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PUF in a Nutshell: Biometrics of Objects
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...sounds great! Let’s
use this in HW crypto!




PUF in a Nutshell: Example
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non-initialized SRAM

key derivation from response instead of key storage!

advantages: delayering and optical analysis cannot reveal key
disadvantages: noisy response necessitates error-correction




PUFs and Probing (In-)Security

SoC

invasive probing

What about other physical attacks?

cf. “On the Physical Security of Physically Unclonable Functions” by Shahin Tajik




PUFs and Probing (In-)Security: A Common Misconception

invasive probing not claimed and

not designed
to resist attack

most PUFs # protection from live physical attacks

(they are not tamper-evident, still needed:active meshes and other countermeasures)




Idea of Tamper-Evident PUFs

SoC PUF Assumptions
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tamper-evident PUF = protection from probing attacks

examples: Coating PUF (CHES’06), Waveguide PUF (’15), B-TREPID (HOST’18)




Key Derivation based on Type of PUF

PUF Response
most PUFs "\ tamper-evident
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Two Well-Known Quantization Schemes
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Equiprobable Quantization: Partial Insensitivity to Attacks

A PDF of PUF population
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Missing Selectivity of Binary ECC for Respones w/ Multiple Values

capacitive PUF enrollment
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(plus: bit string per capacitor < #intervals — large magnitude errors with only t = 1)




Tamper-Sensitivity as High-Level Goal for PUF Key Derivation

N

Helper Data Storage Tamper-Sensitivity

Cost and Security and
Performance of PUF Safety of PUF
Key Derivation Key Derivation

Logic Area Run-Time  Reliability Entropy

previous work: strong focus on making PUFs small and lightweight
different approach needed: make PUFs tamper-evident, large, and secure!




Two Definitions for Fair Comparison of Tamper-Sensitivity

max-TS : Maximum Magnitude Tamper Insensitivity

Defines the maximum magnitude of the attacker that goes undetected (worst-case).

min-TS : Minimum Magnitude Tamper Sensitivity

Defines the minimum magnitude of the attacker that is detected (best case).

comparability: express magnitude in multiples of measurement noise oy
“practically best” physical security for max-TS = min-TS; and close to 1 (equal to ox)




Zoo of Key Derivation Options for Tamper-Evident PUFs
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error-correction
ECC over Hamming distance (P5)

map to bits (fixed length) (P3)

lils» map to bits (variable length)

ECC over Levenshtein distance (P4)

¥ q-ary ECC over Hamming distance (P2)

' q-ary ECC over Lee distance (P6)




P6: g-ary Channel Model and Limited Magnitude Codes (LMC)
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dLee(x, y) = min((x - y)9 q- (x - y))
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non wrap-around (Manhattan)

dLee(x, y) = |x - yl
dLee(O,q - 1) =q9- 1




LMC Types and Result

High selectivity of error correction: magnitude, direction, # of magnitude errors

L,
[o[1 218l 4]5]

Asymmetric

ld lu

-—> —>

Symmetric

L L

Bidirectional

a b c d e f g

Ow|=2yon

fe——>]

tamper insensitive a

/

h

Y

i

B

j

k

tar

1

mpe

sen

sitiy

ea

-—> >

Iy L,




Results

Coating PUF parameters (node = single capacitor; device = all capacitors)

oty L= eeconn gy e TSR O
P1 5.4 8 128 - 267 5.4 692 none
P2 2.3 32 4 RS(31, 7) 122 148 4352 dys
P3 3.6 16 5 BCH(127, 2) 265 116 1577 d|2
P4 4.95 12 1 VT(- 1) 276 65 693 diev
P5 2.87 8 2 BCH(255, 4) 320 112 2994 dp|2
P6 2.1 64 1 LMC(63, 10) 319 6.3 395 dMan




Conclusions and Future Work

Tamper-evident PUFs are important for highest physical security

Physical design and key derivation must be optimized for tamper-sensitivity
Formalized tamper-sensitivity to better assess PUF key derivation

Proposed new scheme to overcome previous limitations

Updated definitions of Uniqueness and Reliability for Lee/Manhatten metric

Responses based on symbols/higher-order alphabet

Benefits of same concept when applied to regular PUFs?
Impact of same concept on strong PUFs?

Future work: investigate better quantization options
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Thank You!
Questions?
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Profile 5: Equiprobable Quantization + BCH-based Code-Offset
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