

Static Power SCA of Sub-100 nm CMOS ASICs and the Insecurity of Masking Schemes in Low-Noise Environments

Thorben Moos

Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany

August 28th, 2019

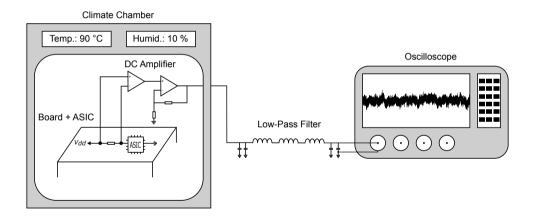
Section 1

Introduction

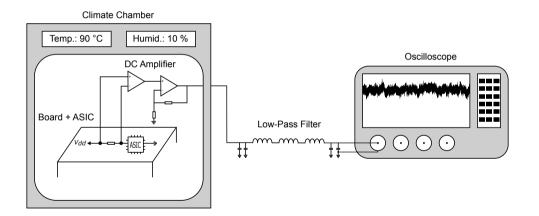
 CMOS logic gates <u>and</u> memory elements have a data dependent static power consumption

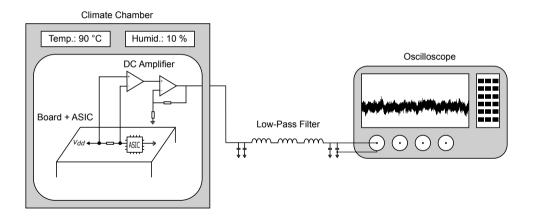
- CMOS logic gates <u>and</u> memory elements have a data dependent static power consumption
- Leakage currents increase significantly by down-scaling the physical feature size of transistors

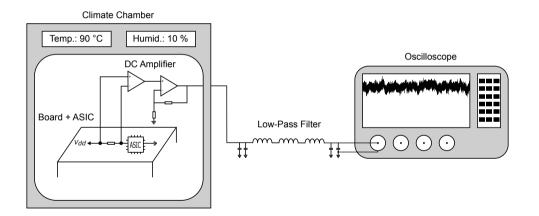
- CMOS logic gates <u>and</u> memory elements have a data dependent static power consumption
- Leakage currents increase significantly by down-scaling the physical feature size of transistors
- Attacks on crypto primitives exploiting this data dependency have been demonstrated in practice for FPGAs [CHES 2014] and ASICs [DATE 2015/2017]



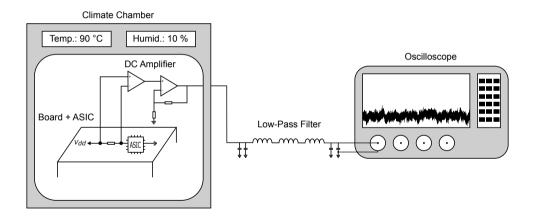
- CMOS logic gates <u>and</u> memory elements have a data dependent static power consumption
- Leakage currents increase significantly by down-scaling the physical feature size of transistors
- Attacks on crypto primitives exploiting this data dependency have been demonstrated in practice for FPGAs [CHES 2014] and ASICs [DATE 2015/2017]
- When clock control is obtained by an adversary, measurements with a very low noise influence can be recorded

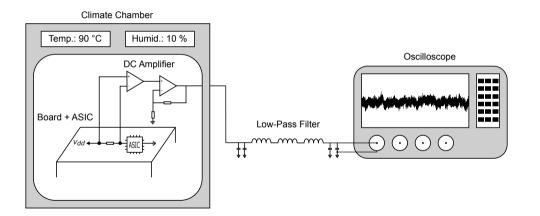

- CMOS logic gates <u>and</u> memory elements have a data dependent static power consumption
- Leakage currents increase significantly by down-scaling the physical feature size of transistors
- Attacks on crypto primitives exploiting this data dependency have been demonstrated in practice for FPGAs [CHES 2014] and ASICs [DATE 2015/2017]
- When clock control is obtained by an adversary, measurements with a very low noise influence can be recorded
- Control over the operating conditions significantly enhances the ability to extract secrets, even though it accelerates device degradation

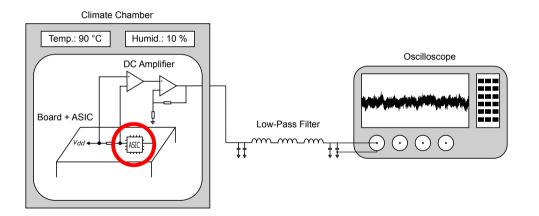

Setup Introduction

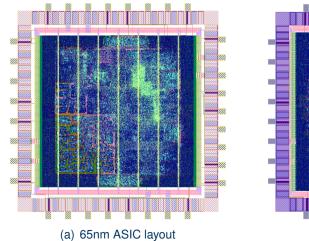


Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019









ASICs Introduction

(b) 90nm ASIC layout

RUB

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

Section 2

Influence of Operating Conditions

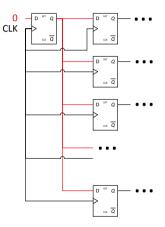
Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

Target 1024-bit HF Register

To evaluate the influence of operating conditions, choose an instance that leaks a lot: Target 1024-bit HF Register

To evaluate the influence of operating conditions, choose an instance that leaks a lot:

1024-bit HF Input Register

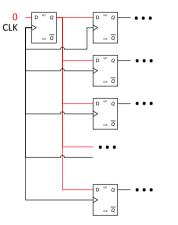

- filled either with 0s or 1s
- average fanout of 11

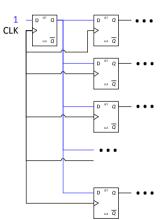
Target 1024-bit HF Register

To evaluate the influence of operating conditions, choose an instance that leaks a lot:

1024-bit HF Input Register

- filled either with 0s or 1s
- average fanout of 11

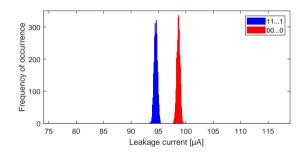



Target 1024-bit HF Register

To evaluate the influence of operating conditions, choose an instance that leaks a lot:

1024-bit HF Input Register

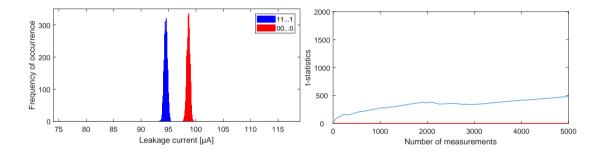
- filled either with 0s or 1s
- average fanout of 11


Subsection 1

90 nm ASIC

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

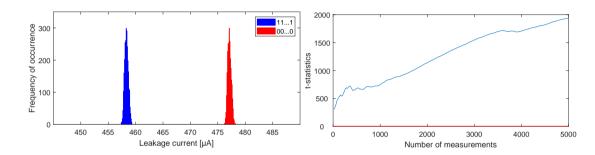
90 nm ASIC – Normal Operating Conditions


5,000 Measurements at 1.2 V and 20 $^\circ C$

90 nm ASIC – Normal Operating Conditions

5,000 Measurements at 1.2 V and 20 $^\circ C$

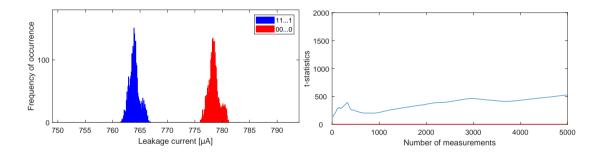
90 nm ASIC – Normal Operating Conditions


5,000 Measurements at 1.2 V and 20 $^\circ C$

Difference of Means	4.1353 μA
Average Total Current	96.5 µA
t-value (after 5,000 Traces)	480

90 nm ASIC – Increased Supply Voltage

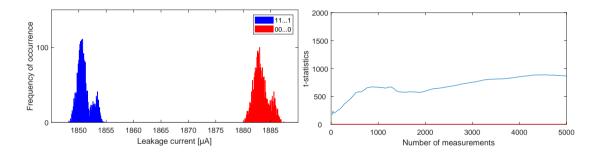
5,000 Measurements at 1.6 V and 20 $^\circ C$



Difference of Means	18.7822 μA	imes4.5419 gain
Average Total Current	467.3 µA	imes4.8424 gain
t-value (after 5,000 Traces)	1938	imes4.0375 gain

90 nm ASIC – Increased Temperature

5,000 Measurements at 1.2 V and 90 $^\circ C$

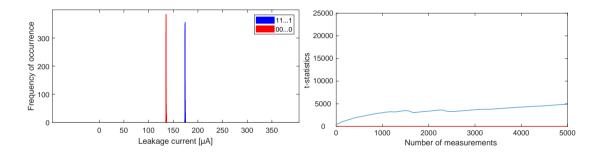


Difference of Means	14.4754 μA	imes3.5004 gain
Average Total Current	771.1 μA	×7.9907 gain
t-value (after 5,000 Traces)	526	imes1.0958 gain

90 nm ASIC – Increased Voltage and Temperature

5,000 Measurements at 1.6 V and 90 $^\circ C$

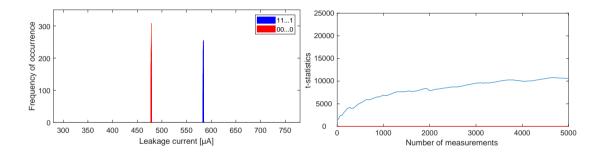
Difference of Means	32.3217 µA	imes7.8160 gain
Average Total Current	1,867.3 µA	imes19.3503 gain
t-value (after 5,000 Traces)	867	\times 1.8063 gain


Subsection 2

65 nm ASIC

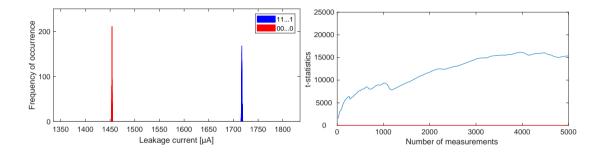
Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

65 nm ASIC – Normal Operating Conditions


5,000 Measurements at 1.2 V and 20 $^\circ C$

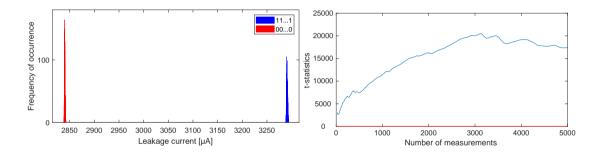
Difference of Means	38.4927 µA
Average Total Current	154.9 µA
t-value (after 5,000 Traces)	4890

65 nm ASIC – Increased Supply Voltage


5,000 Measurements at 1.6 V and 20 $^\circ C$

Difference of Means	105.5205 μA	imes2.7413 gain
Average Total Current	529.9 µA	×3.4209 gain
t-value (after 5,000 Traces)	10570	imes2.1616 gain

65 nm ASIC – Increased Temperature


5,000 Measurements at 1.2 V and 90 $^\circ C$

Difference of Means	263.1579 μA	×6.8366 gain
Average Total Current	1585.1 μA	×10.2331 gain
t-value (after 5,000 Traces)	15360	×3.1411 gain

65 nm ASIC – Increased Voltage and Temperature

5,000 Measurements at 1.6 V and 90 $^\circ C$

Difference of Means	450.6296 μA	×11.7069 gain
Average Total Current	3067.2 µA	×19.8012 gain
t-value (after 5,000 Traces)	17460	imes3.5706 gain

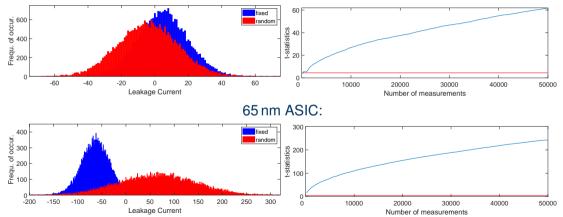
Section 3

Technology Comparison

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

Data Dependency of HF-Register – 90 nm vs. 65 nm

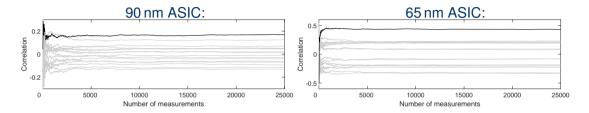
5,000 Measurements



Technology	Voltage	Temp.	Diff. of Means	Avg. Total Current
90 nm	1.2 V	20°C	4.1353 μA	96.5 µA
90 nm	1.6 V	20°C	18.7822 μA (×4.54)	467.3 μA (×4.84)
90 nm	1.2 V	90°C	14.4754 μA (×3.50)	771.1 μA (×7.99)
90 nm	1.6 V	90°C	32.3217 µA (×7.82)	1,867.3 µA (×19.35)

Technology	Voltage	Temp.	Diff. of Means	Avg. Total Current
65 nm	1.2 V	20 °C	38.4927 µA	154.9 µA
65 nm	1.6 V	20 °C	105.5205 μA (×2.74)	529.9 µA (×3.42)
65 nm	1.2 V	90 ° C	263.1579 μA (×6.84)	1,585.1 μA (×10.23)
65 nm	1.6 V	90 °C	450.6296 μA (×11.71)	3,067.2 µA (×19.80)

Data Dependency of PRESENT Core – 90 nm vs. 65 nm

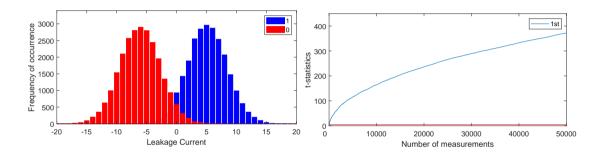

50,000 Measurements at 1.6 V and 90 $^\circ C$

90 nm ASIC:

Data Dependency of PRESENT Core – 90 nm vs. 65 nm

50,000 Measurements at 1.6 V and 90 $^\circ C$

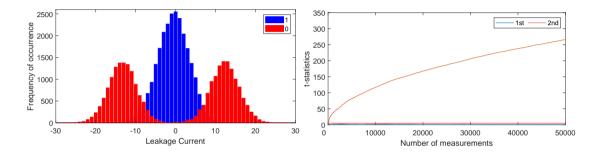
	90 nm	65 nm
Difference of Means	9.15 µA	128.46 µA
t-value (after 50,000 Traces)	61.96	242.50
Correlation	0.17	0.43
Measurements to Disclosure	2,180	100



Section 4

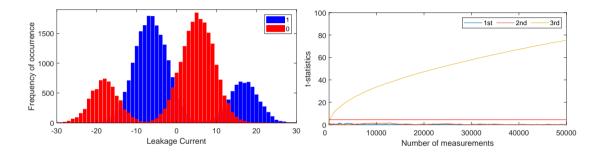
Masking

65 nm ASIC – 1 Share in Register (1-bit)



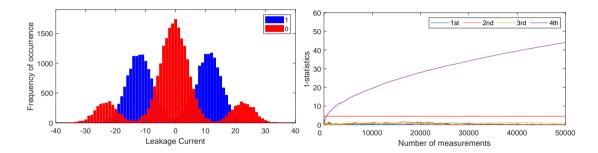
number of shares	1
detectable leakage at	1 st -order
t-value (after 50,000 Traces)	372.4

65 nm ASIC – 2 Shares in Register (1-bit)



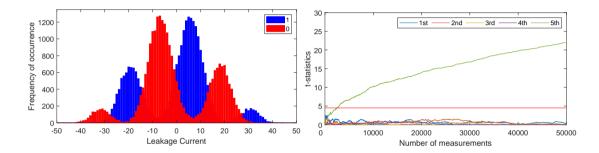
number of shares	1	2
detectable leakage at	1 st -order	2 nd -order
t-value (after 50,000 Traces)	372.4	265.7

65 nm ASIC – 3 Shares in Register (1-bit)



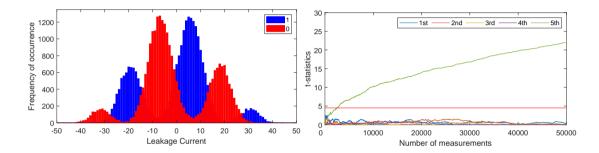
number of shares	1	2	3
detectable leakage at	1 st -order	2 nd -order	3 rd -order
t-value (after 50,000 Traces)	372.4	265.7	75.25

65 nm ASIC – 4 Shares in Register (1-bit)



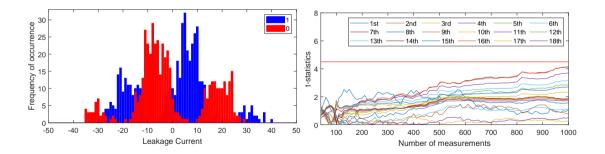
number of shares	1	2	3	4
detectable leakage at	1 st -order	2 nd -order	3 rd -order	4 th -order
t-value (after 50,000 Traces)	372.4	265.7	75.25	44.06

65 nm ASIC – 5 Shares in Register (1-bit)



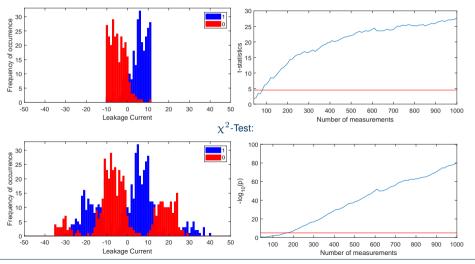
number of shares	1	2	3	4	5
detectable leakage at	1 st -order	2 nd -order	3 rd -order	4 th -order	5 th -order
t-value (after 50,000 Traces)	372.4	265.7	75.25	44.06	22.00

65 nm ASIC – 5 Shares in Register (1-bit)


number of shares	1	2	3	4	5
detectable leakage at	1 st -order	2 nd -order	3 rd -order	4 th -order	5 th -order
t-value (after 50,000 Traces)	372.4	265.7	75.25	44.06	22.00

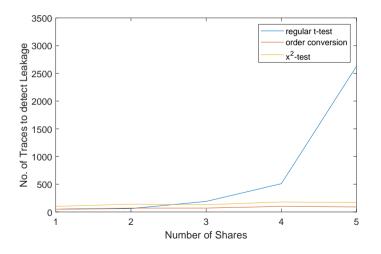
65 nm ASIC – 5 Shares in Register (1-bit)

1,000 Measurements at 1.6 V and 90 $^\circ C$


After the first 1,000 Traces the t-test does not indicate detectable leakage in any order (up to 18 shown) even though the distributions are clearly distinguishable:

65 nm ASIC – 5 Shares in Register (1-bit)

1,000 Measurements at 1.6 V and 90 $^\circ C$

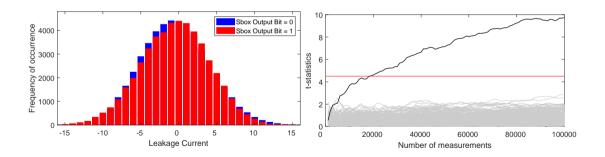

Order Conversion/Compression:

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

65 nm ASIC – Detectability of the Leakage

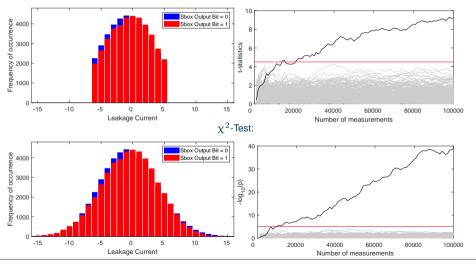
50,000 Measurements at 1.6 V and 90 $^\circ C$

 Regular t-test indeed leads to false negatives at higher orders due to the low noise


- χ²-test is pessimistic in low orders
- Order conversion, resp. compression, requires manual slicing of the distributions

65 nm ASIC – DPA on AES Threshold Implementation Core

100,000 Measurements at 1.6 V and 90 $^\circ C$


Third-order DPA using t-test:

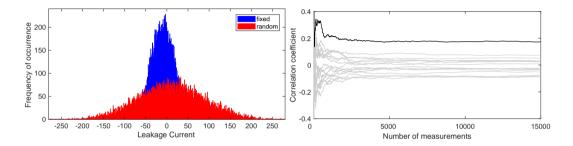
65 nm ASIC – DPA on AES Threshold Implementation Core

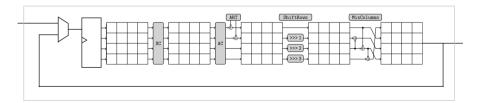
100,000 Measurements at 1.6 V and 90 $^\circ C$

Order Conversion/Compression:

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

65 nm ASIC – DPA on AES Threshold Implementation Core




	No. of Traces for successful DPA
regular t-test	19,000
order conversion	21,000
χ^2 -test	10,000

Section 5

Clock Control

SKINNY: Last Round State Remains in Circuit

Thorben Moos | Static Power SCA of Sub-100 nm CMOS ASICs | August 28th, 2019

• The potency of the static power side-channel increases significantly for smaller CMOS feature sizes

- The potency of the static power side-channel increases significantly for smaller CMOS feature sizes
- Operating conditions can significantly boost the available information through this side-channel

- The potency of the static power side-channel increases significantly for smaller CMOS feature sizes
- Operating conditions can significantly boost the available information through this side-channel
- Due to the low noise level masked implementations should not be analyzed with moment-based methods and are susceptible with comparably few traces

- The potency of the static power side-channel increases significantly for smaller CMOS feature sizes
- Operating conditions can significantly boost the available information through this side-channel
- Due to the low noise level masked implementations should not be analyzed with moment-based methods and are susceptible with comparably few traces
- If sensitive intermediates remain in a circuit after cryptographic operations, static power side-channel attacks without clock control may be performed

Thank you for your attention.

Any questions?