Software Toolkit for HFE-based Multivariate Schemes

#### J-C. Faugère<sup>1,2</sup>, L. Perret<sup>1,2</sup>, Jocelyn Ryckeghem<sup>2</sup>

<sup>1</sup>CryptoNext Security <sup>2</sup>Sorbonne Université, CNRS, INRIA, LIP6, Équipe PolSys, F-75005 Paris, France

CHES, Atlanta, August 26, 2019



# MQsoft<sup>1</sup>: Multivariate Quadratic Software

#### Motivations

- 11/2017 and 01/2019: beginning of the 1<sup>st</sup> and 2<sup>nd</sup> rounds of the NIST post-quantum cryptography standardization process.
- Signature: 4 second round candidates over 9 are multivariate.
- Libraries: code [McBits, CHES'2013, ...], lattice [NFLlib, CT RSA'16, ...], but no library for the multivariate-based schemes!

<sup>1</sup>https://www-polsys.lip6.fr/Links/NIST/MQsoft.html

# MQsoft<sup>1</sup>: Multivariate Quadratic Software

#### Motivations

- 11/2017 and 01/2019: beginning of the 1<sup>st</sup> and 2<sup>nd</sup> rounds of the NIST post-quantum cryptography standardization process.
- Signature: 4 second round candidates over 9 are multivariate.
- Libraries: code [McBits, CHES'2013, ...], lattice [NFLlib, CT RSA'16, ...], but no library for the multivariate-based schemes!

#### Our contribution: MQsoft

- An efficient C library exploiting SSE and AVX2 instructions set.
- Matsumoto-Imai-based schemes: QUARTZ, Gui, GeMSS.
- Fast arithmetic in F<sub>2</sub>[X], F<sub>2<sup>n</sup></sub> and F<sub>2<sup>n</sup></sub>[X] (with root finding), multivariate quadratic systems in F<sub>2</sub> (evaluation, change of variables, ...), constant-time implementation against timing attacks (as often as possible).

<sup>1</sup>https://www-polsys.lip6.fr/Links/NIST/MQsoft.html

#### Matsumoto-Imai [EUROCRYPT '88]

- Public-key: a multivariate quadratic system.
- Example in  $\mathbb{F}_2$ :  $\mathbf{p}(x_1, x_2, x_3) = \begin{cases} x_1x_2 + x_2x_3 + x_1 + 1 \\ x_1x_2 + x_1x_3 + x_1 \end{cases}$
- Verifying process: evaluation of the public-key.
- Signing process: affine transformations + inversion of the private map.

#### Matsumoto-Imai [EUROCRYPT '88]

- Public-key: a multivariate quadratic system.
- Example in  $\mathbb{F}_2$ :  $\mathbf{p}(x_1, x_2, x_3) = \begin{cases} x_1x_2 + x_2x_3 + x_1 + 1 \\ x_1x_2 + x_1x_3 + x_1 \end{cases}$
- Verifying process: evaluation of the public-key.
- Signing process: affine transformations + inversion of the private map.

#### HFE-based signature schemes [Patarin, EUROCRYPT '96]

- Signing process: to find the roots of a univariate polynomial.
- Schemes: QUARTZ (2001), Gui (2015), GeMSS (2017), DualModeMS (2017), BlueGeMSS (2019), RedGeMSS (2019).

## Performance

#### QUARTZ (a NESSIE submission)

- In 2001: 4s to generate the keys, 10s to sign,  $900\mu s$  to verify.
- With MQsoft (new hardware + new library): 2.0*ms* to generate the keys, 20*ms* to sign, 6.4*µs* to verify.

## Performance

#### QUARTZ (a NESSIE submission)

- In 2001: 4s to generate the keys, 10s to sign,  $900\mu s$  to verify.
- With MQsoft (new hardware + new library): 2.0*ms* to generate the keys, 20*ms* to sign, 6.4*µs* to verify.

| sign. scheme | sec. level | key gen. | sign. | verif. |
|--------------|------------|----------|-------|--------|
| GeMSS128     | 128        | +220%    | +100% | +95%   |
| GeMSS192     | 192        | +220%    | +57%  | +84%   |
| GeMSS256     | 256        | +240%    | +110% | +75%   |
| Gui-184      | 128        | +1200%   | +100% | +73%   |
| Gui-312      | 192        | +1600%   | +95%  | +56%   |
| Gui-448      | 256        | +2500%   | +85%  | +58%   |

Speed-up (best first round implementations compared to MQsoft), Haswell processor. Speed-up of 100% for the signing process, and between 60% and 100% for the verifying process.

## MQsoft: architecture for HFE



# Efficient arithmetic in $\mathbb{F}_{2^n}$

#### Software and libraries for number theory

- Magma, a computer algebra software.
- NTL, A Library for Doing Number Theory (in C++).
- FLINT, Fast Library for Number Theory, less efficient in  $\mathbb{F}_{2^n}$ !
- gf2x (C library), specialized for the multiplication in  $\mathbb{F}_2[X]$ .

#### Implementations for specific fields

- Elliptic curves [BluGue13]:  $\mathbb{F}_{2^{163}}$ ,  $\mathbb{F}_{2^{233}}$ ,  $\mathbb{F}_{2^{283}}$ , ...
- Gui [mpkc-128bit, gui-pq-submission]:  $\mathbb{F}_{2^{184}}$ ,  $\mathbb{F}_{2^{240}}$ ,  $\mathbb{F}_{2^{312}}$ , ...

#### MQsoft

- Arithmetic in  $\mathbb{F}_{2^n}$  for  $n \leq 576$ , in C using AVX2 instructions set.
- Especially efficient on Skylake processors (6<sup>th</sup> generation), but also efficient on Haswell processors (4<sup>th</sup> generation).

# Constant-time product in $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/f(x)$

Code using SSE (128 bits) or AVX2 (256 bits) instructions sets.

#### Multiplication

The most important operation!

- School-book algorithm by block of 64 bits (PCLMULQDQ).
- Karatsuba algorithm, the base case depends on the processor.

| п   | Magma | NTL | MQsoft |
|-----|-------|-----|--------|
| 252 | 558   | 169 | 36-40  |
| 511 | 761   | 320 | 91-92  |

Multiplication in  $\mathbb{F}_{2^n}$  in cycles, Skylake processor.

#### Squaring

Linear operation in char. 2:  $(ax + b)^2 = a^2x^2 + b^2$ .

- Table lookups of square (PSHUFB, VPSHUFB).
- Squaring of each 64-bit block (PCLMULQDQ).

| n   | Magma | NTL | MQsoft |
|-----|-------|-----|--------|
| 252 | 455   | 128 | 15-24  |
| 511 | 510   | 174 | 24-27  |

Squaring in  $\mathbb{F}_{2^n}$  in cycles, Skylake processor.

# Representation of multivariate quadratic systems (m equations, n variables)

#### Representation "equation by equation"

• The equations are stored one by one.

• Example in 
$$\mathbb{F}_2$$
:  $\mathbf{p}(x_1, x_2, x_3) = \begin{cases} x_1x_2 + x_2x_3 + x_1 + 1 & (1) \\ x_1x_2 + x_1x_3 + x_1 & (2) \end{cases}$ 

# Representation of multivariate quadratic systems (m equations, n variables)

#### Representation "equation by equation"

• The equations are stored one by one.

• Example in 
$$\mathbb{F}_2$$
:  $\mathbf{p}(x_1, x_2, x_3) = \begin{cases} x_1x_2 + x_2x_3 + x_1 + 1 & (1) \\ x_1x_2 + x_1x_3 + x_1 & (2) \end{cases}$ 

#### Representation "coefficient by coefficient"

- The system is stored as an equation in the big field  $\mathbb{F}_{2^m}$ .
- Example in  $\mathbb{F}_2$ : let  $\mathbb{F}_4 = \mathbb{F}_2[X]/(\alpha^2 + \alpha + 1)$ ,  $\mathbf{p}(x_1, x_2, x_3) = \mathbf{1} \times (\mathbf{1}) + \alpha \times (\mathbf{2})$  $= (\alpha + 1)x_1x_2 + \alpha x_1x_3 + x_2x_3 + (\alpha + 1)x_1 + \mathbf{1}$
- This representation is used in [Berbain, Billet, Gilbert, Efficient Implementations of Multivariate Quadratic Systems] and MQsoft.

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | x <sub>1</sub>          | x <sub>2</sub>          | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| <i>x</i> <sub>1</sub> | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>x</i> <sub>3</sub> |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

•  $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) =$ 

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | x <sub>1</sub>          | x <sub>2</sub>          | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| <i>x</i> <sub>1</sub> | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>x</i> <sub>3</sub> |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

•  $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst$ 

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | x <sub>1</sub>          | x <sub>2</sub>          | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>x</i> <sub>3</sub> |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

•  $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst$ 

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | <i>x</i> <sub>2</sub>   | <i>x</i> <sub>3</sub>   | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>x</i> <sub>3</sub> |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

•  $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst$ 

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | <i>x</i> <sub>2</sub>   | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>x</i> <sub>3</sub> |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | <i>x</i> 3              | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> 4              |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub> |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub> |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub> |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub> |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| <i>x</i> <sub>2</sub> |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| $x_2 = 0$             |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| $x_2 = 0$             |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| <i>X</i> 3            |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = 0 |
|-----------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>   |
| $x_2 = 0$             |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>   |
| $x_3 = 1$             |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>   |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>   |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = 0 |
|-----------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>   |
| $x_2 = 0$             |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>   |
| $x_3 = 1$             |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>   |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>   |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst         | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = 0 |
|-----------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| $x_1 = 1$             | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>   |
| $x_2 = 0$             |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>   |
| $x_3 = 1$             |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>   |
| <i>x</i> <sub>4</sub> |                         |                         |                         | <b>p</b> <sub>4,4</sub>   |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = 0 |
|---------------|-------------------------|-------------------------|-------------------------|---------------------------|
| $x_1 = 1$     | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>   |
| $x_2 = 0$     |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>   |
| $x_3 = 1$     |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>   |
| $x_4 = 0$     |                         |                         |                         | <b>p</b> <sub>4,4</sub>   |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst      | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = 0 |
|--------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| $x_1 = 1$          | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>   |
| $x_2 = 0$          |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>   |
| $x_3 = 1$          |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>   |
| x <sub>4</sub> = 0 |                         |                         |                         | <b>p</b> <sub>4,4</sub>   |

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst      | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|--------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$          | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| $x_2 = 0$          |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| $x_3 = 1$          |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| x <sub>4</sub> = 0 |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst + \mathbf{p}_{1,1} + \mathbf{p}_{1,3} + \mathbf{p}_{3,3}$
- On average, 75% of the monomials are null.

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst      | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|--------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$          | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| $x_2 = 0$          |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| $x_3 = 1$          |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| x <sub>4</sub> = 0 |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst + \mathbf{p}_{1,1} + \mathbf{p}_{1,3} + \mathbf{p}_{3,3}$
- On average, 75% of the monomials are null.
- MQsoft: speed-up of 38%, based on unrolled loops and an Euclidean division of the indices of the loops.

- p ∈ 𝔽<sub>2<sup>m</sup></sub>[x<sub>1</sub>,...,x<sub>n</sub>] is stored as a quadratic form in the row-major order.
- Example:

| <b>p</b> .cst      | $x_1 = 1$               | $x_2 = 0$               | $x_3 = 1$               | <i>x</i> <sub>4</sub> = <b>0</b> |
|--------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| $x_1 = 1$          | <b>p</b> <sub>1,1</sub> | <b>p</b> <sub>1,2</sub> | <b>p</b> <sub>1,3</sub> | <b>p</b> <sub>1,4</sub>          |
| $x_2 = 0$          |                         | <b>p</b> <sub>2,2</sub> | <b>p</b> <sub>2,3</sub> | <b>p</b> <sub>2,4</sub>          |
| $x_3 = 1$          |                         |                         | <b>p</b> <sub>3,3</sub> | <b>p</b> <sub>3,4</sub>          |
| x <sub>4</sub> = 0 |                         |                         |                         | <b>p</b> <sub>4,4</sub>          |

- $\mathbf{p}(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0) = \mathbf{p}.cst + \mathbf{p}_{1,1} + \mathbf{p}_{1,3} + \mathbf{p}_{3,3}$
- On average, 75% of the monomials are null.
- MQsoft: speed-up of 38%, based on unrolled loops and an Euclidean division of the indices of the loops.
- Our constant-time implementation is 10% faster on Skylake, by using the vpermq instruction in a specific way.

# Root finding in $\mathbb{F}_{2^n}[X]$

#### Root finding algorithm of $F \in \mathbb{F}_{2^n}[X]$ [von zur Gathen, Gerhard, Modern Computer Algebra]

- $\bullet H = X^{2^n} X \mod F.$
- **2** G = GCD(F, H). G is split and has a small number of roots.
- Computation of all roots of G with an equal-degree factorization algorithm.

# Root finding in $\mathbb{F}_{2^n}[X]$

#### Root finding algorithm of $F \in \mathbb{F}_{2^n}[X]$ [von zur Gathen, Gerhard, Modern Computer Algebra]

$$I = X^{2^n} - X \mod F.$$

- **2** G = GCD(F, H). G is split and has a small number of roots.
- Computation of all roots of G with an equal-degree factorization algorithm.

#### Specificity of the HFE polynomial F

$$F = \sum_{\substack{0 \le j < i < n \\ 2^{i} + 2^{j} \le D}} A_{i,j} X^{2^{i} + 2^{j}} + \sum_{\substack{0 \le i < n \\ 2^{i} \le D}} B_{i} X^{2^{i}} + C \in \mathbb{F}_{2^{n}}[X]$$

• *F* is sparse (quadratic form,  $\frac{1}{2}\log_2(D)^2$  coefficients).

Classical method to compute  $X^{2^n} - X \mod F$ .

function RepeatingSquaring( $F \in \mathbb{F}_{2^n}[X]$ )  $X_i \leftarrow X$   $\triangleright X_i \text{ is } X^{2^i} \mod F$ for *i* from 1 to *n* do  $X_i \leftarrow X_i^2 \mod F$ end for return  $X_i + X$ end function Classical method to compute  $X^{2^n} - X \mod F$ .

function RepeatingSquaring( $F \in \mathbb{F}_{2^n}[X]$ )  $X_i \leftarrow X$   $\triangleright X_i \text{ is } X^{2^i} \mod F$ for *i* from 1 to *n* do  $X_i \leftarrow X_i^2 \mod F$ end for return  $X_i + X$ end function

#### Specificities

- The odd degree terms of  $X_i^2$  are zero.
- Modular reduction by a sparse polynomial:  $\frac{D}{2} \log_2(D)^2$  field multiplications.

Let:

- $X_i^2 = FQ + X_{i+1}$  the Euclidean division of  $X_i^2$  by F,
- $F = F_{\text{low}} + X^{d+1}F_{\text{high}}$ , with  $f_dX^d$  the largest odd degree term,
- $Q = Q_{\text{low}} + X^{d-1}Q_{\text{high}}$ .

Let:

- $X_i^2 = FQ + X_{i+1}$  the Euclidean division of  $X_i^2$  by F,
- $F = F_{\text{low}} + X^{d+1}F_{\text{high}}$ , with  $f_dX^d$  the largest odd degree term,

• 
$$Q = Q_{\text{low}} + X^{d-1}Q_{\text{high}}$$
.

We have:

• The odd degree terms of  $F_{high}$  are null,

Let:

- $X_i^2 = FQ + X_{i+1}$  the Euclidean division of  $X_i^2$  by F,
- $F = F_{\text{low}} + X^{d+1}F_{\text{high}}$ , with  $f_d X^d$  the largest odd degree term,

• 
$$Q = Q_{\text{low}} + X^{d-1}Q_{\text{high}}$$
.

We have:

- The odd degree terms of  $F_{high}$  are null,
- 2 The odd degree terms of  $Q_{high}$  are null,

Let:

- $X_i^2 = FQ + X_{i+1}$  the Euclidean division of  $X_i^2$  by F,
- $F = F_{\text{low}} + X^{d+1}F_{\text{high}}$ , with  $f_d X^d$  the largest odd degree term,

• 
$$Q = Q_{\text{low}} + X^{d-1}Q_{\text{high}}$$
.

We have:

- The odd degree terms of  $F_{high}$  are null,
- 2 The odd degree terms of  $Q_{high}$  are null,
- **3** If D is even,  $\tilde{F} = F f_d X^d = \tilde{F}_{\text{low}} + X^{\tilde{d}+1} \tilde{F}_{\text{high}}$  with  $\tilde{d} = \frac{d+1}{2}$

Let:

- $X_i^2 = FQ + X_{i+1}$  the Euclidean division of  $X_i^2$  by F,
- $F = F_{\text{low}} + X^{d+1}F_{\text{high}}$ , with  $f_d X^d$  the largest odd degree term,

• 
$$Q = Q_{\text{low}} + X^{d-1}Q_{\text{high}}$$
.

We have:

- The odd degree terms of  $F_{high}$  are null,
- 2 The odd degree terms of  $Q_{high}$  are null,
- **3** If D is even,  $\tilde{F} = F f_d X^d = \tilde{F}_{\text{low}} + X^{\tilde{d}+1} \tilde{F}_{\text{high}}$  with  $\tilde{d} = \frac{d+1}{2}$

#### Theorem (simplified)

Let *D* be an even integer, and *F* be a *D*-degree HFE polynomial. By removing s odd degree terms of *F*, the Euclidean division of  $X_i$  by *F* can be accelerated by a factor < 2.

## Sparse HFE polynomials and security

| s | d   | Number of non-zero terms of $Q$ | Speed-up |  |
|---|-----|---------------------------------|----------|--|
| 0 | 129 | 129                             | 0%       |  |
| 1 | 65  | 97                              | 33%      |  |
| 2 | 33  | 81                              | 59%      |  |
| 3 | 17  | 73                              | 77%      |  |
| 4 | 9   | 69                              | 87%      |  |
| 5 | 5   | 67                              | 93%      |  |
| 6 | 3   | 66                              | 95%      |  |
| 7 | 1   | 65 (only even degree terms)     | 98%      |  |

Speed-up of the Euclidean division of  $X_i$  by F for D = 130. We remove  $\{f_{129}X^{129}, f_{65}X^{65}, \dots, f_{2d-1}X^{2d-1}\} = s$  terms.

# Sparse HFE polynomials and security

| s | d   | Number of non-zero terms of $Q$ | Speed-up | $D_{ m reg}^{ m Experimental}$ |
|---|-----|---------------------------------|----------|--------------------------------|
| 0 | 129 | 129                             | 0%       | 5                              |
| 1 | 65  | 97                              | 33%      | 5                              |
| 2 | 33  | 81 59%                          |          | 5                              |
| 3 | 17  | 73 77%                          |          | 5                              |
| 4 | 9   | 69 87%                          |          | 5                              |
| 5 | 5   | 67                              | 93%      | 5                              |
| 6 | 3   | 66                              | 95%      | 5                              |
| 7 | 1   | 65 (only even degree terms)     | 98%      | 5                              |

Speed-up of the Euclidean division of  $X_i$  by F for D = 130. We remove  $\{f_{129}X^{129}, f_{65}X^{65}, \dots, f_{2d-1}X^{2d-1}\} = s$  terms.

#### Complexity of the Gröbner Basis attack [FauJou03]

The complexity of the direct attack against the HFE-based schemes is  $O(n^{\omega D_{\text{reg}}})$ , with  $D_{\text{reg}}$  the degree of regularity and  $2 \le \omega \le 3$ .

## Performance

| n   | D   | s | NTL  | Magma | MQsoft |
|-----|-----|---|------|-------|--------|
| 174 | 513 | 0 | 1090 | -3.6% | +840%  |
|     | 514 | 3 | 1100 | +46%  | +1500% |
| 354 | 513 | 0 | 4370 | +16%  | +640%  |
|     | 514 | 3 | 4390 | +88%  | +1200% |

Number of mega cycles to find the roots of a HFE polynomial with NTL, followed by the speed-ups obtained respectively with Magma and MQsoft (Skylake processor).

#### Results

- NTL is not adapted to the sparse polynomials.
- Magma exploits the parameter **s** with a variable-time implementation.
- MQsoft is fast and has a constant-time sparse repeating squaring algorithm.

# Conclusion

#### Performance

- MQsoft is an efficient C library faster than the generic libraries.
- MQsoft improves the NIST candidates GeMSS and Gui.
- The parameter s accelerates the root finding of HFE polynomials in F<sub>2<sup>n</sup></sub>[X].

#### Perspectives

- The security of the parameter s must be studied in depth.
- To propose methods in constant-time for the GCD and the choice of a root during the root finding.
- To add the use of AVX-512 and the VPCLMULQDQ instruction<sup>a</sup>.

<sup>a</sup>Available on the future Ice Lake processors (10<sup>th</sup> generation)

# Thank you for your attention.

## References I

- Daniel J. Bernstein, Tung Chou and Peter Schwabe. McBits: Fast Constant-Time Code-Based Cryptography. CHES 2013.
- Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier Killijian and Tancrède Lepoint. NFLlib: NTT-Based Fast Lattice Library. CT-RSA 2016.
- Tsutomu Matsumoto and Hideki Imai. Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption. EUROCRYPT '88.
- Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. EUROCRYPT '96.
- Jean-Charles Faugère and Antoine Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. CRYPTO '03.
- Manuel Bluhm and Shay Gueron. Fast software implementation of binary elliptic curve cryptography. J. Cryptographic Engineering.
- Côme Berbain, Olivier Billet, Henri Gilbert. Efficient Implementations of Multivariate Quadratic Systems. SAC 2006.

- Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang and Chen-Mou Cheng. Implementing 128-Bit Secure MPKC Signatures. IEICE Transactions.
- Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed).