 (normalized)

- Target: as good as inter-chip HD

Inter-configuration hamming distance

RRAM PUF based on Resistance Threshold

- Shifted HD config shows the non-ideal reconfigurability

Non-ideal uniqueness of other implementations

[DFR+14]

[LHSB10]

[BAC+16]

- All implementations show clear uniqueness degradation between configurations
- Level of degradation varies for different PUF implementations

Outline

- Introduction
- RRAM PUF implementations
- Non-ideal reconfigurability
- Conclusion

Conclusion

- True reconfigurability is not achievable for RRAM PUFs
- The impact on uniqueness cannot be neglected

THANKS FOR YOUR ATTENTION!

thec embracing a better life

 $\cos \mathrm{C}$