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Abstract. Masking is an effective countermeasure against side-channel attacks. In
this paper, we improve the efficiency of the high-order masking of look-up tables
countermeasure introduced at Eurocrypt 2014, based on a combination of three
techniques, and still with a proof of security in the Ishai-Sahai-Wagner (ISW) probing
model. The first technique consists in proving security under the stronger t-SNI
definition, which enables to use n = t+1 shares instead of n = 2t+1 against t-th order
attacks. The second technique consists in progressively incrementing the number of
shares within the countermeasure, from a single share to n, thereby reducing the
complexity of the countermeasure. The third technique consists in adapting the
common shares approach introduced by Coron et al. at CHES 2016, so that half of a
randomized look-up table can be pre-computed for multiple SBoxes.
We show that our techniques perform well in practice. In theory, the combination
of the three techniques should lead to a factor 10.7 improvement in efficiency, for a
large number of shares. For a practical implementation with a reasonable number of
shares, we get a 4.8 speed-up factor for AES.
Keywords: Side-channel countermeasure · high-order masking · ISW security proof

1 Introduction
The masking countermeasure. Masking is an effective countermeasure against side-
channel attacks. As first suggested in [CJRR99,GP99], it consists in xoring every internal
variable x with a random r, so that r and the masked variable x′ = x⊕ r are processed
separately. This implies that a first-order attack will reveal no information to the attacker,
because the power consumption at a single point has the same distribution as the power
consumption of a random value. However, a second-order attack can still break such
first-order masking, by combining information from two leakage points; see [OMHT06] for
a practical attack.

More generally, Boolean masking can be extended to n shares by letting x = x1⊕· · ·⊕xn.
The goal is then to process the shares xi separately, so that the implementation is resistant
against t-th order attacks, in which the adversary combines leakage information from
at most t < n variables. High-order masking is a sound approach because as shown
in [CJRR99,PR13,DDF14], the number of noisy samples required to recover a secret x
from its shares xi grows exponentially with the number of shares.

The ISW probing model and t-SNI security. Ishai, Sahai and Wagner [ISW03]
initiated the theoretical study of securing circuits against an adversary who can probe
a fraction of its wires. They showed how to transform any circuit of size |C| into a
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circuit of size O(|C| · t2) secure against any adversary who can probe at most t wires. The
construction is based on secret-sharing every variable x into n shares with x = x1⊕· · ·⊕xn,
and processing the shares in a way that prevents a t-limited adversary from learning any
information about the initial variable x, for n ≥ 2t+ 1.

In the ISW model, the approach for proving security is based on simulation, by showing
that any set of t probes can be perfectly simulated without the knowledge of any input
variable of the original circuit (in particular, the secret-key). This demonstrates that
the t probes cannot help the attacker, since he could simulate those t probes by himself,
without knowing the secret key. More precisely, the simulation is usually done by iteratively
constructing a subset I of indices of the input shares xi that are sufficient to simulate
the t probes; if we can ensure that |I| < n, then only a proper subset of the input shares
is required for the simulation, and such input shares can be generated without knowing
the original input variable, simply by generating independently and uniformly distributed
bits. In the ISW security proof of the n-shared AND gadget, every probe adds at most
two indices in I, so for t probes we get |I| ≤ 2t and therefore n ≥ 2t+ 1 is sufficient to
achieve perfect secrecy against a t-limited adversary. As shown in [ISW03], the simulation
performed at the gadget level easily extends to the full circuit, by maintaining a global
subset of indices I as in a single gate.

Recently, a refined security definition under the ISW probing model was introduced
in [BBD+16], called t-SNI security. This stronger definition enables to prove that a gadget
can be used in a full construction with n ≥ t + 1 shares only, instead of n ≥ 2t + 1
for the weaker definition of t-NI security (corresponding to the original ISW security
proof). The new definition is very practical as it enables modular security proofs, by first
considering the t-SNI security of individual gadgets and then composing them in a more
complex construction. Since in this paper we are interested in improving the efficiency of
a side-channel countermeasure, we will always prove the security of our algorithms under
this stronger t-SNI definition.

The Rivain-Prouff countermeasure. The first provably secure high-order masking
scheme for the AES block-cipher was described by Rivain and Prouff in [RP10], by adapting
the ISW multiplication gadget to the AES finite field F28 instead of F2. More precisely,
since the non-linear part of the AES SBox can be written as S(x) = x254 over F28 , it can
be evaluated as a sequence of non-linear multiplications and linear squarings, moreover
with only 4 non-linear multiplications. In order to achieve resistance against an attack
of order t, the Rivain-Prouff algorithm requires n ≥ 2t+ 1 shares, as in the original ISW
construction. This was later improved to n ≥ t+ 1 by showing that the ISW multiplication
gadget achieves the t-SNI property [BBD+16]. This enables to use the Rivain-Prouff
countermeasure for the full AES with n = t+ 1 shares only (with some additional mask
refreshing; see [BBD+16]).

The Rivain-Prouff countermeasure was later extended to any look-up table by Carlet,
Goubin, Prouff, Quisquater and Rivain (CGPQR) in [CGP+12]. Any given k-bit SBox
can be represented by a polynomial

∑2k−1
i=0 ai x

i over F2k using Lagrange’s interpolation
theorem, and can therefore be securely evaluated with a sequence of n-shared additions,
squarings and multiplications. Asymptotically, the running time of the countermeasure is
dominated by the number of non-linear multiplications, where each non-linear multiplication
has complexity O(n2) for n shares.

To minimize the number of such non-linear multiplications, the authors described a
technique called Parity-Split, with a proven complexity ofO(2k/2) non-linear multiplications
for evaluating any k-bit SBox. This generic technique was later improved by Roy and
Vivek [RV13] to further reduce the number of non-linear multiplications for various concrete
SBoxes, for example DES with 7 multiplications (from 10). This was further improved
in [CRV14], with a generic technique for fast polynomial evaluation in F2k , with heuristic
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complexity O(2k/2/
√
k); for example, using this method, the DES SBoxes require only

4 multiplications (from 7 in [RV13]). In summary, the asymptotic running time of the
Rivain-Prouff countermeasure for AES is O(n2), and for k-bit generic SBoxes the running
time is O(2k/2 · n2).1

The randomized table countermeasure. A completely different high-order counter-
measure for SBox evaluation was described in [Cor14], based on table randomization. The
countermeasure is an extension of the classical first-order randomized table countermeasure,
first described in [CJRR99]. The first-order countermeasure consists in re-computing in
RAM the original SBox S with inputs shifted by some random r and with masked outputs.
More precisely, one computes the randomized table

T (u) = S(u⊕ r)⊕ s

for all u ∈ {0, 1}k, where r ∈ {0, 1}k is the input mask and s ∈ {0, 1}k is the output mask.
To evaluate S(x) from the masked value x′ = x ⊕ r, it suffices to compute y′ = T (x′),
which gives y′ = T (x′) = S(x′ ⊕ r)⊕ s = S(x)⊕ s, and therefore y′ is a masked value for
S(x).

The first-order countermeasure was generalized to any order in [Cor14] as follows.
Every row of the randomized table T now consists of n shares. Given the n input shares
xi such that x = x1 ⊕ · · · ⊕ xn, one starts with an n-encoding of each row of the original
SBox S, with:

T (u) = (S(u), 0, . . . , 0) (1)
for all rows u ∈ {0, 1}k, and one progressively shifts the table T by the successive input
shares x1, . . . , xn−1. Between every shift one refreshes the n-encodings on each row of the
table. After the last shift by xn−1 the rows of the table have been shifted by x1⊕· · ·⊕xn−1
and therefore the table T satisfies for all u ∈ {0, 1}k:

n⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xn−1) (2)

Then it suffices to read the table T at the row u = xn to get the n output shares yi
corresponding to y = S(x). More precisely, one lets (y1, . . . , yn)← T (xn), which from (2)
gives as required:

y1 ⊕ · · · ⊕ yn = S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x)

As explained in [Cor14], the intermediate mask refreshing are necessary; for example if
only a single mask refreshing is performed after the initialization of T (u) = (S(u), 0, . . . , 0),
the adversary could probe a table output share at the beginning and after the table shifts,
which would leak information about the accumulated shift x1 ⊕ · · · ⊕ xn−1 and therefore
break the countermeasure.

The above countermeasure is proven secure against any attack of order t in the ISW
model, with at least n = 2t+ 1 shares [Cor14]. The proof works thanks to the following
observation: when a given shift by xi and subsequent mask refreshing has not been probed,
the knowledge of xi is not required for the simulation of the output shares, because when a
mask refreshing is not probed, one can always simulate any subset of at most n− 1 output
shares with randomly generated values. Hence it is possible to perform the simulation of
all probed intermediate variables with only a subset of the input shares xi, which proves
the security of the countermeasure in the ISW model.

The asymptotic complexity of the randomized countermeasure for k-bit SBoxes is
O(2k · n2), while the previous CGPQR countermeasure has complexity O(2k/2 · n2) only.

1or O(2k/2/
√

k · n2) using the heuristic technique from [CRV14].
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In [Cor14], a variant countermeasure for processors with large register size is described,
with the same time complexity O(2k/2 ·n2) as the CGPQR countermeasure, using a similar
approach as in [RDP08]. The variant consists in packing multiple SBox rows into a single
register, so that the table shifts can be performed more efficiently at the register level
first; for example for AES, 4 rows of 8-bit SBox outputs can be stored on the same 32-bit
register.

The common shares technique. Recently it was shown in [CGPZ16] that two vectors
of n shares used as input of two different gadgets can have n/2 of their shares in common,
without decreasing the security level. This enables to mutualise some part of the computa-
tion within the two gadgets, thereby decreasing the running time of the countermeasure.
The authors show how to apply this technique to the ISW multiplication gadget, and as
shown in [CGPZ16] this saves the equivalent of 1/2 multiplication over 2 ISW multipli-
cations. The technique can be generalized to multiple gadgets processed in parallel, for
example the evaluation of the 16 AES SBoxes in the Rivain-Prouff countermeasure. The
technique can also be applied to other variants of the Rivain-Prouff countermeasure, such
as the quadratic evaluation method described in [CPRR15], and also to the Threshold
Implementations approach to resist glitch attacks. In practice, the authors obtained a 20%
speed-up compared to existing algorithms.

Our Contributions. The goal of our paper is to improve the practical efficiency of the
randomized table countermeasure introduced in [Cor14]. We have the following three
contributions:

• We prove the security of the high-order randomized table countermeasure under
the stronger t-SNI security definition; this enables to use n = t+ 1 shares instead
of n = 2t+ 1 for resistance against t-th order attacks, when the countermeasure is
integrated inside a larger construction (such as a full block-cipher). This is actually
relatively straightforward, because the proof is essentially the same as in [Cor14].
Since the original countermeasure has complexity O(2k · n2), this enables to gain a
factor 4 in running time asymptotically.

• We describe a variant of the randomized table countermeasure, in which we progres-
sively increase the number of output shares in the randomized table T , from 1 to n,
instead of always n output shares. Since on average we are now using n/2 output
shares within the countermeasure instead of n, this saves an additional factor 2 in
running time. We prove that our variant countermeasure achieves the same level of
security, that is t-SNI security.

• We adapt the common shares approach introduced in [CGPZ16], so that half of
the randomized look-up table evaluation can be pre-computed for multiple SBoxes.
Namely the randomized table algorithm from [Cor14] works by progressively shifting
a randomized table T by the successive input shares, so if two n-encodings have half
of their first input shares r1, . . . , rn/2 in common, we can mutualise the first half
of the table shifts by r1, . . . , rn/2. This again saves a factor 2 in complexity, when
applied to multiple SBoxes. As previously, we provide a security proof under the
t-SNI security definition.

We have also done a partial formal verification of the security proof for the two above
variants, using the CheckMasks verification tool recently introduced in [Cor17b]. For a
generic verification the running time of the formal verification is exponential in the number
of shares n, so we could only verify the security property up to n = 8 shares; still this
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provides some confidence in the correctness of the security proof. We refer to Section 5.2
for the details, and to Appendix B for the source code of the verification tool in Common
Lisp.

Finally, we have performed a practical implementation of our new countermeasures
for both AES and DES, using a 32-bit architecture. In theory, the combination of the 3
above techniques should lead to a factor 10.7 improvement in efficiency, asymptotically
for a large number of shares n. We report the results of a practical implementation in
Section 7, for various number of shares. Our results show that the techniques perform well
in practice, as for AES we obtain a speed-up factor of roughly 4.8, and 2.5 for DES. Our
implementation is publicly available [Cor13].

2 Definitions
In this section we recall the t-NI and t-SNI security notions introduced in [BBD+16]. For
simplicity and more concrete definitions, as in [CGPZ16], we consider a gadget taking as
input a single n-uple (xi)1≤i≤n of shares, and outputting a single n-uple (yi)1≤i≤n. Given
a subset I ⊂ [1, n], we denote by x|I all elements xi such that i ∈ I.

Definition 1 (t-NI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n
and outputs n shares (yi)1≤i≤n. The gadget G is said to be t-NI secure if for any set of
t probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
t+ |O| < n, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t+ |O|, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

Definition 2 (t-SNI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n
and outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of
t probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
t+ |O| < n, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

The difference between the t-NI and t-SNI security notions is that the size of the input
subset I (from which the probed intermediate variables and output shares can be perfectly
simulated) does not depend on the number of output shares |O| that must be simulated.
As shown in [BBD+16], if several gadgets are t-SNI secure, then the composition of those
gadgets remains t-SNI secure. Moreover the t-SNI security notion enables to prove the
security of a full construction for n > t+ 1 shares, instead of n > 2t+ 1 for the weaker
t-NI security notion.

3 The Original High-Order Look-up Table Algorithm
We recall the algorithm in [Cor14] for securely computing y = S(x), where

S : {0, 1}k → {0, 1}k
′

is a look-up table with k-bit input and k′-bit output. The algorithm takes as input
x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn and must output y1, . . . , yn such that y = S(x) =
y1⊕ · · ·⊕ yn, without leaking information about x. The algorithm consists in progressively
shifting a randomized table T , using the input shares x1, . . . , xn−1 for the successive shifts.
Each row of the randomized table T is actually a vector of n shares, which encodes the
original table S(x) but progressively shifted by x1, . . . , xn−1. Eventually the randomized
table is read at index xn, which gives an n-sharing of y = S(x) as required. Between every
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Algorithm 1 Masked computation of y = S(x)
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn

1: for all u ∈ {0, 1}k do
2: T (u)←

(
S(u), 0, . . . , 0) ∈ ({0, 1}k′)n . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j] . T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← RefreshMasks

(
T ′(u)

)
. ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

10: end for
11: end for . ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

12: (y1, . . . , yn)← RefreshMasks
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

13: return y1, . . . , yn

Algorithm 2 RefreshMasks
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that x = y1 ⊕ · · · ⊕ yn

1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← {0, 1}k

′

4: yj ← xj ⊕ rj
5: yn ← yn ⊕ rj . yn,j = xn ⊕

⊕j
i=1 rj

6: end for
7: return y1, . . . , yn

shift, the n shares of every row are refreshed using the same RefreshMasks algorithm below
as in [RP10].

The procedure is described in Algorithm 1. The algorithm uses two temporary tables
T and T ′ in RAM; both have k-bit input and a vector of n elements of k′-bit as output,
namely

T, T ′ : {0, 1}k → ({0, 1}k
′
)n

We denote by T (u)[j] and T ′(u)[j] the j-th component of the vectors T (u) and T ′(u)
respectively, for 1 ≤ j ≤ n. At Line 2 of Algorithm 1 the table T is initialized with:

T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k

′
)n

Given an encoding ~v = (v1, . . . , vn) with n shares, we denote by

⊕(~v) = v1 ⊕ · · · ⊕ vn

the encoded element. Therefore initially we have ⊕
(
T (u)

)
= S(u). At Line 6 the table is

initially shifted by x1 into T ′, which gives ⊕
(
T ′(u)

)
= S(u⊕ x1) for all rows u. The rows

are then refreshed at Line 9, and we still have ⊕
(
T (u)

)
= S(u ⊕ x1) at Line 10. More

generally, one can show recursively that at step i of the loop we have at Line 10:

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi) (3)

for all u ∈ {0, 1}k. Namely after the new shift performed at Line 6 with xi+1 we obtain:

⊕
(
T ′(u)

)
= ⊕

(
T (u⊕ xi+1)

)
= S

(
(u⊕ xi+1)⊕ x1 ⊕ · · · ⊕ xi

)
= S(u⊕ x1 ⊕ · · · ⊕ xi+1)



46 High Order Masking of Look-up Tables with Common Shares

and therefore the equation still holds at step i+ 1. After all the input shares x1, . . . , xn−1
have been processed we have:

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

Therefore from the final look-up table (y1, . . . , yn) ← RefreshMasks
(
T (xn)

)
we obtain

⊕
(
~y
)

= ⊕
(
T (xn)

)
= S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x) which gives as required:

S(x) = y1 ⊕ · · · ⊕ yn

Complexity. We assume that randomness generation takes unit time, as well as table
read and write. For n shares the number of operations of RefreshMasks is 3n− 2. The time
complexity of the countermeasure is therefore:

Tn = 2k ·
(
n+ (n− 1) · (1 + 2n+ 3n− 2)

)
+ 3n− 2

which gives Tn ' 5 · 2k · n2 for large n and 2k.

Security. We recall the main theorem from [Cor14], proving the security of the counter-
measure against t-th order attacks, for any t such that n ≥ 2t+ 1.

Theorem 1 (t-NI of [Cor14]). Let (xi)1≤i≤n be the input shares of Algorithm 1 and let t
be such that 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n]
of indices such that |I| ≤ 2t < n and the distribution of those t variables can be perfectly
simulated from the shares x|I . The output shares y|I can also be perfectly simulated from
x|I .

The theorem shows that from any given set of t probed intermediate variables, one
can always define a set I ⊂ [1, n] with |I| < n such that only the knowledge of the input
indices x|I := (xi)i∈I is required to perfectly simulate those t intermediate variables. Then
since |I| < n, those input shares can be perfectly simulated without knowing the original
input variable x, simply by generating independently and uniformly distributed variables.
Moreover as shown in [Cor14] the countermeasure can be integrated in a larger construction
(for example a full block-cipher), and one still obtains security against t-th order attacks
with n = 2t+ 1 shares.

Variant with large registers. As shown in [Cor14], the efficiency of the randomized
table countermeasure can be improved by packing multiple SBox rows into a single register,
so that the table shifts can be performed more efficiently at the register level first; for
example for AES, 4 rows of the 8-bit SBox output can be stored on the same 32-bit register.
We recall this variant in Appendix A.

4 Improved Security Proof for the High-order Look-up Ta-
ble Countermeasure

Our first contribution in this paper is to prove the security of the high-order look-up
table countermeasure under the stronger t-SNI security definition (Definition 2), instead
of the weaker t-NI notion used in [Cor14]. As shown in [BBD+16], this enables to use
n = t + 1 shares instead of n = 2t + 1 for resistance against t-th order attacks, when
the countermeasure is integrated inside a larger construction, such as a full block-cipher.
This is actually relatively straightforward, because the proof is essentially the same as
in [Cor14]. Since the original countermeasure has complexity O(2k · n2), this enables to
gain a factor 4 in running time asymptotically.
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x1 · · · xi · · · xn−1 xn

r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Figure 1: The RefreshMasks algorithm.

Theorem 2 (t-SNI of [Cor14]). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output
of Algorithm 1. For any set of t intermediate variables and any subset O of output indices
such that t+ |O| < n, there exists a subset I of input indices with |I| ≤ t, such that the t
intermediate variables and the output variables y|O can be perfectly simulated from x|I .

We first prove a simple Lemma on the RefreshMasks procedure, namely that Refresh-
Masks achieves the t-NI security property; see Figure 1 for an illustration of RefreshMasks.

Lemma 1 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the
output of RefreshMasks. For any set of t intermediate variables and any set O of output
indices with t+ |O| < n, there exists a subset I of input indices such that the t intermediate
variables and y|O can be perfectly simulated from x|I , where I = O ∪ J for some set
J ⊂ [1, n] with |J | ≤ t.

Proof. The set J is constructed as follows. If for some 1 ≤ i ≤ n− 1, any of the variables
xi, ri or yi is probed, we add i to J . If xn or yn or any intermediate variable yn,j is probed
(see Algorithm 2 for the definition of the yn,j variables), we also add n to J . Since we add
at most one index to J per probe, we must have |J | ≤ t.

The simulation of the probed variables is straightforward. We let I = O ∪ J . All the
randoms ri for 1 ≤ i ≤ n− 1 can be simulated as in the real algorithm, by generating a
random element from {0, 1}k′ . If yi is probed or if i ∈ O for some 1 ≤ i ≤ n − 1, then
we must have i ∈ I, so it can be perfectly simulated from yi = xi ⊕ ri. Similarly, if any
intermediate variable yn,j is probed, then n ∈ I, so it can be perfectly simulated from xn.
Therefore all probes and all variables y|O can be perfectly simulated from x|I .

The following lemma, whose proof is also straightforward, shows that any subset of
n− 1 output shares yi of RefreshMasks is uniformly and independently distributed, when
the algorithm is not probed.

Lemma 2. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks.
Any subset of n− 1 output shares yi is uniformly and independently distributed.

Proof. Let S ( [1, n] be the corresponding subset. We distinguish two cases. If n /∈ S, we
have yi = xi ⊕ ri for all i ∈ S, and therefore those yi’s are uniformly and independently
distributed. If n ∈ S, let i∗ /∈ S. We have yi = xi ⊕ ri for all i ∈ S \ {n}. Moreover:

yn =

xn ⊕ n−1⊕
i=1,i6=i∗

ri

⊕ ri∗
where ri∗ is not used in another yi for i ∈ S. Therefore the n− 1 output yi’s are uniformly
and independently distributed.
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We now proceed with the proof of Theorem 2. We will actually prove the security of a
larger circuit than the original circuit corresponding to Algorithm 1, in order to have a
recursive security proof. Namely we assume that instead of performing a final table-look up
at Line 12 of Algorithm 1, one performs again a final shift of the full table by xn, followed
by a RefreshMasks of all the rows, and eventually the full table T is returned, instead of
only a single row. The output (y1, . . . , yn) in Algorithm 1 then corresponds to the row
found at index 0 when the table T has been shifted by xn. Since we are considering a
larger circuit, and moreover the outputs of the smaller circuit are a subset of the outputs
of the larger circuit, the t-SNI security of the larger circuit implies the t-SNI security of
the original circuit; namely we are only giving more power to the adversary.2

More precisely, we consider an algorithm HTi taking as input x1, . . . , xi and outputting
a table T with n output shares such that for all u ∈ {0, 1}k:

n⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xi)

The algorithm HTi can be defined recursively as follows. We define HT0 as outputting
the table T with n output shares, with T (u) =

(
S(u), 0, . . . , 0) for all u ∈ {0, 1}k. As

illustrated in Figure 2, the algorithm HTi+1 takes as input x1, . . . , xi+1, and the algorithm
HTi is first recursively applied on x1, . . . , xi. A shift by xi+1 is then applied on the table
T returned by HTi, followed by a RefreshMasks of all the rows of the table T ; we denote
by SR the combination of the shift by xi+1 and the subsequent RefreshMasks. We denote
by Ii the set of observations made in the gadget HTi, with ti = |Ii| and I ′ the set of
observations made in the gadget SR.

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Figure 2: Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I ′.

We prove recursively that the HTi algorithm satisfies the t-SNI property. This means
that for any set of ti = |Ii| intermediate variables and any subset Oi of output indices
such that ti + |Oi| < n, there exists a subset Ii of input indices with |Ii| ≤ ti, such that
the ti intermediate variables and the output variables T|Oi can be perfectly simulated from
x|Ii . We denote by T|Oi the set of variables T (u)[j] for all j ∈ Oi and all rows u ∈ {0, 1}k.

It is easy to check that HT0 is t-SNI, since it does not take any share as input, and it
processes only public values. Assuming now that HTi is t-SNI, we must prove that HTi+1
is t-SNI. Therefore letting ti+1 = |Ii+1| be the number of probes in the circuit, we have
the condition:

ti+1 + |Oi+1| < n (4)

and we must show that the ti+1 probed variables and the output variables T|Oi+1 can be
perfectly simulated from x|Ii+1 , for some Ii+1 with |Ii+1| ≤ ti+1.

We first consider the SR gadget corresponding to the shift of the table T by xi+1,
followed by a RefreshMasks of all the rows of the table T ; see Figure 2. We apply Lemma
1 to the RefreshMasks performed on the rows of the table T . We obtain that all probed
intermediate variables and all output variables corresponding to Oi+1 can be perfectly

2Note that this only holds if the outputs of the smaller circuit are a subset of the outputs of the larger
circuit. Consider for example a t-NI gadget G1 and a t-SNI gadget G2, and let C(x) = G2(G1(x)). While
the bigger circuit C is t-SNI, the sub-circuit G1 of C is not necessarily t-SNI.
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simulated from the input variables corresponding to Oi, where Oi = Oi+1 ∪ J with
|J | ≤ |I ′|.

We now consider the HTi gadget, for which the output variables corresponding to Oi
must be simulated. We have from ti+1 = |Ii+1| = |Ii|+ |I ′| and (4):

|Ii|+ |Oi| ≤ |Ii|+ |Oi+1|+ |J | ≤ |Ii|+ |Oi+1|+ |I ′| ≤ ti+1 + |Oi+1| < n

Therefore the t-SNI condition is recursively satisfied for Gadget HTi, and all probed
intermediate variables and all output variables corresponding to Oi can be perfectly
simulated from x|Ii , with |Ii| ≤ |Ii|.

It remains to show that the simulation of both gadgets HTi and SR can be performed
from some subset Ii+1 with |Ii+1| ≤ ti+1. We distinguish two cases:

• If |I ′| = 0, then the SR gadget has not been probed and we can apply Lemma 2.
Since |Oi+1| < n, thanks to the RefreshMasks of every row we can simulate all output
variables corresponding to Oi+1 without the knowledge of any input variables. In
particular, we don’t need to know xi+1 to perform that simulation, and we can let
Ii+1 = Ii.

• If |I ′| ≥ 1, the knowledge of xi+1 is required to perform the simulation of the SR
gadget, so we let Ii+1 = Ii ∪ {i+ 1}.

In both cases we obtain |Ii+1| ≤ |Ii|+ |I ′|. From |Ii| ≤ |Ii|, we obtain:

|Ii+1| ≤ |Ii|+ |I ′| ≤ |Ii+1| = ti+1

which shows that HTi+1 is t-SNI. This terminates the proof of Theorem 2.

5 High-order Look-up Table with Increasing Number of
Shares

Our second contribution in this paper is to describe a variant countermeasure for high-order
masking of look-up tables, in which we progressively increase the number of output shares,
from 1 to n. Namely considering Algorithm 1, we see that at Line 2 we immediately start
with n output shares for the table T . This means that at the beginning of the algorithm
we are already using n shares while only a few xi’s have been processed, which sounds like
a waste of ressources. A natural idea is therefore to start with only a single output share
for the table T , and then progressively increase the number of output shares when more
xi’s are processed. We obtain Algorithm 3 below.

Our new algorithm is similar to Algorithm 1, except that at Line 2 we start with a
single share instead of n. Everytime a new input share xi is processed, after the table shift
by xi, we add one more share (initially set to 0) as output of T at Line 9; therefore at the
end of the processing of xi, the table T has i+ 1 shares as output, and the RefreshMasks
are now performed on every row of i+ 1 shares of the table T (instead of n in the original
countermeasure). After the processing of xn−1 the table T has therefore n shares as output
(Line 12). The last input share xn is then processed by a look-up table at Line 13 as
previously. The soundness of the countermeasure is straightforward; formally it can be
proven recursively as in Section 3, the only difference being that in the main loop over i
the encodings of the rows of T are now over i+ 1 shares instead of n, for all 1 ≤ i ≤ n− 1.

Complexity. The time complexity of the countermeasure is:

Tn = 2k ·
(

1 +
n−1∑
i=1

(1 + 2i+ 3i− 2)
)

+ 3n− 2
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Algorithm 3 Masked computation of y = S(x), increasing number of shares
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn

1: for all u ∈ {0, 1}k do
2: T (u)←

(
S(u)) ∈ ({0, 1}k′)1 . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to i do T ′(u)[j]← T (u⊕ xi)[j] . T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← (T ′(u)[1], . . . , T ′(u)[i], 0)

10: T (u)← RefreshMasksi+1
(
T (u)

)
. ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

11: end for
12: end for . ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

13: (y1, . . . , yn)← RefreshMasksn
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

14: return y1, . . . , yn

which gives Tn ' 5
2 · 2

k · n2 for large n and 2k. Therefore asymptotically the new
countermeasure is twice as efficient as the original countermeasure from Section 3.

Security. The following theorem shows that the improved algorithm achieves the same
level of security as the original countermeasure.
Theorem 3 (t-SNI of Algorithm 3). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the
output of Algorithm 3. For any set of t intermediate variables and any subset O of output
indices such that t+ |O| < n, there exists a subset I of input indices with |I| ≤ t, such that
the t intermediate variables and the output variables y|O can be perfectly simulated from
x|I .

The rest of the section is devoted to the proof of Theorem 3. The proof is more complex
than the t-SNI proof of the original algorithm provided in Section 4. Namely, since at
step i of the loop the randomized table has only i+ 1 shares as output (instead of n), the
adversary could probe all i+ 1 shares of a given row, whose simulation would then require
the knowledge of all input shares x1, . . . , xi. This is actually not a problem, because the
size of the input subset of shares I would still be bounded as |I| ≤ i, which is according to
the SNI bound for i + 1 probes. However this makes the proof more complex, because
we cannot necessarily assume that the t-SNI condition will be recursively satisfied for a
subset of the circuit, as it was the case in the proof of Theorem 2.

Another challenge is to handle the simulation of the output variables T (u)[j] for j ∈ O.
Since we have a decreasing number of shares (when starting from the end of the algorithm),
we cannot simply apply Lemma 1 for the RefreshMasks gadget, because otherwise at some
point we could have |O| ≥ i+ 1, and the simulation of all the i+ 1 output shares of the
randomized table would then require the knowledge of all inputs x1, . . . , xi. This time
this would contradict the t-SNI bound |I| ≤ t which can only depend on the number of
probes t in the circuit, and not on the size of O. Below we prove a more subtle property
of RefreshMasks, showing that this in fact does not happen, because the number of shares
in I can actually be decreased by one compared to the original lemma.

5.1 Property of RefreshMasks
The proof of Theorem 3 is based on the following lemma concerning the security of
RefreshMasks, as an improvement over Lemma 1. Namely we show that when the last
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x1 · · · xi · · · xn−1 0
r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

x1 · · · xi · · · xn−1 0
r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Figure 3: Illustration of Lemma 3. Case 1 (left): the adversary has spent at least one
probe on the last column for which xn = 0, therefore we can have |J | ≤ t − 1. Case 2
(right): no intermediate variable is probed on the last column; therefore ri can play the
role of a one-time pad for the simulation of the outputs yi for any i ∈ O ∩ [1, n− 1].

input share xn of RefreshMasks is such that xn = 0 (as it is the case in Algorithm 3 at
Line 9), then we can get the improved condition I = (O ∩ [1, n− 1]) ∪ J with |J | ≤ t− 1,
instead of I = O ∪ J with |J | ≤ t as in Lemma 1.

Lemma 3 (RefreshMasks with xn = 0). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be
the output of RefreshMasks. Assume that xn = 0. For any set of t intermediate variables
and any set O of output indices with t+ |O| < n, there exists a subset J ⊂ [1, n] of input
indices such that the t intermediate variables and y|O can be perfectly simulated from x|I ,
where I = (O ∩ [1, n− 1]) ∪ J with |J | ≤ t− 1, or I = J with |J | ≤ t.

Proof. The construction of the set J is performed as follows: for every probed variable xj
or rj or yj , we add j to J for any 1 ≤ j ≤ n− 1. Note that we never add n into J ; namely
xn is known, with xn = 0. As illustrated in Figure 3, we distinguish two cases.

If xn or yn or any intermediate variable yn,j is probed, then we must have |J | ≤ t− 1
since in that case we have considered at most t − 1 probes in the construction of J .
Moreover the simulation of the t probed variables and y|O is straightforward and proceeds
as in the proof of Lemma 1, by letting I = (O ∩ [1, n− 1]) ∪ J . Namely all intermediate
variables ri are simulated by generating a uniform independent value as in the original
algorithm. For any probed variable xi or yi with 1 ≤ i ≤ n− 1, we must have i ∈ J ⊂ I
and therefore yi can be perfectly simulated from xi with yi = xi ⊕ ri. This is also the case
for the output variables yi since i ∈ O. From xn = 0, we can also perfectly simulate all
intermediate variables yn,j and the output yn.

We now assume that no variable xn, yn or yn,j is probed. From the construction of
J we still have |J | ≤ t. We show that the t probed variables and y|O can be perfectly
simulated from x|I , where I = J . Note that although yn is not among the t probes we can
still have n ∈ O and in that case yn must still be simulated. The simulation of the probed
variables xi, ri and yi for 1 ≤ i ≤ n− 1 is straightforward. Namely in that case we have
i ∈ J and we can generate ri as in the real circuit; the variables xi and yi = xi ⊕ ri are
also simulated as in the real circuit, from the knowledge of xi.

It remains to simulate the variables yi for i ∈ O \ J . We first exclude the case of yn.
Since i /∈ J , neither xi nor ri has been probed, and therefore ri does not occur in the
computation of any probed variable or any other output variable in y|O (except possibly yn,
which we consider thereafter), and one can simulate yi = xi ⊕ ri by generating a uniform
independent variable, without the knowledge of xi.

Finally we consider the simulation of yn when n ∈ O. From |J ∪ O| ≤ |J | + |O| ≤
t + |O| < n and n ∈ J ∪ O, there exists i? /∈ J ∪ O with 1 ≤ i∗ ≤ n − 1. Since i? /∈ J



52 High Order Masking of Look-up Tables with Common Shares

and i? /∈ O, we have that ri? does not occur in the computation of any probed variable
or any output variable y|O except yn. Therefore we can use ri? as a one-time pad for the
simulation of yn. Namely we can write:

yn =

 n−1⊕
i=1,i6=i?

ri

⊕ ri?
and yn can be simulated by generating a uniform independent variable. This terminates
the proof of Lemma 3.

5.2 Formal verification of Lemma 3.
We have performed a formal verification of Lemma 3 for small values of n, using the
CheckMasks verification tool introduced in [Cor17b]; the source code of the CheckMasks
library is publicly avalaible at [Cor17a], under the GPL v2.0 license. The approach consists
in considering all possible subsets of n − 1 intermediate variables in the RefreshMasks
circuit (including the output variables), and for each subset computing the subset I
of input variables that are necessary for the simulation; one can then check that the
conditions of Lemma 3 are always satisfied. This generic verification approach of the
masking countermeasure had been initiated by Barthe et al. in [BBD+16] based on the
EasyCrypt framework. In this paper we have used the CheckMasks tool [Cor17b] based on
the Common Lisp language, which enables a relatively concise implementation.

For such generic verification the running time is exponential in the number of shares n,
so we could only verify the correctness of Lemma 3 up to n = 8 shares (see Table 1 for the
timings); still this provides some confidence in the correctness of the security proof. We
provide the source code in Appendix B.

Table 1: Formal verification of Lemma 3 for small values of n.

n #variables #tuples Security Time
3 8 28 X ε
4 12 220 X ε
5 16 1,820 X 0.02 s
6 20 15,504 X 0.2 s
7 24 134,596 X 2.9 s
8 28 1,184,040 X 33 s

5.3 Proof of Theorem 3

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Figure 4: Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I ′.

We proceed with the proof of Theorem 3. As in the proof of Theorem 2, we consider
an algorithm HTi taking as input x1, . . . , xi and outputting a table T with rows of i+ 1
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shares such that for all u ∈ {0, 1}k:

i+1⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xi)

As illustrated in Figure 4, the algorithm HTi+1 takes as input x1, . . . , xi+1, and first
recursively applies HTi on x1, . . . , xi, followed by a shift of the table T by xi+1, and then
appends 0 to get i+ 2 shares as output; eventually it applies a (i+ 2)-RefreshMasks on
all the table rows. We note that the 0 is appended in the index corresponding to the
accumulated sum in the RefreshMasks, that is the last index i+ 2. As illustrated in Fig. 4,
we denote by SR the gadget corresponding to the shift by xi+1, the appending of 0, and
the (i+ 2)-RefreshMasks.

We prove by induction that HTi is t-SNI. This is trivially satisfied for HT0 which does
not take input shares, and whose output T (u) =

(
S(u)

)
can be computed directly. We

now assume that the recursion hypothesis is satisfied for HTi, and we must show that it is
satisfied for HTi+1. Since HTi+1 has i+ 2 output shares, we must show that if

ti+1 + |Oi+1| < i+ 2 (5)

then the ti+1 probed intermediate variables and the output variables T (u)[j]j∈Oi+1 can be
perfectly simulated from x|Ii+1 with |Ii+1| ≤ ti+1.

We first consider the gadget SR. We can apply Lemma 3 because by definition the last
input share of RefreshMasksi+2 is equal to 0. We denote by t′ the number of probes in the
SR gadget, that is t′ = |I ′|. We hence have ti+1 = ti + t′, where ti is the number of probes
in HTi and ti+1 the number of probes in HTi+1. From Lemma 3 we obtain that there exists
a subset J ′ of input indices such that the t′ intermediate variables and the output variables
T (u)[j]j∈Oi+1 can be perfectly simulated from Oi, where Oi = (Oi+1 ∩ [1, i+ 1]) ∪ J ′ with
|J ′| ≤ t′ − 1, or Oi = J ′ with |J ′| ≤ t′. Therefore, we distinguish two cases:

• If Oi = (Oi+1 ∩ [1, i+ 1]) ∪ J ′ with |J ′| ≤ t′ − 1, we obtain from (5):

|Oi|+ ti ≤ |Oi+1|+ t′ − 1 + ti ≤ ti+1 + |Oi+1| − 1 < i+ 1

This implies that the t-SNI condition is satisfied for HTi, and we can therefore apply
the recursion hypothesis. We obtain that the ti probed intermediate variables as
well as the output variables with indices in Oi can be perfectly simulated from x|Ii
with |Ii| ≤ ti.

• If Oi = J ′ with |J ′| ≤ t′, we obtain from (5):

|Oi|+ ti ≤ t′ + ti ≤ ti+1 < i+ 2

We can therefore distinguish again two cases:

– If |Oi|+ ti = i+ 1, then from the above inequality we must have ti+1 = i+ 1,
and we can take Ii+1 = [1, i + 1] for the simulation of all variables in HTi+1.
This gives |Ii+1| ≤ ti+1 as required.

– If |Oi|+ ti < i+ 1, then as previously the t-SNI condition is satisfied for Gadget
HTi, and we can apply the recursion hypothesis, which gives |Ii| ≤ ti.

In the analysis above we have either obtained |Ii+1| ≤ ti+1 or |Ii| ≤ ti. When we have
|Ii| ≤ ti, we can distinguish two cases:
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• If t′ = 0, then none of the RefreshMasks performed on the table rows at round
i + 1 has been probed and we can apply Lemma 2. Since there are i + 2 shares
as output and |Oi+1| < i + 2 from (5), we can can perfectly simulate all output
variables corresponding to Oi+1 by generating uniformly distributed random values .
In particular, the last share xi+1 is not required for the simulation, and we obtain
Ii+1 = Ii.

• If t′ ≥ 1, the knowledge of xi is required for the simulation and we let Ii+1 = Ii∪{i+1}.

Therefore in both cases we obtain:

|Ii+1| ≤ |Ii|+ t′ ≤ ti + t′ ≤ ti+1

which implies that HTi+1 is t-SNI. This proves that HTi is t-SNI for all i.
It remains to consider the table look-up with the last share xn and subsequent Re-

freshMasks at Line 13 of Algorithm 3. Applying Lemma 1 and from the t-SNI property of
HTn−1, we obtain as in the proof of Theorem 2 that Algorithm 3 is t-SNI. This terminates
the proof of Theorem 3.

6 Improved Evaluation of SBoxes with Common Input Shares
Our third contribution in this paper consists in adapting the common shares approach
introduced in [CGPZ16], so that half of a randomized look-up table can be pre-computed
for multiple SBoxes. The technique works as follows. Assume that two SBox computations
must be performed, on inputs a and b:

c = S(a), d = S(b)

and let (ai)1≤i≤n and (bi)1≤i≤n be the n shares of a and b respectively. The technique
in [CGPZ16] consists in first ensuring that a and b have n/2 of their shares in common.
Assuming for simplicity that n is even, we obtain:

a = r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2

b = r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2

As explained in [CGPZ16], one cannot have more than n/2 shares in common between
the inputs a and b, because otherwise there would be a straightforward attack with fewer
than n probes. Namely assume that k > n/2 of the shares ri are in common between a
and b. Then we can probe the 2(n− k) < n remaining shares a′i and b′i, whose xor gives
the secret variable a⊕ b, which gives an attack with strictly fewer than n probes. Hence
having half of the shares in common is optimal.

Since the high-order look-up table algorithm works by progressively shifting a random-
ized table T by the successive input shares, if a and b have half of their first shares in
common as above, then we can mutualise the first half of the table shifts by r1, . . . , rn/2.
More precisely, we start as in Algorithm 1 with a table with n shares:

T (u)←
(
S(u), 0, . . . , 0

)
for all u ∈ {0, 1}k, and we progressively shift the table by r1, . . . , rn/2, to obtain for all
u ∈ {0, 1}k:

⊕
(
T (u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2)

At this point, we copy the table T into T (1) and T (2), and then as in Algorithm 1 we
progressively shift the tables T (1) and T (2) with the remaining shares of a and b respectively.
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Eventually we obtain two tables T (1) and T (2) satisfying for all u ∈ {0, 1}k:

⊕
(
T (1)(u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2−1)

⊕
(
T (2)(u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2−1)

and therefore as in Alg. 1 it suffices to perform two table look-up of T (1) and T (2) with
the last shares a′n/2 and b′n/2 respectively.

For simplicity we first consider the original table recomputation algorithm recalled
in Section 3, that is without the progressive increase of the number of shares as in the
previous section. With the above approach, for the mutualised computation of two SBoxes,
only 3 shifts on half of the input shares are performed, instead of 4 with the original
algorithm (since the shift with r1, . . . , rn/2 is mutualized). This gives a speed-up factor of
3/4. More generally, if ` SBoxes must be evaluated in parallel (for example, ` = 16 for
AES), the speed-up factor becomes:

1 + `

2 · ` '
1
2

for large `. In the following, we provide a detailed description of the resulting algo-
rithms, and as previously a t-SNI security proof. For simplicity we start with the parallel
computation of two SBoxes, and we later generalize to ` SBoxes.

6.1 The CommonShares Algorithm
We start by recalling the CommonShares algorithm from [CGPZ16]. For simplicity we
assume that n is even. As explained previously, the algorithm takes as input the n-sharings
(ai)1≤i≤n and (bi)1≤i≤n of a and b and outputs three vectors of n/2 shares (ri)1≤i≤n/2,
(a′i)1≤i≤n/2 and (b′i)1≤i≤n/2 such that:

a = r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2

b = r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2

so that (ri)1≤i≤n/2 is commonly used between a and b.

Algorithm 4 CommonShares
Require: shares (ai)1≤i≤n and (bi)1≤i≤n, with

⊕n
i=1 ai = a and

⊕n
i=1 bi = b

Ensure: shares (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2, such that
⊕n/2

i=1 ri⊕
⊕n/2

i=1 a
′
i = a

and
⊕n/2

i=1 ri ⊕
⊕n/2

i=1 b
′
i = b

1: for i = 1 to n/2 do
2: ri ←$ F2k
3: a′i ← (an/2+i ⊕ ri)⊕ ai
4: b′i ← (bn/2+i ⊕ ri)⊕ bi
5: end for
6: return (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2

It is easy to check the correctness of the algorithm, as we have ri ⊕ a′i = ai ⊕ ai+n/2
for all 1 ≤ i ≤ n/2, and similarly for bi. The following lemma shows that the above
CommonShares algorithm achieves the t-NI property; we recall the proof from [CGPZ16]
in Appendix C.

Lemma 4 (t-NI of CommonShares [CGPZ16]). Let (ai)1≤i≤n and (bi)1≤i≤n be the input
shares of the algorithm CommonShares, and let (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2 be
the output shares. For any set of t intermediate variables, there exists a subset S ⊂ [1, n]
such that those t variables can be perfectly simulated from a|S and b|S , with |S | ≤ t.
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Remark 1. The CommonShares algorithm above works assuming that n is even. For odd n,
as in [CGPZ16] we can adapt the algorithm by having bn/2c shares in common instead of
n/2.

6.2 Partial Evaluation of Randomized Table
Since the high-order computation of the randomized table with the common shares
r1, . . . , rn/2 will be mutualised, and the resulting table will be processed separately with
the remaining shares, we must first define an algorithm that takes as input a table T and
progressively shifts the table with input shares x1, . . . , xλ; see Algorithm 5 below.

Algorithm 5 HTable
Input: x1, . . . , xλ and T with n shares.
Output:

⊕
T out(u) =

⊕
T (u⊕ x1 ⊕ · · · ⊕ xλ)

1: for i = 1 to λ do
2: for all u ∈ {0, 1}k do
3: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j]
4: end for
5: for all u ∈ {0, 1}k do
6: T (u)← RefreshMasks

(
T ′(u)

)
7: end for
8: end for
9: return T

The following lemma shows that Algorithm 5 achieves the t-SNI property with respect
to the input shares (xi)1≤i≤λ, and the t-NI property with respect to the input table T .
We denote by T|I the set of variables T (u)[i] for all u ∈ {0, 1}k and all i ∈ I. The proof is
relatively similar to the proof of Theorem 2 and is given in Appendix D.

Lemma 5 (t-SNI of HTable). Let (xi)1≤i≤λ and T be the input of HTable and let T out be
the output table. For any set of t intermediate variables and any subset of indices O, if
t+ |O| < n, there exist subsets I ⊂ [1, λ] and J ⊂ [1, n] with |I| ≤ t and |J | ≤ t, such that
those t variables as well as the output shares T out|O can be perfectly simulated from x|I and
T|J∪O.

6.3 Evaluation of SBoxes with Common Input Shares
We are now ready to describe our evaluation of SBoxes with common input shares. The
common high-order evaluation of two SBoxes is described in the algorithm below.

The theorem below shows that the shared evaluation achieves the t-SNI security as in
previous algorithms. We provide the proof in Appendix E.

Theorem 4 (t-SNI of Common Table). Let (x(`)
i )1≤i≤n for ` ∈ {1, 2} be the input of

Common Table and (y(`))1≤i≤n be the output. For any set of t intermediate variables and
any subset of indices O with t+ |O| < n, there exists a subset I ⊂ [1, n] with |I| ≤ t, such
that those t variables as well as the output shares (y(1))|O and (y(2))|O can be perfectly
simulated from x|I and y|I .

6.4 Generalization to Multiple SBoxes
It is easy to generalize the previous construction to multiple SBoxes, following the same
approach as in [CGPZ16]. We describe such generalization in Appendix F. As explained
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Algorithm 6 Common Table: high-order evaluation of y(1) = S(x(1)) and y(2) = S(x(2))

Input: x(`)
1 , . . . , x

(`)
n for ` ∈ {1, 2}

Output: y(`)
1 , . . . , y

(`)
n such that y(`)

1 ⊕ · · · ⊕ y
(`)
n = S(x(`)

1 ⊕ · · · ⊕ x
(`)
n ) for ` ∈ {1, 2}.

1: (ri)1≤i≤n/2, (a
(1)
i )1≤i≤n/2, (a

(2)
i )1≤i≤n/2 ← CommonShares(x(1)

i , x
(2)
i )

2: for all u ∈ {0, 1}k do T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k′)n . ⊕

(
T (u)

)
= S(u)

3: T (1) ← Htable(T, r1, . . . , rn/2)
4: T (2) ← T (1)

5: T (1) ← Htable(T (1), a
(1)
1 , . . . , a

(1)
n/2−1)

6: T (2) ← Htable(T (2), a
(2)
1 , . . . , a

(2)
n/2−1)

7: (y(1)
1 , . . . , y

(1)
n )← RefreshMasks

(
T (1)(a(1)

n/2)
)

8: (y(2)
1 , . . . , y

(2)
n )← RefreshMasks

(
T (2)(a(2)

n/2)
)

9: return y
(`)
1 , . . . , y

(`)
n for ` ∈ {1, 2}

previously, when evaluating ` SBoxes in parallel, (for example, ` = 16 for AES), the
speed-up factor becomes:

1 + `

2 · ` '
1
2

for large `.

6.5 Common input shares and increasing number of output shares
It is natural to try to combine the common input shares approach with the increasing
number of outputs shares technique from Section 5. Namely instead of starting with a
table T of already n shares at Line 2 of Algorithm 6, one can start with a single output
share (as in Line 2 of Algorithm 3). Since the mutualised table evaluation takes as input
n/2 shares r1, . . . , rn/2, one would obtain as output of Line 3 of Algorithm 6 a table T (1)

with n/2 + 1 output shares (instead of n), and eventually n shares as previously after lines
5 and 6.

However when applying the common shares technique to the progressive increase of
output shares, one does not get a factor 2 improvement in speed as previously, because the
mutualised part works with 1 to n/2+1 shares (hence with an average of n/4 shares), while
the two non-mutualised parts work with n/2 + 1 to n shares (hence with 3n/4 shares on
average); in other words, we only mutualize the more efficient part of the table evaluation
algorithm. The speed-up ratio when evaluating ` SBoxes is therefore:

n
4 + ` · 3n

4
` · n4 + ` · 3n

4
= 1 + 3`

4` ' 3
4

for large `, instead of 1/2 in the previous section. Since the progressive increase of output
shares from Section 5 provide a speed-up ratio of 1/2, the combined speed-up ratio is
therefore 3/8 compared to the original countermeasure recalled in Section 3. All in all, when
taking into account the improved t-SNI security proof from Section 4 with n = t+ 1 shares
instead of n = 2t+ 1 as in [Cor14], we obtain a speed-up ratio of 1/4 · 3/8 = 3/32. Hence
for large n and `, the running-time is asymptotically decreased by a factor 32/3 = 10.7.

We provide a formal description of the corresponding algorithm in Appendix G, with as
previously a security proof with the t-SNI definition. This corresponds to the combination
of the 3 improvements of the paper: t-SNI security proof (Section 4), increasing number of
shares (Section 5), and common shares (this section). For simplicity we only perform the
analysis for the mutualised computation of ` = 2 SBoxes in parallel. We obtain that to get
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a t-SNI security proof, we must start at Line 2 of Algorithm 6 with a mutualised table
T with 2 shares instead of 1. More generally, when computing ` SBoxes in parallel, one
should start with ` shares instead of 1 to get a security proof.3 This makes the combination
of the two techniques less interesting in practice. While the above analysis still holds
asymptotically (because for n� ` the number of initial shares ` can be seen as a constant),
in practice for AES with ` = 16 that would require a number of shares n� 16, which is
probably unrealistic. This is confirmed by our practical implementation described in the
next section, showing that while the two techniques provide a significant speed-up when
used separately, the combination does not really provide any further speed-up.

7 Implementation
We have performed a practical implementation of our new countermeasure for both AES
and DES, using a 32-bit architecture so that we could apply the large register variant
recalled in Appendix A. More precisely we can pack δ = 4 output bytes for AES, and
δ = 8 output 4-bit nibbles for DES. When using this variant, only the first table evaluation
can be used with increasing number of shares (as in Section 5), while the second table
evaluation always works with n shares. Similary, only the first table evaluation can be
used with the common shares technique from Section 5.

We have also implemented the Rivain-Prouff countermeasure [RP10] for AES and
the Carlet et al. countermeasure [CGP+12] for DES; for the latter we have used the
technique from [RV13], in which the evaluation of a DES SBox requires only 7 non-linear
multiplications, and the improved technique from [CRV14], which requires only 4 non-linear
multiplications. The performances of our implementations are summarized in Table 2,
with n = t + 1 shares for security against t-th order attacks (except for the original
countermeasure from [Cor14] with n = 2t + 1 shares). We provide the running time of
a full AES and DES computation, in thousands of clock cycles, for various values of the
security order t.

We see that for AES the randomized table algorithms are still less efficient in practice
than Rivain-Prouff, which can take advantage of the special algebraic structure of the AES
SBox. However, considering the increasing number of output shares technique from Section
5, and the common input shares technique from Section 6.3, both techniques provide a
30% speed-up separately; however combining the two techniques does not provide any
further speed-up, for reasons explained in Section 6.5. If we take into account the improved
t-SNI security proof which enables to use n = t+ 1 shares instead of 2t+ 1, we obtain a
cumulative speed-up factor of roughly 4.8 for both techniques, compared to [Cor14].

For DES, we see that our countermeasure has the same level of efficiency as the Carlet
et al. countermeasure, when using the polynomials from [CRV14]. Moreover with the
increasing number of output shares technique from Section 5, we get up to 20% speed-up
compared to the original algorithm (and a 400 % speed-up factor when taking into account
the n = t+ 1 shares instead of n = 2t+ 1). The source code of our implementations is
publicly available [Cor13].

3More precisely, one should start with min(`, n) shares up to n shares.
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Table 2: Running time in thousands of clock cycles of protected implementations of AES
and DES, up to security order t = 6, with n = t + 1 shares (except for the original
countermeasure in [Cor14] with n = 2t+ 1 shares). The implementation was done in C on
an iMac running a 3.2 GHz Intel processor. The running time of the unprotected AES
implementation is 1.6·103 cycles. The running time of the unprotected DES implementation
is 9.6 · 103 cycles.

AES computation Security order t
2 3 4 5 6

Rivain-Prouff [RP10], n = t+ 1 119 185 258 361 485
Randomized table [Cor14], n = 2t+ 1 2 104 4 413 7 724 12 111 17 136
Randomized table (Section 4), n = t+ 1 599 1 227 2 120 3 190 4 421
Randomized table, INC (Section 5) 435 842 1 345 1 965 2 704
Randomized table, CS (Section 6.3) 452 845 1 623 2 298 3 415
Randomized table, CS INC (Section 6.5) 463 771 1 424 1 957 2 767

DES computation Security order t
2 3 4 5 6

[CGP+12] with [RV13] polynomials 559 754 960 1 206 1 475
[CGP+12] with [CRV14] polynomials 219 290 386 484 602
Randomized table [Cor14], n = 2t+ 1 491 907 1 487 2 210 3 075
Randomized table (Section 4), n = t+ 1 215 340 493 682 912
Randomized table, INC (Section 5) 203 308 434 584 764
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More precisely, given an original SBox S : {0, 1}k → {0, 1}k′ , the variant works with
registers of size ω = 2k2 · k′ bits, for some parameter k2 < k. One defines a new SBox S′
with k1 = k − k2 bits input and ω bits output, with:

S′(a) = S(a ‖ 0k2) ‖ · · · ‖ S(a ‖ 1k2)

for all a ∈ {0, 1}k1 . Given x = a‖b as input, S(x) is computed in two steps:

1. Let z ← S′(a) = S(a‖0k2)‖ · · · ‖S(a‖1k2)

2. Viewing z as a k2-bit input and k′-bit output table, compute y ← z(b) = S(x).

Similarly, the n-shared evaluation of S proceeds in two steps. In the first step, the
table S′ is evaluated using the randomized table countermeasure, working with registers of
size 2k2 · k′ bits instead of only k′; in principle this leads to a 2k2 speed-up factor. The
complexity of the first step is therefore O(2k−k2).

In the second step, the value z is returned in the form of n shares (zi)1≤i≤n, and
viewed as a look-up table. The randomized table countermeasure is again used. The only
difference is that the look-up table already comes in shared form. Therefore in the second
step the randomized table is initialised as follows:

T (u) = (z1(u), . . . , zn(u)) ∈ ({0, 1}k
′
)n

for all u ∈ {0, 1}k2 . The complexity of the second step is therefore O(2k2). As explained
in [Cor14], the total complexity of the countermeasure is minimized when taking k2 =
k/2, which gives a complexity O(2k/2 · n2), the same complexity as the Carlet et al.
countermeasure. We provide a formal description of the variant in Algorithm 7.

Algorithm 7 Evaluation of y = S(x) with registers of size ω = 2k2 · k′ bits.
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn

1: for all u1 ∈ {0, 1}k1 do
2: tmp← S(u1||0k2)‖ · · · ‖S(u1‖1k2)
3: T (u1)←

(
tmp, 0, . . . , 0) ∈ ({0, 1}ω)n . ⊕

(
T (u1)

)
= S′(u1)

4: end for
5: for i = 1 to n− 1 do
6: for all u ∈ {0, 1}k1 do
7: for j = 1 to n do T ′(u)[j]← T (u⊕ (xi � k2))[j]
8: end for
9: for all u ∈ {0, 1}k1 do T (u)← RefreshMasks

(
T ′(u)

)
10: end for
11: (y1, . . . , yn)← RefreshMasks

(
T (xn � k2)

)
. ⊕

(
T (xn � k2)

)
= S′(x� k2)

12: for j = 1 to n do
13: T (0k2)[j], . . . , T (1k2)[j]← yj
14: end for
15: for i = 1 to n− 1 do
16: for all u ∈ {0, 1}k2 do
17: for j = 1 to n do T ′(u)[j]← T (u⊕ (xi mod 2k2))[j]
18: end for
19: for all u ∈ {0, 1}k2 do T (u)← RefreshMasks

(
T ′(u)

)
20: end for
21: (y1, . . . , yn)← RefreshMasks

(
T (xn mod 2k2)

)
. ⊕

(
yi
)

= S(x)
22: return y1, . . . , yn
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B Source Code of Formal Verification
We provide below the source code to formally verify Lemma 3, based on the CheckMasks
library, which is publicly avalaible at [Cor17a] under the GPL v2.0 license.

(defun check−refreshmasks−zero− imp (n &key reverse )
( init−counter−rand )
( l et ∗ ( ( inp (append ( share s ’ x (− n 1) ) ( l i s t 0 ) ) )

( a ( re f r e shmasks inp : reverse reverse ) )
( l i s t v a r ( h− l i s t−var i ab l e s a ) )
(nu ( nuple (− n 1) l i s t v a r ) )
( f l a g ’ t ) )

( print− info− in−out−var−nuples inp a l i s t v a r nu)
( dol ist ( y nu f l a g )

( let ∗ ( (O (mapcar ( lambda (x ) (+ 1 ( position x a ) ) )
( intersection y a ) ) )

( nt (− (− n 1) ( length O) ) )
( s i ( i t e r− s imp l i f y y ) )
( I ( l i npu t s i ’ x ) ) )

(when (and (> ( length I ) nt )
(> ( length ( s e t−d i f f e r e n c e I O) )

(− nt 1 ) ) )
( format ’ t " y=~A~%␣␣O=~A~%␣␣nt=~A~%␣␣ I=~A~%" y O nt I )
( set f f l a g n i l ) ) ) ) ) )

C Proof of Lemma 4
We first provide the proof intuition. If for a given i with 1 ≤ i ≤ n/2 the adversary requests
only one of the variables ri, an/2+i ⊕ ri, bn/2+i ⊕ ri, a′i or b′i, then such variable can be
perfectly simulated without knowing any of the input shares ai, bi, an/2+i and bn/2+i,
thanks to the mask ri. On the other hand, if two such variables (or more) are requested,
then we can provide a perfect simulation from those 4 input shares, whose knowledge is
obtained by adding the two indices i and n/2 + i in S . Therefore we never have to add
more than one index in S per probe, which implies that the size of the subset S of input
shares is upper-bounded by t, as required.

More precisely, we describe hereafter the construction of the set S ⊂ [1, n] of input
shares, initially empty. For every probed input variable ai and bi (for any i), we add i to
S . For all 1 ≤ i ≤ n/2, we let ti be the number of probed variables among ri, an/2+i ⊕ ri,
(an/2+i⊕ ri)⊕ai, bn/2+i⊕ ri and (bn/2+i⊕ ri)⊕ bi. We then add {i, n/2 + i} to S if ti ≥ 2.
This terminates the construction of S . By construction of S , we must have |S | ≤ t as
required.

We now show that the t probed variables can be perfectly simulated from a|S and b|S .
This is clear for the probed input variables ai and bi, for all 1 ≤ i ≤ n since in that case
i ∈ S by construction. It remains to simulate the variables ri, an/2+i ⊕ ri, bn/2+i ⊕ ri, a′i
and b′i for 1 ≤ i ≤ n/2. We distinguish two cases.

• If ti ≥ 2, then {i, n/2 + i} ∈ S , so we can let ri ← F2k as in the real algorithm and
simulate all output and intermediate variables from the knowledge of ai, an/2+i, bi
and bn/2+i.

• If ti = 1, then only a single variable among ri, an/2+i ⊕ ri, bn/2+i ⊕ ri, a′i and b′i
must be simulated. Since each of those variables is masked by ri, we can simulate
this single variable by generating a random value in F2k .



Jean-Sébastien Coron, Franck Rondepierre and Rina Zeitoun 63

This terminates the proof of Lemma 4.

D Proof of Lemma 5

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Figure 5: Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I ′.

We consider an algorithm HTi that takes as input x1, . . . , xi and a table T and outputs
a table T out with rows of n shares such that for all u:

n⊕
j=1

T out(u)[j] = T (u⊕ x1 ⊕ · · · ⊕ xi)

To build HTi+1 on input x1, . . . , xi+1 and T , we first apply HTi on x1, . . . , xi and T , and
then we apply another shift by xi+1, then an n-RefreshMask on all the rows of the table.

We must show that for all i, the Gadget HTi is t-SNI with respect to the input shares
xi, and t-NI with respect to T , meaning that if ti + |Oi| < n, then the ti probed variables
and the output variables T out(u)[j]j∈Oi can be perfectly simulated from x|Ii and T|Ji∪Oi
with |Ii| 6 ti and |Ji| 6 ti.

We proceed by induction on i. As previously, it is easy to see that HT0 satisfies the
property since HT0 is actually the identity function, taking as input T and outputting T .
We now assume that HTi satisfies the property, and we must show that the property holds
for HTi+1, under the condition:

ti+1 + |Oi+1| < n

As previously, we let t′ be the number of probed values in HTi+1 \ HTi, and we let ti be
the number of probed variables in HTi. We hence have ti+1 = ti + t′.

We first apply Lemma 1 to the SR gadget which corresponds to the shift of the table
T by xi+1, followed by a RefreshMasks of all the rows of the table T (see Figure 5). We
obtain that all probed intermediate variables and all output variables corresponding to
Oi+1 can be perfectly simulated from the input variables in Oi, where Oi = Oi+1 ∪ J with
|J | ≤ t′.

We now consider the HTi gadget. We have from Oi = Oi+1 ∪ J :

ti + |Oi| ≤ ti + |Oi+1|+ t′ ≤ ti+1 + |Oi+1| < n

Therefore the t-SNI condition is satisfied for Gadget HTi, and all probed intermediate
variables and all output variables corresponding to Oi can be perfectly simulated from x|Ii
and T|Ji∪Oi with |Ii| ≤ ti and |Ji| 6 ti. We can write:

Oi ∪ Ji = (Oi+1 ∪ J) ∪ Ji = Oi+1 ∪ Ji+1

where we let Ji+1 := Ji ∪ J . Therefore the simulation can be performed from T|Ji+1∪Oi+1 ,
where as required:

|Ji+1| 6 |Ji|+ |J | 6 ti + t′ 6 ti+1

For the construction of Ii+1, as in the proof of Theorem 2 we distinguish two cases:
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• If t′ = 0, this means that the SR gadget has not been probed. Since |Oi+1| < n, thanks
to the RefreshMasks of every row we can simulate all output variables corresponding
to Oi+1 without the knowledge of any input variable. In particular, we don’t need
to know xi+1 to perform the simulation, and we can let Ii+1 = Ii.

• If t′ ≥ 1, the knowledge of xi+1 is required to perform the simulation, so we let
Ii+1 = Ii ∪ {i+ 1}.

In both cases we obtain |Ii+1| ≤ |Ii|+ t′. From |Ii| ≤ ti, we obtain:

|Ii+1| ≤ |Ii|+ t′ ≤ ti + t′ ≤ ti+1

which shows that HTi+1 is satisfies the property. This terminates the proof of Lemma 5.

E Proof of Theorem 4
We use Lemmas 4 and 5 to prove that the composition of the CommonShares gadget with
the three HTable gadgets allows the entire circuit to be t-SNI. We label the gadgets from 1
to 4 starting from right to left (see Figure 6).

Let I = I1 ∪ I2 ∪ I3 ∪ I4 be a set of indices such that |I | ≤ t, corresponding to
observations of intermediate variables done by the attacker in the four gadgets, and let O
be a set of indices such that t+ |O| < n, corresponding to observations on the outputs
made by the attacker.

Gadget 1 By assumption, we know that
∣∣I1
∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n. Since from

Lemma 5, the HTable gadget is t-SNI, this means that there exist two sets of indices
S1

1 ,S1
2 such that

∣∣S1
1
∣∣ ≤ ∣∣I1

∣∣, ∣∣S1
2
∣∣ ≤ ∣∣I1

∣∣ and the gadget can be perfectly simulated
from its input shares corresponding to indices in S1

1 and S1 = S1
2 ∪ O.

Gadget 2 Similarly, since
∣∣I2
∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n, from Lemma 5, there exist

two sets of indices S2
1 ,S2

2 such that
∣∣S2

1
∣∣ ≤ ∣∣I2

∣∣ and ∣∣S2
2
∣∣ ≤ ∣∣I2

∣∣, and the gadget
can be perfectly simulated from its input shares corresponding to indices in S2

2 and
S2 = S2

1 ∪ O.

Gadget 3 From gadgets 1 and 2, we have
∣∣S1 ∪ S2

∣∣+∣∣I3
∣∣ =

∣∣(S1
2 ∪ O) ∪ (S2

1 ∪ O)
∣∣+∣∣I3

∣∣ =∣∣S1
2 ∪ S2

1 ∪ O
∣∣+∣∣I3

∣∣ ≤ ∣∣S1
2
∣∣+∣∣S2

1
∣∣+∣∣I3

∣∣+|O| ≤ ∣∣I1
∣∣+∣∣I2

∣∣+∣∣I3
∣∣+|O| ≤ t+|O| < n.

Therefore, one can apply Lemma 5 which ensures that there exist two sets of indices
S3

1 ,S3
2 such that

∣∣S3
1
∣∣ ≤ ∣∣I3

∣∣, ∣∣S3
2
∣∣ ≤ ∣∣I3

∣∣ and the gadget can be perfectly simulated
from its input shares corresponding to indices in S3

1 and S3 = S3
2 ∪ (S1

2 ∪ S2
1 ∪ O).

Since Gadget 3 takes as input a known table T , namely T (u) =
(
S(u), 0, . . . , 0) for

all u ∈ {0, 1}k, the input shares of Gadget 3 corresponding to S3 can be perfectly
simulated; therefore we omit S3 in Figure 6 and keep only S3

1 .

Gadget 4 From Lemma 4 there exists a set of indices S4 such that
∣∣S4
∣∣ ≤ ∣∣I4

∣∣+∣∣S3
1
∣∣+∣∣S1

1
∣∣+∣∣S2

2
∣∣ and Gadget 4 can be perfectly simulated from its input shares corresponding to

indices in S4. From gadgets 1, 2 and 3, it follows that
∣∣S4
∣∣ ≤ ∣∣I4

∣∣+ ∣∣I3
∣∣+ ∣∣I2

∣∣+ ∣∣I1
∣∣.

Each of the previous steps ensures the existence of a simulator for each gadget. Let
I = S4. We can then compose these simulators to perfectly simulate the computation
of Algorithm 6 from x

(1)
|I and x

(2)
|I . Furthermore, from Gadget 4 we have |I| =

∣∣S4
∣∣ ≤∣∣I4

∣∣+
∣∣I3
∣∣+
∣∣I2
∣∣+
∣∣I1
∣∣ ≤ t. This concludes the proof.
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Figure 6: Illustration of common input table as composition of gadgets. Each variable
x(`) and y(`) contains actually n shares x(`)

i and y(`)
i , for ` = {1, 2}.

F Generalization of Common Shares to Multiple SBoxes

Algorithm 8 GeneralizedCommonShares
Input: Shares (a(j)

i )1≤i≤n for 1 6 j 6 m

Output: Shares (ri)1≤i≤n/2 and (b(j)
i )1≤i≤n/2 satisfying

⊕n/2
i=1 ri⊕

⊕n/2
i=1 b

(j)
i =

⊕n
i=1 a

(j)
i

for all 1 ≤ j ≤ m.
1: for i = 1 to n/2 do
2: ri ←$ F2k
3: for j = 1 to m do
4: b

(j)
i ← (a(j)

n/2+i ⊕ ri)⊕ a
(j)
i

5: end for
6: end for
7: return (ri)1≤i≤n/2 and (b(j)

i )1≤i≤n/2 for all 1 ≤ j ≤ m.

Lemma 6 (t-NI of GeneralizedCommonShares). Let (a(j)
i )1≤i≤n for 1 6 j 6 m be the input

shares of the algorithm GeneralizedCommonShares, and let (ri)1≤i≤n/2 and (b(j)
i )1≤i≤n/2 be

the output shares. For any set of t intermediate variables, there exists a subset S ⊂ [1, n]
with |S | ≤ t, such that those t variables can be perfectly simulated from a

(j)
|S for 1 ≤ j ≤ m.

Proof. As in [CGPZ16], the proof is a straightforward generalization of the proof of Lemma
6 and is therefore omitted.

Theorem 5 (t-SNI of Generalized Common Table). Let (x(j)
i )1≤i≤n for 1 ≤ j ≤ m be

the input of Generalized Common Table and (y(j))1≤i≤n be the output. For any set of t
intermediate variables and any subset of indices O with t+ |O| < n, there exists a subset
I ⊂ [1, n] with |I| ≤ t, such that those t variables as well as the output shares (y(j))|O for
all 1 ≤ j ≤ m can be perfectly simulated from x

(j)
|I for all 1 ≤ j ≤ m.

Proof. As in [CGPZ16], the proof is a straightforward generalization of the proof of
Theorem 4 and is therefore omitted.

G Common Shares with Increased Number of Shares
We define an algorithm HTableInc that takes as input a table T and shifts it by the input
shares x1, . . . , xλ, that is the first λ shares, instead of the full n shares; see Algorithm 10.
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Algorithm 9 Generalized Common Table: common masked computation of y(j) = S(x(j))
for 1 ≤ j ≤ m
Input: x(j)

1 , . . . , x
(j)
n for 1 ≤ j ≤ m

Output: y(j)
1 , . . . , y

(j)
n such that y(j)

1 ⊕ · · · ⊕ y(j)
n = S(x(j)

1 ⊕ · · · ⊕ x
(j)
n ) for all 1 ≤ j ≤ m.

1: (ri)1≤i≤n/2, (b
(j)
i )1≤i≤n/2 ← GeneralizedCommonShares((x(j)

i )1≤i≤n)
2: for all u ∈ {0, 1}k do T (u)←

(
S(u), 0, . . . , 0) ∈ ({0, 1}k′)n . ⊕

(
T (u)

)
= S(u)

3: T ← Htable(T, r1, . . . , rn/2)
4: for j = 1 to m do
5: T (j) ← Htable(T, b(j)

1 , . . . , b
(j)
n/2−1)

6: (y(j)
1 , . . . , y

(j)
n )← RefreshMasks

(
T (j)(b(j)

n/2)
)

7: end for
8: return y

(j)
1 , . . . , y

(j)
n for 1 ≤ j ≤ m

The algorithm also progressively increases the number of shares in the table, from ` shares
to `+ λ shares at the end.

Algorithm 10 HTableInc
Input: x1, . . . , xλ and T with ` shares.
Output:

⊕
T out(u) =

⊕
T (u⊕ x1 ⊕ · · · ⊕ xλ), with `+ λ shares.

1: for i = 1 to λ do
2: for all u ∈ {0, 1}k do
3: for j = 1 to `+ i− 1 do T ′(u)[j]← T (u⊕ xi)[j]
4: end for
5: for all u ∈ {0, 1}k do
6: T (u)← (T ′(u)[1], . . . , T ′(u)[`+ i− 1], 0)
7: T (u)← RefreshMasks`+i

(
T (u)

)
8: end for
9: end for

10: return T

The following Lemma is analogous to Lemma 5 and proves that the HTableInc algorithm
is t-SNI with respect to the input shares xi, and t-NI with respect to the input table T .

Lemma 7 (t-SNI of HTableInc). Let (xi)1≤i≤λ and T be the input of HTableInc and let
T out be the output table, where T has ` shares. For any set of t intermediate variables
and any subset of indices O, if t+ |O| < `+ λ, there exist subsets I ⊂ [1, λ] and J ⊂ [1, `]
with |I| ≤ t, such that those t variables as well as the output shares T out|O can be perfectly
simulated from x|I and T|S, where S = (O ∩ [1, `]) ∪ J with |J | ≤ t − λ, or S = J with
|I|+ |J | ≤ t+ 1 and |J | ≤ t.

Proof. We use similar notations as in the recursive proof of Theorem 2. We consider an
algorithm Rλ that takes as input x1, . . . , xλ and a table T with ` shares and outputs a
table T outλ with `+ λ shares such that for all u:

λ+⊕̀
j=1

T out(u)[j] =
⊕̀
j=1

T (u⊕ x1 ⊕ . . .⊕ xλ)[j]

To build Rλ+1 on input x1, . . . , xλ+1 and T , we first apply Rλ on x1, . . . , xλ, and then
we apply another shift S by xλ+1, then a RefreshMasks on every table row of ` + λ + 1
shares. We will proceed by induction on λ. We assume that the gadget Rλ is tλ-SNI,



Jean-Sébastien Coron, Franck Rondepierre and Rina Zeitoun 67

which means that if tλ + |Oλ| < `+ λ, then the tλ intermediate variables and the output
variables T (u)[j]j∈Oλ can be perfectly simulated from x|Iλ and T|Sλ where |Iλ| 6 tλ and
Sλ = (Oλ∩ [1, `])∪Jλ with |Jλ| ≤ tλ−λ, or Sλ = Jλ with |Iλ|+ |Jλ| ≤ tλ+1 and |Jλ| ≤ tλ.
We must show that the gadget Rλ+1 is tλ+1-SNI, which means that if

tλ+1 + |Oλ+1| < `+ λ+ 1 (6)

then the tλ+1 intermediate variables and the output variables T out(u)[j]j∈Oλ+1 can be
perfectly simulated from x|Iλ+1 and T|Sλ+1 where |Iλ+1| 6 tλ+1 and Sλ+1 = (Oλ+1 ∩
[1, `])∪ Jλ+1 with |Jλ+1| ≤ tλ+1− (λ+ 1), or Sλ+1 = Jλ+1 with |Iλ+1|+ |Jλ+1| ≤ tλ+1 + 1
and |Jλ+1| ≤ tλ+1.

We start by showing that the gadget R0 satisfies the above property. This is actually
straightforward, because R0 is the identity function, taking as input a table T and
outputting T .

We now assume that Rλ satisfies the above property. Let t′ be the number of probed
values in Rλ+1 \Rλ. We hence have tλ+1 = tλ + t′. We apply Lemma 3 on Rλ+1 \Rλ and
we distinguish two cases, depending on the way the set Oλ is built.

◦ Case Oλ = (Oλ+1 ∩ [1, `+λ])∪S′ with |S′| 6 t′− 1. In this case, we deduce that

|Oλ|+ tλ 6 |Oλ+1|+ |S′|+ tλ 6 |Oλ+1|+ t′ − 1 + tλ 6 |Oλ+1|+ tλ+1 − 1

From (6) we obtain:
|Oλ|+ tλ < `+ λ+ 1− 1 = `+ λ

Therefore, one can apply the induction step which ensures that |Iλ| 6 tλ and Sλ =
(Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, or Sλ = Jλ with |Iλ|+ |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ.
We first consider the construction of Iλ+1. We distinguish two cases:

• If t′ = 0, then the RefreshMasks in Rλ+1 \ Rλ are not probed, and from |Oλ+1| <
`+ λ+ 1 we can perfectly simulate all output variables corresponding to Oλ+1 by
generating random values, without the knowledge of any input variable, and therefore
xλ+1 is not needed for the simulation and one can keep Iλ+1 = Iλ.

• If t′ > 1, then the knowledge of xλ+1 is required for the simulation and we take
Iλ+1 = Iλ ∪ {λ+ 1}.

In both cases we have as required:

|Iλ+1| ≤ |Iλ|+ t′ ≤ tλ + t′ ≤ tλ+1

We now proceed with the construction of Jλ+1. We distinguish two cases from the previous
application of the recursion hypothesis:

• If Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, then we obtain:

Sλ = (((Oλ+1 ∩ [1, `+ λ]) ∪ S′) ∩ [1, `]) ∪ Jλ = (Oλ+1 ∩ [1, `]) ∪ ((S′ ∩ [1, `]) ∪ Jλ) .

Therefore, we take Sλ+1 = Sλ and Jλ+1 = (S′ ∩ [1, `]) ∪ Jλ. We deduce that
|Jλ+1| 6 |S′| + |Jλ| 6 (t′ − 1) + (tλ − λ) 6 tλ+1 − (λ + 1), which implies that the
recursion hypothesis is satisfied for Rλ+1.

• If Sλ = Jλ with |Iλ| + |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ, then we take Sλ+1 = Sλ =
Jλ+1 = Jλ. As a consequence, because |Iλ+1| 6 |Iλ|+ t′, we have |Iλ+1|+ |Jλ+1| 6
t′ + |Iλ|+ |Jλ| 6 t′ + tλ + 1 6 tλ+1 + 1 and |Jλ+1| = |Jλ| 6 tλ 6 tλ+1, which implies
that the recursion hypothesis is satisfied for Rλ+1.
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◦ Case Oλ = S′ with |Oλ| 6 t′. In this case, since tλ+1 < ` + λ + 1 from (6), we
distinguish two cases:

• If tλ+1 = ` + λ, we can take Iλ+1 = [1, λ + 1] and Jλ+1 = [1, `], which gives
|Iλ+1|+ |Jλ+1| ≤ tλ+1 + 1 and |Jλ+1| ≤ tλ+1 as required.

• If tλ+1 < `+ λ, then we deduce that:

|Oλ|+ tλ 6 t′ + tλ = tλ+1 < `+ λ

Therefore, one can use as previously the recurrence assumption which ensures
that |Iλ| 6 tλ and Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, or Sλ = Jλ with
|Iλ| + |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ. As in the previous case, we take Iλ+1 = Iλ if
t′ = 0 and Iλ+1 = Iλ ∪ {λ + 1} if t′ > 1, which gives |Iλ+1| ≤ tλ+1. It remains to
build the set Jλ+1. As before, we distinguish two cases:

– If Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, then since Oλ = S′, we can take
Sλ+1 = Jλ+1 = Sλ = (S′ ∩ [1, `])∪ Jλ. Therefore we have |Jλ+1| 6 |S′|+ |Jλ| 6
t′+ tλ−λ 6 tλ+1. Furthermore, since we always have |Iλ+1| 6 λ+ 1, we deduce
that |Iλ+1|+ |Jλ+1| 6 λ+ 1 + t′ + tλ − λ = t′ + tλ + 1 6 tλ+1 + 1, which means
that the recursion hypothesis is satisfied for Rλ+1.

– If Sλ = Jλ with |Iλ| + |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ, then we take Sλ+1 =
Sλ = Jλ+1 = Jλ. As a consequence, because |Iλ+1| 6 t′ + |Iλ|, we have
|Iλ+1|+ |Jλ+1| 6 t′ + |Iλ|+ |Jλ| 6 t′ + tλ + 1 6 tλ+1 + 1 and |Jλ+1| = |Jλ| 6
tλ 6 tλ+1, which means that that the recursion hypothesis is satisfied for Rλ+1.

Hence, we proved that if Rλ is t-SNI then so does Rλ+1. This concludes the proof of
Lemma 7.

We show an extension of Lemma 7 where after the HTableInc we perform the regular
Htable algorithm, where the number of output shares in the table remains constant and
equal to `+ λ.

Lemma 8. Let (xi)1≤i≤λ+δ and T be the input, where the table T has ` output shares.
Let T ′ ← HTableInc(T, x1, . . . , xλ), and T out ← HTable(T ′, xλ+1, . . . , xλ+δ). For any set
of t intermediate variables and any subset of indices O, if t + |O| < ` + λ, there exist
subsets I ⊂ [1, λ+ δ] and J ⊂ [1, `] with |I| ≤ t, such that those t variables as well as the
output shares T out|O can be perfectly simulated from x|I and T|S , where S = (O ∩ [1, `]) ∪ J
with |J | ≤ t− λ, or S = J with |I|+ |J | ≤ t+ 1 and |J | ≤ t.

Proof. We use lemmas 5 and 7 to prove that the composition of the HTable gadget (Gadget
1) with the HTableInc gadget (Gadget 2) allows the entire circuit to be t-SNI.

Let I = I1 ∪ I2 be a set of indices such that |I | ≤ t, corresponding to observations
of intermediate variables done by the attacker in the two gadgets, and let O be a set of
indices such that t+ |O| < `+ λ, corresponding to observations on the outputs made by
the attacker.

Gadget HTable. By assumption, we know that
∣∣I1
∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < `+ λ.

Since from Lemma 5, the HTable gadget is t-SNI, this means that there exist two sets
of indices S1

1 ⊂ [λ+ 1, λ+ δ] and S1
2 ⊂ [1, `+ λ] such that

∣∣S1
1
∣∣ ≤ ∣∣I1

∣∣, ∣∣S1
2
∣∣ ≤ ∣∣I1

∣∣
and the gadget can be perfectly simulated from its input shares corresponding to
indices in S1

1 for the xi’s and S1
2 ∪ O for the table T ′.
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Gadget HTableInc. Since
∣∣I2
∣∣+ ∣∣S1

2 ∪ O
∣∣ ≤ ∣∣I2

∣∣+ ∣∣I1
∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < `+λ,

from Lemma 7, there exist two sets of indices S2 and S2
2 such that the gadget can

be perfectly simulated from its input shares corresponding to indices in S2
2 for the

xi’s, with
∣∣S2

2
∣∣ ≤ ∣∣I2

∣∣, and indices in S2 for table T , where

• S2 = ((O ∪ S1
2 ) ∩ [1, `]) ∪ S2

1 with
∣∣S2

1
∣∣ ≤ ∣∣I2

∣∣− λ, or
• S2 = S2

1 with
∣∣S2

1
∣∣+
∣∣S2

2
∣∣ ≤ ∣∣I2

∣∣+ 1 and
∣∣S2

1
∣∣ ≤ ∣∣I2

∣∣.
Each of the previous steps ensures the existence of a simulator for each gadget. Let

I = S1
1 ∪ S2

2 and S = S2. We can then compose these simulators to perfectly simulate the
computation of Algorithm 11 from x|I and T|S . Furthermore, from Gadget HTableInc we
either have:

• S = (O∩ [1, `])∪J with J = (S1
2 ∩ [1, `])∪S2

1 and |J | ≤ |S1
2 |+ |S2

1 | ≤
∣∣I1
∣∣+∣∣I2

∣∣−λ ≤
|I | − λ ≤ t− λ, or

• S = J = S2
1 with |I|+ |J | ≤ |S1

1 |+ |S2
2 |+ |S2

1 | ≤ |S1
1 |+

∣∣I2
∣∣+ 1 ≤

∣∣I1
∣∣+
∣∣I2
∣∣+ 1 ≤

|I |+ 1 ≤ t+ 1 and |J | = |S2
1 | ≤

∣∣I2
∣∣ ≤ t.

which proves the lemma.

Finally we describe the Common Table Inc algorithm below, which is similar to the
Common Table algorithm described in Section 6.3, but with increasing number of shares.
Note that as explained in Section 6.5, for the evaluation of two SBoxes in parallel, the
table T starts with 2 shares instead of 1 at Line 2.

Algorithm 11 Common Table Inc: evaluation of of y(1) = S(x(1)) and y(2) = S(x(2))

Input: x(`)
1 , . . . , x

(`)
n for ` ∈ {1, 2}

Output: y(`)
1 , . . . , y

(`)
n such that y(`)

1 ⊕ · · · ⊕ y
(`)
n = S(x(`)

1 ⊕ · · · ⊕ x
(`)
n ) for ` ∈ {1, 2}.

1: (ri)1≤i≤n/2, (a
(1)
i )1≤i≤n/2, (a

(2)
i )1≤i≤n/2 ← CommonShares(x(1)

i , x
(2)
i )

2: for all u ∈ {0, 1}k do T (u)←
(
S(u), 0

)
∈ ({0, 1}k′)2 . ⊕

(
T (u)

)
= S(u)

3: T (1) ← HTableInc(T, r1, . . . , rn/2)
4: T (2) ← T (1)

5: T (1) ← HTableInc(T (1), a
(1)
1 , . . . , a

(1)
n/2−2)

6: T (2) ← HTableInc(T (2), a
(2)
1 , . . . , a

(2)
n/2−2) . T (1) and T (2) now have n shares.

7: T (1) ← Htable(T (1), a
(1)
n/2−1)

8: T (2) ← Htable(T (2), a
(2)
n/2−1)

9: (y(1)
1 , . . . , y

(1)
n )← LinearRefreshMasks

(
T (1)(a(1)

n/2)
)

10: (y(2)
1 , . . . , y

(2)
n )← LinearRefreshMasks

(
T (2)(a(2)

n/2)
)

11: return y
(`)
1 , . . . , y

(`)
n for ` ∈ {1, 2}

Theorem 6 (t-SNI of Common Table Inc). Let (x(`)
i )1≤i≤n for ` ∈ {1, 2} be the input of

Common Table Inc and (y(`))1≤i≤n be the output. For any set of t intermediate variables
and any subset of indices O with t+ |O| < n, there exists a subset I ⊂ [1, n] with |I| ≤ t,
such that those t variables as well as the output shares (y(1))|O and (y(2))|O can be perfectly
simulated from x|I and y|I .

Proof. We use Lemmas 4 and 8 to prove that the composition of the CommonShares gadget
with the three HTable gadgets allows the entire circuit to be t-SNI. We label the gadgets
from 1 to 4 starting from right to left (see Figure 7).
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Figure 7: Illustration of common input table as composition of gadgets. Each variable
x(`) and y(`) contains actually n shares x(`)

i and y(`)
i , for ` = {1, 2}.

Let I = I1 ∪ I2 ∪ I3 ∪ I4 be a set of indices such that |I | ≤ t, corresponding to
observations of intermediate variables done by the attacker in the four gadgets, and let O
be a set of indices such that

t+ |O| < n

corresponding to observations on the outputs made by the attacker.

Gadget 1. By assumption, we know that
∣∣I1
∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n. Since from

Lemma 8, the composition of the HTableInc and HTable gadgets is t-SNI, and since
the number of output shares increases by n/2− 2, this means that there exist two
sets of indices S1

1 and S1 such that the gadget can be perfectly simulated from its
input shares corresponding to indices in S1

1 with
∣∣S1

1
∣∣ ≤ ∣∣I1

∣∣, and indices in S1 where

• Case 1.a: S1 = (O ∩ [1, n2 + 1]) ∪ S1
2 with

∣∣S1
2
∣∣ ≤ ∣∣I1

∣∣− (n2 − 2), or
• Case 1.b: S1 = S1

2 with
∣∣S1

1
∣∣+
∣∣S1

2
∣∣ ≤ ∣∣I1

∣∣+ 1 and
∣∣S1

2
∣∣ ≤ ∣∣I1

∣∣.
Gadget 2. Similarly, since

∣∣I2
∣∣ + |O| ≤ |I | + |O| ≤ t + |O| < n, from Lemma 8, there

exist two sets of indices S2 and S2
2 such that the gadget can be perfectly simulated

from its input shares corresponding to indices in S2
2 with

∣∣S2
2
∣∣ ≤ ∣∣I2

∣∣, and indices in
S2 where

• Case 2.a: S2 = (O ∩ [1, n2 + 1]) ∪ S2
1 with

∣∣S2
1
∣∣ ≤ ∣∣I2

∣∣− (n2 − 2), or
• Case 2.b: S2 = S2

1 with
∣∣S2

1
∣∣+
∣∣S2

2
∣∣ ≤ ∣∣I2

∣∣+ 1 and
∣∣S2

1
∣∣ ≤ ∣∣I2

∣∣.
Gadget 3. From gadgets 1 and 2, we have four possible values for

∣∣S1 ∪ S2
∣∣:

• Case 1.a/2.a: We have∣∣S1 ∪ S2∣∣ =
∣∣(O ∩ [1, n/2 + 1]) ∪ S1

2 ∪ (O ∩ [1, n/2 + 1]) ∪ S2
1
∣∣

6
∣∣O ∪ S1

2 ∪ S2
1
∣∣ 6 |O|+ ∣∣I1∣∣− n/2 + 2 +

∣∣I2∣∣− n/2 + 2
6 |O|+

∣∣I1∣∣+
∣∣I2∣∣− n+ 4

This gives from |O|+ |I | < n:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ 6 |O|+ |I | − n+ 4

< n− n+ 4 = 4
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For n ≥ 4, this gives: ∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ < n/2 + 2

We note that the inequality is also satisfied for n = 3. Namely in that case,
there is only one common share, and there is no increase in the number of
outputs shares in gadgets 1 and 2. Therefore one can apply Lemma 5 to gadgets
1 and 2, and we get

∣∣S1
2
∣∣ ≤ ∣∣I1

∣∣ and ∣∣S2
1
∣∣ ≤ ∣∣I2

∣∣. As a consequence, we have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ 6 ∣∣O ∪ S1

2 ∪ S2
1
∣∣+
∣∣I3∣∣ 6 |O|+ ∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣

6 |O|+ |I | < n = 3 < n/2 + 2

• Case 1.a/2.b: We have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣(O ∩ [1, n/2 + 1]) ∪ S1
2 ∪ S2

1
∣∣+
∣∣I3∣∣

6 |O|+
∣∣I1∣∣− n/2 + 2 +

∣∣I2∣∣+
∣∣I3∣∣

6 |O|+ |I | − n/2 + 2 < n− n/2 + 2 = n/2 + 2

• Case 1.b/2.a: Similarly, we have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣S1
2 ∪ (O ∩ [1, n/2 + 1]) ∪ S2

1
∣∣+
∣∣I3∣∣

6
∣∣I1∣∣+ |O|+

∣∣I2∣∣− n/2 + 2 +
∣∣I3∣∣

6 |O|+ |I | − n/2 + 2 < n− n/2 + 2 = n/2 + 2

• Case 1.b/2.b: We have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣S1
2
∣∣+
∣∣S2

1
∣∣+
∣∣I3∣∣

6
∣∣I1∣∣− ∣∣S1

1
∣∣+ 1 +

∣∣I2∣∣− ∣∣S2
2
∣∣+ 1 +

∣∣I3∣∣
6
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣− ∣∣S1

1
∣∣− ∣∣S2

2
∣∣+ 2

Note that in this case, we cannot assert that
∣∣S1 ∪ S2

∣∣ +
∣∣I3
∣∣ < n/2 + 2.

Therefore we distinguish two cases:
– If

∣∣I1
∣∣+ ∣∣I2

∣∣+ ∣∣I3
∣∣− ∣∣S1

1
∣∣− ∣∣S2

2
∣∣ < n/2, then we obtain as in the previous

cases: ∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ < n/2 + 2

In that case, since the HTableInc algorithm in Gadget 3 has n/2 + 2 output
shares (since it takes as input a table T with 2 output shares and processes
n/2 shares ri), as in the first 3 cases considered above, we can apply
Lemma 7 to Gadget 3, which ensures that there exist two sets of indices S3

1
and S3 such that

∣∣S3
1
∣∣ ≤ ∣∣I3

∣∣, and the gadget can be perfectly simulated
from its input shares corresponding to indices in S3

1 and S3. Since Gadget
3 takes as input a table T with public values only, we only consider the set
of indices S3

1 of input shares.
– If

∣∣I1
∣∣+

∣∣I2
∣∣+

∣∣I3
∣∣− ∣∣S1

1
∣∣− ∣∣S2

2
∣∣ ≥ n/2, we cannot apply Lemma 7 and

we must set S3
1 = [1, n/2] to simulate Gadget 3.

Gadget 4. From Lemma 4 there exists a set of indices S4 such that∣∣S4∣∣ ≤ ∣∣I4∣∣+
∣∣S3

1
∣∣+
∣∣S1

1
∣∣+
∣∣S2

2
∣∣

and Gadget 4 can be perfectly simulated from its input shares corresponding to
indices in S4.
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Each of the previous steps ensures the existence of a simulator for each gadget. Letting
I = S4, we can then compose these simulators to perfectly simulate the computation of
Algorithm 11 from x|I and y|I . It remains to show that |I| 6 t. Two cases arise depending
on Gadget 3.

• If
∣∣I1
∣∣+ ∣∣I2

∣∣+ ∣∣I3
∣∣− ∣∣S1

1
∣∣− ∣∣S2

2
∣∣ < n/2, we have obtained

∣∣S3
1
∣∣ 6 ∣∣I3

∣∣. From gadgets
1 and 2, it follows that

|I| =
∣∣S4∣∣ 6 ∣∣I4∣∣+

∣∣I3∣∣+
∣∣I2∣∣+

∣∣I1∣∣ 6 t

• If
∣∣I1
∣∣+ ∣∣I2

∣∣+ ∣∣I3
∣∣− ∣∣S1

1
∣∣− ∣∣S2

2
∣∣ ≥ n/2, we have set

∣∣S3
1
∣∣ = n/2, and we still obtain:

|I| =
∣∣S4∣∣ 6 ∣∣I4∣∣+

∣∣S3
1
∣∣+
∣∣S1

1
∣∣+
∣∣S2

2
∣∣

6
∣∣I4∣∣+ n/2 +

(∣∣I1∣∣+
∣∣I2∣∣+

∣∣I3∣∣− n/2) 6 ∣∣I4∣∣+
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣ 6 t

Therefore in both cases we obtain |I| ≤ t, which terminates the proof.
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