
Leaky Noise: New Side-Channel Attack Vectors
in Mixed-Signal IoT Devices

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori

Karlsruhe Institute of Technology (KIT), Germany.
{dennis.gnad,jonas.krautter,mehdi.tahoori}@kit.edu

Abstract. Microcontrollers and SoC devices have widely been used in Internet of
Things applications. This also brings the question whether they lead to new security
threats unseen in traditional computing systems. In fact, almost all modern SoC
chips, particularly in the IoT domain, contain both analog and digital components, for
various sensing and transmission tasks. Traditional remote-accessible online systems
do not have this property, which can potentially become a security vulnerability.
In this paper we demonstrate that such mixed-signal components, namely ADCs,
expose a new security threat that allows attackers with ADC access to deduce the
activity of a CPU in the system. To prove the leakage, we perform leakage assessment
on three individual microcontrollers from two different vendors with various ADC
settings. After showing a correlation of CPU activity with ADC noise, we continue
with a leakage assessment of modular exponentiation and AES. It is shown that for
all of these devices, leakage occurs for at least one algorithm and configuration of
the ADC. Finally, we show a full key recovery attack on AES that works despite of
the limited ADC sampling rate. These results imply that even remotely accessible
microcontroller systems should be equipped with proper countermeasures against
power analysis attacks, or restrict access to ADC data.
Keywords: microcontroller · side-channel · leakage assessment · ADC · noise · power
analysis · on-chip · remote · software · internet-of-things · mbedtls · freertos · cpa

1 Introduction
Traditional applications of microcontrollers and SoCs are embedded systems with dedicated
and limited interfacing capabilities, which typically have to fulfill the requirements of
low-cost and energy efficiency. As these devices are recently used in Internet of Things (IoT)
applications, their security against remote attacks becomes a major concern [MS10, RNL11],
as several breaches have already been reported [AAB+17, RSWO17]. Unlike security for
highly dependable server systems, the energy efficiency imposes lightweight cryptography
[PPK+07]. However, there are potentially new security threats associated with the
underlying technology, which is not widely researched yet [CPM+18].

One of these technology-dependent threats is due to their Mixed-Signal-integration
of analog and digital logic on the same SoC. Inside the SoC, cross-coupling or voltage
fluctuations caused by the digital part can bias the analog circuit [SLMW93]. This bias has
been shown to even affect radio transceivers, such that electromagnetic (EM) side-channel
attacks [GMO01] can be performed in proximity of up to 10 meters [CPM+18]. One of
the most widespread analog circuits that is integrated in SoCs is an Analog-to-Digital
Converter (ADC), essential in many complex modules and applications such as temperature
sensors, wireless transceivers or multimedia audio applications, just to name a few. Even
more, multiple of such systems are often connected into complete sensor networks made
out of smart sensors [Sta08], and in so-called Edge-IoT devices [SD16]. This is evident by

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 3, pp. 305–339
DOI:10.13154/tches.v2019.i3.305-339

mailto:dennis.gnad@kit.edu,jonas.krautter@kit.edu,mehdi.tahoori@kit.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i3.305-339

306 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

the support in Amazon [Ama18] and Microsoft [Mic18] IoT cloud applications for many
SoC and microcontroller platforms.

In such mixed-signal SoCs, the analog and digital subsystems typically have a common
power supply, and are spatially close on the same die or package, leading to either crosstalk
or voltage fluctuations from the digital logic propagating into ADC measurement results,
known as one of the challenges in mixed-signal design [AGR99].

For FPGAs, it has already been shown that it is possible to mount power analysis
attacks just through software configuration [SGMT18a, ZS18, RPD+18]. Those attacks
were recently extended to other chips on the same printed circuit board (PCB) [SGMT18b],
possible through a shared power supply. For small wireless systems it has been shown that
electromagnetic side-channel leakage can be observed in close proximity of a few meters
to the device, without having to probe it directly [CPM+18]. Thus, there is increasing
evidence that power analysis attacks, originally considered a local issue, can also be used
in remote exploits.

In this paper, we present another type of power analysis side channel that can be
exploited through software, potentially remotely. We show that ADC noise, which is usually
characterized using statistical methods [LRRB05, Nat15, AR06], is not just statistical
noise, but is correlated to the activity in the digital subsystem. To assess the capability
of this side-channel, we perform leakage assessment [GGJR+11, SM15] on multiple plat-
forms. Afterwards we show a successful key recovery attack on the Advanced Encryption
Standard (AES). In summary, we make the following contributions:

• First assessment of ADC noise as a software-only power analysis side-channel, which
could be used remotely.

• Elaborate leakage assessment of this side-channel on a range of systems under different
conditions, evaluated on a real-world cryptographic library.

• Successful ciphertext-based key recovery on AES using ADC noise.

In the remaining paper, we first explain preliminaries in Section 2 regarding our adversarial
model and the essential background information, including related work. We then explain
our experimental setup in Section 3. Our results are presented in Section 4, and discussed
in Section 5. Finally, the paper is concluded in Section 6.

2 Preliminaries
2.1 Mixed-Signal Integrated Circuits
Many integrated circuits nowadays are not pure digital or pure analog, but typically contain
subsystems of both types of circuits. The more applications a single chip has to support,
the more likely the analog and digital blocks will be integrated together. One of the biggest
challenges in mixed-signal design is the noise susceptibility of the analog subsystem, which
gets affected by the higher-frequency and higher-power digital subsystem.

First of all, if the digital logic consumes high power, a voltage drop in the power
supply becomes visible through slightly reduced supply voltage, biasing analog compo-
nents [AGR99]. Especially a dI/dt-based voltage drop has become predominant in recent
years, which does not depend on absolute current, but the ratio of current change over
time [MF04, ASM07]. For very high frequency current changes, this voltage drop might
just be observable inside the chip, with voltage fluctuations traveling through the chip-
internal power supply mesh[DWB15, GOKT18], or the common substrate of the whole
die [SLMW93].

An additional effect to voltage fluctuations is chip-internal crosstalk from electromag-
netic (EM) coupling. Depending on the frequency of a signal pulsed on a wire, the wire

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 307

acts as a strong or weak radio transmitter, which also affects nearby wires, biasing wire
delays through inductive or capacitive coupling effects [SAHK98]. Digital circuits are
designed with a specific noise margin to prevent bit flips during normal operation, but
analog circuits can be biased through EM [Fio07].

In summary, it is usually hard to guarantee that digital circuits have zero effect on
an adjacent analog circuit. Instead, a mixed-signal chip is designed such that the noise
margin is considered sufficient for the application requirements. We will show that security
requirements may impose much higher restrictions on the allowed noise levels, at least
regarding the noise caused by digital components.

2.2 Analog-to-Digital Converters
Various types of ADCs are implemented in integrated circuits [LRRB05]. One of the
most common and cheaper general-purpose designs is a Successive Approximation Register
(SAR) ADC, which is also the type of ADC utilized in all of the systems evaluated in
this paper. We discuss here to which extent ADCs can be influenced by digital noise in
mixed-signal chips.

Classical ADC noise characterization analyzes the effective number of bits (ENOB) of an
ADC over its actual number of bits [LRRB05]. This effective dynamic range depends on a
number of distortion parameters, such as the signal-to-noise ratio (SNR) and spurious-free
dynamic range (SFDR). These parameters are typically characterized and tested for the
ADC circuit itself, and do not specifically involve noise from the digital subsystem of a
mixed-signal circuit [Nat15, AR06].

SAR ADCs use multiple discrete timesteps over which the conversion is performed,
where each timestep resembles one of the output bits of the ADC, i.e. a 12bit ADC
requires at least 12 ADC-internal clock cycles. In each of the timesteps, the current ADC
input value is evaluated against a specific voltage level connected to a shared analog
comparator. If we assume chip-internal noise affects a fixed voltage in a measurement
result, the least significant bits (LSBs) get affected more than the most significant bits
(MSBs). Thus, typically only during the conversion of the lower bits, a SAR ADC is
susceptible to chip-internal noise.

Another ADC type that is often integrated in SoCs or microcontrollers is a Sigma-
Delta-ADC (Σ∆-ADC), which also operates over multiple clock cycles. They perform
a sort of approximation over multiple clock cycles. In each clock cycle, the difference
of a previously measured value is compared with the input value and is integrated over
multiple cycles. This integrated value can be affected by chip-internal noise on any of the
integration clock cycles, and affect the LSBs. Through the nature of differential sampling,
some of the noise can be rejected. However, noise affects a larger time window of the ADC
result than for SAR ADCs, i.e. not just during measurement of the LSBs. So overall, we
assume chip-internal noise can affect Σ∆-ADCs about the same as SAR ADCs.

2.3 Adversarial Model
The basic principle of our adversarial model has two variants, which are summarized
in Figure 1. We consider a software-based model, in which an attacker has full or partial
access to ADC data, and a victim which is running cryptographic code. We assume
the ADC is read during the time the cryptographic code is executed, and the adversary
has access to that data, either directly through another task in the system, or indirectly
through a webserver hosting sensor data. Typically an ADC can be read simultaneously
by using a second core, Direct Memory Access (DMA), or interrupt-driven operation,
available in most microcontroller architectures.

This adversarial model applies to a broad range of applications and devices. For
instance, IoT applications based on smaller microcontrollers or SoCs are within that model,

308 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

System-on-Chip

Digital Subsystem

Side-Channel Leakage through
Voltage Noise or Crosstalk

Task A
(Victim)

Task B
(Attacker)

Proper logical
isolation

Analog Subsystem
Analog Sensor

(ADC, ...)

Valid
access

(a) Variant of the adversarial model in which a
malicious task (Task B) could gain knowledge of
secret information processed in the victim (Task A),
circumventing any access restrictions.

System-on-Chip

Digital Subsystem

Side-Channel
Leakage by Voltage
Noise or Crosstalk

Task A
(Victim)

Analog
Subsystem Analog Sensor

(ADC, ...)

Valid access
to sensor data

Task B
Webserver

Website User
(Attacker)

Gets sensor data
online and uses it
to retrieve secrets
from Task A

Proper
logical isolation

(b) Variant of the adversarial model where side-
channel leakage is embedded in sensor data that
leaves the system. An external attacker can then
use the sensor data to retrieve secrets from Task A.

Figure 1: Basic principle of the two variants of our adversarial model considered in this
paper. In both cases an ADC in the Analog Subsystem is biased from Task A in the digital
subsystem. This bias can contain secret information that Task A processes.

available from a large range of manufacturers. The Amazon IoT FreeRTOS project [Ama18]
has direct support for microcontroller boards from various manufacturers. Microsoft Azure
also supports various systems, where many smaller mixed-signal microcontroller-based
systems are included [Mic18].

2.4 Leakage Assessment
In order to systematically evaluate exploitable leakage in the investigated microcontroller
systems, we employ various leakage assessment methodologies based on non-specific fixed-
vs-random t-testing [GGJR+11, SM15]. Utilizing Welch’s t-test for evaluating side-channel
security of hardware implementations has been introduced in the seminal work by Goodwin
et al. in 2011 [GGJR+11]. The basic principle of all variants of this leakage assessment
methodology is to test if statistical differences can be found in recorded side-channel data
of the same cryptographic operation with different input values. Typically, two different
sets of input data are chosen. For each set, side-channel traces are recorded, followed by
an evaluation regarding their distinguishability.

Although a t-test evaluation does not allow an attacker to recover secret keys and break
cryptographic implementations, this method is more generic, as it does not require to
establish a hypothetical leakage model such as Correlation Power Analysis (CPA) [BCO04].
It avoids the fixation on a specific intermediate value, such as a specific AES round. We
briefly explain non-specific test-vector leakage assessment (TVLA), which we used to
evaluate basic side-channel attack vulnerability in this work.

For a secret key encryption Enc(k,m) with secret key k and plaintextm, we choose a key
k for all our experiments and generate a setMR = {mr1,mr2, ...,mrn} of random plaintexts
mri as well as a single fixed plaintext mfixed. Then, the tested platform alternatingly
computes Enc(k,mfixed) and Enc(k,mri)∀mri ∈MR, while the ADC is sampled on the
same device. On the two sets of traces, the average, variance and higher order moments
for every sample time step are computed [SM15]. The obtained values can be used to
compute arbitrary order t-values for every sample time step as shown in Equation 1:

t = µr − µfixed√
s2

r

nr
+ s2

fixed

nfixed

(1)

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 309

In Equation 1, µr and µfixed are the raw averages of the two sets of traces during
encryption of mr and mfixed, respectively, at a specific sample time step for a first order
t-test or the higher order central moments for a higher order t-test. Likewise, s2

r and
s2
fixed correspond to the respective variances for a first order t-test and the higher order
standardized moments for a higher order t-test. The amounts of random and fixed traces
are nr and nfixed.

To prove a design secure against side-channel attacks using leakage assessment, it is
usually recommended to select multiple different fixed plaintexts and perform a leakage
assessment for each of them. As we do not want to prove security but rather want to show
information leakage in ADC noise, we only evaluated a single fixed plaintext mfixed.

Exploitable leakage is assumed for |t| > 4.5, a generally accepted threshold [GGJR+11,
SM15]. A value of |t| > 4.5 relates to a confidence of > 0.99999 that the traces collected
from random encryptions and those from fixed encryptions are samples drawn from different
populations. In this paper, sampling is synchronized with the beginning of the encryption
algorithm and we restrict the leakage assessment to the middle third, as recommended
in [GGJR+11].

2.5 Correlation Power Analysis on AES
To recover secret keys of AES through power analysis, Correlation Power Analysis (CPA)
with a leakage model is a well-known standard attack [BCO04]. In order to recover a secret
AES key, an attacker collects a certain amount of power traces to eventually find a distinct
correlation between the collected traces and a power consumption model of the correct
key candidate. These power traces are collected during AES encryptions, where either
plaintexts or ciphertexts are known to the attacker. Attacks are usually performed on
single key bytes of the first or last round key, where the attacker is able to compute power
consumption models for all 28 possible key byte values in negligible time. The classical
correlation model from [BCO04] is based on the assumption that power consumption of
computations depends on the Hamming distance between intermediate values, for instance
after the SubBytes operation of AES:

Phyp = HW(SBoxj(Khyp ⊕ Si)) (2)

In Equation 2, HW(x) is the Hamming weight of x, SBoxj(x) is the (inverted) SubBytes
function of the AES algorithm and Khyp is the key hypothesis byte. Depending on whether
the first or the last round of the AES encryption is attacked, Si is one byte from either
the input plaintext or the output ciphertext, where i ∈ 0, 1, ..., 15. Moreover, SBoxj is
the normal (j = 1) AES substitution function when the first round is attacked, and the
inverted (j = −1) substitution when the last round is targeted.

Another possible Hamming weight model is based on the result of a T-table lookup.
The AES algorithm can be optimized by implementing the MixColumn and SubBytes
operations into a single table lookup, where each input byte yields a 32 bit output word.
For CPA, the Hamming weight is then based on the output word of the T-table lookup
function.

The CPA result for a single byte is based on computing the Pearson’s correlation
coefficient ρj between a hypothetical power model Phyp and the actual measured value
Ptracej

for every sampling step j, using all collected traces n:

ρj =
n ·

∑
Phyp · Ptracej

−
∑
Phyp ·

∑
Ptracej√

n ·
∑
Ptracej

2 − (
∑
Ptracej

)2 ·
√
n ·

∑
Phyp

2 − (
∑
Phyp)2

(3)

With a sufficient amount of traces, the correlation for the correct key byte value will
eventually differ significantly at a specific sampling step from the correlations with the
incorrect key byte values, allowing the attacker to determine the correct secret key byte.

310 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

A successful CPA depends on traces that are collected synchronous to the encryption
algorithm. In this paper, we perform an alignment to reduce synchronization inaccuracies.
We compute the total average trace over all collected traces and use a normalized cross-
correlation based alignment algorithm. Each trace is shifted within a defined range
and the normalized cross-correlation with the total average trace is computed as follows
in Equation 4:

ρcc(s) = 1
σ · σt

∑
i

(µi − µ) · (ti+s − µt) (4)

In the above equation, σ is the total standard deviation over all values, σt is the standard
deviation over the current trace, µi is the total average at sampling point i, µ is the total
average over all values, ti+s is the current trace value at sampling point i+ s and µt is the
total average of the current trace. The maximum cross-correlation value defines a new
trace shifted by s, which is aligned with the total average.

2.6 Related Work
Fault or side-channel attacks that can be exploited even remotely through software are
recently increasing. Probably the most impactful findings have been the Spectre and Melt-
down speculative execution attacks that use cache timing side-channels as covert information
channels [KGG+18, LSG+18]. Yet, even on the lower electrical level, software-based power
analysis side-channels and fault attacks have been shown already [SGMT18a, KDK+14].
Fault attacks that can be exploited only through software, and thus often remotely, were al-
ready shown in a range of systems[KDK+14, GOT17, TSS17, KGT18], while software-based
power side-channels have only been shown for FPGAs so far [SGMT18a, ZS18, RPD+18].

The earliest of these attacks has been rowhammer [KDK+14], which demonstrates that
faults can be caused in DRAM through malicious access patterns on the memory. These
access patterns use repetitive reading of the same memory line, which can cause faults
in an adjacent line, leading to bit flips. Because that adjacent memory line might be an
important part of protected operating system memory, certain bit flips can eventually lead
to privilege escalation and grant root access. This attack has been first shown by programs
running on the system, but later it has even been demonstrated through JavaScript in a
web browser [GMM15].

Another example in which faults can be caused in software is an ARM-based SoC,
secured by ARM TrustZone. TrustZone is designed to securely isolate various components
of an SoC, and can also establish a Trusted Execution Environment (TEE) for trusted
applications on the ARM cores. The CLKSCREW [TSS17] attack shows how power
management can be reprogrammed and exploited by even untrusted applications on the
ARM CPU to affect trusted applications or hardware in the SoC which otherwise should
not be accessible. Using CLKSCREW, the used RSA signature scheme in TrustZone can
also be subverted, leading to execution of self-signed applications.

Fault attacks have also been shown through software access to FPGAs. FPGAs get
increasingly adopted as cloud accelerators, with prospects of virtualized multi-tenant
FPGAs. In one attack [GOT17], severe faults can be provoked through voltage drops,
leading to a denial of service of the complete FPGA accelerator board. These faults can
be generated through the re-use of FPGA primitives as ring-oscillators, and enabling them
in the right frequency pattern, to target the resonance frequencies of the respective power
regulator. In a second work, it has been shown that these faults can also be caused in a
more controlled way [KGT18]. Using these more fine-grained fault injections, differential
fault attacks on other parts of the FPGA become feasible, which is a high risk for future
multi-user FPGA applications.

To perform power analysis side-channel attacks through software, FPGAs provide
sufficient configuration flexibility [SGMT18a, ZS18, RPD+18]. The threat model is similar

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 311

to fault attacks on multi-tenant FPGAs, in which one of the users attacks another to
extract secret data. In these attacks, sensors are synthesized using FPGA logic, which
is normally intended for digital circuits. Yet it is feasible to indirectly measure voltage
through the speed differences of the components, which are affected by minor voltage
fluctuations in the chip-internal power supply. A simple and fairly slow sensor is to count
the amount of oscillations of one or more ring-oscillators [ZS18, RPD+18]. In another work,
a sensor is used that measures the propagation of the clock signal through a predefined
path. By counting the propagation depth into the path, an indirect voltage reading can
be acquired [SGMT18a], reaching higher sampling rates than the oscillator-based sensor.
Either way, the work showed sufficient side-channel leakage measured by the respective
sensor variants for key recoveries of a simple AES [SGMT18a], and textbook RSA [ZS18].

Recently, it was shown how the noise in mixed-signal systems can be exploited by a
semi-remote attack [CPM+18], i.e. from a short distance. In their work, small wireless
IoT devices are attacked, which integrate the wireless radio circuit together with digital
logic. When the digital logic performs cryptographic operations, leakage through the
silicon substrate affects the analog radio circuit. If that circuit is used, a fraction of the
side-channel leakage from the cryptographic operations can actually be observed in the
electromagnetic wave emitted by the radio circuit into the nearby environment. In this
way, EM leakage is essentially extended to a larger range than usual [LDMPT15]. This
leakage was sufficient to extract the secret keys of a simple tinyAES implementation from
within a distance of up to 10 meters, and 1 meter for mbedTLS.

A similar effect of leakage among chip components was shown for microcontrollers
in [SPK+10], in which side-channel leakage could also be observed on digital port pins not
connected to the power supply. Thus, it is also an indication that an ADC could observe
such leakage if it is connected to a port pin from the inside.

3 Experimental Setup
We show the overview of our common experimental setup in Figure 2. The basic setup
consists of a set of software components and different microcontroller boards that all have
basic hardware features like ADC or UART modules. We use the software stacks provided
by the board vendors themselves, which is very similar across the boards. The stacks are
all based on the common security library mbedTLS [ARM16] and the real-time operating
system FreeRTOS [BA19]. These serve merely as a readily available proof of concept
platform. We do not exploit any particular vulnerabilities or side effects from this stack.
In the following subsections, we explain more details of this experimental setup.

3.1 Hardware Platforms
Three different platforms are evaluated in our experiments, with the same basic experi-
mental setup as in Figure 2. All of the used platforms are evaluation boards for 32-bit
microcontroller systems that can be used in IoT applications. These are the ESP32-devkitC,
STM32L475 IoT Node, and two copies of the STM32F407VG Discovery, which were bought
apart from each other. These two boards were checked in order to see how sample variation
affects the results.

In the two STM32 microcontrollers, a Memory Protection Unit (MPU) is integrated
to prevent operating system tasks from reading memory outside their allowed range. We
did not use that unit, but it shows that these systems actually support a certain level of
isolation, which could potentially be broken through the ADC noise side-channel.

All platforms run in an operating frequency range of 80-168 MHz, and respective ADC
sampling frequencies were chosen, such that a whole trace of one cryptographic operation

312 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

WorkstationMicrocontroller

ADC trace

Encryption
Request

FreeRTOS

Task A, encrypts Task B, measures

secret data

mbedTLS

CPU core(s)

UART TXADC DMA (if available)

ADC trace

UART RX

ADC Pin connected to {Vdd, GND, N/C}

msgfix=const.
for i=1...1000000:
 req(msgfix)
 fixtraces[i]=recv()
 req(rand())
 randtraces[i]=recv()
assess(fixtraces,
 randtraces)

recv()

req(..)

Helper signal
on encryption

 Voltage Noise
or Crosstalk

*Attacker**Victim*

Figure 2: Overview of our common experimental setup, shared among the used platforms.

can be saved in internal SRAM memory. The ADCs of these platforms all support a 12-bit
operation mode, which we selected when not noted otherwise.

The power supply on all the microcontroller boards uses the 5 V USB power as input,
which we supplied from a standard PC USB output. All boards use a voltage converter to
produce a 3.3 V voltage for the Vdd of the respective controller. In the STM32F407VG
Discovery and STM32L475 IoT Node platform, the manufacturer added a compensation
network of capacitors and inductors through which the 3.3 V is connected to the ADC
reference pin. We did not do any modifications on any of the boards, and thus also
kept this compensation network. In the ESP32-devkitC platform, only an internal ADC
reference exists. The ADC of this platform can also be internally connected to Vdd, which
we used throughout the results in this paper for ’Vdd’, instead of an external connection.
The ESP32-devkitC contains three CPU cores, with two Xtensa 32-bit CPUs and a ultra-
low-power (ULP) core that can run independently and also collect ADC samples. The
STM32F407VG Discovery and STM32L475 IoT Node are single core platforms with Cortex-
M4 CPUs, such that DMA is required to sample the ADC in parallel to a running CPU.
This information is listed together with details on sampling in Subsection 3.3, Table 2.

3.2 Software Environment
On the software side, we use two operating system tasks in the system. One task encrypts
plaintext messages received through UART from an attached workstation, while another
has access to ADC data. The detailed operation is explained in the following Subsection 3.3.

In all of the platforms, we used the development environment of the vendor and the
respectively provided library versions, of which we provide an overview in Table 1. For the
ESP32 platform, the Espressif IoT Development Framework (ESP-IDF) was used, which
integrates the listed mbedTLS and FreeRTOS versions. A project is based on a simple
Makefile that includes an ESP-IDF makefile. The compiler and assembler versions come
from the official setup guide, and we used the default ‘Release’ compiler optimization
for size (-Os). The STM32CubeMX software used for the ST Micorelectronics platforms
is a code generator, generating Makefile-based projects, also integrating mbedTLS and
FreeRTOS. The official ARM GCC compiler was taken through a package provided for
the Eclipse Development Environment and we also used optimization for size (-Os). Only
for a single experiment on Correlation Power Analysis (CPA), -O0 was used, which is
specifically mentioned in the results later.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 313

Table 1: Used vendor toolchain versions and respective library and compiler versions
Platform Framework mbedTLS FreeRTOS Compiler(s)

Espressif ESP32-devkitC ESP-IDF 3.11 2.12.0 8.2.0 Xtensa
Port2

xtensa gcc 5.2.03

esp32ulp 2.28.514

ST Microelectronics
STM32F407VG Discovery

STM32CubeMX5

4.26.1, 5.0.1 2.6.1 9.0.0 arm gcc 7.3.16

ST Microelectronics
STM32L475 IoT Node

STM32CubeMX5

4.26.1 2.6.17 9.0.0 arm gcc 7.3.15

1 Espressif IoT Development Framework https://github.com/espressif/esp-idf/
2 Espressif explains the Xtensa Port in https://docs.espressif.com/projects/esp-idf/en/v3.1/

api-reference/system/freertos_additions.html, which mainly adds multicore support
3 crosstool-ng-1.22.0-80-g6c4433a-5.2.0 as linked in https://docs.espressif.com/projects/esp-idf/

en/v3.1/get-started/linux-setup.html
4 v2.28.51-esp32ulp-20180809, as linked in https://docs.espressif.com/projects/esp-idf/en/v3.1/

api-guides/ulp.html
5 STM32CubeMX Eclipse plug in https://www.st.com/en/development-tools/stsw-stm32095.html,
4.26.1 was used for leakage assessment, 5.0.1 was used for the CPA attack in Subsection 4.5.

6 GNU MCU Eclipse, based on arm-none-eabi-gcc 7.3.1-1.1-20180724-0637 from https://
gnu-mcu-eclipse.github.io/blog/2018/07/24/arm-none-eabi-gcc-v7-3-1-1-1-released/

7 For this platform, none was provided in CubeMX, but the version from STM32F407VG worked directly

Please note that STM ships an old mbedTLS with their recent development framework.
For our evaluation, however, this is not relevant, since we verified that the used functions
for our experiments mbedtls_internal_aes_encrypt and mbedtls_mpi_exp_mod did not
contain any significant changes that would defeat the comparability of our results.

We evaluate AES-128 for single encryptions of 128-bit plaintext messages, and respec-
tive sliding window modular exponentiation with 512-bit exponentiations. For AES we
use basic single encryptions with mbedtls_internal_aes_encrypt to prove principal in-
formation leakage. Please note that advanced operating modes of AES, like counter-mode,
are on principle also vulnerable to power analysis [Jaf07], but require more effort. A
knowledgeable attacker could deploy such attacks. For modular exponentiation, we use
mbedtls_mpi_exp_mod, which is also used in the RSA implementation of mbedTLS, but
does not prove its overall vulnerability. Please note that we only use mbedTLS such that
we have cryptographic relevant code for the leakage assessment, but not to show any new
attack on this specific library.

3.3 Sampling of Data, Transmission and Synchronization
As seen in Figure 2 in our experimental setup, a workstation PC sends encryption requests
to the microcontroller system using a simple UART interface, in which one task performs
encryptions, while another task has access to the ADC. To be able to record side-channel
leakage from the digital to the analog subsystem, the ADC must be sampled during the
time of the cryptographic operations of Task A. Task B should not acquire ADC samples
while it runs time-multiplexed to Task A, since the ADC would not receive side-channel
leakage. Thus, Task B needs to either run in parallel to Task A on a separate CPU, or use
hardware accelerated sampling, i.e. through DMA. A separate DMA module is available in
many microcontrollers or SoC systems to improve the performance of various tasks. Other
controllers offer programmable state machines or specific low-power cores that can control
the ADC and other peripherals in parallel to normal task execution on the main CPU(s).

In Figure 3 we show a more detailed description how the two tasks are executing in
parallel in our experiments. More detailed example code can be found in Appendix C. At
the beginning, Task A receives a message to be encrypted through UART and notifies a
sleeping/waiting Task B using a FreeRTOS notification (as the helper signal). Task B

https://github.com/espressif/esp-idf/
https://docs.espressif.com/projects/esp-idf/en/v3.1/api-reference/system/freertos_additions.html
https://docs.espressif.com/projects/esp-idf/en/v3.1/api-reference/system/freertos_additions.html
https://docs.espressif.com/projects/esp-idf/en/v3.1/get-started/linux-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.1/get-started/linux-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.1/api-guides/ulp.html
https://docs.espressif.com/projects/esp-idf/en/v3.1/api-guides/ulp.html
https://www.st.com/en/development-tools/stsw-stm32095.html
https://gnu-mcu-eclipse.github.io/blog/2018/07/24/arm-none-eabi-gcc-v7-3-1-1-1-released/
https://gnu-mcu-eclipse.github.io/blog/2018/07/24/arm-none-eabi-gcc-v7-3-1-1-1-released/

314 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

Task A (mbedTask) Task B (adcTask)

uart_read(message)

ADC sample collection
(DMA or Task)mbedtls_mpi_exp_mod(msg) or

mbedtls_internal_aes_encrypt(msg)

uart_send(adc_data)sleep until notified

xTaskNotifyGive(..)

xTaskNotifyGive(..)

Figure 3: Description of one loop iteration of the two FreeRTOS tasks.

Continuous Sampling with

ADC-DMA or Oscilloscope:

Sampling with CPU-based

ADC function calls:

Time

Covered Voltage Noise:

Covered Voltage Noise:

ADC

ADC ADC

DMA

ADC

DMA

ADC

DMA

ADC

DMA

ADC

DMA

ADC

DMA

StoreSetup ADC StoreSetup Setup

Setup

Figure 4: Principle how different ADC sampling styles will cover less or more parts of the
voltage noise affecting the ADC result. DMA needs to be used for continuous sampling,
while software-based sampling (in the multi-core scenario) will always introduce some gaps.

starts collecting ADC data in parallel to Task A, either in dual-core operation or using
DMA operation of the ADC. Task A then encrypts the message using a previously stored
key, while the ADC is collecting data. After the encryption, it waits for a notification.
Upon finishing the fixed number of ADC samples, Task B sends them to the workstation,
and notifies Task A so everything can start afresh for another message. Due to differences
in the systems, we use DMA transfer in the two STM32 systems, and dual-core operation
in the ESP32. However, after we had performed all experiments, we found the ESP32 also
has a sampling mode that does not require the second core, by using its i2s-module.

There is still a fundamental difference between using the ADC with DMA, versus
using software on a CPU to acquire individual ADC samples in a loop. This difference is
visualized in Figure 4. Running the ADC in a continuous mode with DMA at lower speeds
will basically use more time in the ADC conversion itself, but will not reduce the total
time range in which the measurement is influenced by noise. In comparison to that, in
single-conversion software-based sampling, a certain time between the ADC samples will
be used to run software to store data and prepare the next ADC acquisition. If we want
to change the sampling rate, we will need to add delay in software. Any analog noise in
that time will not affect the ADC result, and thus some side-channel leakage might not
be captured in the acquired ADC data. In our experiments we also introduced delays in
CPU-based sampling, because of internal memory size limitations. Since sampling with
the CPU is usually slower, too, the sampling rate can also be negatively impacted by
CPU-based sampling.

Usually a sampling frequency above the CPU or circuit frequency is recommended for
power analysis attacks, but is not necessarily required for successful attacks [LDMPT15].
For the platforms we use, an additional limitation is the amount of available internal
memory to store all samples. For RSA, we typically had to sample rather slow to not fill
the memory (2000-4000 samples per encryption). For AES we had to sample almost as fast

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 315

Table 2: Overview of Leakage Assessment Experiments, repeated for ADC Pin =
{Vdd, GND, N/C}

Platform and Experiments Sampling
Style

ADC
Ref.
Filter

Algorithm Samplerate /
#Samples

ESP32-devkitC @80MHz ULP-CPU No AES-128 104 kHz / 16
CPU Exp-512 20.4 kHz / 2600

STM32F407VG Discovery @168MHz DMA Yes AES-128 980 kHz / 32
Exp-512 88 kHz / 4096

STM32L475 IoT Node @80MHz DMA Yes AES-128 684 kHz / 64
Exp-512 40 kHz / 4096

as possible, to achieve a reasonably high sampling rate (100-1000kHz). For the two STM32
devices this could be achieved by different ADC-DMA setups. For the ESP32-devkitC we
had to use the ULP-CPU to sample the ADC fast, and a normal CPU task to sample
it slow. That is because the ULP has only access to limited memory below 2048 bytes
in total, but also has a dedicated ADC instruction for fast sampling. The finally-used
sampling rates depending on the used board and algorithm are shown in Table 2. The
shown values were estimated by measuring on an external pin, since it was not always
clear from the software to find out the actual sampling rate. It might be feasible to achieve
higher sampling rates on the ESP32 with its i2s-module.

3.4 mbedTLS implementation details
This subsection clarifies the implementation details of RSA and AES in the mbedTLS
library, which we verified to be unchanged in the relevant parts for this paper, for both
library versions (2.6.1 and 2.12.0).

The RSA implementation in mbedTLS is based on CRT (which can be disabled)
and can use the exponent blinding side-channel countermeasure if a sufficient source
of randomness is provided to the library. The RSA private key function of mbedTLS
(mbedtls_rsa_private) uses bigint arithmetic, and among other functions calls mbedtls_
mpi_exp_mod, which performs a sliding window modular exponentiation. That function
is where we perform some of our leakage assessments on, with a 512-bit exponent and
modulus. We use the message transmitted by UART as the base of this exponentiation.
The other function we analyze is from the AES algorithm.

The mbedTLS library implements the AES using a T-table lookup based approach.
Originally, the AES is a round-based block cipher, where four different operations SubBytes,
ShiftRows, MixColumns and AddRoundKey are repeatedly applied on a 128 bit data block.
A popular optimization is to implement those operations as a combination of multiple table
lookups and a subsequent XOR operation. This optimization requires the precomputed
T-tables, which take an input byte and output a 32 bit word. Besides the addition of the
first round key and the last round, the remaining rounds are executed in pairs of two inside
each loop iteration. Apart from these optimizations, the mbedTLS AES implementation
does not diverge from the textbook AES encryption algorithm and does not include any
side-channel countermeasures in particular.

4 Results
Before doing leakage assessment or CPA, we first show that ADC noise correlates with the
power consumption of the board. Subsequently, leakage assessment is performed on AES
and modular exponentiation of the mbedTLS library.

316 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

In all of the tested platforms, side-channel leakage was found in at least one of the
tested cryptographic algorithms and operation modes (configurations) of the ADC. In
many setups, generic noise was observable on the ADC, even when it was pulled to Vdd or
GND. Just in a few setups, we actually observe zero variance in the ADC output, such
that information leakage is impossible.

4.1 Preliminary Comparison between Voltage and ADC Noise
For this experiment, we use the STM32F407VG Discovery #1, and run the CPU in high
and low activity phases that should be easily distinguishable. In high activity phases, we
perform floating point operations, whereas during the intermediate low activity phases, we
issue nop-commands.

In Figure 5, we show the average of 1000 traces of the supply voltage Vdd and supply
current Idd measured with an oscilloscope. Concurrently, we show the acquired samples
of 6-bit ADC values at maximum sampling rate using DMA mode. Both were recorded
during the same activity phases of the CPU on the STM32F407VG Discovery board. The
ADC is connected to a floating pin, and neither to GND or Vdd. The different phases of
workload activity phases can easily be visually distinguished in both of the traces. Our
activity pattern can be identified in the externally collected traces for both Vdd and Idd in
the timeframe from 0µs to about 160µs, whereas the data transfer of ADC traces to a
workstation occurs after 160µs. Likewise, the ADC average values in the bottom diagram
reflect the activity in a clearly distinguishable way, albeit not with linear correlation.

Figure 5: Average over 1000 traces for oscilloscope measurements on Vdd and Idd in the
first two plots and average of concurrently measured ADC values when the ADC was set
to 6-bit and the pin was not connected (N/C) on the bottom. High activity phases are
marked grey.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 317

Figure 6: Average over 100k traces for a fixed base exponentiated in a mbedTLS sliding
window exponentiation, and 100k traces with each a random base exponentiated with the
same secret exponent on the STM32F407VG Discovery #1. ADC connected to GND.

Figure 7: Average over 1M traces for a fixed message encrypted with mbedTLS AES and
the FIPS key, and 1M traces with each a random message encrypted with the same key on
the STM32F407VG Discovery #1. ADC connected to GND.

4.2 Comparisons on Average ADC Traces of AES and Modular Expo-
nentiation

The preliminary experiment to compare CPU activity phases already shows promising
results. However, this experiment is a synthetic test case in which extremely high and
low activity phases were chosen on purpose. Subsequently, we prove that even minor
differences in the data processed by cryptographic algorithms affects the ADC noise in a
systematic way. For that proof, we can already use the data required as a prerequisite
for the leakage assessment we explained in Subsection 2.4. We collect two sets of traces
while performing encryption operations. One of the sets contains the fixed traces, while
the other set contains the random traces. For this example, we connect the pin used for

318 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

ADC to GND and again use the same board as used in Subsection 4.1, STM32F407VG
Discovery #1.

In Figure 6, we compare the ADC noise that occurs during sliding window exponentia-
tion with a 512-bit secret exponent and modulus. In the first plot, an average over 100,000
(100k) ADC traces is shown, where an exponentiation is performed on the same fixed base.
The second plot also shows the average, but with exponentiation on 100k different random
bases. The red lines show the averages, while the grey background contains all the single
traces. The differences between these plots are indeed distinguishable without further
processing. Even more, a pattern is already visible in the average of the fixed traces, which
is smoothed out in the case of random traces. This example already shows that a power
analysis attack for secret key extraction later on might be feasible.

Additionally to modular exponentiation (Mod-Exp), we also show an average of AES-
128 for fixed and random messages in Figure 7. Since AES executes in much shorter
time relative to the ADC speed, we can only acquire a few samples, which are at best
2-3 samples per AES round for this specific board. For AES, we collect 1,000,000 (1M)
traces for each of the two sets of fixed and random messages. Similar to Mod-Exp, the
differences between the traces are visible, with the most distinguishable sample point
around sample 20.

4.3 Leakage Assessment on AES and Modular Exponentiation
We analyze the differences between the traces collected during fixed and random modular
exponentiations and AES encryptions using the t-test methodology from [GGJR+11, SM15]
as explained in Subsection 2.4. Exemplary, we show the results of leakage assessment on
the ADC traces collected on the STM32F407VG Discovery, which we presented in the
previous subsection. Further details from other platforms can be found in the appendix.

Figure 8: First order leakage assessment results based on a fixed-vs-random t-test for
100k traces collected during modular exponentiation on the STM32F407VG Discovery #1.

Figure 9: First order leakage assessment results based on a fixed-vs-random t-test for 1M
traces collected during AES encryptions on the STM32F407VG Discovery#1.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 319

ESP32-devkitC STM32 F4-Discovery #1 STM32 F4-Discovery #2 STM32 L4-IoT

0 200 400 600 800 1000
#traces x 1000

4.5
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0

|t|
-v

al
ue

AES Vdd

0 200 400 600 800 1000
#traces x 1000

4.5
200
400
600
800

1000
1200

|t|
-v

al
ue

AES GND

0 200 400 600 800 1000
#traces x 1000

4.5

50.0

100.0

150.0

200.0

250.0

|t|
-v

al
ue

AES N/C

0 20 40 60 80 100
#traces x 1000

4.5
100.0
200.0
300.0
400.0
500.0
600.0
700.0

|t|
-v

al
ue

Mod-Exp Vdd

0 20 40 60 80 100
#traces x 1000

4.5
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0

|t|
-v

al
ue

Mod-Exp GND

0 20 40 60 80 100
#traces x 1000

4.5
10.0
20.0
30.0
40.0
50.0
60.0
70.0

|t|
-v

al
ue

Mod-Exp N/C

Figure 10: Leakage Assessment on mbedTLS AES and modular exponentiation (Mod-Exp)
with {Vdd, GND, N/C} connected to the ADC on all platforms. Flat lines on the bottom
are constant zero, shifted for visibility.

Figure 8 shows the first order leakage on the STM32F407VG Discovery for fixed-vs-
random traces collected during modular exponentiation. The mathematical evaluation
confirms the visual assessment from the previous section: The fixed and random traces are
distinguishable, as the absolute |t|-value exceeds the threshold limit of 4.5 significantly.

Likewise, in Figure 9 we present the first order fixed-vs-random leakage during AES
encryptions. Again, we confirm that the traces for fixed and random encrypted messages
are clearly distinguishable, as the |t|-value is above the threshold.

Subsequently to the initial experiments, we perform an analysis on the boards introduced
in the experimental setup, Section 3. First, we look into the ADC-observable leakages from
AES, and secondly into modular exponentiation. This way, we also test the ADC noise
characteristics at different operating frequencies. As we presented in the experimental
setup in Table 3, for AES we had to use rather high sampling frequencies of the ADC
on all the platforms (104− 980kHz). For the ESP32-devkitC, no higher frequency than
104kHz is reachable, which leads to less than 16 samples over the complete AES runtime.
For modular exponentiation, the runtime is longer. Thus, we sample slower (20− 88kHz)
to collect only as much samples as the memory capacity of the internal SRAM.

In Figure 10, we show six plots of first order leakage assessments on AES and modular
exponentiation (marked as ‘Mod-Exp’), separated by algorithm and the connection of the
ADC being Vdd, GND, or N/C, respectively. In these plots, the change of the highest
|t|-value inside the leakage assessment interval (cf. Figure 8,Figure 9) is shown, over an
increasing amount of traces used for the evaluation.

320 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

Table 3: Overview of Leakage Assessment over all tested Platforms and Configurations;
ADC connected to {Vdd, GND, not connected (N/C)}. Amount of collected traces are
100k for modular exponentiation, and 1M for AES. The ADC was noise-free when σ=0.

Platform

Leakage detected? (t > 4.5)
AES-128 (ADC fast) Mod-Exp-512 (ADC slow)

Vdd GND N/C Vdd GND N/C

ESP32-devkitC @80MHz yes σ=0 yes no1 σ=0 no1

STM32L475 IoT Node @80MHz yes σ=0 yes yes σ=0 σ=0
STM32F407VG Discovery #1 @168MHz yes yes yes yes yes yes
STM32F407VG Discovery #2 @168MHz yes yes yes yes yes yes

1 For the center 1/3 trace. For the beginning and/or end of the cryptographic function, |t| was above
4.5. For more details check Appendix A, Figure 14.

We start with the AES algorithm in the left column of Figure 10. We compare the
platforms when the ADC is connected to Vdd. In this configuration, |t| reaches values
clearly beyond the confidence threshold of 4.5, suggesting that all platforms are leaking
the information processed in the AES algorithm. For the case of a connection to GND,
both samples of the STM32F407VG Discovery leak, but not the other boards. For the
other boards, the ADCs actually output a constant value, such that Ground-Noise does
not occur. In the case, when we have no connection (N/C) on the ADC, i.e. the pin is in
a so-called floating state, all of the boards exhibit leakage (|t| � 4.5). We also looked into
second order leakage. However, there were no changes with respect to the conclusion, if
leakage is observed (|t| > 4.5), or not (|t| ≤ 4.5).

In the case of Mod-Exp, we only show first order leakage again in Figure 10, since
there was no difference in the second order, similar to AES. We still compare the platforms
with ADC connections to {Vdd, GND, N/C}. For Mod-Exp, again both STM32F407VG
Discovery #1 and #2 leak in all of the tested cases. The other boards leak less than
for AES. While the ESP32-devkitC t-value reaches beyond |t| > 4.5 for Vdd and N/C,
it only does during the beginning or end phase of the modular exponentiation. We thus
conclude negatively for the leakage assessment. This result might be due to an input value
being copied or recoded inside the function. Interested readers can check the appendix,
Figure 14, for this detail. For the STM32L475 IoT Node, the ADC was sufficiently noisy at
faster sampling rates for AES, except when the ADC was connected to GND. However, for
modular exponentiation it also became entirely noise free when being not connected (N/C).

4.4 Summary of Leakage Assessments

In summary, the ADC settings such as the sampling frequency and connection to Vdd,
GND or N/C levels affect the observable side-channel leakage. This relation exists, because
the sampling frequency also changes the inherent noise characteristics. The connection
of the ADC affects how it is coupled to the remaining parts of the system, particularly
the digital (CPU and memory) subsystem. In most cases when the ADC shows any noise
(sample data with σ > 0), the t-test detects leakage in the ADC data. In other cases, when
the ADC is completely noise free (σ = 0), surely no information leakage is possible. The
two boards that we used of the same type lead to almost the same results, leading to the
conclusion that sample variation only has a minor effect. We summarize these results in
Table 3. For reference, Appendix A shows all leakage assessments across all the boards in
detail, including the assessment over the complete time window when ADC samples were
acquired (cf. Subsection 3.2).

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 321

(a) Total correlation after 10M traces for all 256 key byte candidates; The correlation with the correct key
byte is marked red

(b) Correlation progress over 10M traces for all 256 key byte candidates; The correlation with the correct
key byte is marked red

Figure 11: Results of a CPA attack on the 6th byte of the last secret round key of AES
on the STM32F407VG Discovery #1 @168MHz with the ADC connected to GND and the
program compiled with the -Os optimization option (like for leakage assessment).

4.5 Correlation Power Analysis Attack on AES
In this subsection, we present results of CPA attacks on secret AES round keys in different
setups. We perform a ciphertext-based CPA on the last round of AES over 10M ADC
traces and show both the final correlations for each key byte candidate with the entire set
of traces as well as the correlation progress over the amount of traces. We evaluate the
different preprocessing and power model variants, which are explained in Subsection 2.5.
Pre-aligning traces with a shift of ±2 using normalized cross-correlation, and performing
CPA with the standard S-box Hamming distance model is the most successful variant.
The CPA experiments are performed on the STM32F407VG Discovery, which shows the
most promising results during leakage assessment. Although we attacked all 16 bytes of
the AES round key, only the best results for the respective setup are presented here. We
state the total amount of recovered bytes for each setup and display the correlation plots
for all key bytes in the appendix.

We first evaluate a CPA attack on 10M traces using the same parameters as for leakage
assessment, when the ADC pin is connected to GND. Here, AES takes about 13µs, leading
to an estimated 17 samples during the complete AES function call to mbedtls_internal_
aes_encrypt(..). In this setup, we are able to recover 2 secret key bytes in total, where
the best correlation is seen for the 6th byte. In Figure 11a, the total correlation with all
of the 256 possible values of the 6th byte of the last round key after 10M ADC traces is

322 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

(a) Total correlation after 10M traces for all 256 key byte candidates; The correlation with the correct key
byte is marked red

(b) Correlation progress over 10M traces for all 256 key byte candidates; The correlation with the correct
key byte is marked red

Figure 12: Results of a CPA attack on the 12th byte of the last secret round key of AES
on the STM32F407VG Discovery #2 @56MHz with the ADC connected to Vdd and the
program compiled with the -O0 optimization option.

shown. A small peak in the last part of the correlation values indicates the sampling point
that corresponds to the last AES round operation as well as the correct value of the last
round key byte, which has the maximum correlation value at that point. However, the
differences in correlation between the correct and the incorrect key bytes and the peak in
general are very small.

In addition to evaluating CPA attacks on the previous setup for leakage assessment,
we also adapt the compilation and frequency parameters to achieve a higher relative
ADC sampling rate. Additionally we found to be more successful when the ADC pin
is connected to Vdd. In that case, the MCU is running at 56MHz and the program is
compiled with -O0 optimization, making AES take about 40µs to compute. Due to the
on-chip clock network, the ADC is running slower, but faster relative to AES. This relative
improvement leads to about 43 ADC samples for the entire AES encryption. Furthermore,
we activate the DMA-based ADC sampling from the encryption task directly. This avoids
any misalignment and synchronizes exactly with the beginning of the AES computations.
In this setup, 6 secret key bytes can be recovered and the best correlation appears when
attacking the 12th byte. The results can be seen in Figure 12. A peak during the last
part of the encryption is clearly visible, again indicating the last AES round. Furthermore,
we see that the correct key byte, which is marked red, correlates much clearer with the
collected traces than the incorrect key bytes.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 323

We conclude that key recovery attacks on the AES with data from ADC traces are
generally possible, albeit the success depends on the overall system parameters, such as the
clock speed, the ADC pin connection, and possibly even the code optimization at compile
time. For data collected with the ADC pin left unconnected, we were unable to recover
secret key bytes successfully.

5 Discussion
Our results prove the existence of a correlation between the data processed in a microcon-
troller, and the noise that can be observed in their integrated ADCs. The correlation is
strong enough to distinguish the data processed in cryptographic algorithms, running on
a CPU in the system. By leakage assessment it was shown that this observation is valid
in most cases. Furthermore, we proved that the leakage can be sufficient to perform a
CPA-based key recovery attack on AES. Due to the protection mechanism that can be
enabled for the full RSA implementation of the used mbedTLS library, we assume that
more advanced attacks are required for that, but are generally feasible [Wal01, SI11, PC16].

The performed experiments reveal an underlying problem of highly integrated mixed-
signal systems that consist of analog and digital components in a single chip. Such a level
of System on Chip (SoC) integration is an increasing trend in many hardware platforms for
IoT applications and beyond. In these systems, both power supply based coupling effects
as well as crosstalk can cause the noise in the analog part, which can then be exploited by
anyone with access to the data measured in the analog circuit.

5.1 Practical relation to the adversarial model
Applications based on microcontrollers or SoCs use the ADC for various tasks, such as audio
streaming or other sensor measurements. For power saving applications, the respective
ADC pin is often pulled to GND, the supply voltage (Vdd) or left unconnected. Any of
these ADC pin configurations can be the recommended way to save power, depending on
the manufacturer and device. Often, it is possible to define by software to which pin the
ADC is connected, or even internally connect it to GND or Vdd, such as Vref for the tested
ESP32 chip. Some of these IoT or mobile applications make their data publicly available,
or execute untrusted code in a memory protected area. In both ways, an adversary with
the right access can get the necessary side-channel data to perform an attack.

Accidentally allowing a high sampling rate in publicly accessible IoT sensors can already
be an attack vector from which sufficient leakage can be collected. For instance, a reference
application for one of the tested platforms contains a web server which accepts any ADC
sampling rate from its website. Any website hosted on that web server can control the
sampling rate through JavaScript. JavaScript in turn can be manipulated by any user
that accesses the website. In effect, if this reference application is used as the basis of a
product, it introduces a threat. On the other hand, 3rd party smartphone applications
often need to use various analog sensors of the system, which could contain the required
side-channel information to perform an attack. Even a typical audio sampling rate is
already fast enough to distinguish differences in modular exponentiation on the tested
platforms, and it was already reported that such a low sampling rate can be sufficient to
attack RSA [GST14].

Our experimental setups were chosen for comparability across different vendor systems,
and additionally to allow methods for leakage assessment to be performed easily. Yet, these
setups are sufficient to prove that ADC noise is generally a possible source of side-channel
information. Using the aforementioned example, this could actually be exploitable in
some existing products, and adds a dangerous new way to acquire power side-channel
information completely remotely.

324 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

If an attack on a real system can succeed depends on additional aspects. Next to the
basic requirement of access to ADC data, it is also required that the data can be sampled
during cryptographic operations, and the collected traces to be aligned properly. However,
it was shown that even in full commercial implementations, many of such obstacles can still
be circumvented, and complex attacks can be performed by considering more aspects of a
full system [EKM+08, BGV+12, TSS17, KGG+18]. For instance, it is often still possible
to find a way of synchronization. At least an estimation at which time an encryption starts
can often be achieved through the behavior of the overall application. A remote user can
thus estimate which part of sensor data might contain exploitable side-channel leakage.

Another aspect in real systems is the side-channel data being modulated on top of
other sensor measurement data, or the available sampling rate. However, this should
only increase the number of traces required for differential attacks, which are specifically
suited to cope with such situations. Often the sensor data is not much of a problem if
it changes rather slowly, for instance a temperature sensor. It was also shown that a
sampling rate below the expected side-channel leakage can still be sufficient to perform a
full attack [GST14, LDMPT15].

Our results imply that even sensor data that a microcontroller measures and sends
over a digital connection made available online can leak sensitive information which is
accessible from anywhere in the world. In many scenarios, leaking the secret keys of
a sensor node might be just a small issue, but in other scenarios a more sophisticated
attacker could use such information as part of a larger scale attack, for instance on SCADA
systems [CRS09, Lan11].

5.2 Mitigating the threat
As our results suggest, it is of high importance that designers of embedded systems or
integrated circuits for critical applications are aware of a potential security vulnerability
through integrated analog components. That fact is the most important take-away message
from the investigations made in this paper. We believe that noise of analog components
should not be just characterized as a noise margin, but needs to be assessed for information
leakage from security-related digital components in the system.

When designers are aware of this possible threat, it is achievable to design proper
mitigations, depending on the application. The task of mitigation, for instance, can be
considered in the hardware design of the ADC module to reduce or completely remove
the noise-related leakage. In small IoT systems in which all executed code can be trusted,
information leakage and possible attacks require a certain level of care, and we suggest
either of the following options as a possible isolation practice:

• It must be guaranteed that any analog measurements can only take place mutually
exclusive to security-related computations.

• If exclusive measurements cannot be guaranteed, a leakage assessment needs to
be performed on all analog measurement data that is made accessible to possible
attackers. If the data contains leakage, it has to be handled with the same security
level as the secret data that is processed in the system.

• Filter the ADC data in a way that leakage cannot be assessed anymore. For instance,
a filter for noise or specific frequencies might make attacks infeasible, or reduce
effective sampling rates.

However, in multi-user systems in which memory protection is used among unprivileged
tasks that are not fully trusted, more serious care has to be taken in order to prevent one
of the tasks from extracting the secrets of another task. For instance, underprivileged
tasks should not be allowed to get arbitrary ADC measurements. This could mean that

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 325

in systems like a smartphone, a task that records the microphone on one of the ADCs
could potentially run power analysis side-channel attacks on the remaining system. More
research is needed to evaluate how widespread this threat is in existing systems.

6 Conclusion
Mixed-signal systems such as microcontrollers and other SoCs are increasingly adopted
in Internet-of-Things and personal computing appliances. In these systems, digital logic
such as a CPU causes noise in the analog components, for instance in the ADCs used
for a microphone, or any environmental sensors. In this paper, leakage assessment was
performed on the noise of ADC data for various platforms. In the majority of cases,
leakage was detected. In one case we demonstrated a successful key recovery attack on
AES proving that the leakage can be exploited. Previous works have explored a similar
software-based power analysis side-channel, and this paper generalizes those results. It is
now confirmed that power analysis side-channels are not just a threat for attackers with
physical access to the device. Any sensory data that leaves a system might contain enough
correlated noise that could be exploited to perform power analysis attacks. Thus, this
paper stresses the importance to either use better isolation between analog and digital
subsystems, or protect cryptographic implementations against power analysis attacks, even
if local attackers are not considered in their threat model.

Acknowledgements
The authors thank Kevin Schäfer from Rutronik Elektronische Bauelemente GmbH,
Germany, for providing us some of the platforms used in our experiments. Addition-
ally he provided us with valuable knowledge on ADC noise characteristics and power
distribution.

References
[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie

Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Inv-
ernizzi, Michalis Kallitsis, et al. Understanding the Mirai Botnet. In USENIX
Security Symposium, pages 1092–1110, 2017.

[AGR99] Xavier Aragones, Jose Luis Gonzalez, and Antonio Rubio. Analysis and
solutions for switching noise coupling in mixed-signal ICs. Springer Science
& Business Media, Dordrecht, 1999.

[Ama18] Amazon-FreeRTOS. Cloud-native IoT operating system for microcontrollers,
2017-2018. https://github.com/aws/amazon-freertos.

[AR06] Sadok Aouini and Gordon W. Roberts. A Predictable Robust Fully Pro-
grammable Analog Gaussian Noise Source for Mixed-Signal/Digital ATE. In
IEEE International Test Conference, pages 1–10, October 2006.

[ARM16] ARM MBED. SSL library mbed TLS / PolarSSL, 2008-2016.
https://tls.mbed.org/.

[ASM07] Karim Arabi, Resve Saleh, and Xiongfei Meng. Power supply noise in SoCs:
Metrics, management, and measurement. IEEE Design & Test of Computers,
24(3):236–244, May 2007.

326 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

[BA19] Richard Barry and Amazon Web Services (AWS). FreeRTOS, 2003–2019.
https://www.freertos.org/.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. Cryptographic Hardware and Embedded Systems - CHES
2004, pages 16–29, 2004.

[BGV+12] Josep Balasch, Benedikt Gierlichs, Roel Verdult, Lejla Batina, and Ingrid
Verbauwhede. Power analysis of atmel cryptomemory–recovering keys from
secure EEPROMs. In Cryptographers’ Track at the RSA Conference, pages
19–34. Springer, 2012.

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: When electromagnetic side channels
meet radio transceivers. In Proceedings of the Conference on Computer and
Communications Security (CCS). ACM, October 2018.

[CRS09] Alvaro A Cardenas, Tanya Roosta, and Shankar Sastry. Rethinking security
properties, threat models, and the design space in sensor networks: A case
study in SCADA systems. Ad Hoc Networks, 7(8):1434–1447, 2009.

[DWB15] Shidhartha Das, Paul Whatmough, and David Bull. Modeling and charac-
terization of the system-level power delivery network for a dual-core ARM
Cortex-A57 cluster in 28nm CMOS. In International Symposium on Low
Power Electronics and Design, pages 146–151, 2015.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud
Salmasizadeh, and Mohammad T. Manzuri Shalmani. On the power of power
analysis in the real world: A complete break of the KeeLoq code hopping
scheme. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
pages 203–220, Berlin, Heidelberg, 2008. Springer.

[Fio07] Franco Fiori. On the susceptibility of analog circuit to EMI. In Analog Circuit
Design, pages 183–202. Springer, 2007.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GMM15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in javascript. CoRR, abs/1507.06955,
2015.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), pages 251–261. Springer, 2001.

[GOKT18] Dennis R. E. Gnad, Fabian Oboril, Saman Kiamehr, and Mehdi B. Tahoori.
An experimental evaluation and analysis of transient voltage fluctuations in
FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(10):1817–1830, October 2018.

[GOT17] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. Voltage drop-based
fault attacks on FPGAs using valid bitstreams. In International Conference
on Field Programmable Logic and Applications (FPL). IEEE, September 2017.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 327

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, pages 444–461, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[Jaf07] Josh Jaffe. A first-order DPA attack against AES in counter mode with
unknown initial counter. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems (CHES), pages 1–13, Berlin,
Heidelberg, 2007.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In International Symposium on Computer Architecture (ISCA), pages 361–372,
Piscataway, NJ, USA, 2014. ACM/IEEE.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. ArXiv e-prints,
January 2018.

[KGT18] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. FPGAhammer: re-
mote voltage fault attacks on shared FPGAs, suitable for DFA on AES. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2018(3), 2018.

[Lan11] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy, 9(3):49–51, 2011.

[LDMPT15] Jake Longo, Elke De Mulder, Daniel Page, and Michael Tunstall. SoC it to
EM: Electromagnetic side-channel attacks on a complex system-on-chip. In
Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and
Embedded Systems – CHES 2015, pages 620–640, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[LRRB05] Bin Le, Thierry W. Rondeau, Joy Lynn H. Reed, and Charles W. Bostian.
Analog-to-digital converters. IEEE Signal Processing Magazine, 22(6):69–77,
November 2005.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. ArXiv e-prints, January 2018.

[MF04] Andrey V. Mezhiba and Eby G. Friedman. Scaling trends of on-chip power
distribution noise. Trans. VLSI Syst., 12(4):386–394, April 2004.

[Mic18] Microsoft. Azure device catalog, 2018. https://catalog.azureiotsolutions.com/.

[MS10] Carlo Maria Medaglia and Alexandru Serbanati. An overview of privacy
and security issues in the internet of things. In Daniel Giusto, Antonio Iera,
Giacomo Morabito, and Luigi Atzori, editors, The Internet of Things, pages
389–395, New York, NY, 2010. Springer.

[Nat15] National Instruments. ADC dynamic characteristics measurement reference
design, 2015. http://www.ni.com/example/8319/en/.

328 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

[PC16] Guilherme Perin and Łukasz Chmielewski. A semi-parametric approach for
side-channel attacks on protected rsa implementations. In Naofumi Homma
and Marcel Medwed, editors, Smart Card Research and Advanced Applications,
pages 34–53, Cham, 2016. Springer International Publishing.

[PPK+07] Christof Paar, Axel Poschmann, Sandeep Kumar, Thomas Eisenbarth, and
Leif Uhsadel. A survey of lightweight-cryptography implementations. IEEE
Design & Test of Computers, 24:522–533, November 2007.

[RNL11] Rodrigo Roman, Pablo Najera, and Javier Lopez. Securing the internet of
things. Computer, 44(9):51–58, September 2011.

[RPD+18] Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George Prov-
elengios, Sebastien Pillement, Daniel Holcomb, and Russell Tessier. FPGA
side channel attacks without physical access. In International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages paper–116.
IEEE, May 2018.

[RSWO17] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. Iot goes
nuclear: Creating a zigbee chain reaction. In IEEE Symposium on Security
and Privacy (S&P), pages 195–212. IEEE, 2017.

[SAHK98] Tilmann Stöhr, Markus Alt, Asmus Hetzel, and Jürgen Koehl. Analysis,
reduction and avoidance of crosstalk on vlsi chips. In International Symposium
on Physical Design (ISPD), pages 211–218, New York, NY, USA, 1998. ACM.

[SD16] Weisong Shi and Schahram Dustdar. The promise of edge computing. Com-
puter, 49(5):78–81, May 2016.

[SGMT18a] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi, and Mehdi B. Tahoori.
An inside job: Remote power analysis attacks on FPGAs. In Proceedings of
Design, Automation & Test in Europe (DATE), March 2018.

[SGMT18b] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi, and Mehdi B. Tahoori.
Remote inter-chip power analysis side-channel attacks at board-level. ICCAD
2018. Cryptology ePrint Archive, Report 2018/881, 2018.

[SI11] Werner Schindler and Kouichi Itoh. Exponent blinding does not always lift
(partial) spa resistance to higher-level security. In Javier Lopez and Gene
Tsudik, editors, Applied Cryptography and Network Security, pages 73–90,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[SLMW93] David K. Su, Marc J. Loinaz, Shoichi Masui, and Bruce A. Wooley. Experi-
mental results and modeling techniques for substrate noise in mixed-signal
integrated circuits. IEEE Journal of Solid-State Circuits, 28(4):420–430,
April 1993.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 495–513. Springer, 2015.

[SPK+10] Jörn-Marc Schmidt, Thomas Plos, Mario Kirschbaum, Michael Hutter, Marcel
Medwed, and Christoph Herbst. Side-channel leakage across borders. In
International Conference on Smart Card Research and Advanced Applications,
pages 36–48. Springer, 2010.

[Sta08] John A. Stankovic. Wireless sensor networks. Computer, 41(10):92–95,
October 2008.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 329

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW: Ex-
posing the perils of security-oblivious energy management. In 26th USENIX
Security Symposium, pages 1057–1074, Vancouver, BC, 2017. USENIX Asso-
ciation.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages
286–299. Springer, 2001.

[ZS18] Mark Zhao and G. Edward Suh. FPGA-based remote power side-channel
attacks. In Symposium on Security and Privacy (S&P), pages 805–820, May
2018.

330 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

A Results of all Leakage Assessments
A.1 ESP32-devkitC
A.1.1 AES

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1k traces collected during
AES encryptions on the ESP32-devkitC with the ADC
pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the ESP32-devkitC with the ADC
pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the ESP32-devkitC with the ADC
pin connected to Vdd.

0 200 400 600 800 1000
#traces x 1000

4.520.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC on the
ESP32-devkitC.

Figure 13: Results of Leakage Assessments on ESP32-devkitC for mbedTLS AES.

A.1.2 Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1k traces collected during
modular exponentiation on the ESP32-devkitC with
the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected during
modular exponentiation on the ESP32-devkitC with
the ADC pin disconnected (N/C).

(c) First order leakage assessment result based on a
fixed-vs-random t-test for 100k traces collected during
modular exponentiation on the ESP32-devkitC with
the ADC connected to Vdd.

0 20 40 60 80 100
#traces x 1000

4.5

0.5
1.0
1.5
2.0
2.5
3.0
3.5

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS modu-
lar exponentiation with {Vdd, GND, N/C} connected
to the ADC on the ESP32-devkitC.

Figure 14: Results of Leakage Assessments on ESP32-devkitC for mbedTLS modular
exponentiation.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 331

A.2 STM32F407VG Discovery #1
A.2.1 AES

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #1
with the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #1
with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #1
with the ADC pin connected to Vdd.

0 200 400 600 800 1000
#traces x 1000

4.5
200
400
600
800

1000
1200

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC on the
STM32F407VG Discovery #1.

Figure 15: Results of Leakage Assessment on STM32F407VG Discovery #1 for mbedTLS
AES.

A.2.2 Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #1 with the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #1 with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #1 with the ADC pin connected to Vdd.

0 20 40 60 80 100
#traces x 1000

4.5
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS modu-
lar exponentiation with {Vdd, GND, N/C} connected
to the ADC on the STM32F407VG Discovery #1.

Figure 16: Results of Leakage Assessments on STM32F407VG Discovery #1 for mbedTLS
modular exponentiation.

332 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

A.3 STM32F407VG Discovery #2
A.3.1 AES

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #2
with the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #2
with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32F407VG Discovery #2
with the ADC pin connected to Vdd.

0 200 400 600 800 1000
#traces x 1000

4.5
200
400
600
800

1000
1200

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC on the
STM32F407VG Discovery #2.

Figure 17: Results of Leakage Assessments on STM32F407VG Discovery #2 for mbedTLS
AES.

A.3.2 Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #2 with the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #2 with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected dur-
ing modular exponentiation on the STM32F407VG
Discovery #2 with the ADC pin connected to Vdd.

0 20 40 60 80 100
#traces x 1000

4.5
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS modu-
lar exponentiation with {Vdd, GND, N/C} connected
to the ADC on the STM32F407VG Discovery #2.

Figure 18: Results of Leakage Assessments on STM32F407VG Discovery #2 for mbedTLS
modular exponentiation.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 333

A.4 STM32L475 IoT Node
A.4.1 AES

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32L475 IoT Node with
the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32L475 IoT Node with
the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 1M traces collected during
AES encryptions on the STM32L475 IoT Node with
the ADC pin connected to Vdd.

0 200 400 600 800 1000
#traces x 1000

4.5
50.0

100.0
150.0
200.0
250.0

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC on the
STM32L475 IoT Node.

Figure 19: Results of Leakage Assessments on STM32L475 IoT Node for mbedTLS AES.

A.4.2 Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on a
fixed-vs-random t-test for 1k traces collected during
modular exponentiation on the STM32L475 IoT Node
with the ADC pin connected to GND.

(b) First order leakage assessment results based on a
fixed-vs-random t-test for 1k traces collected during
modular exponentiation on the STM32L475 IoT Node
with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on a
fixed-vs-random t-test for 100k traces collected during
modular exponentiation on the STM32L475 IoT Node
with the ADC pin connected to Vdd.

0 20 40 60 80 100
#traces x 1000

4.5
100.0
200.0
300.0
400.0
500.0
600.0
700.0

|t|
-v

al
ue

GND
N/C
Vdd

(d) Leakage Assessment progress on mbedTLS modu-
lar exponentiation with {Vdd, GND, N/C} connected
to the ADC on the STM32L475 IoT Node.

Figure 20: Results of Leakage Assessments on STM32L475 IoT Node for mbedTLS
modular exponentiation.

334 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

B Results of CPA for all secret AES key bytes on Vdd and
GND

B.1 ADC pin connected to GND

(a) CPA progress for the 0th secret key byte (b) CPA progress for the 1st secret key byte

(c) CPA progress for the 2nd secret key byte (d) CPA progress for the 3rd secret key byte

(e) CPA progress for the 4th secret key byte (f) CPA progress for the 5th secret key byte

(g) CPA progress for the 6th secret key byte (h) CPA progress for the 7th secret key byte

Figure 21: Results of a CPA attack on the last secret round key (bytes 0 to 7) of AES
on the STM32F407VG Discovery #1 @168MHz with the ADC connected to GND and
the program compiled with the -Os optimization option. Each plot shows the correlation
progress of all 256 key candidates for a specific key byte over 10M traces and the respective
correct key candidate is marked red.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 335

(a) CPA progress for the 8th secret key byte (b) CPA progress for the 9th secret key byte

(c) CPA progress for the 10th secret key byte (d) CPA progress for the 11th secret key byte

(e) CPA progress for the 12th secret key byte (f) CPA progress for the 13th secret key byte

(g) CPA progress for the 14th secret key byte (h) CPA progress for the 15th secret key byte

Figure 22: Results of a CPA attack on the last secret round key (bytes 8 to 15) of AES
on the STM32F407VG Discovery #1 @168MHz with the ADC connected to GND and
the program compiled with the -Os optimization option. Each plot shows the correlation
progress of all 256 key candidates for a specific key byte over 10M traces and the respective
correct key candidate is marked red.

336 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

B.2 ADC pin connected to Vdd

(a) CPA progress for the 0th secret key byte (b) CPA progress for the 1st secret key byte

(c) CPA progress for the 2nd secret key byte (d) CPA progress for the 3rd secret key byte

(e) CPA progress for the 4th secret key byte (f) CPA progress for the 5th secret key byte

(g) CPA progress for the 6th secret key byte (h) CPA progress for the 7th secret key byte

Figure 23: Results of a CPA attack on the last secret round key (bytes 0 to 7) of AES
on the STM32F407VG Discovery #2 @56MHz with the ADC connected to Vdd and the
program compiled with the -O0 optimization option. Each plot shows the correlation
progress of all 256 key candidates for a specific key byte over 10M traces and the respective
correct key candidate is marked red.

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 337

(a) CPA progress for the 8th secret key byte (b) CPA progress for the 9th secret key byte

(c) CPA progress for the 10th secret key byte (d) CPA progress for the 11th secret key byte

(e) CPA progress for the 12th secret key byte (f) CPA progress for the 13th secret key byte

(g) CPA progress for the 14th secret key byte (h) CPA progress for the 15th secret key byte

Figure 24: Results of a CPA attack on the last secret round key (bytes 8 to 15) of AES
on the STM32F407VG Discovery #2 @168MHz with the ADC connected to Vdd and
the program compiled with the -O0 optimization option. Each plot shows the correlation
progress of all 256 key candidates for a specific key byte over 10M traces and the respective
correct key candidate is marked red.

338 Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

C Simplified Source Code of the Experiments

Listing 1: generic adcTask to sample the ADC for traces
1 // adcHandle = ..
2 void adcTask (void * pvParameters) {
3 while (1) {
4 // wait for notify from mbedTask :
5 while (ulTaskNotifyTake (pdTRUE , portMAX_DELAY) == 0);
6 adc_get_samples (); // see details below (esp32: CPU , stm32: DMA)
7 uart_send (adc_data , sizeof (adc_data));
8 xTaskNotifyGive (mbedHandle); // notify mbedTask
9 }

10 }

Listing 2: generic mbedTask to run mbedTLS AES or modular exponentiation
1 // mbedHandle = ..
2 void mbedTask (void * pvParameters) {
3 // [...] init contexts / secrets for mbedtls here
4 while (1) {
5 // read message from uart
6 uart_read (msg , sizeof (msg));
7 #ifdef EXP
8 mbedtls_mpi_read_string (&g, 16, msg)
9 #endif

10 // start ADC in other task:
11 xTaskNotifyGive (adcHandle); // notify adcTask
12 #ifdef EXP
13 mbedtls_mpi_exp_mod (& dummy , &g, &e, &modulus , NULL)
14 #else // AES
15 mbedtls_internal_aes_encrypt (&ctx , msg , dummy);
16 #endif
17 // wait for notify from adcTask :
18 while (ulTaskNotifyTake (pdTRUE , portMAX_DELAY) == 0);
19 }
20 }

Listing 3: adc_get_samples for ESP32 CPU Task-based
1 static inline void adc_get_samples () {
2 for (int i=0;i< ADC_WORDS ;i++) {
3 adc_data [i] = adc1_get_raw (ADC_CHAN_SEL);
4 }
5 }

Listing 4: adc_get_samples for ESP32 ULP-based, plus ULP assembly code (adc.S).
Please note, in the actual implementation we directly used the ULP from the mbedTask
instead of a separate adcTask.

1 static inline void adc_get_samples () {
2 adc1_ulp_enable ();
3 ulp_load_binary (0, ulp_main_bin_start , ulp_bin_size);
4 ulp_set_wakeup_period (0, 1000);
5 while (((volatile typeof (ulp_sync_back)) ulp_sync_back) == 0);
6 *((volatile typeof (ulp_sync_back)*) & ulp_sync_back) = 0;
7 uint32_t * p_ulp_adc_data = & ulp_adc_data ;
8 for (int i=0;i< ADC_WORDS ;i++) {

Dennis R. E. Gnad, Jonas Krautter and Mehdi B. Tahoori 339

9 adc_data [i] = (uint16_t) (* p_ulp_adc_data ++) & 0xffff;
10 }
11 }
12

13 adc.S:
14 move r0 , adc_data
15 measure :
16 adc r2 , adc_nr , adc_channel + 1
17 st r2 ,r0 ,0
18 add r0 , r0 , 1
19 jumpr measure , adc_data +ADC_WORDS , lt
20 // sync back to main cpu , which spinlocks :
21 move r1 , sync_back
22 move r2 , 0 x0001
23 st r2 , r1 ,0
24 halt

Listing 5: adc_get_samples for STM32 and ADC-DMA interrupt handler
1 static inline void adc_get_samples ()
2 {
3 // start to acquire ADC samples through DMA
4 HAL_ADC_Start_DMA (& hadc3 , adc_data , ADC_WORDS)
5 // wait for ADC/DMA to finish while mbedTask executes
6 osSignalWait (0 x0001 , osWaitForever);
7 // make sure DMA is stopped
8 HAL_ADC_Stop_DMA (& hadc3);
9 }

10

11 void HAL_ADC_ConvCpltCallback (ADC_HandleTypeDef * hadc) {
12 osSignalSet (adcHandle , 0x0001);
13 }

	Introduction
	Preliminaries
	Mixed-Signal Integrated Circuits
	Analog-to-Digital Converters
	Adversarial Model
	Leakage Assessment
	Correlation Power Analysis on AES
	Related Work

	Experimental Setup
	Hardware Platforms
	Software Environment
	Sampling of Data, Transmission and Synchronization
	mbedTLS implementation details

	Results
	Preliminary Comparison between Voltage and ADC Noise
	Comparisons on Average ADC Traces of AES and Modular Exponentiation
	Leakage Assessment on AES and Modular Exponentiation
	Summary of Leakage Assessments
	Correlation Power Analysis Attack on AES

	Discussion
	Practical relation to the adversarial model
	Mitigating the threat

	Conclusion
	Results of all Leakage Assessments
	ESP32-devkitC
	STM32F407VG Discovery #1
	STM32F407VG Discovery #2
	STM32L475 IoT Node

	Results of CPA for all secret AES key bytes on Vdd and GND
	ADC pin connected to GND
	ADC pin connected to Vdd

	Simplified Source Code of the Experiments

