Fast FPGA Implementation of Diffie-Hellman on the Kummer Surface of a Genus-2 Curve

Philipp Koppermann, Fabrizio De Santis, Johann Heyszl and Georg Sigl

History of High-Speed Curve Cryptography over Prime Fields

Point Addition on a Hyperelliptic Genus-2 Curve

Point Addition on a Hyperelliptic Genus-2 Curve

Kummer: Smaller Field But More Operations

Structure of the Kummer-Based Scalar Multiplication

Architecture of the Single-Core Implementation

Techniques for Designing the Modular Multiplier

01 Multiplier computes and accumulates all digit-products in parallel02 Use non-standard tiling to reduce DSP slices03 Combine multiplication and reduction for better performance

Modular Multiplication using Mersenne Primes $M_{\rho} = 2^{\rho} - 1$

Regroup the **Digit-Products** on a **Bit-Level**

Scheduling the Field Operations for a Scalar Multiplication

Scheduling the Field Operations for a Scalar Multiplication

Single-Core: Performance and Area Results

[1] Järvinen et al. FourQ on FPGA: New hardware speed records for elliptic curve cryptography over large prime characteristic fields. CHES 2016 [2] Sasdrich and Güneysu. Efficient Elliptic-Curve Cryptography Using Curve25519 on Reconfigurable Devices, ARC 2014

Multi-Core: Performance and Area Results

[1] Järvinen et al. FourQ on FPGA: New hardware speed records for elliptic curve cryptography over large prime characteristic fields. CHES 2016 [2] Sasdrich and Güneysu. Efficient Elliptic-Curve Cryptography Using Curve25519 on Reconfigurable Devices, ARC 2014

Three Take Home Messages

01 Kummer based key exchange enables high-speed DH on FPGA02 Difficult comparison due to very specific hardware optimization03 HECC is an interesting alternative to ECC, but more research is required

Contact Information

Philipp Koppermann

Hardware Security

Fraunhofer Institute for Applied and Integrated Security (AISEC)

Phone: +49 89 3229986-138 E-Mail: philipp.koppermann@aisec.fraunhofer.de

