

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

Dennis R. E. Gnad, Jonas Krautter, Mehdi B. Tahoori

INSTITUT FÜR TECHNISCHE INFORMATIK – CHAIR OF DEPENDABLE NANO COMPUTING

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Motivation

digital circuits affect analog subsystem

Paper at a Glance

Goal: Prove Information Leakage inside Chip:

Digital (Attacker) \rightarrow Analog \rightarrow Digital (Victim)

Method:

- Sample ADC during cryptographic algorithm
- Leakage Assessment + Correlation Power Analysis (CPA)
- Results:
 - Most tested platforms leak
 - Successful key recovery with CPA

0

700.0

600.0

500.0

400.0

200.0

100.0

AES Vdd

200

ADC=Analog-to-Digital Converter

Background & Related Work

Experimental Setup

Results

Conclusion

Background & Related Work

Experimental Setup

Results

Conclusion

Background: Power Distribution Networks (PDNs)

- Supplies current to all transistors in a chip
- Complex network: Resistors (R), Capacitors (C), Inductors (L)
 - Some by design, others unwanted = parasitic
- Circuit activity causes voltage fluctuations by current changes i(t)

$$V_{noise} = L \frac{di(t)}{dt} + i(t)R$$

Detailed Adversarial Model – Possible Attack Vectors

- ADC or any sensor (e.g. Temperature)
- Logical Isolation: Memory Protection, etc.
- Victim leaks information into analog part
 - Affects ADC!
- **1. Attacker:** acquires leakage by ADC
 - 2. <u>Attacker</u> with remote access to ADC data

Background: Power Analysis and Leakage Assessment

Power Analysis Side-Channel Attacks (Kocher et al. 1999)

- Secret key recovery by analyzing power measurement traces
- Correlation Power Analysis (CPA), Brier et al. 2004
 - Correlate power measurements with secret key-based hypothesis

Leakage Assessment (Goodwill et al. 2011, Schneider et al. 2015)

- Compare:
 - Set of power traces from random encryptions
 - Set of power traces from **fixed** (same) encryptions
- Statistical difference indicates leakage, allow attacks

Welch's t-test:

[|]t| > 4.5 considered sufficient

Selected related work

"Inside Job" (Schellenberg et al. DATE'18), extended by (Zhao et al. S&P'18)

- CPA inside FPGA or FPGA-SoC
- Indirect voltage measurement
- Screaming Channels" (Camurati et al. CCS'18)
 - Mixed-Signal Chip, leak over radio, in proximity
 - Digital Analog \rightarrow
- Receiver (Attacker) Side-channel leakage across borders" (Schmidt et al. CARDIS'10)
 - Successful power analysis on I/O port pins of various chips
- \rightarrow Here: **Digital** \rightarrow **Analog** \rightarrow **Digital** possible on-chip?

Background & Related Work

Experimental Setup

Results

Conclusion

Experimental Setup

Platforms

- Espressif ESP32
 - ESP32-devkitC Dual-Core Xtensa CPU, Wifi, ..
 @ 80MHz
- ST Microelectronics STM32
 - L4 IoT Node Single-Core ARM CPU, Wifi On-Board, ... @ 80MHz
 - F407 Discovery Single-Core ARM CPU, Ethernet @ 168MHz

Software provided by both vendors:

- mbedTLS AES and modular exponentiation (used in RSA, ..)
- FreeRTOS
- GCC with standard compiler optimization "-Os"

Experimental Setup

Workstation Microcontroller *Victim Task* Helper signal *Attacker Task* on encryption Measurement Leakage Assessment Encryption --> ADC trace or **CPA** Voltage Noise, Crosstalk, ... "Leaky Noise" **UART TX** ADC trace ADC **Encryption Request** UART RX {Vdd, GND, N/C}

ADC=Analog-to-Digital Converter

Background & Related Work

Experimental Setup

Results

Conclusion

Basic Test: Compare ADC with Oscilloscope

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Leakage Assessment Prerequisites

 Modular Exponentiation
 1,000 traces averaged
 Fixed + Random Encryptions

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Leakage Assessment Results Summary

- AES: 1,000,000 traces, Modular Exponentiation: 100,000 traces
- ADC not always noisy (σ =0)
- Most cases with noise leaky, |t| >> 4.5

Platform	Leakage detected ?						
	AES-128 (Fast ADC)			Modular Exponentiation (Slow ADC)			
	Vdd	GND	N/C	Vdd	GND	N/C	
ESP32-devkitC	yes	σ=0	yes	no	σ=0	no	
STM32L4 IoT Node	yes	σ=0	yes	yes	σ=0	σ=0	
2x STM32F407 Discovery	yes	yes	yes	yes	yes	yes	

Correlation Power Analysis Attack on AES

STM32F407 Discovery

CPA:

10 Million traces, simple alignment applied

Ciphertext-based

- 1. Default setup: ADC@GND, 168MHz, -Os Optimization
 - Less than 25 ADC samples for full AES
 - 2 secret key bytes recovered with high confidence
- 2. Simplified setup: ADC@Vdd, 56MHz, -O0 Optimization:
 - ~60 samples for full AES
 - 6 secret key bytes recovered with high confidence

Correlation Power Analysis results (best bytes)

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Background & Related Work

Experimental Setup

Results

Conclusion

"Leaky Noise" – Conclusion

Attacker can recover the data

➤ Feasible:

- Attacks across security domains in Mixed-Signal Chips
- Remote power analysis attacks

Application developers: Prevent ADC-use during cryptography

SoC integrators: Consider digital noise a security risk

Potentially: Always apply power analysis countermeasures (?!)

Thanks for your Attention!

Acknowledgements: Kevin Schäfer from Rutronik & All Reviewers

Questions?

Following: Backup Slides

Tasks Experimental Setup in FreeRTOS

Simplified Flow:

Figure 3: Description of one loop iteration of the two FreeRTOS tasks.

Experimental Setup – Software Details

Table 1: Used vendor toolchain versions and respective library and compiler versions

Platform	Framework	mbedTLS	FreeRTOS	Compiler(s)
Espressif ESP32-devkitC	ESP-IDF 3.1^1	2.12.0	$8.2.0 \text{ Xtensa} \text{Port}^2$	xtensa gcc $5.2.0^3$ esp 32 ulp $2.28.51^4$
ST Microelectronics STM32F407VG Discovery	${ m STM32CubeMX^5}\ 4.26.1,\ 5.0.1$	2.6.1	9.0.0	arm gcc $7.3.1^6$
ST Microelectronics STM32L475 IoT Node	${ m STM32CubeMX^5}\ 4.26.1$	$2.6.1^{7}$	9.0.0	arm gcc $7.3.1^5$

¹ Espressif IoT Development Framework https://github.com/espressif/esp-idf/

- ² Espressif explains the Xtensa Port in https://docs.espressif.com/projects/esp-idf/en/v3.1/ api-reference/system/freertos_additions.html, which mainly adds multicore support
- ³ crosstool-ng-1.22.0-80-g6c4433a-5.2.0 as linked in https://docs.espressif.com/projects/esp-idf/ en/v3.1/get-started/linux-setup.html
- 4 v2.28.51-esp32ulp-20180809, as linked in https://docs.espressif.com/projects/esp-idf/en/v3.1/ api-guides/ulp.html
- ⁵ STM32CubeMX Eclipse plug in https://www.st.com/en/development-tools/stsw-stm32095.html, 4.26.1 was used for leakage assessment, 5.0.1 was used for the CPA attack in Subsection 4.5.
- ⁶ GNU MCU Eclipse, based on arm-none-eabi-gcc 7.3.1-1.1-20180724-0637 from https:// gnu-mcu-eclipse.github.io/blog/2018/07/24/arm-none-eabi-gcc-v7-3-1-1-released/
- ⁷ For this platform, none was provided in CubeMX, but the version from STM32F407VG worked directly

Table 1: Overview of the Experiments, repeated for ADC $Pin = \{Vdd, GND, N/C\}$

Platform	Sampling Style	Algorithm	Samplerate / #Samples
ESP32-devkitC @80MHz	CPU	AES-128 RSA-2048	104 kHz / 16 20.4 kHz / 2600
STM32L475 IoT Node @80MHz	DMA	AES-128 RSA-2048	684 kHz / 64 40 kHz / 4096
STM32F407VG Discovery @168MHz	DMA	AES-128 RSA-2048	980 kHz / 32 88 kHz / 4096

ADC Sampling DMA/CPU

Different ADC sampling styles covering less or more voltage noise in the ADC data. DMA needs to be used for continuous sampling, while CPU-based will always introduce gaps

Background: Mixed-Signal and Analog

- Often shared PDN
- Well-known: Digital circuits cause noise in analog part
- Analog Components integrated with Digital
 - Analog-to-Digital Converters (ADCs), DACs, ...
 - Noise typically analyzed in signal processing terms
 - i.e. not considered data-correlated, security-relevant

Leakage Assessment

- Tries to prove a statistical dependency
- Method:
 - Acquire two sets of side-channel traces:
 - 1. Encryption with the same fixed message
 - 2. Encryption with various random messages
 - Pearson's correlation between the two sets (Welch's t-test)

Goal:

- Show that it is possible to distinguish them using the side-channel
- If the test succeeds, we can speak of *leakage*

t-test:

- Existing leakage shows that an attack probably exists
- No information on:
 - Easiness/hardness of an attack
 - How the attack can be done (used intermediate values, ..)

Order of Leakage

- Higher-order statistical moments can be used
- Sometimes only leakage in a higher order can be assessed

Formulas Power Analysis and Leakage Assessment

$$P_{hyp} = HW(SBox^{j}(K_{hyp} \oplus S_{i}))$$

$$t = \frac{\mu_r - \mu_{fixed}}{\sqrt{\frac{s_r^2}{n_r} + \frac{s_{fixed}^2}{n_{fixed}}}}$$

Leakage Assessment Trace (ADC on GND, STM32F407)

Modular Exp.

AES

All Leakage Assessment Results

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Leakage Assessment Example

Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices - CHES 2019

Correlation Power Analysis (best byte)

Vdd, -O0 Optimization

Correlation Power Analysis (best byte)

