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Abstract. We present the first hardware implementations of Diffie-Hellman key
exchange based on the Kummer surface of Gaudry and Schost’s genus-2 curve
targeting a 128-bit security level. We describe a single-core architecture for low-
latency applications and a multi-core architecture for high-throughput applications.
Synthesized on a Xilinx Zynq-7020 FPGA, our architectures perform a key exchange
with lower latency and higher throughput than any other reported implementation
using prime-field elliptic curves at the same security level. Our single-core architecture
performs a scalar multiplication with a latency of 82 microseconds while our multi-
core architecture achieves a throughput of 91,226 scalar multiplications per second.
When compared to similar implementations of Microsoft’s FourQ on the same FPGA,
this translates to an improvement of 48% in latency and 40% in throughput for
the single-core and multi-core architecture, respectively. Both our designs exhibit
constant-time execution to thwart timing attacks, use the Montgomery ladder for
improved resistance against SPA, and support a countermeasure against fault attacks.

Keywords: Diffie-Hellman key exchange · hyperelliptic curve cryptography · Kummer
surface · FPGA · Zynq · low-latency · high-throughput · fault countermeasure.

1 Introduction
In 1989, Koblitz [Kob89] first mentioned the application of hyperelliptic curves in cryptog-
raphy. The Jacobian variety of a genus-2 curve possesses a group structure that can be
used to realize cryptographic algorithms such as Diffie-Hellman (DH) key exchange and
digital signatures. Unfortunately, group operations on the Jacobian have higher complexity
than those on elliptic curves (genus-1 curves). However, using the pseudo-multiplication
on the Kummer surface of the Jacobian in place of the addition on the Jacobian itself
leads to a decrease of the number of field operations per group operation [Gau07]. The
Kummer surface is a 2-to-1 point mapping and can be compared to the x-coordinate-only
representation of elliptic curves. Table 1 shows the number of field operations for a
point addition and a point doubling operation used in DH key exchange for a genus-1
Montgomery curve and a Kummer surface associated to a genus-2 curve. It can be noted
that the genus-2 curve requires 1.4-times more multiplications, 3-times more squarings, and
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Table 1: Comparison of required field operations for point addition and point doubling:
multiplication (M), squaring (S), constant multiplication Mc, addition (A), and subtrac-
tion (Z).

Genus Reference Field size M S Mc A Z

1 Curve25519 [DHH+15] 255-bit 5 4 1 4 4
2 Kummer [RSSB16] 127-bit 7 12 12 16 16

4-times more additions and subtractions than the genus-1 curve. However, the Kummer
surface based pseudo-multiplication operates on finite fields of half the size than those of
elliptic curves while supporting the same security level. This reduced field size can lead to
performance benefits in hardware, which is crucial for time critical applications.

In 2006, Bernstein and Lange [BL06] showed in a cost analysis for software that a
genus-2 based implementation is potentially 1.5-times faster than a comparable elliptic
curve based implementation. At that time, however, a secure Kummer surface of a genus-2
curve was not found yet. Since genus-2 point counting is computationally expensive, it
took further six years until Gaudry and Schost [GS12] presented a twist-secure Kummer
surface targeting a 128-bit security level. Using this Kummer surface, Bos et al. [BCHL13]
were the first to publish a high-speed DH implementation on high-end CPUs proving
the earlier cost analysis in [BL06]. A year later, Bernstein et al. [BCLS14] presented
another DH implementation using the same Kummer surface and achieved new speed
records by heavily vectorizing each ladder step. These speed records were only surpassed
by the FourQ elliptic curve implementation of Costello and Longa [CL15], which exploits a
four-dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number
of group operations. Renes et al. [RSSB16] published implementation results of a DH
key exchange on the Kummer surface of Gaudry and Schost’s genus-2 curve [GS12] for
different microcontrollers reporting notable performance results. Their results were recently
surpassed by FourQ implementations for similar architectures by Liu et al. [LLP+17].
So far, investigations of the DH key exchange on the Kummer surface of genus-2 curves
were confined to software implementations [BCHL13, BCLS14, RSSB16]. While these
software implementations already showed the performance advantages of genus-2 curves,
the design of efficient hardware is a fundamentally different task. Best performance results
are only obtained when each module is carefully optimized with optimally matched timing
characteristics to one another. In this work, we show that the Kummer surface of Gaudry
and Schost’s genus-2 curve can be used to perform very fast DH key exchanges in hardware.

Contribution. We present the first FPGA implementations of Diffie-Hellman using the
Kummer surface of a genus-2 hyperelliptic curve and show its competitiveness com-
pared to elliptic curve based implementations. Following previous high-speed genus-2
implementations in software [BCHL13, BCLS14, RSSB16], we use the Kummer surface
[CC86, CCS16, Gau07] of Gaudry and Schost’s genus-2 curve [GS12]. Synthesized on a
Zynq-7020, our single-core architecture is about 1.91-times faster than the FourQ imple-
mentation [JMAL16], which has been the fastest prime-field curve scalar multiplication
on the same FPGA so far. Our single-core architecture inherently supports a fault coun-
termeasure, but utilizes 1.51-times more slices than the FourQ implementation. In terms
of throughput, our multi-core design shows a factor-1.41 improvement compared to the
FourQ implementation and a factor-2.82 improvement compared to the high-throughput
Curve25519 implementation [SG15]. The main design decisions that influenced our results
are:
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Interleaving two scalar multiplications. Due to the serial nature of the considered ladder,
multiple hardware modules operate below full capacity. This allows for a second scalar mul-
tiplication to be efficiently interleaved by carefully scheduling the required field operations.
The obtained instruction schedule leaves the number of cycles unaltered while effectively
doubling the throughput. Note that this interleaved scalar multiplication can also be used
as a countermeasure against fault attacks by performing both scalar multiplications on the
same input point and check the results for equivalence.

Efficient representation of constant values. For improved performance, we instantiate
a dedicated circuit for multiplying field elements with 12-bit constants in each ladder
step. Compared to a conventional modular multiplication, the constant modular multiplier
requires only 4 clock cycles instead of 7. Some constants, however, are negative; the naive
approach would be to convert them to positive elements of the prime field and then use the
modular multiplier for multiplication. In order to avoid the increased memory requirements
and decreased performance of this naive approach, we neglect the sign when storing the
constants and include the conditional negation logic inside the constant modular multiplier.

High-speed modular multiplier. The performance of the scalar multiplication is strongly
correlated with the performance of the modular multiplier. We take the multiplier presented
in [KSHS17, Fra17], which is explicitly optimized for Mersenne prime fields, and modify it
by applying the non-standard tiling technique [RMIT14] to further improve its performance.
In this way, we also reduce the number of required DSP blocks by 10%.

Organization. In Sect. 2, we describe the basics of DH key exchange using a genus-2
curve, describe Gaudry and Schost’s hyperelliptic curve and its Kummer surface, and
summarize the scalar multiplication on this Kummer surface using the Montgomery ladder.
In Sect. 3, a description of the single-core and multi-core hardware architectures is provided.
In Sect. 4 we present the performance analysis and compare our results with related work.
Finally, we conclude and discuss the results in Sect. 5.

2 Diffie-Hellman key exchange using Kummer surfaces
For elliptic and hyperelliptic curve based cryptosystems, the main operation is the scalar
multiplication Q = sP , where Q,P are two points on a curve and s ∈ Z is a scalar value.
In case of elliptic curve cryptography, the two points are located on an elliptic curve
defined over a finite field. An abelian group is formed by all points on the elliptic curve
together with the point at infinity under the addition law, which is obtained by the
chord-and-tangent rule. A point can be multiplied with a scalar by using an algorithm
such as the Montgomery ladder [Mon87], which repetitively performs point doublings and
differential additions.

For a genus-2 hyperelliptic curve C, a group structure can be formed with the corre-
sponding Jacobian JC(Fq) where Fq is a finite field. The Jacobian forms an abelian group
and is defined as the quotient space JC := Div0

C/PrincC , where Div0
C denotes the group

of divisors of degree zero of curve C and PrincC the group of principal divisors of curve
C. A detailed description of Jacobians of hyperelliptic curves can be found in [CFA+05].
Although a point can be multiplied on the Jacobian, it is computationally expensive making
it non-competitive compared to elliptic curve based implementations. Instead, we make
use of the Kummer surface KC that is associated with JC of the hyperelliptic curve C. The
Kummer surface is defined as the quotient space of the Jacobian by its involution, which
we denote by KC := JC/〈±1〉. Gaudry [Gau07] showed that scalar multiplication on the
Kummer surface can be computed faster than on the corresponding Jacobian. Even though
the group structure is lost when points on JC are mapped to KC , a pseudo-multiplication
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Algorithm 1 scalar_mult: unwrap input point to Montgomery ladder on KC followed by
point wrapping. It is assumed that the public key (respectively public generator) is in
381-bit wrapped representation.

Input:
(
s =

∑250
i=0 si2i

)
∈ [0, 2251),±P for ±P in KC .

Output: ±Q for ±Q← ±[s]P in KC .
1: ±P ← unwrap (±P ) . compute 4-tuple representation of ±P
2: ±Q← mont_ladder (s,±P ,±P )
3: ±Q← wrap (±Q) . compute wrapped 381-bit representation of ±Q
4: return ±Q

[CCS16] can be defined. For DH key exchange pseudo-multiplication is sufficient, and thus
we perform all computations on KC .

Our implemented DH key exchange works the same as the one described by Renes
et al. [RSSB16]; we also follow their notation throughout this paper. If a point P is on
the Jacobian JC, we denote its image on the Kummer surface by ±P . Each point ±P
is represented by a 4-tuple where each element is 127-bit wide which sums up to 508 bit
in total. As described in [CCS16, RSSB16], we assume that the public key (respectively
public generator) is represented by a 3-tuple in its wrapped 381-bit representation denoted
by ±P . Renes et al. [RSSB16] showed that keeping the input points in their wrapped
representation offers two advantages: first, it reduces the required amount of data that
needs to be transmitted and second, it results in a speed-up for the ladder computation.

For an ephemeral key exchange, the scalar multiplication is performed twice: once for
computing an entity’s public key, where the public generator is the input point, and once
for computing a shared secret, where the other entity’s public-key is the input point.

Key exchange. Let ±P be the public generator (respectively public key) in its wrapped
representation and s be the 251-bit secret key. We then compute Q← ±[s]P and derive
the generated public key (respectively the shared secret) as ±Q.

The scalar multiplication is implemented by Algorithm 1 (scalar_mult) and uses three
functions: unwrap computes the 4-tuple representation of the input point, mont_ladder
multiplies the unwrapped input point by a scalar value using the Montgomery ladder
[Mon87], and wrap finally computes the 381-bit wrapped representation of the output
point; all these functions are described in detail in Sect. 2.3. As these functions depend on
various parameters of the Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic
curve [GS12], we first summarize the definition of this curve in Sect. 2.1 and then describe
the associated Kummer surface in Sect. 2.2. More details can be found in [BL06, RSSB16].

2.1 Gaudry and Schost’s genus-2 hyperelliptic curve
The genus-2 hyperelliptic curve C of Gaudry and Schost [GS12] is defined over the prime
field Fp with p = 2127 − 1. The curve C can be mapped to a curve of equation

C[λ,µ,ν] : Y 2 := X (X − 1) (X − λ) (X − µ) (X − ν) ,

where the so-called Rosenhain invariants [Gau07] are

λ := ac/bd = 0x15555555555555555555555555555552 ,

µ := ce/df = 0x73E334FBB315130E05A505C31919A746 ,

ν := ae/bf = 0x552AB1B63BF799716B5806482D2D21F3 .
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The squared theta constants are

a = −11 , b = 22 , c = 19 , and d = 3 ,

e/f = (1 +
√
CD/AB)/(1−

√
CD/AB) ,

where A,B,C and D are the dual theta constants

A := a+ b+ c+ d = 33 , B := a+ b− c− d = −11 ,
C := a− b+ c− d = −17 , D := a− b− c+ d = −49 .

2.2 Kummer surface
Similar to previous works, we use the fast Kummer surface KC ∈ P3 of [CC86, CCS16,
Gau07], which is defined as:

KC : Exyzt =
((
x2 + y2 + z2 + t2

)
− F (xt+ yz)−G (xz + yt)−H (xy + zt)

)2
,

where

F = a2 − b2 − c2 + d2

ad− bc
, G = a2 − b2 + c2 − d2

ac− bd
, H = a2 + b2 − c2 − d2

ab− cd
,

and E = 4abcd (ABCD/ ((ad− bc) (ac− bd) (ab− cd)))2. For a point P in JC, its image
KC is denoted by

(xP : yP : zP : tP ) = ±P .

The identity point 〈1, 0〉 of JC maps to

±0JC = (a : b : c : d) .

2.3 Scalar multiplication on the Kummer surface
As described in Algorithm 1 (scalar_mult), we assume that the input and output points
are in their wrapped representation. The wrapped representation of the point ±P =
(x : y : z : t) in KC is a 3-tuple which is denoted by ±P = (x/y, x/z, x/t). Algorithm 2

Algorithm 2 unwrap: (x/y, x/z, x/t) 7→ (x : y : z : t) unwrap point to its 508-bit repre-
sentation.
Input: (x/y, x/z, x/t) ∈ F3

p.
Output: (x : y : z : t) ∈ P3.

1: (V1, V2, V3)← ((x/z) (x/t) , (x/y) (x/t) , (x/y) (x/z))
2: V4 ← V3 (x/t)
3: return (V4 : V1 : V2 : V3)

(unwrap) implements the point unwrapping, which consists of 4 multiplications in Fp. The
wrapping function is described in Algorithm 3 (wrap); it consists of a finite field inversion
and 7 multiplications. As in [RSSB16], we define three operations in the projective space
P3 to improve the readability of the Montgomery ladder. First, the multiplicationM that
multiplies the corresponding pairs of coordinates from two distinct points in Fp:

M : ((x1 : y1 : z1 : t1) , (x2 : y2 : z2 : t2)) 7→ (x1x2 : y1y2 : z1z2 : t1t2) .
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Algorithm 3 wrap: (x : y : z : t) 7→ (x/y, x/z, x/t) compute wrapped 381-bit representa-
tion.
Input: (x : y : z : t) ∈ P3.
Output: (x/y, x/z, x/t) ∈ F3

p.
1: V1 ← yz
2: V2 ← x/ (V1t) . inversion
3: V3 ← V2t
4: return (V3z, V3y, V1V2)

Algorithm 4 mont_ladder: Montgomery ladder using combined differential double-and-
add.
Input:

(
s =

∑250
i=0 si2i

)
∈ [0, 2251), (±P,±P ) ∈ K2

C .
Output: ±Q = (xQ : yQ : zQ : tQ) ∈ P3 for ±Q← ±[s]P in KC .

1: V5 ← (a : b : c : d)
2: V6 ← (xP : yP : zP : tP ) . representation of ±P
3: V7 ←

( 1
A : 1

B : 1
C : 1

D

)
4: V8 ←

( 1
a : 1

b : 1
c : 1

d

)
5: V9 ←

(
1 : xP

yP
: xP

zP
: xP

tP

)
. representation of ±P

6: for i = 250 down to 0 do
7: (V1, V2)← cswap (si ⊕ si+1, (V5, V6)) . s251 = 0
8: (V1, V2)← (H (V1) ,H (V2))
9: (V3, V4)← (S (V1) ,M (V1, V2))

10: (V5, V6)← (M (V3, V7) ,M (V4, V7))
11: (V1, V2)← (H (V5) ,H (V6))
12: (V3, V4)← (S (V1) ,S (V2))
13: (V5, V6)← (M (V3, V8) ,M (V4, V9))
14: end for
15: (V1, V2)← cswap (s0, (V5, V6))
16: return ±Q = V2

Second, the special case where the two points are equal, i.e. squaring in Fp the corresponding
pairs of coordinates:

S : (x : y : z : t) 7→
(
x2 : y2 : z2 : t2

)
.

Third, the Hadamard transform H : (x : y : z : t) 7→ (xH : yH : zH : tH) with

xH =
u︷ ︸︸ ︷

(x+ y) +
v︷ ︸︸ ︷

(z + t) , zH =
r︷ ︸︸ ︷

(x− y) +
s︷ ︸︸ ︷

(z − t) , (1)
yH = (x+ y)− (z + t) , tH = (x− y)− (z − t) . (2)

Finally, Algorithm 4 (mont_ladder) describes the Montgomery ladder for the scalar multi-
plication on the Kummer surface of Gaudry and Schost’s genus-2 curve. The constants
that are stored in V7 and V8 are projectively derived from the squared theta constants
(a, b, c, d) and the dual theta constants (A,B,C,D) respectively (see Sect. 2.1):(

1
a

: 1
b

: 1
c

: 1
d

)
= (114 : −57 : −66 : −418) ,(

1
A

: 1
B

: 1
C

: 1
D

)
= (−833 : 2499 : 1617 : 561) .
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Figure 1: Single-core architecture, which contains all control and datapath logic for
computing Algorithm 1 (scalar_mult).

The Montgomery ladder consists of 251 ladder steps, each one performing a differential-
addition and a differential-doubling operation. Each ladder step includes a conditional
swap of two pairs of coordinates.

3 Hardware architectures
The implementation of Algorithm 1 (scalar_mult) is the essential task of our hardware
design. We present a single-core architecture for low-latency applications and a multi-core
architecture for high-throughput applications. Our single-core architecture performs two
scalar multiplications on the Kummer surface at a time by scheduling the field operations
for point addition and point doubling such that it is possible to interleave a second scalar
multiplication with no cycle penalty. The top-view architecture is illustrated in Fig. 1. It
takes two points in their wrapped representation as input, processes them, and returns two
points in their wrapped representation as output. We logically divide our single-core design
into three parts that are described in the next subsections: memory, datapath, and control
logic. Further we describe a multi-core architecture that instantiates 4 independently
operating cores and can perform up to 8 scalar multiplications with different keys and
input points.

A note on fault attacks. The two interleaved scalar multiplications can inherently be
used as a redundancy countermeasure to thwart fault attacks in our designs, i.e. by
performing two interleaved scalar multiplications on the same input data and subsequently
compare the result bit-wise for equivalence. This can prevent a large number of fault
attacks such as the powerful Biehl-Meyer-Müller DFA [BMM00]. The countermeasure can
be applied to both our single- and multi-core architectures without applying any changes
to the presented hardware designs.

3.1 Memory
The memory consists of a 16×127-bit register file and a 6×127-bit simple dual-port RAM.
The register file is divided in four larger blocks, where each block is 4×127-bit wide. We
follow the logical structure of Algorithm 4 (mont_ladder) in which operations are performed
on two points at a time (e.g. V1, V2 on line 8). We also use a simple dual-port RAM for
storing the wrapped input point xp

yp
,
xp

zp
, and xp

tp
, which is accessed in read-only mode. Note

that when no design constraints are set, the used synthesis tool instantiates distributed
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Figure 2: Datapath including register file.

RAM instead of block RAM for storing this point. We found out that forcing the synthesis
tool to use block RAM resulted in a 10% decrease of the maximum clock frequency.

3.2 Datapath
The datapath including the register file is shown in Fig. 2. It implements the required
field operations in Fp. The register blocks Ri and R′i for i ∈ [1, 2] are required for storing
intermediate values of the first and the second scalar multiplication, respectively. The
register blocks R1 and R′1 are initialized with the constants V5 = (a : b : c : d) whenever
Algorithm 1 (scalar_mult) is started. The modular multiplier is preceded by the multiplexer
m3 that allows to perform field operations using various input sources. The output of the
constant modular multiplier and the Hadamard module serve as fast forward input paths
for the modular multiplier. These fast forward paths are required when data needs to
be processed immediately without any further delay. Moreover, the modular multiplier
can process 127-bit inputs that originate from the RAM and are required in each ladder
step (e.g. multiplication by xp

yp
). We can store each field operation output in the register

blocks, i.e. Ri and R′i, by accordingly selecting the signals with the multiplexers m1 and
m2. Although large multiplexers result in an increased area utilization, they allow greater
flexibility in scheduling instructions which leads to higher overall performance. All select
and enable signals in Fig. 2 are driven by the control logic (see Sect. 3.3).

Modular multiplier. We have implemented a modular multiplier that computes and
accumulates its digit-products in full parallel. Combined with carefully placed pipeline
stages, this parallel approach enables us to continuously fetch new input operands and return
the result after 7 cycles including the reduction step. This property is not only beneficial
for the performance, but also required in order to interleave a second scalar multiplication.
Our implemented modular multiplier is used for both squaring and multiplication in Fp.
Fig. 3 shows the hardware architecture of our modular multiplier. After all digit-products
have been computed by the DSP blocks, they need to be summed up by an adder-tree.

This adder-tree is commonly implemented in slower standard LUT logic and poses
the bottleneck in most multiplier designs. A major problem is constituted by the large
adder sizes that scale up to twice the operand width, i.e. 254-bit. Deriving a high-speed
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Figure 4: Left: Non-standard tiling [RMIT14] for a 127×127-bit multiplier. Right: Non-
standard tiling for smaller a 78×78-bit multiplier.

design is also complicated by the varying sizes of the adders in the adder tree, which can
lead to inefficient pipelining. To overcome this problem, Koppermann et al. [KSHS17]
presented a technique for high-speed multiplication in Mersenne prime fields that reduces
and equalizes the adder sizes. The main idea is to rearrange the digit-products on the
bit-level while combining the multiplication with the fast reduction method proposed by
Crandall in [Cra92].

In modern FPGAs, DSP blocks typically contain asymmetric multipliers, e.g. in case
of the Zynq-7020 FPGA a 17×24-bit multiplier is contained in each DSP block. In order
to exploit these asymmetries to reduce the amount of DSP blocks used to perform large
multiplications, different optimization strategies were proposed [dDP09, GACL12, SC10].
In particular, the authors of [dDP09] showed that operand decomposition boils down to a
tiling problem, where each tile represents the result of a smaller digit-product computation.
Roy et al. [RMIT14] proposed the non-standard tiling algorithm as a solution to this tiling
problem. They presented a formal procedure to compute a non-standard tiling for large
multipliers with arbitrary operand sizes. For a 127×127-bit multiplier, Fig. 4 presents the
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implemented non-standard tiling [RMIT14]. The left side of Fig. 4 illustrates the initial
tiling for the 127×127-bit multiplier. With this initial tiling, the problem of finding an
efficient placement for a 127×127-bit multiplier is reduced to a 78×78-bit multiplier. Again,
we perform non-standard tiling for the reduced problem which results in a smaller 14×14-bit
multiplier M43. The size of the tiles Mi where i ∈ [1, 43] \ {25, 26} corresponds to the
asymmetric multiplier widths and can consequently be implemented in a single DSP block.
The two tiles M25 and M26, however, correspond to a 126×1-bit multiplier and a 1×127-bit
multiplier, respectively, both implemented in LUT logic. The horizontal side represents
operand A and the vertical side represents operand B. Comparing non-standard-tiling
with standard-tiling, only 41 DSP blocks are required instead of 64 [SC10].

Constant modular multiplier. In order to speed up the Montgomery ladder, we instantiate
a constant modular multiplier that multiplies one of the constants in

{ 1
a ,

1
b ,

1
c ,

1
d ,

1
A ,

1
B ,

1
C ,

1
D

}
with a variable 127-bit operand. The constant modular multiplier returns with a latency
of 4 cycles, which is 3 cycles less than the generic modular multiplier, and is implemented
using 6 DSP blocks only. The multiplication itself is pipelined and followed by two
reduction steps including a conditional negation. The conditional negation is required
for the multiplication with projectively negative constants, i.e. 1

b ,
1
c ,

1
d , and

1
A . For all

other constants, i.e. 1
a ,

1
B ,

1
C , and

1
D , the negation output is ignored. All constants are

hard-decoded and then selected for multiplication via a select signal. Overall, 12 modular
multiplications in each ladder step can be replaced by constant multiplications.

Hadamard transform. A core computation step in Algorithm 4 (mont_ladder) is the
Hadamard transform. It is essentially composed of 4 modular additions and 4 modular
subtractions, which we implemented using 2 modular adders and 2 modular subtractors.
In order to parallelize the execution of independent operations, a modular adder is
implemented using two addition circuits that are connected in series, each one having a
clocked register output. The first adds two 127-bit wide operands and the second reduces
the sum again by using Crandall’s fast reduction [Cra92]. Because a register is placed
after each addition circuit, a result is obtained each cycle after an initial delay of 2 cycles.
The modular subtraction circuit is implemented similarly; modular addition and modular
subtraction are both implemented in LUT logic.

Two successive Hadamard transforms, i.e. H(V1),H(V2), are computed at the beginning
of each ladder step before any other computation can take place. Therefore, the modular
adder and the modular subtractor circuits are connected with a multiplexer in a way
that two Hadamard transforms are finished in successive clock cycles. Table 2 shows
the scheduling for a Hadamard transform of two points, i.e. V1 = (x1 : y1 : z1 : t1) and
V2 = (x2 : y2 : z2 : t2), plotted over cycles to compute Equation (1) and Equation (2) (see
Sect. 2.3). The cycles plotted under the corresponding component (e.g. modular adder A1)
represent the processing stage. To give an example, u1 in cycle 1 means that u1 = x1 + y1
is in the first processing stage in the modular adder. In cycle 3, the computation of u1 is
finished and can be further processed by other modules. The transformed points H(V1)
and H(V2) are returned in the 5th cycle and in the 6th cycle, respectively.

A note on lazy reduction. To reduce the number of modular reductions and hence
the number of required cycles, lazy reduction is a popular technique. In software, lazy
reduction comes typically for free because field elements are often smaller than a multiple
of the word size which results in unused bits at higher positions. In hardware, however,
lazy reduction leads to increased memory requirements, larger multipliers, and a more
complex control logic to distinguish between reduced and unreduced field elements when
initiating a modular multiplication. As a consequence, we neglected the lazy reduction
technique.
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Table 2: Instruction scheduling for two successive Hadarmard computations as in line 8 of
Algorithm 4 (mont_ladder) using modular addition (A) and subtraction (Z).

A1 A2 Z2 Z2

Cycle 1 3 1 3 1 3 1 3

1 u1 - v1 - r1 - s1 -
2 u2 - v2 - r2 - s2 -
3 xH1 u1 zH1 v1 yH1 r1 tH1 s1
4 xH2 u2 zH2 v2 yH2 r2 tH2 s2
5 - xH1 - zH1 - yH1 - tH1

6 - xH2 - zH2 - yH2 - tH2

Table 3: Latency and throughput of field operations.

Operation Latency Throughput
(cycles) (op/cycles)

Addition/subtraction in Fp 2 1
Multiplication/squaring in Fp 7 1
Constant multiplication in Fp 4 1
Inversion in Fp 952 1/476
Hadamard transform 4 1/2

3.3 Control logic
The control logic takes care of performing the necessary memory operations in the register
file and RAM, and schedules the instructions required by Algorithm 1 (scalar_mult). The
unwrapping and wrapping function, and the Montgomery ladder logically divide the control
logic into separate control blocks. The control logic is implemented using a Finite State
Machine (FSM). Inside the FSM multiple counters are used to track the processing status of
arithmetic modules such as the modular multiplier. For an efficient instruction scheduling,
the latency and throughput characteristics of the underlying functions such as modular
multiplication and Hadamard transform are required. Table 3 shows the performance of
the field operations in Fp and the Hadamard transform. The throughput denotes how often
an instruction can be scheduled, e.g. a throughput of 1/2 (op/cycles) means 1 instruction
can be scheduled in 2 cycles. Table 4 reports the latency of all high-level operations.

Montgomery ladder. Over 90 percent of all cycles are spent for the Montgomery ladder,
and hence it is crucial to efficiently schedule field-level instructions. Table 5 shows
the instruction scheduling for a Montgomery ladder step for two scalar multiplications.
Instructions of the second scalar multiplication are complemented by a prime symbol, e.g.
y′1. Montgomery ladder calls 251 Montgomery ladder steps, each implementing a combined
differential double-and-add which takes 41 cycles to run. All scheduled instructions denote
the expected output, e.g. in cycle 5 the squaring y3 is an abbreviation and stands for the
computation of y3 = V3,y = V1,yV1,y as described in line 9 of Algorithm 4 (mont_ladder).
The conditional-swap function is implemented with no timing-penalty by simply swapping
the arguments of the first two Hadamard transforms. Our control logic schedules modular
multiplications and multiplications by constants in parallel for best performance results.
Note that the constant multiplier uses the direct output of the modular multiplier.
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Table 4: Latency of high-level functions.

Operation Latency
(cycles)

Unwrap 30
Combined differential double-and-add 41
Montgomery ladder 10,302
Wrap 998

Scalar multiplication 11,330

Table 5: Instruction scheduling for single ladder step as described in Algorithm 4
(mont_ladder) for the modular multiplier (M), the constant modular multiplier (Mc), and
the Hadamard transform module (H).

M H Mc M H Mc

Cycle 1 8 1 5 1 5 Cycle 1 8 1 5 1 4

1 - - H1 - - - 28 z3 z′3 - - z′5 y′6
2 - - H2 - - - 29 t3 t′3 - - t′5 z′6
... - - - - - - 30 x3 x′3 - - x′5 t′6
5 y3 - - H1 - - 31 y6 y4 H′2 - - x′6
6 y4 - - H2 - - 32 z6 z4 - - - z′5
7 z4 - - - - - 33 t6 t4 - - - t′5
8 t4 - - - - - 34 x4 y3 H′1 - y5 x′5
9 x4 - - - - - 35 y′4 z3 - H′2 z5 -
10 z3 - - - - - 36 z′4 t3 - - t5 -
11 t3 - - - - - 37 t′4 x3 - - x5 -
12 x3 y3 H′1 - y5 - 38 y′3 y6 - H′1 - y5
13 - y4 H′2 - y6 - 39 z′3 z6 - - - z5
14 - z4 - - z6 - 40 t′3 t6 - - - t5
15 - t4 - - t6 - 41 x′3 x4 - - - x5
16 y′3 x4 - H′1 x6 y5 1 y′6 y′4 - - - -
17 y′4 z3 - H′2 z5 y6 2 z′6 z′4 - - - -
18 z′4 t3 - - t5 z6 3 t′6 t′4 - - - -
19 t′4 x3 - - x5 t6 4 x′4 y′3 - - y′5 -
20 x′4 - H2 - - x6 5 - z′3 - - z′5 -
21 z′3 - - - - z5 6 - t′3 - - t′5 -
22 t′3 - - - - t5 7 - x′3 - - x′5 -
23 x′3 y′3 H1 - y′5 x5 8 - y6

′ - - - y′5
24 y4 y′4 - H2 y′6 - 9 - z6

′ - - - z5
′

25 z4 z′4 - - z′6 - 10 - t6
′ - - - t5

′

26 t4 t′4 - - t′6 - 11 - x4
′ - - - x5

′

27 y3 x′4 - H1 x′6 y′5 - - - - - - -
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Table 6: Device utilization and maximum clock frequency on Xilinx Zynq-7020 FPGA.

Component Single-core Multi-core Available@138.7 MHz @129.2 MHz

LUTs 8,764 (16%) 35,015 (66%) 53,200
Registers 6,852 (6%) 27,300 (26%) 106,400
DSP48E1 49 (22%) 196 (89%) 220
Block RAM 0 (0%) 0 (0%) 140
Occupied slices 2,657 (20%) 10,554 (79%) 13, 300

Modular inversion. We use Fermat’s little theorem to compute the multiplicative inverse
x−1 of an integer x ∈ Fp\{0}. The finite field inversion is given by x−1 ≡ x2127−3.This
exponentiation is computed with a sequence of 126 modular squarings and 10 modular
multiplications as described by Renes et al. [RSSB16]. We implemented the modular inver-
sion such that two elements of the prime field are inverted simultaneously by interleaving
the field multiplication and squaring operations.

3.4 Multi-core architecture
For multi-core architectures, the amount of cores which can be instantiated in parallel is
strongly limited by the number of DSP blocks available on the target FPGA device. Our
multi-core architecture implements 4 independently operating single-cores each featuring
its own control logic. As a result, up to 8 scalar multiplications with different keys and
input points can be computed. Instantiating multiple single-cores is a common concept
and was similarly applied by Sasdrich and Güneysu [SG15] for Curve25519 and Järvinen
et al. [JMAL16] for FourQ. Sasdrich and Güneysu used a shared inversion module and
Järvinen et al. used a shared control logic component. We also implemented a multi-core
architecture with a shared control logic using a single shared key to reduce the area
utilization. However, the LUT logic was only reduced by approximately 10% which is a
rather small improvement compared to its limitations. In fact, this shared control logic
architecture requires all scalar multiplications to be started in parallel as there is only one
control logic for all cores.

4 Results and analysis
We synthesized our single-core and multi-core architectures with Xilinx Vivado 2017.2 on
a Xilinx Zynq-7020 FPGA (XC7Z020CLG484-3). All our results are obtained after place-
and-route. Table 6 presents the area utilization including the maximum clock frequency
for the single-core and multi-core architecture. Our single-core architecture requires 20%
of the available slices and 22% of the available DSP blocks. Through according design
methods and proper constraining we achieve a maximum clock frequency of 138.7 MHz,
which corresponds to a clock period of 7.21 ns. Two interleaved scalar multiplications
require 11,330 cycles, and thus a session-key can be computed with a latency of 82 µs.
The interleaving of two scalar multiplications can then be either used to effectively double
the throughput to 24,482 scalar multiplications per second or provide resistance against
fault attacks. To enable a fair comparison with other works, we assume that only a single
input point and secret scalar is available at a time for the single-core architecture i.e. the
interleaving of two scalar multiplications is used as an additional fault countermeasure.
For our multi-core design we instantiate the maximum amount of 4 single-cores on the
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Table 7: Comparison of single- and multi-core architectures of variable-base scalar multi-
plications featuring a 128-bit security level on a Zynq-7020.

Reference Curve Cores Resources Latency T-put

Slices DSP BRAM (µs) (op/s)

[SG15] Curve25519 1 1,029 20 2 397 2,519
[JMAL16] FourQ (Mont.) 1 565 16 7 310 3,222
[JMAL16] FourQ (End.) 1 1,691 27 10 157 6,389
This work Kummer 1 2,657 49 0 82 12,224

[SG15] Curve25519 11 11,277 220 22 397 32,304
[JMAL16] FourQ (End.) 11 5,697 187 110 170 64,730
This work Kummer 4 10,554 196 0 88 91,226

Zynq-7020 FPGA. Compared to our single-core design, we see a decrease in the maximum
clock frequency; using Vivado tools, we can place-and-route our design with a clock
frequency of 129.2 MHz which corresponds to a clock period of 7.74 ns. For the multi-core
architecture with independently operating single-cores we report a throughput of 91,226
scalar multiplications per second.

Table 7 provides a comparison of our results with state-of-the-art scalar multiplication
implementations on the same Zynq-7020 FPGA device all featuring a 128-bit security
level. Namely, we compare our work with the Curve25519 implementation by Sasdrich and
Güneysu [SG15] and the FourQ implementation by Järvinen et al. [JMAL16]. Comparing
the latency of the single-core designs, our proposed implementation is 1.91-times faster
than FourQ using endomorphisms, 3.78-times faster than FourQ using the Montgomery
ladder, and 4.84-times faster than Curve25519. The improvement in latency is related to
the increased area utilization i.e. our design demands 1.57-times and 2.58-times more slices
than FourQ using endomorphisms and Curve25519, respectively. Yet, our implementation
performs better than the fastest implementation so far (FourQ with End.) in both the
LUT-latency product (217,787 against 265,487) as well as the DSP-latency product (4,018
against 4,239).

Our multi-core architecture with independently operating single-cores offers a through-
put that is 1.41-times higher than FourQ and 2.82-times higher than the Curve25519
implementation. In terms of latency, we also report the fastest scalar multiplication, i.e.
our architecture is 1.93-times faster than FourQ and 4.51-times faster than Curve25519.
Note that all reported multi-core designs use the maximum number of cores that can be
successfully placed on the target device. However, only our multi-core design features
fully independent single-cores, i.e. neither the inversion unit, such as the Curve25519
implementation [SG15], nor the scalar multiplication unit, such as FourQ implementation
[JMAL16], are shared. Also note that we make use of distributed RAM implemented
by LUT logic for memory, which leaves a notable amount of BRAM available for other
applications. We emphasize that Curve25519 and FourQ could also benefit from interleaved
scalar multiplication. However, this was not included in the corresponding implementations
and thus no results can be compared.

5 Conclusions
We presented the first hardware implementation results for a key exchange on the Kummer
surface of Gaudry and Schost’s genus-2 curve. Although a Kummer surface based key
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exchange has an increased number of field operations per ladder step when compared
to elliptic curves, our presented architectures perform a scalar multiplication with lower
latency and higher throughput than any other reported prime-field elliptic curve key
exchange featuring a 128-bit security level on a Zynq-7020 FPGA. These results set new
records for latency and throughput among state-of-the-art 128-bit secure key exchange
implementations known so far, such as Curve25519 [SG15] and FourQ [JMAL16].
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