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Abstract. We present NTTRU — an IND-CCAZ2 secure NTRU-based key encapsulation
scheme that uses the number theoretic transform (NTT) over the cyclotomic ring
Zres1[X]/(X7%® — X388 1 1) and produces public keys and ciphertexts of approximately
1.25 KB at the 128-bit security level. The number of cycles on a Skylake CPU of our
constant-time AVX2 implementation of the scheme for key generation, encapsulation
and decapsulation is approximately 6.4K, 6.1K, and 7.9K, which is more than 30X,
5X, and 8X faster than these respective procedures in the NTRU schemes that were
submitted to the NIST post-quantum standardization process. These running times
are also, by a large margin, smaller than those for all the other schemes in the NIST
process as well as the KEMs based on elliptic curve Diffie-Hellman. We additionally
give a simple transformation that allows one to provably deal with small decryption
errors in OW-CPA encryption schemes (such as NTRU) when using them to construct
an IND-CCA2 key encapsulation.
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1 Introduction

Lattice-based schemes based on structured polynomial lattices [HPS98, LPR13] provide
us with one of the most promising solutions for post-quantum encryption. The public key
and ciphertext sizes are about 1 KB and encryption / decryption are faster than that of
traditional encryption schemes based on RSA and ECDH assumptions. Lattice schemes
are especially fast when they work over rings in which operations can be performed via the
Number Theory Transform (NTT) [LMPRO8] and many lattice-based encryption schemes
indeed utilize this approach (e.g. NewHope [ADPS16], Kyber [BDK 18], LIMA[SAL"17]).
Using the NTT could be particularly beneficial to NTRU because key generation (whose
timing is important in ephemeral key exchange) requires inversion over a polynomial ring,
which is a much more efficient operation when done over NTT-compatible rings. Despite
this apparent advantage, there were no NTT-based NTRU schemes submitted to the
NIST standardization process, and the key generation procedure in the proposed schemes
([HRSS17], [BCLvV17]) was thus significantly slower than in the proposals based on Ring
/ Module-LWE.

One of the possible reasons that NTT-based NTRU has not been proposed as a
candidate is that NTT is most efficient over rings whose dimension is a power of 2 — i.e.
rings of the form Z[X]/(X %4 1) where d is a power of 2. Based on current security analysis
(c.f. [ACD™18]), however, the ring dimension needs to be somewhere between 700 and
800 for 128-bit security (e.g. NTRU-HRSS [HRSS17] uses dimension 701, NTRU-Prime
[BCLvV17] is in dimension 761, and Kyber / Saber [DKRV18] use dimension 768). And
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unlike schemes based on generalized LWE (like Kyber) that are able to use a public key
consisting of a matrix of smaller-degree power-of-2 rings without increasing the public key
size, this approach does not work for NTRU. The reason is that the part of the public
key that contains a composition of small rings in Kyber is completely random and can be
generated from a seed via an XOF, whereas the entire NTRU public key is a function of
the secret key and none of it can be stored as a seed. Having the public key composed of
several parts would therefore significantly increase the size of the NTRU public key.

Some Advantages and Disadvantages of NTRU. Despite these limitations on parameter
selection, there are some advantages that NTRU enjoys over its counterparts based on Ring-
LWE and Module-LWE. The first advantage is speed of encapsulation and decapsulation.
The public key of Ring-LWE based primitives consists of a uniformly random polynomial
a1 and another polynomial as = a;s1 + $2, where s; are kept secret. To reduce the size
of the public key, one generates a; = H(k) where k is some short random seed, and only
stores k, az as the public key. In encapsulation and decapsulation, however, one needs to
compute a3 = H(k), and this may be a somewhat costly operation (in comparison to all
the other computation envolved in encapsulation / decapsulation) if H is an XOF based
on SHAKE or AES.

A more interesting, in our opinion, advantage of NTRU is that NTRU-based public
keys and ciphertexts may give rise to more compact (and faster) primitives that utilize
zero-knowledge proofs. An NTRU ciphertext consists of just one ring element, whereas
a Ring-LWE ciphertext consists of two. This is not a disadvantage for Ring-LWE if one
only uses it for encryption because the second ciphertext can be drastically compressed
so that only a few (e.g. 2 or 3) high-order bits need to be output. Furthermore, the first
ciphertext can also be compressed so that Ring-LWE ciphertexts may actually be a little
smaller than NTRU ones. But, if one is using a cryptographic primitive that includes an
encryption scheme and a zero-knowledge proof that the ciphertext is correctly formed (e.g.
verifiable encryption schemes, group signatures, etc.) then there does not seem to be a way
around needing to prove that both parts of the Ring-LWE ciphertext are correctly formed.
The proofs for Ring-LWE based schemes would therefore be twice as large as those for
NTRU.

On the other hand, there are also situations in which one should strongly prefer to use
Ring-LWE based schemes rather than those based on NTRU. Certain instantiations of
“advanced” primitives require the gap between the modulus and the error to be somewhat
large, and it is known that due to the special structure of its public key, NTRU with a
large modulus and small error is less secure than Ring-LWE [ABD16, KF17]. !

In short, there are reasons that both NTRU and generalized LWE-based schemes may
be useful in different situations. Generalized LWE schemes like Kyber and Saber have the
advantage that they are based on weaker assumptions, do not require re-implementation
to increase/decrease security, and can be used as a basis for schemes requiring a large gap
between error and modulus; while NTRU has the advantage of having faster encapsulation
/ decapsulation and may result in smaller outputs when used together with zero-knowledge
proofs. One should therefore hope that both of these variants of doing lattice-based
cryptography become accepted standards.

1.1 Our Results

NTT over the ring Zrgg:[X]/(X76® — X384 4 1). The main result of this paper is a
very fast AVX2 implementation of NTT over the ring Z,[X]/(X7%® — X3% + 1), which
leads to an NTRU-based IND-CCA2 secure KEM with key generation, encapsulation, and

1This is based on the currently-best algorithms against Ring-LWE, which of course could always
improve.
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decapsulation algorithms being over 30X, 5X, and 8X faster than the respective procedures
in [HRSS17], which is the fastest NTRU-based submission to NIST and the scheme which is
being used in Google’s CECPQ2 experiment [Lan18]. We show that with an appropriately
chosen prime ¢, one can perform NTT over the ring Z,[X]/(X76® — X384 4+ 1) essentially as
fast as that over a ring that’s a power-of-2. We furthermore give additional optimizations
related to Montgomery modular reduction that should speed up all NTT computations
(thus schemes like Kyber and NewHope should see an improvement in running time.)
Our current scheme is currently the fastest (in all aspects) of any lattice-based NIST
submission.

NTT over a polynomial ring Z,[X]/(f(X)) crucially uses the fact that ¢ is chosen
k

such that the polynomial f(X) can be factored as f(X) = [] fi(X) (mod gq), where f;(X)
i=1

are polynomials of small degree (usually 1, but could be higher). Then multiplying two
polynomials a, b € Z,[X]/(f(X)) is done by first computing

a; = a mod f;(X) and b; = b mod f;(X) for i =1 to k, (1)

then computing the component-wise product (aibs, ..., a;bs), and finally using the
inverse operation to find the polynomial ¢ such that ¢ mod f;(X) = a;b; mod f;(X). When
the polynomial f(X) = X? + 1, (where d is a power-of-2), then one can pick a modulus ¢
such that X441 = (X%2+7)(X%? —r), and then each of the terms (X %2+ r) themselves
factor into (X %4+ 1'), and so on until one reaches linear factors. This factorization is what
lends power-of-2 rings to have particularly efficient implementations of the decomposition
n (?77?). Furthermore it is usually not necessary to do a “full” polynomial multiplication
as, for example, the modular reductions in (??) may already be pre-computed.

Something similar can be achieved for the ring Z,[X]/(X"®® — X3% 4+ 1). For our
particular choice of ¢ = 7681, the polynomial X7%® — X384 4 1 initially splits into (X384 4
684) (X384 — 685), but from that point on, the splitting tree rooted at these two factors
always splits into two factors of the form X?+7' all the way down to irreducible polynomials
X3 4+ r. Therefore the very first split and the degree of the final irreducible polynomials
is different than in the description in the paragraph above. The latter does not create
any loss in efficiency because doing polynomial multiplication modulo Z,[X]/(X3 — ) is
essentially as, or possibly even more, efficient than if one were able to split further.? And
the fact that the original polynomial does not split into X3%* 4 r can be dealt with just
one extra addition. In short, our NTT over the ring Z,[X]/(X7%® — X381 + 1) is as efficient
as NTT over power-of-2 rings.

One of the most costly operations when performing NTT is reduction modulo g.
Indeed, a significantly improved modular reduction strategy based on a modification of the
Montgomery redution algorithm is used in the NTT implementation of Kyber which runs
in less than 500 cycles on Skylake and Haswell processors and is more than 5X faster than
the previously used floating point NTT [BDKT18, Seil8]. We improve on this modular
reduction strategy and reduce the number of 16 bit integer multiplications with 16 bit
results needed for one Z g multiplication from 4 to 3 with the help of more precomputed
constants. Our NTT implementation runs in 810 cycles on Skylake processors which is less
than twice as many compared to the Kyber NTT although the input coefficient vectors are
3 times shorter in Kyber. Our improvement can also be used in the NTT multiplication in
Kyber, but this would not make much difference for the running time of the whole scheme
unless polynomial sampling is drastically improved.

2Even in NTT over the ring Zq[X]/(X? + 1) where X + 1 splits into linear factors modulo g, it may
be beneficial to not split all the way into irreducible factors, but instead perform multiplications in rings
of the form ZQ[X]/(Xd’ —r) for d =2 or 4.
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Dealing with very small decryption errors. The basic building block for constructing
an NTRU-based IND-CCA2 secure KEM is a one-way chosen plaintext attack (OW-CPA)
secure encryption scheme.® Like all lattice-based encryption schemes, this scheme has
the property that if one sets parameters to minimize public key and ciphertext sizes,
valid ciphertexts may be incorrectly decrypted. If this decryption error is too high, then
there are simple attacks against the OW-CPA, and the derived IND-CCA2 version, of the
scheme.

While NTRU-HRSS and NTRU-Prime set the parameters of their OW-CPA NTRU
schemes so as to not have any decryption errors, errors do occur in our scheme with a small
probability ~ 271230 when the probability is taken over the secret key and the randomness
and message used in encryption. We show that one can still have a provably-secure
IND-CCA2 KEM when it uses such a OW-CPA scheme.*

In the transformation from a OW-CPA secure encryption scheme without decryption
errors to an IND-CCA2 secure KEM (see Section 2.3), the encryption algorithm only has
control of the message because the randomness needed in the OW-CPA encryption scheme
is derived from the message using a cryptographic hash function modeled as a random
oracle. This implies that if decryption errors occur with probability ¢ and the message
space is of size |M|, then the probability over the randomness in the key-generation
procedure, a decryption error is even possible is at most € - |[M]. Tt is therefore safe to use
NTRU if decryption errors are < 1/|M|. Unfortunately in the NTRU one-way function,
the message space is somewhat large, and so this bound may not be good enough. But we
show (Section 2.4) that a OW-CPA scheme with an arbitrary-size message space can be
transformed into a OW-CPA scheme in which the message space can be as small as the
shared-key produced in the KEM (in our case, 256 bits). The cost of this transformation
is that the ciphertext also increases by 256 bits and one needs to invoke an extra hash
function mapping the original message space to 256 bits. This is, however, in our opinion a
worthwhile tradeoff because it still results in a more efficient scheme than if we are forced
to increase the modulus to avoid having decryption errors.

1.2 Parameters, Timing, and Comparisons

Without taking the algebraic structure of the underlying ring into account, our scheme
is at least as secure as NTRU-HRSS. This is due to the fact that we use the same error
distribution while having a larger ring dimension and smaller modulus.® See also Table 3
for a concrete security estimate in one widely used methodology. Furthermore, both our
scheme and NTRU-HRSS use cyclotomic rings (while NTRU-Prime purposefully avoids
them), and neither scheme (nor NTRU-Prime) uses the “natural” distribution over the
dual of the number field as in [LPR13]. While there are specifically-tailored examples of
distributions and ring structure that can make the problem easier (c.f. [CLS16, Peil6]),
we are not aware of any natural examples where the security of NTRU is degraded based
on the choice of the cyclotomic ring.

In Table 1, we compare the parameters of NTTRU to some other AVX2 optimized
constant-time implementations of IND-CCA2 secure KEMs that were submitted to the
NIST standardization process. We do not consider the QROM model in this paper,

3The security definition of a OW-CPA secure encryption scheme is that it is hard, over the choice of
the randomness and the message, to recover the message from the ciphertext.

4There are works (e.g. [HKSU18, Theorem A.4] and [HHK17]) that show how to deal with decryption
errors in the encryption scheme when converting an IND-CPA encryption scheme to an IND-CCA2 KEM.
There are some subtle differences, however, between starting with an IND-CPA scheme vs. a OW-CPA
one which make these reductions inapplicable, and we discuss this at the end of Section 2.4. There are
also works that construct an IND-CCA2 KEM from a OW-CPA scheme with decryption errors [HHK17],
but decryption errors there are defined in a way that is not very convenient to compute for NTRU — we
have a more detailed discussion of this issue in Section 2.2.

5But since the rings are different, we cannot give a formal security reduction between the two schemes.
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Table 1: Comparison of lattice-based IND-CCA2 secure KEMs. Cycle counts are medians
of many executions of key generation (K), encapsulation (E) and decapsulation (D).
Measurements for all schemes except NTTRU (this work) were obtained in the supercop-
20190110 benchmarking run on a machine called “samba” with an Intel Skylake Xeon
E3-1220 CPU. NTTRU was benchmarked on a laptop with an Intel Skylake i7-6600U CPU.
Bytes are given for public keys (pk) and ciphertexts (c).

Scheme Cycles Bytes
Streamlined NTRU Prime 4591761
[BCLVV17] K: 888115 pk: 1218
E: 42073 c: 1047
D: 88137
NTRU-HRSS [HRSS17] K: 220331 pk: 1140
E: 34591 c: 11401
D: 65042
Kyber [BDKT18] K: 77456 pk: 1088
E: 105478 c: 11202
D: 102029
NTTRU (this paper)? K: 6431 pk: 1248
E: 6101(+ = 500) c: 1248(+32)
D: 7878(+ = 500)

1 We removed the 141 bytes for the QROM proof

2 We removed 32 bytes for the QROM proof

3 In parentheses are the additional required resources for the message-space reduc-
tion transformation from Section 2.4 needed for dealing with small decryption
€rTors.

while several schemes performed an additional transformation which resulted in a larger
ciphertext (but was computationally cheap as it just involved more XOF output).

When comparing NTTRU to elliptic curve Diffie-Hellman, one needs to take into
account that for ephemeral key exchange with NTTRU one of the users has to run
key generation and decapsulation with a total cost of less than 15000 Skylake cycles.
On the other hand with the fastest (binary) elliptic curves two exponentiations take
more than 70000 Skylake cycles. Moreover, two exponentiations on Curve25519 take
more than 260000 Skylake cycles and so NTTRU is an order of magnitude faster; see
https://bench.cr.yp.to/results-dh.html.

In Table 2, for illustration purposes, we give the running times of just the NTRU
one-way function (and its inversion) part of the protocol. The “mathematical” part of
our algorithms requires only ~ 5000 cycles for key generation and =~ 2300 cycles for
encapsulation / decapsulation. The rest being used for randomness expansion using an
XOF and input / output formatting. Due to the extremely fast multiplication using NTT,
these latter steps take up a much more significant percentage of our running time than
that of NTRU-HRSS, and so we also optimized some of them. It would be interesting to
optimize these parts further, as they still form the bulk of the running time.

Table 3 lists estimations of the classical Core-SVP costs of attacking the schemes from
Table 1 using the primal lattice attack. The costs are estimations of the time needed for
one call to the LSF sieve without quantum Grover speed-ups, which is used as the SVP
oracle in the BKZ reduction algorithm. See [HRSS17] for a detailed explanation. The
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Table 2: Skylake cycle counts of our AVX2 optimized constant-time implementation of
the NTRU one-way function over the ring Zrzgs1[X]/(X7%® — X384 + 1). The counts are
the medians of 256 executions each.

NTTRU one-way function

Key generation Encryption Decryption
Total 4933 2346 2349

numbers were obtained by running John Schanck’s security estimation scripts [Sch19).

Table 3: Core-SVP cost of the primal attack when using the LSF sieve without Grover
speedups.

Scheme Classical Primal Attack Cost
Streamlined NTRU Prime 4591761 2151
NTRU-HRSS 2136
Kyber 2179
NTTRU (this paper) 2153

We now briefly explain why the running time of NTTRU is so much faster than that of
the other lattice-based schemes submitted to the NIST standardization process. In short,
it’s because doing NTRU using NTT does not require any trade-offs that are present in
other lattice-based proposals and one can use the optimal choice in every aspect of the
scheme.

1. Highly optimized AVX2 NTT is very fast, even over some non-power-of-2 rings, such
as the one used in this paper. One NTT operation over a 768-dimensional ring
requires only 810 cycles and at most 2 NT'Ts are needed in each part of the scheme
(i.e. key generation, encapsulation, decapsulation). Schemes that do not support
NTT require more than 5X more cycles to perform polynomial multiplication.

2. In generalized LWE schemes, every part of the scheme has a procedure that expands
a small seed into a long random bitstring that is used to create a random polynomial
in the ring (or several polynomials in smaller rings in the case of Kyber / Saber) that
forms one part of the public key (the other part of the public key which depends
on the secret must be stored in “uncompressed” form). This is done using SHAKE
or AES and it can be a rather time-intensive operation which is significantly slower
than the part requiring NTT. If this expansion is done via some cheaper procedure
which is not a PRF (which should be OK for practical security), then this would not
incur such a big penalty for generalized LWE schemes. NTRU does not require any
such expansion because its public key only has one part.

3. During seed expansion, one needs to create elements that are uniformly distributed
in Zq. If g is a power-of-2 (e.g. as in Saber), then this is very efficient, but using
such a ¢ prevents one from using NTT. If one uses an NTT-compatible ¢ (as in
NewHope and Kyber), then one needs to use “rejection sampling” to get uniformity
over Z,. This is, unfortunately, not compatible with fast vectorization due to required
branching. One solution may be to use a procedure that results in a somewhat biased
(non-uniform) distribution, which should still not degrade the practical security of
the scheme. This is not an issue in NTRU-based schemes because the whole public
key is the quotient of two polynomials with small coefficients, and so it is simply
stored in uncompressed form.
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Based on the above, we conjecture that unless lattice schemes use NTT for polynomial
multiplication and avoid costly methods for sampling in Z,, their performance will not be
able to match NTRU that uses NTT.

1.3 Open Problems and Future Directions

Our OW-CPA NTRU scheme has (very small) decryption errors and our transformation
to an IND-CCA2 scheme that accounts for these errors is currently proved in the standard
ROM model. Tt would be nice to also show that this transformation (or perhaps a small
modification of it) also holds in the QROM. As we discuss at the end of Section 2.4,
we believe such a proof should be possible (and should even be able to tolerate a larger
error) due to the fact that our transformed OW-CPA scheme shares similar properties
with IND-CPA and OW-CPA schemes from which QROM transformations accounting for
decryption errors do exist.

Our NTT uses a modulus reduction step that uses only one Montgomery reduction and
this should apply to other NTT-based schemes. Additionally, very efficient implementations
of LPR-type [LPR13] Ring-LWE schemes (e.g. NewHope, LIMA) should now be possible
in dimensions 2*3¢ (like e.g. 768).

2 Preliminaries

2.1 Notation

For some finite set S, we will write Dg to denote some distribution with support on S.
We write Hp, to denote a cryptographic hash function (modeled as a random oracle)
that outputs elements onto S according to the distribution Dg. Just writing Hs means
that the distribution onto S is uniform. The functions mod ¢ and mod* ¢ signify modular
reductions modulo (an odd) ¢ with the former mapping integers onto the space [0, ¢ — 1]
and the latter to the domain [—%17 q%l]

In this paper, we will denote by R, the polynomial ring Z,[X]/(X7%® — X384 + 1) for
q = 7681. Elements of this ring are polynomials of degree 767 with coefficients between
—3840 and 3840. The modular binomial distribution fj is generated by creating Bernoulli
aiy.. ., by, ..., by + {0,1} and outputting (3" a; — > b;) mod £3. We will write 3¢
to be the distribution over a d-dimensional vector each of whose coefficients is chosen
according to . In this paper, as in [HRSS17], we use the distribution 5, which results
in the distribution Pr[—1] = 5/16, Pr[0] = 6/16, Pr[1] = 5/16.

For a d-dimensional vector v, we will abuse notation and write v € R, to mean that

this vector becomes a polynomial in R,. In other words, a vector {vy, v1,...,v767} € Ry is
767 ,

the polynomial > v; X"
i=0

2.2 OW-CPA Secure Encryption

An encryption scheme consists of a key-generating algorithm Gen(1*), an encryption
function ECPA(m, r, pk), and a decryption function DCPA(¢, sk). The function Gen takes
a security parameter A and outputs a secret key / public key pair (sk, pk). The encryption
algorithm ECPA takes a message m € M, randomness r € R, and the public key pk and
outputs a ciphertext c¢. The decryption function DCPA(¢, sk) takes the ciphertext ¢ and
the secret key sk and outputs m. If for all (randomized) algorithms A running in time at
most t,

6LIMA also proposes a KEM over safe-prime rings in which NTT does not work natively, but they use
other (somewhat slower) FFT-related algorithms to perform polynomial multiplication.
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(sk,pk)(—Gemrm—DM,reDR[A(ECPA(m’ " pk), pk) n m} =6
then we say that the encryption scheme is (¢, €)-OW-CPA.

The version of the NTRU encryption scheme we will be using is “randomness-recovering”.
That is, once the decryption function recovers m, it can also recover the randomness r. This
property allows someone in possession of the public key to check whether a ciphertext c is
the encryption of a message m using a function Rec(m, ¢, pk) (which works by recovering
the randomness r and then checking whether ECPA(m, r, pk) = ¢). This function is only
used in the proofs, where its existence makes the proofs tighter, and is never needed in the
actual schemes. If an encryption scheme has such a function Rec, then we will say that
the scheme is message-verifiable.

A decryption error occurs when for some (m,r) € M x R, we have

DCPA(ECPA(m, r, pk), sk) # m.

We will say that a OW-CPA scheme has probability € of having a decryption error if

(Sk’pk)eGenﬁLDM’THDR[DCPA(ECPA(m, r,pk),sk) # m] = e.

We point out that this definition differs from that in [HHK17] because they define
their decryption error (see [HHK17, Figure 2]) as a game in which the Adversary picks
the message after seeing (pk,sk). We define the error over the randomness of the message
because, in our opinion, it is easier to work with this definition in schemes (like NTRU)
where the particular message has a big effect on the decryption error (unlike in LPR~type
Ring-LWE schemes where the message has virtually no effect). Also, when the message is
random, the decryption error can be computed fairly precisely (Section 3.2).

We now make the observation that if Hp,, is modeled as a random oracle, then the
decryption error stays the same if » = Hp,(m). So we can equivalently define the
decryption error as:

Pr [DCPA(ECPA(m,Hp, (m), pk),sk) # m] = e. (2)

(sk,pk)<—Gen,m<—D g

2.3 IND-CCA2 Secure KEMs and Decryption Errors

One can transform a OW-CPA encryption scheme into an IND-CCA2 secure KEM using
standard techniques (c.f. [FO99, Den02]). The key generation is exactly the same as in
the OW-CPA scheme, while the encapsulation (Enc) and decapsulation (Dec) procedures
are described in Algorithms 1 and 2 following the construction in [Den02, Table 5].

It is shown in [Den02, Theorem 5, Theorem 9] that if there is an adversary who has
advantage 0 of winning the IND-CCA2 security game against the KEM (Gen, Enc, Dec),
then there is an algorithm who, in the same time, can break the OW-CPA security property
of the scheme (Gen, ECPA, DCPA) with probability f(4). The function f (linearly) depends
on the number of various random oracle queries A can perform (see [Den02, Theorem 9]).

Notice that in the the CCA-secure encapsulation (Algorithm 1), the randomness r
passed to the OW-CPA encryption scheme is a deterministic function of the message m,
and so the only input over which the encryptor has control over is the message. Therefore
if the probability, over the secret key and the message, of a decryption error is € as in (?7?),
then by the union bound we can conclude that

Pr [ 3m that causes a decryption error | < e- | M)].
(sk,pk)<—Gen

In other words, with probability 1 — € - | M| over the choice of the secret key, decryption
errors are not possible. Having e - [M| < 27128 is therefore enough to discount any attacks
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Algorithm 1 Enc
Input: Public key pk
Output: Shared key k € KC and ciphertext ¢ € C
1: choose m < D
2: 7:=Hp,(m)
3: ¢:= ECPA(m, r, pk)
4
5

k= H;g(m)
: return (k, ¢)

Algorithm 2 Dec
Input: Secret key sk, ciphertext ¢ € C
Output: Shared key k € K
1: m:= DCPA(¢,sk). If failure, then halt.
2: ri= HDR(m)
3: if ECPA(m, r, pk) # ¢, then halt.
4: return k:= Hg(m)

based on decryption errors if one is aiming for 128-bit security level. We formally prove
the above intuition in Lemma 2. First we show that a OW-CPA scheme remains secure
when the randomness r is chosen to be Hp,, (m) rather than chosen according to Dx.

Lemma 1. If there is an algorithm A who is able to break the OW-CPA property of a
message-verifiable scheme (Gen, ECPA, DCPA), when the input to ECPA is (m, Hp, (m), pk)
for m < Day, with probability 6, then there is also an algorithm that can break the OW-CPA
property of the “usual” (Gen, ECPA, DCPA) encryption scheme with probability §.

Proof. The reduction obtains a ciphertext ¢ = ECPA(m, r, pk) for some unknown m, r
and sends the public key pk and ¢ to A. For all m’ # m € M, the value Hp, (m’) is a
random value in R. Thus whenever the reduction receives a query Hp, (m') for a new
m/, it uses the algorithm Rec to see whether Rec(m/, ¢, pk) = 1. If so, it outputs m’ as its
answer and wins. Otherwise, it chooses a random element in R and sends it to A. When
A outputs, the answer m, the reduction outputs it as well. Thus the success probability of
the reduction is at least 4.7 O

Lemma 2. If a message-verifiable encryption scheme (Gen, ECPA, DCPA) has decryption
error € and there exists an algorithm A having advantage § in the IND-CCA2 security
game against the KEM (Gen, Enc, Dec) derived from the encryption scheme, then there
is another algorithm that has advantage f(§) — € - | M| of breaking the OW-CPA security
of (Gen, ECPA,DCPA), where f is as in the beginning of this section (i.e. the loss in the
reduction from [Den02, Theorem 9]).

Proof. If we define r = Hp (m) with Hp,, being modeled as a random function, then the
condition in the Lemma implies that

Pr [DCPA(ECPA(m,Hp, (m), pk),sk) # m] <,

(sk,pk)<—Gen,m<— D g

and then by the union bound, we have that

Pr [ 3m s.t. DCPA(ECPA(m, Hp, (m), pk),sk) # m] < ¢ - | M]. (3)
(sk,pk)<—Gen

"Without the oracle Rec, the reduction could guess which of the queries to Hp,, is the correct message
and output it, thus losing a factor of the number of queries to Hp, in the reduction.
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Let K’ C K be the set of “good” keys for which the OW-CPA scheme with » = Hp,, (m)
has no decryption errors. By (??), we know that Gen produces good keys with probability
1—e€-|M)|. Therefore, with probability 1 —e- |M|, the OW-CPA scheme with r = Hp_ (m)
has no decryption errors. Therefore an adversary who breaks the IND-CCA2 KEM with
probability ¢ breaks this OW-CPA scheme with probability f(§) — € - |M]|. By Lemma 1,
this implies that breaking the OW-CPA of the encryption scheme (Gen, ECPA, DCPA) also
has success probability f(§) — € - |M]|. O

2.4 Reducing the Message Space of a OW-CPA Scheme

In light of the fact that having small message spaces helps us discount decryption-error
attacks, we show that it is possible to convert a OW-CPA encryption scheme with arbitrary
size message spaces to a OW-CPA scheme with a small (e.g. 256-bit) message space.
This message space M’ should, in general, be the same size as the shared keyspace K in
the IND-CCA2 KEM. The transformation requires an additional call to a hash function
and adds a small number of bits (e.g. 256) to the ciphertext. If the OW-CPA scheme is
(Gen, ECPA, DCPA), then we define the encryption and decryption functions ECPA" and
DCPA’ as in Algorithms 3 and 4.

Algorithm 3 ECPA’

Input: Randomness r € R, message m’ € M’, public key pk for ECPA
Output: Ciphertext ¢’

1: m:=Hp,, (m)

2: ¢ := ECPA(m, r, pk)

3: u:=m' @ Hyp(m)

4: return ¢ = (¢, u)

Algorithm 4 DCPA’

Input: Ciphertext ¢ = (¢, u), secret key sk for DCPA
Output: message m’

1: m := DCPA(c, sk)

2: m' = u®Hyp(m)

3: return m’

Lemma 3. Suppose that (Gen, ECPA, DCPA) is a message-verifiable encryption scheme
and there is an adversary against the OW-CPA security property of (Gen, ECPA’, DCPA’)
running in time T making k queries to Hyy and p queries to Hp,,, and succeeding
with probability §. Then there is an adversary who breaks the OW-CPA security of
(Gen, ECPA,DCPA) in time T with probability § — (u+ 1)/|M’|.

Proof. The reduction gets the public key pk and a ciphertext ¢ = ECPA(m, r, pk) for some
random, unknown 7, m. It picks random m’, u < M’ and outputs pk as the public key and
¢' = (¢, u) as the encryption of m’. Because Hp,, is modeled as a random oracle,® (¢, u) is
a correct distribution — i.e. implicitly, Hp,,(m') = m, which is uniform in M). Note that
except for the query Hp,,(m’), the reduction is able to give honest random responses to
queries to Hp,, and Hag . If A makes the query Hp, (m'), then the reduction aborts and
fails. Because everything that A sees is independent of m/’, the probability that A makes

such a query is at most u/|M’|. Furthermore, since m’ = v ® Huqp (m), if A never queries

8For this proof, it is actually enough for Hp,, to be a keyed pseudo-random function with the key
being part of the secret key of the encryption scheme ECPA’.
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Hae (m), then he has at most a 1/| M| probability of returning the correct m’. Thus with
probability at least 6 — 1/|M’|, A must make the query Hyy (m). Using the Rec function,
the reduction can learn the m that is a valid plaintext for the ciphertext ¢ and return
it.? O

Note. Notice that when the encryption scheme ECPA’ is plugged into the encapsulation
function Enc in Algorithm 1, the encryptor no longer has control over the input (m, r, pk)
to ECPA. In particular, both m and r are generated from m’ using cryptographic hash
functions. Thus even if the encryptor knows the secret key, it is not easy for him to come
up with an m, r that cause a decryption error. This is in contrast to a generic OW-CPA
scheme (and in particular the NTRU OW-CPA scheme) where the decryption error can
very much depend on m and the encryptor has full control over it.

If, instead of starting from a OW-CPA scheme, we were creating an IND-CCA2 KEM
from an IND-CPA encryption scheme, then the decryption error in an IND-CPA scheme
is, by definition, not dependent on the message (because in the definition of IND-CPA
security, the adversary has control of the message). In the transformation to an IND-CCA2
KEM, the encryptor also just has control of m (with everything else derived from it via a
random oracle), which does not affect the decryption error and this allows for proofs such
as [HHK17, HKSU18] to remain meaningful even if the decryption error is not smaller
than 1/|M|. We therefore conjecture that when one uses ECPA’, the condition that the
decryption error is < 1/|M’| may also not be necessary. We leave this question, as well as
proving the reduction secure in the QROM, to future work.

3 OW-CPA NTRU

3.1 The NTRU Function

There are several ways to define a OW-CPA secure NTRU encryption scheme. In general,
one chooses two polynomials g, f and sets the public key to be h = pg/f where p is some
small prime. The encryption function is then ¢ = hr + m and decryption first computes
fc = pgr + mf mod *q. At this point, if all the coefficients of p, g, 7, m, and f are small,
then fe mod *q = pgr + mf € Z[X] and so fc mod * ¢ mod *p = mf and one recovers f by
dividing by f modulo p. A decryption error occurs if pgr + mf when computed over Z[X]
(i.e. without reduction modulo ¢) has coefficients larger, in absolute value, than (¢ — 1)/2.
We will compute this decryption error in Section 3.2.

In order to make it unnecessary to divide by f modulo p, a common trick is to set
f = pf' + 1, where f’ is chosen according to the same distribution as f was before,
which makes f congruent to 1 modulo p. This has the disadvantage of increasing the
decryption error, but because one cannot use NTT to do multiplication / division in the
ring Z,[X]/(X7® — X384 + 1) due to the fact that p is small (i.e. 3 in our case), we
believe that it is a worthwhile trade-off if one wants efficiency and can tolerate the larger
decryption error.

The key generation, encryption, and decryption (GnTtru, EnTrRU, DNTRU) Procedures are
given below based on the templates in Section 2 and the variable definitions are given in
Table 4.

Randomness Recovery. In some security proofs of Section 2, we used the fact that
the NTRU encryption scheme is message-recovering. In other words, it is possible to
recover from the ciphertext both the message and the randomness. Since the ciphertext is
¢ = hr + m, once m is recovered, one can simply try to compute (¢ — m)/h. In order for

9Without Rec, the reduction could guess the m and incur a & factor loss in the success probability.
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Table 4: NTRU Variable Definitions

Description \ Variable \ Definition
modulus q 7681
ring R, Zo[X]/(XT08 — X311 1)
message space M {-1,0,1}"® € R,
randomness space R {-1,0,1}"%® € R,
shared key space K {0,1}2%¢
768
binomial distribution 768 outg;;lte r;tiaalz’ 612;23;“24:1§?1’ﬂ1t?3 € R,
distributions over M, R | Dxq, Dr 3768

Algorithm 5 GNTRU
1 fl < I8
2. f:=3f+1
3: if f is not invertible in R, restart (this is done in the process of computing the NTT
of f)
4: g« p3%
5. h:= 3g/f
6: return (sk = f, pk = h) (both sk and pk are stored in NTT representation)

this to work, we would need that h is invertible in R,. So in addition to checking that f is
invertible, we would also need to check that g is. Heuristically, each NTT coefficient of g
(which is a polynomial of degree 2 over Z,[X]) has probability of 1/¢* of being 0. There
are 256 such coefficients, and so the probability that all of then are non-zero is greater
than 1 — 256/¢> ~ 1 — 2739 So one could check for invertibility and restart with a very
small probability, but since randomness recovery is not crucial to the proofs (it only allows
for them to be tighter), we believe that it should also be fine to ignore this issue, especially
for ephemeral key exchange.

3.2 Computing the Decryption Error

The decryption algorithm takes a ciphertext of the form ¢ = Bf—gr + m and multiplies by
f =3f"+1, to obtain
3gr+3f'm+m=3(gr +f'm)+m (4)

where all the variables are distributed according to 338, For correctness, we need all
the coefficients in (??) to be of absolute value at most (¢ — 1)/2. This way (??) = (77?)
mod™® q. Since the coefficients of m have size at most 1, we need gr + f'm < (¢ —1)/6 in
order to avoid decryption errors.

The best way to analyze the distribution of the coefficients of the result in (??) is to

view polynomial multiplication in R, as vector-matrix multiplication. For example, in the
5 ) 5 .
ring Z[X]/(X® — X3 + 1), the product of a = > a; X" and b= > b;X* can be written as
i=0 i=0

Algorithm 6 ENTRU

Input: message m, randomness r, public key &
Output: ciphertext c
return c:= hr + m (computed and sent in NTT representation)
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Algorithm 7 DNTRU
Input: ciphertext ¢, secret key f (both in NTT representation)
Output: message m

return m := (¢f mod *¢) mod *3

5
¢ =Y. ¢;X; satisfying
i=0
@  —as —ay —a3  —a2— a5 —a1— a4y bo o
ax ao —as —ay —as —az — as b1 c1
a2 ! a0 —0s — 04 —az . ba _ | ¢ (5)
as ag + as ay + aq ap + as ag ap b3 C3
a4 as as + as a1 —+ aq ap + as a b4 Cyq
as ay as ax+as a1+ a4 ap + ag bs Cs

Notice that the first column in the matrix above is just the coefficients of a, the second
is aX, and so on, until the last column is aX®. In general, the multiplication of two

d—1 d—1
polynomials a = > a;X* and b = Y. b;X? in the ring Z[X]/(X?% — X%? 4+ 1) can be
i=0 i=0
written as a matrix-vector product
bo
L-U -A-U] | i ©
A+U A+L o
ba—1

where L, U, A are the following square d/2-dimensional Toeplitz matrices:

ag 0 “e O 0 Ag—1 ad/2+1
o al ao DRI O o DY DY DRI DRI
L= , U= 0 0 e ags , and
agj2-1 Qdje—2 " Qo 0 o - 0
Ad/2 adg/2—1 - @
A — Ad/2+1 Qq/2 T a2
ad—1 ag—2 R YR
bo
The main observation is that each coefficient of the product [A +U A+ L] . bl
ba—1
is the sum of d/2 independent random variables
c=ba+V(a+d), where a,b,d’, b « Ba. (7)

For example, in (?7), the coefficient c5 is
¢s = (boas + bs(as + az)) + (bras + ba(as + a1)) + (b2as + bs(as + ao)),

and the three summands above are independent.
Similarly, the coefficient of the i row of
bo
b1
L-U -A-L}-| 7

ba—1
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is the sum of d/2 — ¢ random variables ¢ as in (??) and ¢ independent random variables of
the form ba + b'a where a, b, a’, b’ < B2. It’s therefore clear that the “wider” distribution
is obtained in the bottom d/2 rows of (??) and so we will analyze the tail bounds of that
one.

All the ¢ in (?7?) take values between —3 and 3 with the following distribution:

Table 5: Probability distribution of ab + b'(a + a’), where a, b, a’, b’ < [a

+3 +2 +1 0
0190735 | .0457764 | .2311707 | .4079590

Each coefficient of the product ¢gr and f'm is (at worst) distributed as the sum of d/2
random variables as in (??), and therefore the sum gr + f'm is distributed as the sum of d
independent random variables in (?7).

Computing the probability distribution of this sum can be done via a convolution (i.e.
polynomial multiplication). Define the polynomial

3d 3 d
p(X)= Y piX'= (Z 9ij> » (8)

i=—3d j=—3

where 0; is the probability of j in Table 5. Then p; is the probability that the sum of d
random variables in (??) is . Then the probability that any coefficient of gr + f'm is
greater than (¢ —1)/6 is

3d
2 S )
i=(q—1)/6
where we used the symmetry p; = —p;. The probability in the above equation is exact for

the coefficients with degree d/2 through d —1 of gr+ f'm (because those correspond to the
bottom half of (?7?)), and represents an upper bound for the other coefficients. Applying
the union bound, we summarize the above with the following lemma:

Lemma 4. When f', g, 7, m are chosen from the distribution B3, the probability of a
decryption error in the scheme (GnTru, ENTRU, DNTRU) 48 at most

3d

2d- Z Pis

i=(q—1)/6

where p; are as in (7).

Decryption error and security for our parameter set. For the NTRU scheme that
uses parameters in Table 4, the decryption error value from Lemma 4 is approximately
€ = 271230 The message space M consists of polynomials in R, with £1,0 coefficients,
and is therefore of size 37® ~ 21217, Unfortunately, the product € - |M| ~ 271 is not
small enough to provably guarantee security via Lemma 2 by directly using the encryption
scheme (GnTru, EnTrRU, DnTRU). In order to apply this lemma, we would need to first
decrease the message space (to, say, 22°¢) by using the construction in Section 2.4. Then
the decryption error is sufficiently small to make Lemma 2 meaningful. While applying
the transformation of Section 2.4 is not particularly expensive (adding 32 bytes to the
ciphertext and around 500 cycles to encryption / decryption), we believe that in practice
the error is small enough for this to not be strictly necessary.
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4 NTT over Zrgs:[X]/ (X768 — X384 4 1)

The Number Theoretic Transform, or NTT for short, is a special case of the Fast Fourier
Transform over finite fields, see [Ber01] for an excellent survey. In lattice cryptography we
need to compute in polynomial rings of the form

Ry = Z4[X]/(f)

where f € Z[X] is an irreducible polynomial and ¢ is often a prime — in this paper we
only deal with prime ¢. The NTT starts with the observation that if f factors into a
product f = gh over the finite field Z,, then, by the Chinese remainder theorem, we have
an isomorphism

Lo X1/ (f) = Zq[ X1/ (9) % Zq[X]/ ().

Now it can be advantageous to compute multiplication or inversion in R, by computing
this map, then the corresponding operations in the two factors, and finally the inverse
of the map. Furthermore if the factors g and h continue to split into more factors then
one obtains a divide and conquer algorithm for computing in R,. For the approach to be
advantageous, it is of course necessary that all the maps can be computed efficiently. In
the popular case where R, is a power-of-two cyclotomic ring modulo some prime, we have

Ry = Zy[X]/(X* +1) = Z,[X]/ (X =€) x Zy[X)/(X* +)

when ¢ € Z, is a primitive 4-th root of unity. This map is easy to compute with just 2k—1
multiplications, 2¥~1 additions and 2¢~! subtractions. Concretely, write n = 2* and let
f=h+AX+ -+ fo1 X" 1 € R,. Then we have

fmod X" — ¢ = (fo+ Cfase) + (fr + Chujos) X + -+ (Faja1 + () X271,
Fmod X" 4= (fo = () + (h = Chaja i) X 4+ + (ajz1 — (fa) X271

The computation of the two coefficients of X? in the two reduced polynomials involves
a multiplication, an addition and a subtraction and is called a butterfly operation. Now
if there are 8-th roots of unity we can repeat this in the same way and split the ring
into a total of 4 factors and then iterate further, possibly down to rings modulo linear
polynomials if there are 2571-th roots. Note that the total cost of all the splittings in each
level is exactly the same n/2 butterfly operations.

4.1 Our Ring

We turn to the case where the defining polynomial of the ring R, is the m-th cyclotomic
polynomial with m of the form m = 253!, k,1 > 1. It is given by X" — X™/2 4+ 1 where
n = p(m) = m/3. In our NTRU instantiation we use the 2304-th cyclotomic polynomial
X768 _ X384 1. For a fast NTT algorithm, the trick is to do a first splitting into two
polynomials of the form X™/2 —¢;, X™/? —(,. Then one can continue with the same radix-2
steps as in the power-of-two case above by extracting square roots of ¢; and (2. The main
observation we use is that if (; and (3 = ¢} are the two primitive sixth roots of unity in
the underlying field then we indeed have X™ — X™/2 +1 = (X™/2 — (;)(X™/? — (). This is
because the sixth cyclotomic polynomial is X% — X +1. Hence (1 +( = 1+ =G - =1
and (1G2 = 167 = ¢f = 1. So, with ¢ = (1,

Zg[X]/(X™ = X2 1) = Z[X]/(X™? = ) x Z[a] /(X™/? = )

Next notice that we do not have to multiply coefficients by both ¢ and ¢ to reduce modulo
X"/2 — ¢ and X™/? — (5 i.e. to compute the Chinese remainder map, because ¢® = 1 — (.
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So instead of multiplying by ¢® we can just subtract the already computed product with
¢ from the coefficient itself. This means our first level splitting only needs n/2 extra
additions compared to an optimal radix-2 step. These additional additions do not cost
much. For an example, we again write f = fo + fiX +--- + f,_1 X"~ L. Then,

fmod X"2 — ¢ = (fo+ Cfuyz) + (i + fupos )X + o+ (fayz1 + Cfar) X2
fmod X™2 — ¢ = (fo + fuyz = Chuja) + (i + Fujor1 — Chujarn) X + ...
+ (fn/2—1 +fn—1 - Cfn—l)Xn/271~

When there is a 3 - 2°-th root the NTT can be continued up to factors modulo polynomials
of the form X3 ' — (. From there on it is possible to proceed with so-called radix-3 steps
down to linear factors if enough further cube roots can be extracted. In our instantiation
we use the prime modulus ¢ = 7681 which does not support this so we do not go into more
details here. Indeed ¢ — 1 = 7680 = 27 - 3- 5 and we stop at polynomials of degree under 3.

In summary, our NTT for polynomials in Zrggi[X]/(X7%® — X384 4 1) consists of 8
levels i = 0,...,7. In the i-th level, 2¢ polynomials of degree less than 768/2° are each
split into two polynomials of degree less than 768/2°t1. The total cost in each level is 384
multiplications, 384 additions and 384 subtractions in Zg, except in level 0 where there are
384 additional Z,-additions. The output of our NTT consists of 256 polynomials modulo
different X3 — (; with (; varying over the primitive 768-th roots of unity.

Inverting the NTT is very similar to the forward NTT and also consists of 8 levels
i=0,...,7. In the i-th level 27~% pairs of polynomials are merged by performing 384
butterfly operations and 384 additional additions in level 7. Moreover, there is an additional
division by 256 necessary at the end since each merging introduces a superfluous factor of
2.

Our AVX2 optimized implementation of the NTT in assembler language needs just
810 cycles on a Skylake CPU. This is about twice the number of cycles needed for the
Kyber NTT (in the ring Z76s1[X]/(X?°® + 1)) even though the coefficient vectors are 3
times longer in our case.

4.2 Modular Reduction

In the NTT, after every multiplication of a polynomial coefficient with a root of unity
the result needs to be reduced modulo ¢ so that subsequent operations do not overflow.
These modular reductions crucially determine the efficiency of the NTT implementation.
A particular efficient modular reduction algorithm is the Montgomery reduction algorithm
[Mon85]. It does not compute proper Euclidean remainders or even representatives modulo
q but instead so-called Hensel remainders. They differ by an additional factor 37! mod ¢
where 8 is the word size, 8 = 2'0 in our case. The standard Montgomery reduction
algorithm for reducing a 32 bit integer modulo ¢ needs two multiplications of 32-bit
integers, one logical AND operation, one 32-bit addition and one bit-shift. So every
multiplication in the finite field by a root of unity during the NTT needs in fact three
multiplications in the implementation. With the same number of multiplications one
can compute remainders using floating point arithmetic, but with the advantage that
the results are Euclidean remainders in the range 0 < r < ¢q. The Hensel remainders
computed by the Montgomery reduction algorithm can go up to 2¢ and hence one needs
more reductions after additions to avoid overflows. This and the fact that floating point
arithmetic on modern x86 CPUs is about as fast as integer arithmetic was the reason that
floating point NTTs where among the fastest NTTs used in lattice cryptography for some
time. Examples of schemes relying on floating point NTTs include NewHope [ADPS16]
and early versions of Kyber [BDK™18]. This has changed with the NTT used in newer
versions of Kyber, including Kyber as submitted to the NIST PQC standardization process.
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Here an integer-arithmetic NTT implementation is used that is faster than the previous
floating point NTT by a factor of more than 5 [BDK™'18, Seil8]. This was achieved by
using a modification of the Montgomery reduction algorithm that needs less expensive
multiplications, and, more importantly, allows to operate on more densely packed vectors
in a vectorized implementation. We recall some of the details here for convenience so that
we can explain our improvement over the Kyber NTT.

Definition 1. Let a € Z and ¢ be an odd positive integer. The Hensel remainder r of a
modulo ¢ with respect to the word size 8 = 2! such that ¢ < g is the unique integer r

_ : B B
such that a = mq + rg with —¢ <m < 5.

Suppose we want to compute the Hensel remainder r of a = mq+ r/ as in Definition 1.
The standard Montgomery reduction algorithm computes a slightly different definition of
Hensel remainder where a > 0 and 0 < m < 3. It first multiplies @ with —¢~! modulo
B. This gives § — m, which is then multiplied by ¢ and added to a, resulting in (r + ¢)5.
Finally one divides by 3 and obtains r + ¢ = a~' (mod q). The reason for multiplying
with —¢~! instead of ¢! is that r + ¢ is non-negative.

In the Kyber NTT signed arithmetic is used and the definition as stated with —3/2 <
m < (/2. Then the low words of a and mg are equal, see [Seil8, Lemma 2] for more
details. Therefore it is sufficient to only compute the high word of mq which can then be
subtracted from the high word of a to directly obtain r without the division by 8. In the
AVX2 instruction set there are instructions to only compute the low or high 16 bits of all
the products of the corresponding elements of two vectors of 16 bit signed integers, namely
vpmullw and vpmulhw. So one can use these instructions to compute m = ag~! mod *4
with a low half-product instead of a full product and a logical AND, and then a signed
high half-product to obtain the high word of mgq.

Moreover, this reduction algorithm operates separately on the high and low words of a.
Hence, to multiply two integers modulo ¢ it is sufficient to separately compute the low and
high words of the two-word product and then reduce them as explained. When instead
computing full products one needs to occupy twice the width for each coefficient in the
vector registers so that there is enough space in between the coefficients for intermediate
full products.

In NTT implementations the factors that need to be multiplied with are the fixed roots
of unity ¢ of the underlying field which are usually precomputed. So when multiplying
b € Z, with a precomputed ¢ € Z, we separately compute the two words of @ = bc and then
multiply the low word by the precomputed ¢~ mod . The most important improvement
of our NTT over the Kyber NTT is that for every root of unity ¢ we also precompute
¢~ '¢ mod B. Then, since the low product is associative and commutative, we save one
low product in each multiplication and subsequent reduction. More concretely, to obtain
a = bc mod ¢ we compute the low word of bcg™! by doing a low half-product with the
precomputed cg~! mod 3, then a signed high half-product of the result with ¢, which we
in turn subtract from the signed high half-product of b and c.

In each level the coefficients grow by at most ¢ in magnitude, see [Seil8, Lemma 1].
So, since ¢ fits into 13 bits one needs to additionally reduce the coeflicients at least every
4 levels. We make use of the special form ¢ = 2'3 — 2% + 1 of our prime which implies
213 =29 — 1 (mod ¢) and use [Seil8, Algorithm 4] to perform these modular reductions.
But since this reduction algorithm only leaves room for adding integers of magnitude less
than 3¢ without overflowing over 16 bit we need to reduce in every third level.

In the inverse NTT some of the coefficients can double in magnitude from one level to
the next so we use [Seil8, Algorithm 5] in the inverse NTT so that it is sufficient to still
reduce only in every third level.
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4.3 Vectorization

One of the reasons for the big speed-up of AVX2 optimized NTT implementations using
assembly language or intrinsics over C-only implementations, which is in the order of 16X
for example in the case of Kyber, is that the NTT can be efficiently vectorized. In each
level half of the coefficients need to be multiplied by roots of unity. By loading several of
the coefficients into a vector register one can compute products in parallel and then also
the subsequent additions and subtractions. This works without any complications as long
as the degrees of the polynomials are a multiple of twice the number of coefficients fitting
into a vector register. The reason is that in this case those coefficients that need to be
multiplied by roots of unity, which make up the upper half of the polynomial, completely
fill one or more vector registers and therefore can be multiplied with maximum efficiency.
When the degrees of the polynomials have reached the vector size, vectors need to be
reshuffled so that only coefficients from the upper half of a polynomial are in a particular
vector register before multiplication.

4.4 Instruction Scheduling

As we have explained above, a multiplication over Z, where the low product of one of the
factors with ¢~ mod 3 is assumed to be available consists of a chain of a low half-product
followed by a high half-product and in parallel another high half-product. The results are
then combined by a subtraction. On current Intel processors the multiplication instructions
vpmullw and vpmulhw have a latency of 5 cycles each and the subtraction instruction
vpsubw has a latency of 1 cycle [Fogl8]. So it takes 11 cycles before the finished reduced
product is ready. In each cycle two multiplication instructions can be dispatched so it is
theoretically possible to multiply over Z, with a throughput of 2/3 - 16 Z,-products per
cycle. One can not rely on the out of order execution capability of the CPU to always
find instructions to execute for getting near this throughput. So in our implementation
we always interleave the products of 6 coefficient vectors with precomputed roots. Then
there are 6 more vectors available to store the intermediate high products. In these
multiplication steps of the NT'T involving 6 coefficient vectors there are 12 independent
multiplication instructions that can keep the multipliers busy until results for the next
dependent instructions become ready.

4.5 Reducing Loads and Stores

Since we densely pack 16 coefficients of 16 bit each into a 256 bit AVX2 vector register and
work on 6 registers at a time, we could in principle load one polynomial of degree under
96 into the registers and transform it completely down to polynomials of degree under 3
without any further loads and stores. Then we can handle the next polynomial of degree
under 96 and so forth. We use a slightly different approach since we want to multiply 6
full vector registers at a time. There are 16 vector registers so we can indeed have 192
coefficients loaded at a time but then there are not enough spare registers for intermediate
results during multiplication. Therefore we store 6 vectors registers while multiplying the
other 6 registers and transform polynomials of degree less than 192 completely down to
degree under 3 polynomials with only 6 stores and 6 loads in each level.

4.6 Reducing NTTs

In our implementation we make use of the standard technique of transmitting polynomials
in their transformed representation when this is advantageous. So the ciphertext in our
KEM, which consists of the polynomial ¢, is in fact transmitted in this form, which saves
one inverse NTT during encapsulation and one forward NTT in decapsulation. Also the
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polynomial f is stored in NTT representation in the secret key, saving another NTT during
decapsulation.

5 Other Implementation Functions

5.1 Base Case Multiplication

For the base case multiplication which consists of 256 products of polynomials modulo
various X2 — ¢ we use quadratic schoolbook multiplication. So, we compute the following
formula involving 11 products in Z,

fgmod X* — ¢ = (fogo + ((fige + fon))
+ (fogr + figo + C(fa92)) X
+ (fog2 + frgr + f290) X>.

Here, in contrast to the Z,-products in the NTT, the products do not always involve
precomputable constants. But still every coefficient f; of the first polynomial f is multiplied
by every coefficient g; of the second polynomial g. So to save multiplications we compute
low half-products of all the coefficients f; with ¢~! mod 8 and keep them for all the
products that involve these coefficients.

Our AVX2 optimized implementation of the base case multiplication needs 396 cycles
on a Skylake CPU. A possible optimization to speed-up decapsulation that we did not
implement is to store ¢~'f in the secret key.

5.2 Base Case Inversion

We can write the polynomial product h = fg mod X? — ¢ as a matrix-vector multiplication
over Z, which involves the 3x3 rotation matrix corresponding to f,

ho fo Cf2 Ch 90
m)l=1fA f Cf g1
he o i o 9o

Now to compute the inverse of f modulo X — ¢ we compute the inverse of the rotation
matrix, of course under the assumption that it exists. It is given by the adjungate matrix
divided by the determinant. If the determinant is zero then the polynomial is not invertible
and we abort. We know that the inverse matrix will be the rotation matrix of the inverse
polynomial. So we can just read off the coefficients from the first column. We find
f~r=d Y (f) + f{X + f5X?) where the coefficients f/ are given by

fo=15—Cht
H =45 —hh
fz/ = f12 - f0f2

and d is the determinant

d=fo(f§ = Chfe) + CA(E — fole) + CRICKE — foh) = fofs + C(fs + L 1)

It follows that to compute f~! mod X®—¢ we need 14 multiplications in Z, and one inversion
of d, which we obtain by d=! = d9~2. The inversion costs another 23 multiplications.

In our vectorized assembler implementation of this function we made some effort to
compute the function on as many vectors as possible while maintaining an order of the
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multiplications so that long dependency chains are started as early as possible under the
constraint given by the number of free registers. Our implementation runs in 2200 cycles
on a Skylake processor.

5.3 Dealing with Montgomery Factors

As we explained we use our modified Montgomery reductions everywhere when computing
multiplications in Z, and these reductions introduce additional factors of 37! mod ¢q. We
now explain how we deal with them. Inside the NTT we use the standard method of
precomputing the compile-time constant roots of unity with additional factors of 8 so
that they cancel with the factors introduced by reduction. In base case multiplication and
inversion this is not possible so we need to keep track of the additional factors introduced.
Then, since the NTT and its inverse are linear operations, we can remove them together
with the division by 256 at the end of the inverse NTT. In base case multiplication we
see from the formulas for the coefficients of the product polynomial that there will be
a Montgomery factor 371 in every coefficient. In base case inversion the coefficients f/
also have the same factor 37!, while the determinant d has a factor of 372 in it. When
inverting d by raising it to the (¢—2)-th power, every squaring also squares the Montgomery
factor and introduces one additional factor. So the factor in d?" is equal to (871)" with
v = 21 4 29 — 1. Moreover every multiplication of the different d?" also additionally
multiplies by S~'. We find the total factor in our computation of d~! to be equal to
(B71)” where
12
y=10+) (2" 42 ~1)=—-4 (mod ¢—1).

i=1
i#£9

So our computation of d~! differs by a factor of 4*. Then we multiply every f/ by this
and obtain $2f~!. This aligns very nicely with the operations in NTRU. Because f~! is
multiplied by g which removes one of the 8 and then the resulting A is multiplied by r in
encryption removing the other § and giving the correct ¢ without any Montgomery factor.
In decryption c is multiplied by f, so in the inverse NTT, which is only used in decryption,
we need to do an additional multiplication by § together with 1/256 mod g.

5.4 Sampling Binomial Distribution

The short polynomials f and g in key generation and the message m in encapsulation
are sampled from the distribution where each coefficient is given by independent random
variables of the form (b1 + ba) — (b3 + b4) mod 3 with independent Bernoulli variables
b;. In the NTRU-HRSS implementation this is done in two stages. First b; + b and
bs + by are sampled by adding adjacent bits in a random string. Then the difference of
two such results are reduced modulo 3 by looking up the remainder in a table of all 9
possibilities. We use a slightly simplified approach and directly look up the 4 input bits in
an appropriate table. When doing this in a straight-forward way one could use a 32 bit
integer as the lookup table where the 16 entries in {0,1,2} are given by the 16 pairs of
adjacent bits. Then one just has to shift this 32 bit integer by twice the value of the 4
random bits. We use a slightly improved version where we use symmetries in the table
so that a 16 bit table is actually sufficient which is then shifted directly by the value of
the 4 random bits. This could be advantageous in a vectorized implementation where
one could use 16 copies of the lookup table densely packed in a 256 bit register. Then
by variably shifting this register by the corresponding integers in a register where only
the four low bits in each 16 bit word are non-zero, one would directly obtain 16 correctly
sampled coefficients. Unfortunately, in contrast to the AVX512 instruction set, there is no
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variable shift of densely packed 16 bit words in AVX2. Therefore we have to resort to the
slightly less efficient variable shift of 32 bit words.

5.5 Symmetric Primitives

In the KEM we need a stream cipher to expand a seed to the randomness needed for
sampling the short polynomials f and g in key generation and also for the message m in
encapsulation. Moreover a hash function is used to hash the message to the randomness
for r and the shared secret. It turned out that the speed of arithmetic in our KEM is
sufficiently fast so that the use of SHAKE becomes a serious bottleneck. Therefore instead
of SHAKE we use AES256 in counter mode to expand seeds and SHA512 to hash the
message to a 64 byte string from which the first 32 bytes are taken as the shared secret
and the last 32 bytes as a seed for the polynomial r in the NTRU encryption function.

5.6 Vectorized Packing

Also the time needed for packing uniform polynomials modulo ¢ in a bit string where every
coefficient only occupies 13 bits turned out to be responsible for a significant time when
using a straight-forward C implementation of the packing function. One reason is that
when performing this task by packing 8 adjacent coefficients into a string of 13 bytes, then
this is quite difficult to vectorize. Hence, instead in our packed bit strings coefficients are
adjacent which are 16 places apart in coefficient vector of the corresponding polynomial.
This is very easy to vectorize, one can just pack 16 times 8 coefficients simultaneously.
Also it does not incur a penalty in implementations that do not use vectorization.
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