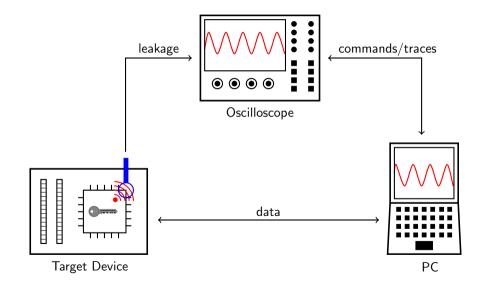
EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

Daniel Dinu¹, Ilya Kizhvatov²

¹Virginia Tech

²Radboud University Nijmegen

CHES 2018



Outline

- 1 Introduction
- 2 Side-Channel Vulnerability Analysis
- 3 The Most Feasible Attack
- 4 Countermeasures
- 5 Lessons Learned

EM Analysis

Thread

- Networking protocol for the IoT
- Simple for consumer
- Built-in security
- Power efficient
- IPv6 connectivity
- Robust mesh network
- Runs on IEEE 802.15.4 radio silicon

More than 100 members

- Numerous low-cost hardware and software tools for side-channel attacks
- Evaluate the effort required to apply an EM attack in the IoT context

Do cryptographic implementations in the network layer need protection against side-channel attacks?

Outline

1 Introduction

- 2 Side-Channel Vulnerability Analysis
- 3 The Most Feasible Attack

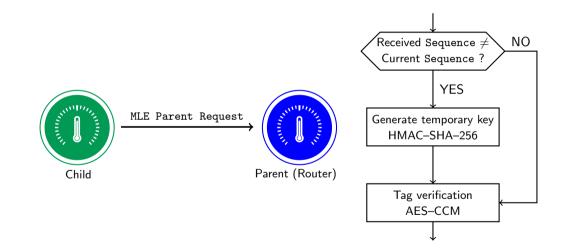
4 Countermeasures

5 Lessons Learned

Communication Security

Security is enforced at two layers:

- Medium Access Control (MAC) AES-CCM using key K_{MAC}
- Mesh Link Establishment (MLE) AES-CCM using key K_{MLE}


A node gets the master key *K* when it is commissioned to a Thread network

Fresh keys are generated from the 16-byte K and 4-byte Sequence number:

 $K_{MAC} \parallel K_{MLE} = HMAC - SHA - 256(K, Sequence \parallel "Thread")$

The default key rotation period is set to 28 days

Processing a MLE Parent Request Message

AES-CCM

- Combines CBC–MAC mode and CTR mode
- The execution of both modes of operation can be attacked
- The attacker can control up to 12 input bytes of the first block:
 - Source MAC Address 8 bytes
 - Frame Counter 4 bytes
- Known attack: Jaffe [CHES'07], O'Flynn and Chen [COSADE'16]

AES-CBC	49	Source MAC Address Frame Counter		05	00	15
AES-CTR	01	Source MAC Address	Frame Counter	05	00	01

Relationship between K and K_{MLE}

Master key to MLE key ($K \longrightarrow K_{MLE}$)

Key derivation using HMAC

Relationship between K and K_{MLE}

Master key to MLE key ($K \longrightarrow K_{MLE}$)

Key derivation using HMAC

MLE key to master key ($K_{MLE} \longrightarrow K$)

- Send MLE Child ID Request to ask for the master key
- The MLE Child ID Response includes the master key

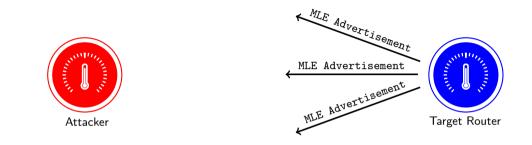
Relationship between K and K_{MLE}

Master key to MLE key ($K \longrightarrow K_{MLE}$)

Key derivation using HMAC

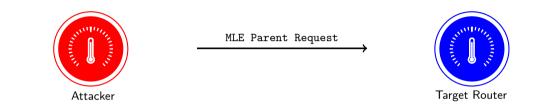
MLE key to master key ($K_{MLE} \longrightarrow K$)

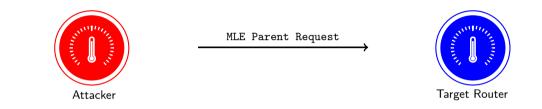
- Send MLE Child ID Request to ask for the master key
- The MLE Child ID Response includes the master key


Master key and MLE key are equivalent! $K \longleftrightarrow K_{MLE}$

Outline

- 1 Introduction
- 2 Side-Channel Vulnerability Analysis
- 3 The Most Feasible Attack
- 4 Countermeasures
- 5 Lessons Learned




Step 1: Observe an MLE Advertisement message

Record the Sequence number

Step 2: Inject MLE Parent Request messages

- Recorded Sequence number
- Random Source MAC Address and Frame Number

Step 3: Observe the EM leakage

Save the injected inputs and corresponding EM traces

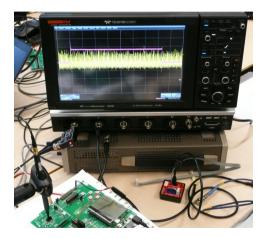
Step 4: Recover the MLE key K_{MLE}

Mount a DEMA attack

MLE Child ID Request

Step 5: Get the master key K

- Send a MLE Child ID Request message
- The MLE Child ID Response message contains K



Thread communication

Full network access!

Experimental Setup

- Target: TI CC2538 (Cortex-M3, 32 MHz)
- Thread stack: OpenThread
- Oscilloscope: LeCroy waveRunner 625Zi
- Langer EM probes
- No trigger signal from target!

Results

- Sampling rate set to 1 GS/s
- 10,000 EM traces acquired in about 3 hours
- Full recovery of the MLE key K_{MLE}
- Two key bytes were much more difficult to recover than the rest
- Message fragmentation prevented recovery of the master key
- The attack may succeed on other implementations of the stack

Outline

- 1 Introduction
- 2 Side-Channel Vulnerability Analysis
- 3 The Most Feasible Attack

4 Countermeasures

5 Lessons Learned

Countermeasures

Shielding & tamper resistance

- Protected cryptographic implementations
- Protocol level mitigations
- Security certification scheme

Countermeasures

Shielding & tamper resistance

Protected cryptographic implementations

Protocol level mitigations

Security certification scheme

A combination of the above countermeasures is recommended for high security!

Outline

- 1 Introduction
- 2 Side-Channel Vulnerability Analysis
- 3 The Most Feasible Attack
- 4 Countermeasures
- 5 Lessons Learned

Lessons learned from our evaluation can be applied to other IoT systems and protocols.

Lessons learned from our evaluation can be applied to other IoT systems and protocols.

Prevent electromagnetic leakage

Lessons learned from our evaluation can be applied to other IoT systems and protocols.

- Prevent electromagnetic leakage
- Do not allow access to the master key from temporary key(s)

Lessons learned from our evaluation can be applied to other IoT systems and protocols.

- Prevent electromagnetic leakage
- Do not allow access to the master key from temporary key(s)
- A network-wide master key is a double-edged sword

Lessons learned from our evaluation can be applied to other IoT systems and protocols.

- Prevent electromagnetic leakage
- Do not allow access to the master key from temporary key(s)
- A network-wide master key is a double-edged sword

Side-channel attacks are a real threat for the IoT!

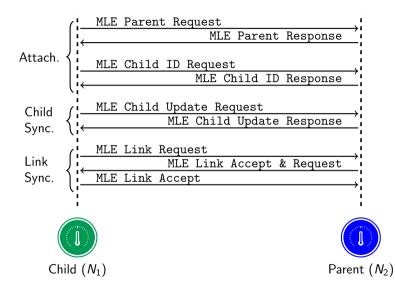


Thank you!

Appendix

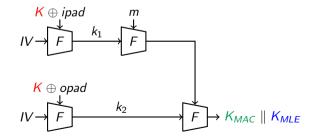
- Joshua Jaffe. A first-order DPA attack against AES in counter mode with unknown initial counter. In Cryptographic Hardware and Embedded Systems - CHES 2007.
- Colin O'Flynn and Zhizhang Chen. Power analysis attacks against IEEE 802.15.4 nodes. In Constructive Side-Channel Analysis and Secure Design - COSADE 2016.

Thread Stack



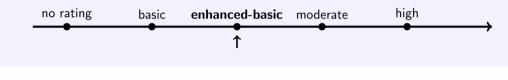
Source: https://www.threadgroup.org/

Mesh Link Establishment (MLE)


- Facilitates the secure configuration of radio links
- Allows exchange of network parameters
- MLE messages are sent inside UDP datagrams
- Routers periodically multicast MLE Advertisement messages
- Link configuration is initiated by a MLE Parent Request message

Establishing a Communication Link

HMAC-SHA-256


- m =Sequence \parallel "Thread" \parallel 0x80 0x00... 0x00 \parallel len
- The attacker targets k_1 and k_2
- k_1 , k_2 , and Sequence give K_{MAC} and K_{MLE}
- Not enough control of the input!

Attack Feasibility

Attack Effort

- Adaptation of the rating for smart cards from the Joint Interpretation Library
- \blacksquare Last step of the attack is feasible \Rightarrow enhanced-basic

Equipment Cost

Cost	Oscilloscope	Attack Success
HIGH	LeCroy WaveRunner 6Zi	\checkmark
MEDIUM	PicoScope, ChipWhisperer-Pro	\checkmark
LOW	ChipWhisperer-Lite	×

Guessing Entropy

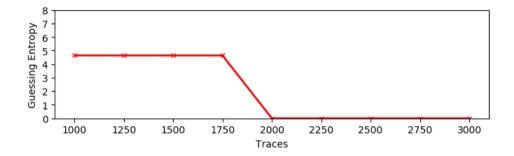


Figure: Evolution of the guessing entropy for the second key byte.

Correlation Matrix

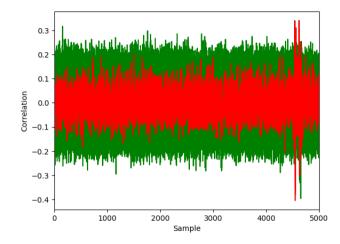


Figure: Correlation of all key candidates for the second key byte when using 3,000 traces.