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Motivation

Symmetric key operations like sampling of random polynomials make up for majority of
runtime in many LWE-based schemes

NTRU schemes require less pseudo-randomness as there is no expansion of uniform public
polynomial

Expensive polynomial inversion during key generation in NTRU schemes is simple when
using NTT-based arithmetic

Goal: Design extremely fast variant of NTRU HRSS around state-of-the-art vectorized NTT
arithmetic while maintaining competitive sizes

This requires non-power-of-two NTT and non-fully-splitting prime modulus
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Cyclic NTT

Let ζ ∈ Zq be a primitive n-th root of unity, i.e. ζn = 1 but ζk 6= 1 for 0 < k < n.

For f ∈ Zq[X ]/(X n − 1),

NTT(f ) =
(
f
(
ζ0
)
, f
(
ζ1
)
, . . . , f

(
ζn−1

))
∈ Zn

q

defines an isomorphism

In particular, polynomial multiplication/division in Zq[X ]/(X n − 1) translates to coefficientwise
multiplication/division in Zn

q



Negacyclic NTT

We want an irreducible defining polynomial ϕ for our ring R = Zq[X ]/(ϕ)

If n = 2k , then X n + 1 is the irreducible 2n-th cyclotomic polynomial

Some schemes compute twisting map

Zq[X ]/(X n + 1)
X 7→ζX−−−−→ Zq[X ]/(X n − 1)

and then use the cyclic NTT. This is slightly non-optimal.



Algebraic Formulation of NTT

If there exists primitive n-th root of unity ζ in Zq, then

X n − 1 = (X − 1)(X − ζ) · · · (X − ζn−1)

Now, by the Chinese remainder theorem,

Zq[X ]/(X n − 1) ∼= Zq[X ]/(X − 1)× · · · × Zq[X ]/(X − ζn−1)

The NTT is this CRT map
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Our NTT of Length 768

Let R = Z7681[X ]/(X 768 − X 384 + 1) and ζ ∈ Z7681 be a primitive 768-th root of unity

We want to compute

Z7681[X ]/(X 768 − X 384 + 1) ∼= Z7681[X ]/(X 3 − ζ)× · · · × Z7681[X ]/(X 3 − ζ767)
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Vectorized Implementations of the NTT

Two possibilities to vectorize products with roots of unity on AVX2

1 Pack only eight 16 bit coefficients in 256 bit registers and leave room for intermediate 32
bit products using instruction vpmulld

2 Densely pack sixteen 16 bit coefficients in 256 bit registers and compute separate low and
high parts of 32-bit products using instructions vpmullw and vpmulhw

We use second approach with a variant of the Montgomery reduction algorithm that naturally
handles this representation



Signed Montgomery Reduction

Hensel remainder of c modulo q: Unique r such that

c = mq + r216

We have r ≡ c2−16 (mod q)

Algorithm:

1 Multiply c by q−1 modulo 216; gives m

2 Multiply m by q and subtract from c ; gives r216

3 Divide by 216 (shift right); gives r



Fast Mulmod

For product c = ab = mq + r216 compute

c = c0 + c1216

1 Multiply c by q−1 modulo 216; gives m
Need only low word c0 of c

2 Multiply m by q and subtract from c ; gives r216

mq and c have equal low word; Sufficient to compute only high word of mq and subtract
from high word c1 of c ; This already gives r

Further Optimization: If b is precomputable constant, can also precompute bq−1 mod 216

and skip first reduction step

Full mulmod in Zq with precomputed constant costing only three half products!



Results

Bytes pk/ct Cycles Key generation Cycles Signing Cycles Verification

1248 6431 6101 7878

Measurements performed on Intel Skylake Core i7-6600U CPU



Possible Tweaks

Use prime modulus q = 3457 instead of 7681
Would result in about the same sizes as NTRU HRSS

Deterministic noise
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