

Exploring the Effect of Device Aging on Static Power Analysis Attacks

Naghmeh Karimi¹, Thorben Moos² and Amir Moradi²

¹University of Maryland, Baltimore County, USA

²Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany

28 August 2019

Outline

1 Introduction

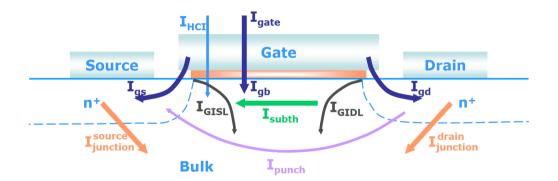
- Static Power Consumption
- Device Aging

2 Target

3 Simulation Results

- 4 Practical Results
 - Setup
 - 65 nm ASIC
 - 150 nm ASIC

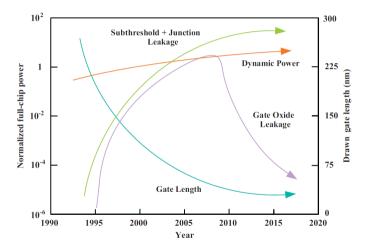
5 Conclusion


Section 1

Introduction

Static Leakage Currents

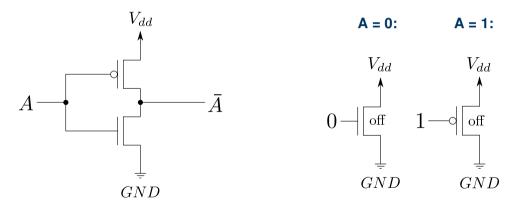
Introduction



Source: Leakage Models for High Level Power Estimation, Domenik Helms, PhD thesis, Carl von Ossietzky Universität Oldenburg, 2009

Static Leakage Development

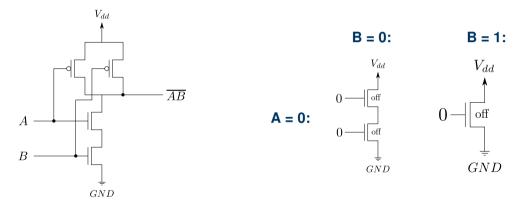
Introduction


Source: Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells, Z. Abbas and M. Olivieri, Microelectronics Journal, Vol. 45 Issue 2, 2014

Naghmeh Karimi, Thorben Moos and Amir Moradi | Exploring the Effect of Device Aging on Static Power Analysis Attacks | 28 August 2019 | CHES 2019 | Atlanta

Data Dependency of CMOS Standard Cells: NOT Gate

Formation of inactive transistors across power supply path for different inputs*:

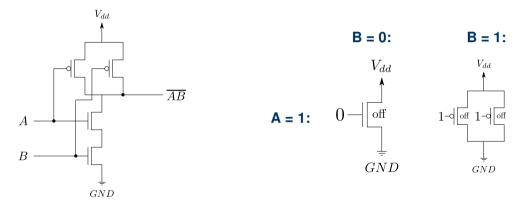


*Active (conducting) transistors are replaced by ideal wires in this simplification.

RUB

Data Dependency of CMOS Standard Cells: NAND Gate

Formation of inactive transistors across power supply path for different inputs*:



*Active (conducting) transistors are replaced by ideal wires in this simplification.

RUB

Data Dependency of CMOS Standard Cells: NAND Gate

Formation of inactive transistors across power supply path for different inputs*:

*Active (conducting) transistors are replaced by ideal wires in this simplification.

- Device aging is an important failure mechanism in nanoscale designs that jeopardizes the *reliability* of electronic devices
- Performance of nanoscale CMOS circuits degrades over their lifetime

\Rightarrow Ultimate Failure

Circuit Aging Mechanisms

• Time dependent dielectric Breakdown (TDDB)

Circuit Aging Mechanisms

- Time dependent dielectric Breakdown (TDDB)
- Electromigration (EM)

Circuit Aging Mechanisms

- Time dependent dielectric Breakdown (TDDB)
- Electromigration (EM)
- Bias Temperature-Instability (BTI)

RUB

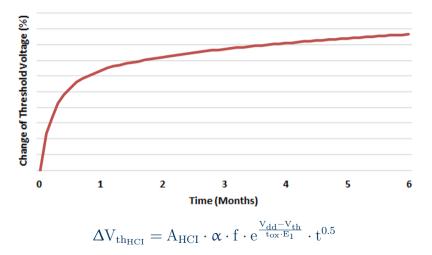
Circuit Aging Mechanisms

- Time dependent dielectric Breakdown (TDDB)
- Electromigration (EM)
- Bias Temperature-Instability (BTI)
- Hot Carrier Injection (HCI)

Negative Bias Temperature Instability (NBTI)

- Cause: Holes creating traps between Si-SiO2 and substrate
- Impact: Vth increase, especially for PMOS transistors

Hot Carrier Injection (HCI)


- **Cause:** Electrons colliding with the gate oxide (rather than going only to the conduction channel between source and drain)
- Impact: Vth increase, especially for NMOS transistors

Vth increase caused by NBTI Introduction

Vth increase caused by HCI Introduction

• The threshold voltage of a MOSFET can be used as a parameter to regulate the trade-off between its propagation delay and its leakage current

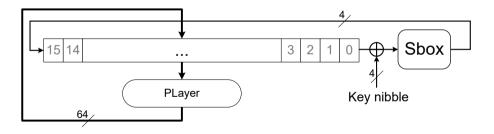
- The threshold voltage of a MOSFET can be used as a parameter to regulate the trade-off between its propagation delay and its leakage current
- Devices with a high threshold voltage are slower and can be used where timing is not critical in order to reduce the leakage current

- The threshold voltage of a MOSFET can be used as a parameter to regulate the trade-off between its propagation delay and its leakage current
- Devices with a high threshold voltage are slower and can be used where timing is not critical in order to reduce the leakage current
- By aging a CMOS circuit the threshold voltage of devices increases and the design starts to fail timing

- The threshold voltage of a MOSFET can be used as a parameter to regulate the trade-off between its propagation delay and its leakage current
- Devices with a high threshold voltage are slower and can be used where timing is not critical in order to reduce the leakage current
- By aging a CMOS circuit the threshold voltage of devices increases and the design starts to fail timing
- The aging procedure can be accelerated by applying increased supply voltages and temperatures

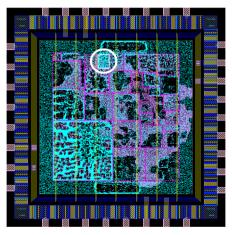
- The threshold voltage of a MOSFET can be used as a parameter to regulate the trade-off between its propagation delay and its leakage current
- Devices with a high threshold voltage are slower and can be used where timing is not critical in order to reduce the leakage current
- By aging a CMOS circuit the threshold voltage of devices increases and the design starts to fail timing
- The aging procedure can be accelerated by applying increased supply voltages and temperatures
- The input-dependent leakage behavior of CMOS circuits changes non-linearly, also depending on the switching activity during aging (i.e., high vs. low activity)

Section 2


Target

PRESENT Architecture

Target

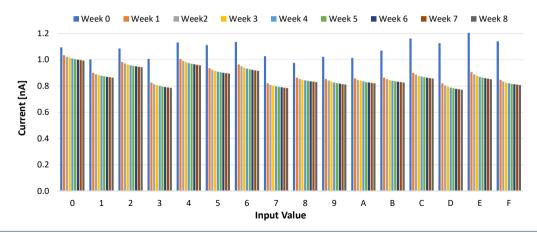


Nibble-serial PRESENT implementation with single Sbox instance:

RUHR-UNIVERSITÄT BOCHUM 65 nm ASIC Target

Chip Layout:

Corner of the Die:

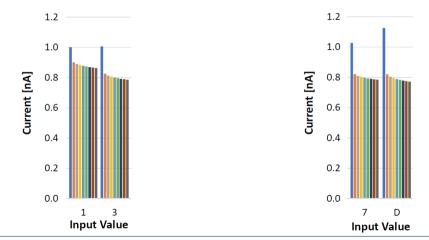

Section 3

Simulation Results

Simulated Input Dependency of Sbox Instance

Simulation Results

Accelerated aging at 90°C and 1.416 V for 8 weeks (acceleration factor \approx 80):


RUB

Simulated Input Dependency of Sbox Instance

Simulation Results

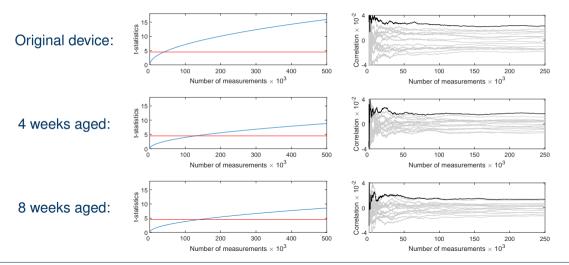
Increased distinguishability after aging:

Decreased distinguishability after aging:

• Input dependency of the Sbox instance changes completely during the aging process (already after the first week of accelerated aging)

- Input dependency of the Sbox instance changes completely during the aging process (already after the first week of accelerated aging)
- Absolute leakage currents decrease

- Input dependency of the Sbox instance changes completely during the aging process (already after the first week of accelerated aging)
- Absolute leakage currents decrease
- Input dependent variance between the leakage currents decreases as well



- Input dependency of the Sbox instance changes completely during the aging process (already after the first week of accelerated aging)
- Absolute leakage currents decrease
- Input dependent variance between the leakage currents decreases as well
- Static power side-channel attacks should become more difficult on aged devices

Simulation: T-test and CPA on HW of Sbox Output

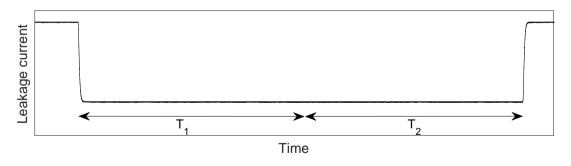
Simulation Results

RUB

Section 4

Practical Results

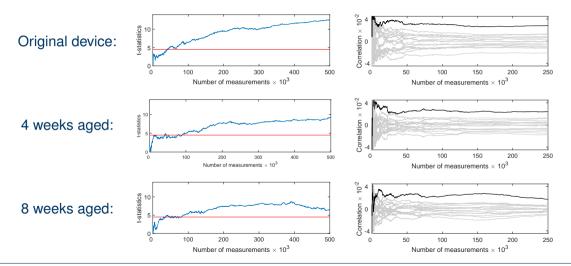
Measurement Board:


Climate Chamber and Scope:

Sample Measurement

Sample Measurement Procedure with Stopping the Clock Signal:

 We have aged two distinct fresh samples of the 65 nm ASIC at 90°C and 1.416 V for 8 consecutive weeks



- We have aged two distinct fresh samples of the 65 nm ASIC at 90°C and 1.416 V for 8 consecutive weeks
- At 0 (initial state), 4 and 8 weeks of aging we have measured the susceptibility of the PRESENT implementation to static power attacks (at 20°C and 1.2 V)

- We have aged two distinct fresh samples of the 65 nm ASIC at 90°C and 1.416 V for 8 consecutive weeks
- At 0 (initial state), 4 and 8 weeks of aging we have measured the susceptibility of the PRESENT implementation to static power attacks (at 20°C and 1.2 V)
- The setup (esp. the board) to operate the ASICs while aging was distinct from the one for measurements in order to avoid that setup aging influences the results

Sample 1: T-test and CPA on HW of Sbox Output Practical Results

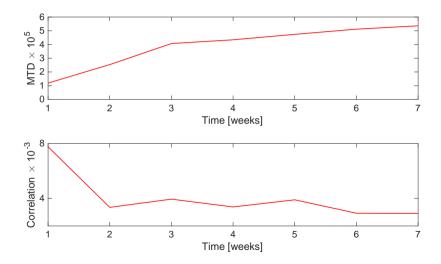
RUB

Sample 2: T-test and CPA on HW of Sbox Output Practical Results

10⁻² t-statistics Correlation × Original device: Number of measurements $\times 10^3$ Number of measurements $\times 10^3$ Correlation \times 10⁻² -statistics 4 weeks aged: -2 ⁻O Number of measurements $\times 10^3$ Number of measurements $\times 10^3$ Correlation \times 10⁻² t-statistics 8 weeks aged: -2 Number of measurements $\times 10^3$ Number of measurements $\times 10^3$

Naghmeh Karimi, Thorben Moos and Amir Moradi | Exploring the Effect of Device Aging on Static Power Analysis Attacks | 28 August 2019 | CHES 2019 | Atlanta

Comparison: Simulation vs. Experiments


Practical Results

Experiment	Stage of aging	t-stat.	Corr. coeff.	Avg. total curr.
Simulation	Original device	15.941	0.02283	-
Simulation	4 weeks aged	8.818	0.01682	-
Simulation	8 weeks aged	8.590	0.01340	-
Measurements sample 1	Original device	12.514	0.02801	8.6 µA
Measurements sample 1	4 weeks aged	9.299	0.02410	8.0 µA
Measurements sample 1	8 weeks aged	6.359	0.01718	7.5 µA
Measurements sample 2	Original device	23.251	0.01472	7.5 μΑ
Measurements sample 2	4 weeks aged	13.647	0.01465	7.2 μA
Measurements sample 2	8 weeks aged	16.710	0.01147	6.9 µA

Simultaneous Aging and Measuring - 150 nm Chip

Practical Results

Section 5

Conclusion

• Leakage currents of CMOS devices are reduced due to aging mechanisms

- Leakage currents of CMOS devices are reduced due to aging mechanisms
- Static power side-channel attacks require more traces to succeed

- Leakage currents of CMOS devices are reduced due to aging mechanisms
- Static power side-channel attacks require more traces to succeed
- The data dependency of combinatorial circuits changes completely

- Leakage currents of CMOS devices are reduced due to aging mechanisms
- Static power side-channel attacks require more traces to succeed
- The data dependency of combinatorial circuits changes completely
- Static power results taken from different phases of measurements do not correspond to each other

- Leakage currents of CMOS devices are reduced due to aging mechanisms
- Static power side-channel attacks require more traces to succeed
- The data dependency of combinatorial circuits changes completely
- Static power results taken from different phases of measurements do not correspond to each other
- Especially relevant when conducting attacks at increased temperatures and supply voltages, as it fuels device degradation significantly

- Leakage currents of CMOS devices are reduced due to aging mechanisms
- Static power side-channel attacks require more traces to succeed
- The data dependency of combinatorial circuits changes completely
- Static power results taken from different phases of measurements do not correspond to each other
- Especially relevant when conducting attacks at increased temperatures and supply voltages, as it fuels device degradation significantly
- Future static power experiments should state the age of devices at all stages

Thanks for your attention.

Any questions?