NTTRU: Truly Fast NTRU Using NTT

Vadim Lyubashevsky and Gregor Seiler

IBM Research - Zurich

Aug 26, 2019

Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic

Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic

Goal: Design extremely *fast* variant of NTRU HRSS around state-of-the-art vectorized NTT arithmetic while maintaining *competitive sizes*

Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic

Goal: Design extremely *fast* variant of NTRU HRSS around state-of-the-art vectorized NTT arithmetic while maintaining *competitive sizes*

This requires non-power-of-two NTT and non-fully-splitting prime modulus

Let $\zeta \in \mathbb{Z}_q$ be a primitive *n*-th root of unity, i.e. $\zeta^n = 1$ but $\zeta^k \neq 1$ for 0 < k < n.

For $f \in \mathbb{Z}_q[X]/(X^n - 1)$, $\mathsf{NTT}(f) = \left(f\left(\zeta^0\right), f\left(\zeta^1\right), \dots, f\left(\zeta^{n-1}\right)\right) \in \mathbb{Z}_q^n$

defines an isomorphism

In particular, polynomial multiplication/division in $\mathbb{Z}_q[X]/(X^n-1)$ translates to coefficientwise multiplication/division in \mathbb{Z}_q^n

We want an irreducible defining polynomial φ for our ring $\mathcal{R} = \mathbb{Z}_q[X]/(\varphi)$

If $n = 2^k$, then $X^n + 1$ is the irreducible 2*n*-th cyclotomic polynomial

Some schemes compute twisting map

$$\mathbb{Z}_q[X]/(X^n+1) \xrightarrow{X\mapsto \zeta X} \mathbb{Z}_q[X]/(X^n-1)$$

and then use the cyclic NTT. This is slightly non-optimal.

If there exists primitive *n*-th root of unity ζ in \mathbb{Z}_q , then

$$X^n - 1 = (X - 1)(X - \zeta) \cdots (X - \zeta^{n-1})$$

Now, by the Chinese remainder theorem,

$$\mathbb{Z}_q[X]/(X^n-1)\cong \mathbb{Z}_q[X]/(X-1) imes \dots imes \mathbb{Z}_q[X]/(X-\zeta^{n-1})$$

The NTT is this CRT map

Let $\mathcal{R} = \mathbb{Z}_{7681}[X]/(X^{768} - X^{384} + 1)$ and $\zeta \in \mathbb{Z}_{7681}$ be a primitive 768-th root of unity

We want to compute

$$\mathbb{Z}_{7681}[X]/(X^{768}-X^{384}+1)\cong \mathbb{Z}_{7681}[X]/(X^3-\zeta) imes\cdots imes\mathbb{Z}_{7681}[X]/(X^3-\zeta^{767})$$

$$\mathbb{Z}_q[X] \left/ \left(X^{768} - X^{384} + 1 \right) \right.$$

Observe: $\zeta^{\frac{768}{6}}$ is a root of $X^2 - X + 1$. Hence $\zeta^{5 \cdot \frac{768}{6}} = 1 - \zeta^{\frac{768}{6}}$.

Observe: $\zeta^{\frac{768}{6}}$ is a root of $X^2 - X + 1$. Hence $\zeta^{5 \cdot \frac{768}{6}} = 1 - \zeta^{\frac{768}{6}}$.

Two possibilities to vectorize products with roots of unity on AVX2

- Pack only eight 16 bit coefficients in 256 bit registers and leave room for intermediate 32 bit products using instruction *vpmulld*
- Onsely pack sixteen 16 bit coefficients in 256 bit registers and compute separate low and high parts of 32-bit products using instructions *vpmullw* and *vpmulhw*

We use second approach with a variant of the Montgomery reduction algorithm that naturally handles this representation

Signed Montgomery Reduction

Hensel remainder of c modulo q: Unique r such that

$$c = mq + r2^{16}$$

We have
$$r \equiv c2^{-16} \pmod{q}$$

Algorithm:

- Multiply c by q^{-1} modulo 2^{16} ; gives m
- 2 Multiply *m* by *q* and subtract from *c*; gives $r2^{16}$
- **3** Divide by 2^{16} (shift right); gives r

Fast Mulmod

For product $c = ab = mq + r2^{16}$ compute

$$c = c_0 + c_1 2^{16}$$

• Multiply c by q^{-1} modulo 2¹⁶; gives m Need only low word c_0 of c

Multiply m by q and subtract from c; gives r2¹⁶ mq and c have equal low word; Sufficient to compute only high word of mq and subtract from high word c₁ of c; This already gives r

Further Optimization: If *b* is precomputable constant, can also precompute $bq^{-1} \mod 2^{16}$ and skip first reduction step

Full mulmod in \mathbb{Z}_q with precomputed constant costing only three half products!

Bytes pk/ct	Cycles Key generation	Cycles Signing	Cycles Verification
1248	6431	6101	7878

Measurements performed on Intel Skylake Core i7-6600U CPU

• Use prime modulus q = 3457 instead of 7681 Would result in about the same sizes as NTRU HRSS

- Use prime modulus q = 3457 instead of 7681 Would result in about the same sizes as NTRU HRSS
- Deterministic noise