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Motivation
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runtime in many LWE-based schemes

@ NTRU schemes require less pseudo-randomness as there is no expansion of uniform public
polynomial

@ Expensive polynomial inversion during key generation in NTRU schemes is simple when
using NTT-based arithmetic
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This requires non-power-of-two NTT and non-fully-splitting prime modulus



Cyclic NTT

Let ¢ € Z4 be a primitive n-th root of unity, i.e. (" =1 but Ck£1for0< k< n.

For f € Zg[X]/(X" — 1),

NTT(f) = (F (%), F(¢Y),....F(¢" ) e Z]

defines an isomorphism

In particular, polynomial multiplication/division in Z4[X]/(X" — 1) translates to coefficientwise
multiplication /division in Zg



Negacyclic NTT

We want an irreducible defining polynomial ¢ for our ring R = Z4[X]/(¢)
If n =2k then X" + 1 is the irreducible 2n-th cyclotomic polynomial

Some schemes compute twisting map

Zo[X]/(X" + 1) 275 Z[X] /(X" 1)

and then use the cyclic NTT. This is slightly non-optimal.



Algebraic Formulation of NTT

If there exists primitive n-th root of unity ( in Zg, then

XP—1= (X=X = Q) (X = ¢

Now, by the Chinese remainder theorem,

ZqlX]/(X" = 1) = Zg[X]/(X = 1) x -+ x Zg[X]/(X = ¢"F)

The NTT is this CRT map
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Recursive Algorithm

Zq[X]/(X

/\

ZelX] /(X" ~ 1) ZolX] /(X2 +

/N /\

q[X]/ Xn/4_ 1 q[X]/ Xn/4 Cn/2) 7. [X]/ Xn/4 Cn/4 7. [X]/ Xn/4 C3n/4)



Our NTT of Length 768

Let R = Zzgs1[X]/(X7®® — X38* 1 1) and ¢ € Zzgg1 be a primitive 768-th root of unity

We want to compute

Zaee1[X]/(X7%® — X3 4 1) 2 Zager [X]/(X® = ¢) x -+ x Zgeea[X]/(X> — ()



Zq[X] /(X768 _ X384 4 1)



Zq[X] /(X768 _ X384 4 1)

/\

ZoX] [ (X3 - %) ZoX] [ (X3 - %)



Splitting Strategy

7, [X]/(X768 X384—|—

/\

[X]/(X384 468) [X]/ X384 578 68)

/N

Zq[X]/<X192+C%> q[X]/<X192 C768)
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Vectorized Implementations of the NTT

Two possibilities to vectorize products with roots of unity on AVX2
© Pack only eight 16 bit coefficients in 256 bit registers and leave room for intermediate 32
bit products using instruction vpmulld

@ Densely pack sixteen 16 bit coefficients in 256 bit registers and compute separate low and
high parts of 32-bit products using instructions vpmullw and vpmulhw

We use second approach with a variant of the Montgomery reduction algorithm that naturally
handles this representation



Signed Montgomery Reduction

Hensel remainder of ¢ modulo g: Unique r such that

c = mq + r2'®

We have r = c271® (mod q)

Algorithm:
@ Multiply ¢ by g~ modulo 2%°; gives m
@ Multiply m by g and subtract from c; gives r216
© Divide by 21 (shift right); gives r



Fast Mulmod

For product ¢ = ab = mq + r2'® compute

c=cy+ 2%

@ Multiply ¢ by g~ modulo 2%°; gives m
Need only low word ¢j of ¢

@ Multiply m by g and subtract from c; gives r216
mq and ¢ have equal low word; Sufficient to compute only high word of mg and subtract

from high word c¢; of ¢; This already gives r

Further Optimization: If b is precomputable constant, can also precompute bg—* mod 216
and skip first reduction step

Full mulmod in Zg with precomputed constant costing only three half products!



Results

Bytes pk/ct Cycles Key generation Cycles Signing Cycles Verification

1248 6431 6101 7878

Measurements performed on Intel Skylake Core i7-6600U CPU



@ Use prime modulus g = 3457 instead of 7681
Would result in about the same sizes as NTRU HRSS
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