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Abstract. Leakage detection is a common tool to quickly assess the security of a
cryptographic implementation against side-channel attacks. The Test Vector Leakage
Assessment (TVLA) methodology using Welch’s t-test, proposed by Cryptography
Research, is currently the most popular example of such tools, thanks to its simplicity
and good detection speed compared to attack-based evaluations. However, as any
statistical test, it is based on certain assumptions about the processed samples and
its detection performances strongly depend on parameters like the measurement’s
Signal-to-Noise Ratio (SNR), their degree of dependency, and their density, i.e., the
ratio between the amount of informative and non-informative points in the traces.
In this paper, we argue that the correct interpretation of leakage detection results
requires knowledge of these parameters which are a priori unknown to the evaluator,
and, therefore, poses a non-trivial challenge to evaluators (especially if restricted to
only one test). For this purpose, we first explore the concept of multi-tuple detection,
which is able to exploit differences between multiple informative points of a trace more
effectively than tests relying on the minimum p-value of concurrent univariate tests.
To this end, we map the common Hotelling’s T 2-test to the leakage detection setting
and, further, propose a specialized instantiation of it which trades computational
overheads for a dependency assumption. Our experiments show that there is not one
test that is the optimal choice for every leakage scenario. Second, we highlight the
importance of the assumption that the samples at each point in time are independent,
which is frequently considered in leakage detection, e.g., with Welch’s t-test. Using
simulated and practical experiments, we show that (i) this assumption is often violated
in practice, and (ii) deviations from it can affect the detection performances, making
the correct interpretation of the results more difficult. Finally, we consolidate our
findings by providing guidelines on how to use a combination of established and
newly-proposed leakage detection tools to infer the measurements parameters. This
enables a better interpretation of the tests’ results than the current state-of-the-art
(yet still relying on heuristics for the most challenging evaluation scenarios).
Keywords: Side-Channel Analysis · Leakage Detection · Security Evaluations

Introduction
State-of-the-Art
Leakage detection has become a de facto standard for the fast preliminary assessment
of cryptographic implementations against side-channel attacks. In contrast to attack-
based evaluations which quantify the difficulty to recover a key, detection methodologies
try to answer a much simpler question: do the measurements obtained by an adversary
contain data-dependent information, independent of whether it can be efficiently exploited?
Cryptography Research’s non-specific (fixed vs. random) t-test is the most popular example
of this trend [CMG+, GJJR11]. It is commonly used to evaluate the security order of
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block cipher implementations by comparing leakages obtained for a fixed plaintext (and
key) to leakages obtained with a random plaintext (and fixed key).

In general, leakage detection is thought to accelerate the evaluation process by avoiding
the need to conduct numerous different attacks which require expert knowledge [Wag12].
Furthermore, it helps to reduce the evaluations’ data complexity1, since it relies on a simple
statistical test to answer the aforementioned question, instead of conducting a complete
key recovery. As discussed in [MOBW13, SM16, DS16], this gain largely stems from the
fact that it is easier to compare two classes of leakages than 2k ones for a side-channel
attack targeting a k-bit key.2 This reduced data complexity naturally comes at the cost
of false positives, i.e., falsely detecting leakages, and false negatives, i.e., not detecting
existing leakages, that can make the correct interpretation of detection tests difficult.

On the one hand, “false positives” are caused by detecting informative samples that
are either data-dependent but not sensitive (e.g., corresponding to plaintext leakages), or
sensitive but hard to exploit (e.g., corresponding to the middle rounds of a block cipher
that are out of reach of a standard DPA [MOS11]). Note that strictly speaking, those
are true positive from the statistical viewpoint, but “false positives” with respect to the
goal of the detection test. Those “false positives” are usually less critical since (i) when
applying leakage detection on full traces, they are usually accompanied by true positives,
and (ii) if necessary they are easy to prevent by applying more expensive specific tests,
e.g., based on the Signal-to-Noise Ratio (SNR) of some sensitive variables.

On the other hand, and more critically, various types of false negatives can also happen,
possibly leading to a “false sense of security”, i.e., an absence of detection despite the
possibility to mount powerful side-channel attacks.

A first example of false negative is the case where the mean leakages of the fixed and
random classes used in the non-specific test are identical (or so close that their detection is
hard) [DS16]. This, however, is usually avoided by running the detection on long enough
traces to ensure that there are some samples which do not fulfill this equality.3

A second and more challenging scenario happens when the strategy used by the
leakage detection becomes suboptimal. This can for example take place with masked
implementations, of which the security increases exponentially in the number of shares
assuming independent and sufficiently noise leakages. As discussed in [Sta17], when the
number of shares in the masking scheme is large and the noise is too low, the detection
strategy of estimating a higher-order statistical moment becomes extremely data-expensive,
even though the target can be attacked after the observation of a single (essentially noise-
free) trace. The natural solution to mitigate this risk is to analyze the leakage distributions
rather than only their statistical moments. Proposals in this direction include the χ2 test
recently analyzed in the context of leakage detection [MRSS18], or previously proposed
tests based on the estimation of the mutual information [MOBW13].4

Eventually, a third and so far less discussed issue is that current leakage detection
tests typically focus on whether a single leakage sample is data-dependent. For long
measurement traces, this strategy is commonly extended by the so-called min-p approach
in which the detection is based on the sample of the trace leading to the minimum p-value.
More sophisticated methods have been proposed (e.g., Higher Criticism in [DZD+17]), but
even they remain far from a detection combining all the leaking samples.

Contribution
Based on this state-of-the-art, our contribution is threefold.

1 The number of measurements needed to conclude the evaluation.
2 The fixed vs. fixed test discussed in [DS16] allows marginal improvements in this direction.
3 Which (e.g.,) occurs with block ciphers for which computations are pseudo-random after some rounds.
4 If working in a setting where the internal randomness used by the countermeasures of the leaking

devices is available to the evaluator, a simpler solution is to directly estimate the shares’ SNR.
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First, we show that the data complexity of non-specific tests can be further reduced
thanks to multi-tuple detection. To this end, we rely on the well-established Hotelling’s
T 2-test which is the natural extension of the t-test for multiple variables. We propose a
general instantiation of such a multi-tuple detection using Hotelling’s T 2-test, together
with a simplification that we denote as D-test, working under the assumption that the
leakage samples of the measurement traces are independent.

Second, we observe that this simplifying independence assumption is implicitly or
explicitly used in all current detection methodologies to set the detection threshold in
function of the trace length.5 We demonstrate that dependencies within the traces
can strongly affect the results of such detection tests, which rely on the independence
assumption. This makes simple conclusions such as “no leakages were detected with up
to N measurements” difficult to fairly compare statistically without a proper assessment
of the dependencies within the traces. Since Hotelling’s T 2-test naturally captures such
dependencies, it therefore becomes a tool of choice whenever applicable. Yet, it comes at
the cost of a significantly higher computational complexity, since it essentially requires
inverting the leakage traces’ covariance matrix.

Third, we provide experiments with both simulated data and actual measurements
obtained from software and hardware implementations to confirm our findings.

We conclude the paper by describing a general framework to guide evaluators in their
selection of the appropriate leakage detection tests in function of a few questions regarding
the evaluation/attack setting. On the one hand, what are the evaluator/adversary’s
assumptions in terms of implementation knowledge (i.e., does the evaluation take place in
an open-source or closed-source setting) and randomness knowledge (i.e., can the evaluator
access the randomness used in countermeasures such as masking or shuffling)? On the
other hand, what are the evaluator/adversary’s assumptions regarding the measurements
(e.g., are the traces short enough so that their covariance matrix can be estimated, and
can we assume the samples to be – sufficiently – independent otherwise)?

We show that (i) based on these questions, a good combination of leakage detection
tests can lead to meaningful conclusions about the security order of a target implementation,
the noise level of its measurements, and the density of informative samples in the traces,
and (ii) these recommendations and conclusions range from formal to more heuristic,
mostly depending on the implementation and randomness knowledge available.

Related works and cautionary remarks. Hotelling’s T 2-test has already been mentioned
as a potential tool for leakage detection in [RBG+16] but under a different viewpoint.
They investigate the connections (and lack thereof) between leakage detection and more
comprehensive evaluation metrics reflecting the success of an attack rather than analyzing
the data complexity gains that it can provide. The risks due to dependencies within
leakage traces have also been mentioned in a recent work by Bache et al. [BPG18], who
left their analysis as a challenging open problem. The focus of this last reference is also
quite different from ours. It mostly deals with the interpretation of negative detection
outcomes (i.e., what can be concluded in the absence of detection?), while our primary
focus is on positive detection results, for example in order to assess the “security order” of
a masked implementation in a multi-model approach such as [JS17].

1 Background
In this section, we introduce the notations used in the paper and explain the current state
of leakage detection based on Welch’s t-test [CMG+, GJJR11] including its extension

5 As previously discussed in [DZD+17], this threshold has to increase with longer traces, since the
probability of having a detection by chance (i.e., false positive) increases in the number of samples.
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Figure 1: Leakage detection framework.

from [DZD+17]. It will serve as a frame of reference in our experiments to judge the
potential of the newly-proposed methodologies.

1.1 Notations

Random variables are denoted as capital letters X while a random vector is written as X :=
[X1, X2, . . . , Xnl ] with a density of informative points φX (later defined in Subsection 3.1).
Lower cases indicate an observation of a random variable such that x := [x1, x2, . . . , xnl ]
is a sample of X. For side-channel analysis, the random vectors represent measured traces
where each Xi corresponds to a fixed point in time within an encryption. In this context,
nl and N are the trace length and the number of available traces (i.e., measurements).

We denote the mean and variance of a random variable X as µX and σ2
X , while their

sampled estimates are written as X̄ and s2
X . For random vectors, Σ and S represent the

covariance matrix and its estimate. For statistical tests, α (resp., β) denotes the false
positive (resp., negative) probability.

1.2 Leakage Detection with Welch’s t-Test and Extensions

Test Vector Leakage Assessment (TVLA) describes an efficient detection methodology
based on Welch’s t-test initially proposed by Cryptography Research [CMG+, GJJR11].
In its core their approach tests the means of two different sets of measurements for equality
and concludes the existence of leakages if a difference can be detected with a certain level
of confidence. This basic procedure is split into two phases as depicted in Figure 1.

First, the device under test (DUT) is fed with two sets of inputs I1 and I2 while the
leakage behavior during the computation is recorded. This results in a set of NX (resp.,
NY ) measurements X (resp., Y ) for inputs I1 (resp., I2). In the widely-used non-specific
fixed vs. random test, I1 consists of only one fixed plaintext and key while I2 corresponds
to a fixed key with random plaintexts. In the following, our experiments are conducted in
a fixed vs. fixed manner. As detailed in Appendix D, it generally provides better detection
rates. Yet, our findings are generic and transfer to the fixed vs. random strategy.

Second, Welch’s t-test [Wel47] is applied to these measurements for each pair of random
variables (Xi, Yi) corresponding to one point in time separately. It tries to distinguish
between the null hypothesis H0 and its corresponding alternative hypothesis Ha with

H0 : µXi = µYi , Ha : µXi 6= µYi . (1)

To this end, it is required to estimate the mean and variance of each random variable and
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use them to derive the test statistic ti and degrees of freedom vi for each point in time as

ti = X̄i − Ȳi√
s2
Xi

NXi
+

s2
Yi

NYi

, vi =

(
s2
Xi

NXi
+ s2

Yi

NYi

)2

(
s2
Xi
NXi

)2

NXi−1 +

(
s2
Yi
NYi

)2

NYi−1

·

Under H0, ti is assumed to follow a Student’s t-distribution parameterized with vi, where
FT (·, vi) denotes the corresponding cumulative density function (CDF, cf. Appendix A). If
the observed ti significantly differs from the expected distribution, H0 is rejected and the
alternative hypothesis Ha is accepted. To ensure that this rejection is done with sufficient
confidence, the p-value can be computed from ti and vi as

pi = 2(1− FT (|ti|, vi)),

where a small p value indicates a high confidence to reject H0. In this case, the evaluator
concludes the existence of detectable leakages in the measurements.

Setting a Threshold. Usually, the p-value is compared to α, which is set a priori depending
on the desired detection accuracy, and if smaller H0 is rejected. This can be simplified for
large numbers of observations for which ft(·, vi) tends to a standard normal distribution.
In this case, it is sufficient to directly set a threshold thtα for the ti value, avoiding the
computation of the degrees of freedom and p-values. For TVLA, the authors recommend a
threshold of 4.5 for |ti|, which if exceeded translates to pi < 0.00001 assuming vi > 1000.
TVLA is usually employed using the min-p strategy to extend the test to traces with
multiple points in time, i.e., the threshold tht10−5 = 4.5 is not affected by the number of
points in each trace. However, as noted in [GJJR11] and more recently in [DZD+17], this
approach can lead to erroneous results for measurements consisting of large numbers of
points. Instead, the authors of TVLA propose to run additional, independent tests and
only conclude leakage if it appears multiple times at the same time instance. We evaluate
this strategy in Appendix D for our setting, and find that it is not superior to a single test
(with twice the amount of measurements) for our purposes. Therefore, we do not discuss
it any further. Alternatively, in [DZD+17] it is put forward to set an adjusted threshold
based not only on the desired false positive rate α but also on the number of points per
trace nl (i.e., the number of separate Welch’s t-tests) as

thtnl,α = F−1
T (1− 1− (1− α)1/nl

2 , v),

where Ft refers to the cumulative distribution function (CDF) of Student’s t-distribution.
In this way, the authors ensure that the desired false positive rate is achieved even for
large nl assuming independence between the random variables. We use this approach to
set the threshold for the combination of min-p and Welch’s t-test in our experiments. By
inverting the previous equation, the p-value is computed according to

p = 1− (1 + 2(FT (max(|ti|))− 1))1/nl .

Eventually, the false negative rate β which is the probability to not reject H0 while
µX 6= µY is given by

β = Pr[thtnl,α > max(|ti|)]
= Πnl

i=1 Pr[thtnl,α > |T (vi; δi)|],
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Figure 2: Exemplary multiplicative pre-processing of X for order d = 2.

where

δi = (µXi − µYi)/

√
σ2
Xi

NXi
+
σ2
Yi

NYi

is the non-central parameter. We observe that the false negative probability depends
on the number of measurements as well as the samples’ variance and the difference in
mean between the two vectors X and Y . Namely, by decreasing the noise variance or by
increasing the number of samples, the probability β decreases.

Higher Criticism. Detection can also be performed by recombining the p-values outputted
by all the independent Welch’s t-test’s [DZD+17]. This higher criticism method is a first
step in the direction of multi-tuple detection. In their paper, the authors showed that
it provides an advantage over Welch’s t-test for dense traces (i.e., traces with a lot of
informative points) and is equivalent to it in case of sparse traces.

Extension to Higher Orders. The previously-described procedure tests for a difference in
the means between the random vectors X and Y . While for non-masked implementation
this is sufficient to detect in most cases, masking schemes (such as [ISW03]) may remove
any difference in the means if implemented correctly. For these cases, the leakages are
hidden in a higher (mixed) statistical moment and the traces need to be pre-processed
before applying TVLA [GJJR11]. A usual heuristic for this purpose is to combine every
d-tuple of random variables multiplicatively, as shown in Figure 2. This produces the
pre-processed trace sets X ′, Y ′ which we define as

X ′ =
{∏
i∈T

Xi, ∀ T
d

⊂{1, . . . , nl}
}
, Y ′ =

{∏
i∈T

Yi, ∀ T
d

⊂{1, . . . , nl}
}
,

for all considered sets of tuple indices T with cardinality d. Leakages can only be detected
if such a d-tuple contains information about all d shares of the targeted sensitive variable.
If there are dth-order leakages, the means of X′ and Y ′ (resp., the dth-order moments of
X and Y ) are different and TVLA will conclude the existence of leakages given enough
samples. Note that sometimes, the centralized (mean-free) or standardized (normalized by
standard deviation) moments are used [SM16]. Note also that samples pre-processed in
this way are not Gaussian, and therefore the heuristic of testing the sample means relies
on the central limit theorem in this case (which we briefly discuss in conclusions).

In our simulated experiments, we will only generate first-order leakages and rather
indirectly emulate the effect of this pre-processing by adapting the simulation parameters
(e.g., the number of samples and density of informative points) – which allows simpler
interpretation. In our practical experiments, we will rely on the centered-product to map
the higher-order leakages to the mean for all considered tests.

Note that for closed-source designs, this pre-processing quickly becomes very complex,
since the evaluator does not know which d variables need to be combined to detect leakages.
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Thus, it is necessary to check all possible n′l(d) d-tuples6, with

n′l(d) =
(
nl + d− 1

d

)
= (nl + d− 1)!

d!(nl − 1)!
, (2)

which we can bound with

ndl
d! ≤ n

′
l(d) ≤ (nl + d)d

d! ·

This exponential increase strongly affects the density (i.e., the ratio of informative vs.
non-informative tuples) which is an important parameter in our later evaluations and
decreases exponentially in d due to the pre-processing.

2 Multi-Tuple Detection
Welch’s t-test as applied in the TVLA methodology exploits only the difference in the
means of two paired random variables (Xi, Yi) as stated in its testing hypotheses (cf.
Equation (1)). Therefore, it does not take full advantage of jointly testing all the variables
in the vectors (X,Y ), and instead runs nl separate tests in the hope that at least one of
them gives large enough confidence to reject the null hypothesis. By taking an analogy
with distance between two vectors in an nl-dimensional space, this procedure only looks at
the distances between all the dimensions separately.

As a solution to this problem, we propose to use multi-tuple tests for leakage detection.
Instead of nl separate tests, the multi-tuple test statistics are derived from the difference
of multiple paired variables jointly and, therefore, they can potentially detect leakages
with fewer measurements than Welch’s t-test. For example, if the joint difference of
multiple paired variables shows leakages while there is not enough confidence for each pair
individually. Instead of Equation (1), such a multi-tuple detection methodologies consider
the following testing hypotheses

H0 : µX = µY , Ha : µX 6= µY . (3)

H0 assumes that there is no difference of means between the two vectors X and Y , whereas
Ha corresponds to the presence of leakages and states that there is at least one set of
paired variables that exhibits a difference of means. In the following, we first introduce
Hotelling’s T 2-test, before proposing a D-test that, under some assumptions, provides the
same testing power as Hotelling while reducing its computational complexity.

2.1 Hotelling’s T 2-Test
Hotelling’s T 2-test is a natural candidate for our use case because it is inherently multi-
tuple [Hot31] and corresponds to the statistical hypotheses described in Equation (3). The
test statistic T 2 is computed according to

T 2 = NXNY

NX +NY
(X̄ − Ȳ )ᵀS−1(X̄ − Ȳ ),

and requires the estimated means (X̄, Ȳ ) of both random vectors and their estimated
pooled covariance matrix S defined as

S =
∑NX

i=1(xi − X̄)(xi − X̄)ᵀ +
∑NY

i=1(yi − Ȳ )(yi − Ȳ )ᵀ

(NX +NY − 2) · (4)

6 Other approaches than this pre-processing exist to deal with masked implementations, such as
projection pursuits or dimensionality reductions [DSV+15, CDP16], but they are more applicable in an
attack-based evaluation than in a detection-based one we consider here.
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Figure 3: The PDF and CDF of different Fisher distributions with varying nl and their
corresponding threshold thT 2

α (dashed lines) for α = 0.1 and NX = NY = 64.

Hotelling’s T 2-test assumes that the covariance of both random vectors X, Y is the same
and pools their estimates to achieve better accuracy. However, small differences in the
covariances can be tolerated by the test without strongly affecting its performance (see
next).7 Under the null hypothesis and up to some multiplicative factor λ, this test statistic
follows a Fisher distribution F parameterized with (nl, NX +NY − 2):

(NX +NY − 1− nl)
(NX +NY − 2)nl

T 2
H0

= λ T 2
H0
∼ F(nl, NX +NY − 2).

In contrast to Welch’s t-test, the form of this distribution does not only depend on the
number of measurements (NX , NY ), but also on the number of samples in a trace nl.
Based on this, the p-value and a detection threshold for T 2 can be computed as

p = 1− FF (λT 2), thT
2

α = F−1
F (1− α)/λ,

where FF denotes the CDF of the Fisher distribution (cf. Appendix A). The threshold
is, therefore, a function of the number of available measurements, the trace length, and
the desired false positive probability α. This dependency is depicted in Figure 3. For
fixed (exemplary) parameters α = 0.1 and NX = NY = 64, we computed the PDF’s and
CDF’s of the Fisher distribution for varying nl. It is noticeable that the shape of the
distributions is strongly affected by the length of the traces nl and, therefore, the threshold
thT

2

α (represented by the dashed lines) also changes accordingly.
Under the alternative hypothesis, the test statistic follows a non-central Fisher distribution

λ T 2
Ha ∼ F(nl, NX +NY − 2; δ),

with the effect size δ as an additional parameter which is defined as

δ = NXNY

NX +NY
(µX − µY )ᵀΣ−1(µX − µY ).

Here, δ represents the distance between the null and the alternative hypothesis for
any covariance, means and number of measurements. Based on this distribution, we can
compute the false negative probability β as [Ren98]

β = Pr[λ thT
2

α > F(nl, NX +NY − 2; δ)|µX 6= µY ].

This gives the probability that the observed test statistic T 2 is smaller than the detection
threshold even though the mean difference between X and Y is unequal zero (i.e., Ha).

7 Note that there are versions of Hotelling’s T 2-test which do not rely on this assumption. However,
they have strongly increased data complexity, and thus are not considered in the following.
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Leakage Detection with Hotelling’s T 2-Test. We propose to follow the same procedure
as TVLA (and all of its instantiations) to generate the measurements, and replacing the
nl Welch’s t-test with one Hotelling T 2-test as depicted in Figure 1. This comes with
two advantages that increase the detection rate in certain scenarios. First, Hotelling is
multi-tuple and, second, it is not based on the independent signal assumption. Nevertheless,
this improved detection rate comes at the cost of the estimation and inversion of the pooled
covariance matrix S (Equation (4)). Since S is an nl × nl matrix, storing and computing
on it is roughly quadratic in the trace length. Taking into account that the trace length
may grow exponentially with the statistical order of the test, performing a T 2-test might
not be computationally feasible for very long traces at high orders.

Note that despite Hotelling’s T 2-test returns a single statistic, it does not lead to a
complete loss of intuition on the leaking points in a measurement trace. Indeed, it still
requires computing mean vectors X̄ and Ȳ which provide such an indication, yet with less
confidence due to the faster detection.

Note also that even though the standard Hotelling’s T 2-test assumes equal covariances
between the sets, it can still be applied in the context of leakage detection for which this
is not necessarily true for every scenario (e.g., in the case of masked implementations). As
pointed out in [Wy92], the test is robust for unequal covariances under two conditions:
(i) (NX , NY ) are large and equal, and (ii) N/nl is large. The first condition (i.e., the
equality in size of the two sets) can be trivially forced by evaluators. The second condition
is typically fulfilled for protected designs which are the main target for leakage detection,
for which (hundreds of) thousands of traces are necessary to detect. Indeed, nl is anyway
limited by the computational capabilities of the evaluator. For example, in our following
experiments, we restricted it 1000 for computational reasons. Under this restriction, we
argue that Hotelling’s T 2-test can be utilized for leakage detection in a statistically sound
manner. We will detail later in the paper how such a detection test can be combined with
a min-p strategy in order to deal with longer traces.

2.2 D-Test for Independent Signals
As noted, Hotelling’s T 2-test can offer improved detection rates at increased computational
cost. To overcome the covariance issue, we propose a specialization of Hotelling’s T 2-test
denoted as Diagonal-Test (D-test). It is based on Hotelling but does assume independence
between the signals, i.e., all points in a trace are independent. Therefore, we trade one of
the two advantages (multi-tuple + no dependency assumption) of the T 2-test to remove
its main efficiency drawback.

In particular, we assume that the covariance matrix is diagonal (∀i 6= j, σXi,Yj = 0)
which is true if the signals are independent. Thus, instead of computing the complete
nl × nl matrix S, our test requires only the estimation of the nl diagonal entries. This
allows us to rewrite the test statistic as

D = NXNY

NX +NY

nl∑
i=1

(X̄i − Ȳi)2

Si,i

=
nl∑
i=1

(X̄i − Ȳi)2

s2
Xi

NX
+

s2
Yi

NY

=
nl∑
i=1

t2i , (5)

by also replacing the equal covariance assumption of Hotelling with the extension from
Welch’s t-test to allow different variances. Therefore, just like classical TVLA, our test
requires only the estimation of the mean and variance of each variable pair (Xi, Yi)
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separately. It is noticeable, that the D-test is equivalent to TVLA for nl = 1 and to
Hotelling for independent signals and equal covariances.

For a sufficient number of measurement, the t-statistics (Equation (5)) follow a normal
distribution meaning that under this condition D follows a χ2-distribution with nl degrees
of freedom. As before, the p-value and detection threshold can be computed as

p = 1− Fχ2(D), thDα = F−1
χ2 (1− α),

where Fχ2 denotes the CDF of the χ2-distribution (cf. Appendix A). Note that a similar
approach was proposed in [WGS06] targeting small sample sizes (NX and NY ) which
avoids the hypothesis that the ti’s are normally distributed.

Leakage Detection with the D − T est. As in the previous sections, the traces are
generated according to the TVLA methodology. The nl Welch’s t-tests are then replaced
by one D-test. We note that our test statistic can be written as the sum of squared ti values
obtained by different t-tests (cf. Equation (5)). Therefore, in contrast to Hotelling, our
D-test has only a linear complexity in the trace length and can for example be performed
in parallel to Welch’s t-test with minimal overhead (cf. Figure 1) making it feasible in
all scenarios in which the t-test can be applied (assuming independent signals). Based
on Equation (5), it is noticeable that the performance of the D-test suffers from adding
non-informative sampling points. This is indeed true, but applies to all considered leakage
detection tests which process multiple points (including Welch’s test with min-p). In our
simulations, we will show that the different tests are affected to varying degrees to the
addition of noisy and informative points (Figure 6).

3 Simulated Experiments
The underlying idea of multi-tuple detection is to take advantage of multiple joint differences
in the traces to reduce the data complexity required for detection. We next use simulated
experiments to evaluate the gains that can be expected.

In this respect, our starting observation is that (as already observed with the higher
criticism approach), these gains may depend on the target implementation. For example,
it may happen that not all samples (or tuples) considered in a detection procedure are
informative. These non-informative points might thwart the estimation of the multi-tuple
test statistic by increasing the noise and, thus, cancel the aforementioned advantage.

Besides, both Welch’s t-test with min-p and the D-test assume that the signals are
independent, which can further impact the detection rate.

In order to fairly compare the different approaches, our simulations will therefore assess
the influence of two main parameters on the detection performances:

1. The density refers to the ratio of (pre-processed) informative points in the traces.

2. The dependency is the level of deviation of the covariance matrix from diagonal.

As usual, simulations are useful since they allow us to thoroughly assess the influence of
these parameters in a controlled environment. Besides the density and dependency (which
carry the most important intuitions), we also consider the SNR, β, and trace length nl as
additional parameters influencing our results (in a way that is essentially similar to what
was observed in previous works on leakage detection).

In the following, we first introduce our simulation framework and a methodology to
estimate the success rate of Welch’s t-test, Hotelling’s T 2-test, and the D-test. Secondly,
we use simulations with independent leakages to show that for dense traces (i.e., when
a large proportion of the points in the traces shows evidence of leakages) Hotelling and
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Figure 4: Simulation framework.

the D-test provide significantly faster detection than Welch’s t-test using the min-p
approach. By contrast, we show the superiority of Welch’s t-test with min-p in low-density
settings. Thirdly, we highlight the dependent signal issue and its effect on leakage detection
methodologies. Our results indicate that it is a critical aspect to interpret detection results
in a statistically sound manner. Concretely, they imply that only Hotelling’s T 2-test reliably
provides the expected detection rate, while the other tests are either too conservative or
optimistic in case signal independence is incorrectly assumed.

3.1 Simulation Framework
In our simulations, we use the common assumption of a Hamming weight leakage model
with additive Gaussian noise. To this end, we initially pick two fixed 8-bit inputs pX

and pY .8 These are run through a round-based structure consisting of the addition of
an independent round key ki followed by a bijective function Sbox : {0, 1}8 7→ {0, 1}8 as
depicted in Figure 4. The value after each function is considered as an informative leakage
sample, to which we apply the Hamming weight function hw(.) and add noise ζ ∼ N (0,Σ).
The noise is sampled from a multivariate Gaussian distribution with the zero vector 0 as
means and Σ as its covariance matrix. Depending on the scenario, this matrix is chosen to
be either diagonal or with varying levels of dependency between its variables (cf. Figure 7).
The diagonal is set to σ2 depending on the desired SNR [Man04], which is equal to 2/σ2

assuming an 8-bit Hamming weight leakage model and equal covariances for both sets. In
order to ensure the independence of the manipulated values independently of the Sbox, a
key addition with independent keys ki ← {0, 1}8 is performed at each round.

Density. The density in our simulations is controlled by repeatedly adding random values
to the trace, which generates leakage samples that are independent of the key and plaintext
and are therefore non-informative. In total, we generate traces of length nl = ni + no,
where ni denotes the number of informative points, that are padded with no points of
noise. Based on this setting, we define the density of our simulated measurements as

φ = ni
nl

,

where φ = 1 denotes that every point is sensitive while φ = 0 indicates no leakages. Note
that concretely, a low density typically corresponds to the case of a masked implementation,
as per remark in Section 1.2 (e.g., the masked AES implementation in our software case
study has a density of φ = 0.0001, while the masked hardware design exhibits a density
of φ = 0.027). As already mentioned in Section 1.2, for simplicity our simulations use

8 Note that these are picked as pX 6= pY to ensure leakage.
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this parameter together with the SNR to reflect more or less protected (possibly masked)
implementations. We do not directly generate higher-order leakages nor pre-process the
traces in this section which allows easier interpretation (since all samples then remain
Gaussian-distributed). By contrast, the real experiments in the next section consider
concrete masked implementations for which we pre-process the traces to map higher-order
leakages to the mean. From the detection viewpoint, it is mostly the SNR and density of
the traces that respectively impact the data and time complexity of the detection task.

Detection Rate. In order to compare the performances of the various detection methods
in a given setting, the probability to correctly conclude the presence of leakages while
the device is actually leaking is used. This detection rate is directly linked to the false
negative probability according to the equation

Pr[T 2
Ha > thT

2

alpha] = 1− β = 1− Pr[λ thT
2

α > F(nl, NX +NY − 2; δ)]

for Hotelling T 2-test (resp., for D-test with diagonal Σ), and

Pr[max(|ti|) > |thtnl,α|] = 1− β = 1−Πnl
i=1 Pr[thtnl,α > |T (vi; δi)|]. (6)

for Welch’s t-test. While the false negative probability (β) is more common in the statistics
community, we sometimes use the detection rate because it is intuitive in the side-channel
analysis context. If a method applied to a leaking device concludes that it is leaking in
99% of the cases, then its detection rate is equal to 0.99 and β = 0.01.

Evaluation Method. Our simulations are performed in three steps. First, the desired
false positive probability α is set as well as the other implementation parameters (density
φ, trace length nl, covariance matrix Σ and SNR). If not mentioned, α is equal to the
frequently assumed 10−5. Secondly, the desired detection rate is shown. In the following,
it is either set to 0.999 (β = 10−3) or to 0.9999 (β = 10−4). Finally, the inputs for the two
sets are selected at random, the mean vectors µX and µY are obtained and the number of
measurement (N) needed to achieve the targeted detection rate is computed.9 This last
step is repeated and its outputs are averaged to remove input dependencies.

3.2 Simulation with Independent Signal
We start by comparing the tests assuming independent signals. To this end, only the
diagonal elements of the covariance matrix are set to the desired noise level, while we fix
the remaining elements to zero (cf. Figure 7a).

As noted before, Hotelling’s T 2-test and the D-test are equivalent in this setting, and
we will only consider the latter for the comparison with Welch’s t-test and the min-p
approach. We primarily focus on the impact of the trace length (nl) and the density (φ)
on the data complexity (N) at a fixed detection rate (1− β).

Influence of Multiple Tuples. First, we set the density to φ = 1 (i.e., all points in a
trace are informative) and observe the influence of the remaining simulation parameters
(SNR, nl) on the detection rate. The results are given in Figure 5 where the vertical axis
denotes the number of measurements N , while the horizontal axis shows an increasing nl
for fixed SNR (on the left) and an increasing SNR for fixed nl (on the right).

The most noticeable influence on the detection complexity stems from the number
of points in a trace nl. While both tests (which are equivalent for nl = 1) benefit from
increasing the trace length, the D-test improves more than Welch’s t-test with min-p,
as shown in Figure 5a. This behavior is expected given that the D-test combines the

9 Where N = NX +NY and NX = NY .
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Figure 5: Number of traces N required to detect for a fixed false negative rate β on
simulated traces with a density of φ = 1, and varying trace length nl and SNR.

differences of all points into a single test statistic while the min-p approach only looks for
one worst-case. Therefore, for implementations which leak with such a high density (e.g.,
unprotected or parallel masked hardware designs), multi-tuple tests can detect (much)
faster than Welch’s t-test in case of sufficiently long traces. In our example, for nl = 103,
Welch’s t-test with min-p requires 698 measurements to achieve a detection rate of 0.999,
while the D-test needs only 229 measurements (which corresponds to an improvement by
a factor 3). For nl = 106, Welch’s t-test requires 303 traces while D-test only 205.

The other parameters affect the detection rate of both tests as expected. Decreasing β
basically means that in more experiments the null hypothesis will be rejected, implying
the need for more measurements. The same can be observed for changes in the SNR given
that more noise/less signal also increases N (as depicted in Figure 5b).

Influence of the Density. We next study the influence of the density at a given noise
level as shown in Figure 6. Now, the horizontal axis shows the density φ, while the vertical
axis is still the number of traces required to detect N .

For a density equal to one, we observe that the D-test requires fewer traces than
Welch’s t-test with min-p, as expected from Figure 5. However, it is noticeable that both
methods suffer from decreasing the density in the measurements.

For the D-test, the decreased density increases the number of zero elements in the
vector µX − µY . Therefore, the effect size δ decreases as well as the distance between
the test statistic distribution under the zero and alternative hypothesis. This must be
counterbalanced by increasing the number of samples to keep a constant δ and so the desired
β. For Welch’s t-test with min-p, decreasing the density reduces the number of ti’s which
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β = 10−3, D-test
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Figure 6: Number of traces N required to detect for a fixed false negative rate β on
simulated traces with SNR = 0.01, and varying density φ.
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Figure 7: Covariance matrices considered in our experiments (for nl = 32).

can potentially show leakages and, therefore, reduces the overall chance to detect leakages
and increases the number of required measurements. More precisely, in Equation (6), an
increasing proportion of δi’s is equal to zero, making the overall detection rate smaller
at a fixed number of measurements. Nevertheless, Figure 6 clearly shows that Welch’s
t-test with min-p suffers less from the reduced density than the multi-tuple test. For small
densities, it even outperforms the D-test. Since the density is a priori not known by the
evaluator in a closed-source setting, it is not possible to predict which test performs better
a priori. Instead, both Welch’s t-test with min-p and the D-test should be run in parallel,
with negligible overhead as explained in Subsection 2.2. For high densities, the D-test will
typically detect faster. For low densities, the opposite conclusion will hold.

We note that we did not add the results of the higher criticism approach in our figures
for readability purposes. However, they essentially detect slower than the multi-tuple test
in case of dense traces, and do not beat Welch’s t-test with min-p otherwise, making it a
less interesting alternative if the two previous tests are run in conjunction.

3.3 Simulation with Dependent Signal
We now explore the dependent signal issue and its effect on Welch’s t-test with min-
p, Hotelling’s T 2-test, and the D-test. In particular, we consider three different noise
covariance matrices Σ1, Σ2, Σ3 as depicted in Figure 7. Σ1 is a diagonal matrix like
in the previous section (i.e., it corresponds to independent signals), while Σ2 and Σ3
represent increasing rates of dependency between the variables of X and Y . Σ2 maps a
situation where a variable Xi (resp., Yi) is only correlated with a few adjacent variables. In
practice, this would relate to the case where the samples inside a clock cycle exhibit a strong
dependency on each other, e.g., as in our hardware case study (cf. Figure 10b). For Σ3 nearly
all points are correlated to a certain degree which corresponds to dependencies exceeding
clock cycle boundaries, e.g., as in our open-source software case study (cf. Figure 11b).10

In the following, we first show the influence of a non-diagonal covariance matrix on the
distributions of the test statistics. Next, we highlight that it can lead to a wrong estimation
of α, hence to a false sense of security based on sub-optimal detection performances. Thirdly,
we confirm our intuitions with simulated experiments using Σ2 and Σ3.

Impact on the Test Statistics. Given independent signals, the test statistics follow well-
defined distributions under the null hypothesis. To assess the effect of signal dependencies on
these distributions, we generate 100, 000 sets of 4, 000 traces for each of the aforementioned
covariance matrices and apply every leakage detection test. The results are in Figure 8.

The distribution of Welch’s t-test with min-p statistic is composed of two lobes (cf. Fig-
ure 8a) since only the largest |ti| from nl different Welch’s t-test is kept. For Σ1, we
observe the expected distribution (in red) assuming independent signals. However, by

10 Further descriptions of each matrix are given in Appendix B.
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adding slight dependencies in the traces as in the Σ2 case, the test statistic distribution
(in green) is pushed towards the center. This trend is amplified with Σ3 (in blue).

An equivalent behavior is observed for the D-test test statistic (cf. Figure 8b). The
distributions for Σ2 and Σ3 differ from the one assuming independence. In particular,
stronger dependencies result in a higher spread of the test statistic distribution.

By contrast, Hotelling’s T 2-test does not rely on the independence signal assumption
and, therefore, the test statistic distributions remain constant in the different settings.
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Figure 8: Null distributions with dependent noise and detection thresholds (dashed lines).

Risks of Incorrect Interpretation. As mentioned in the previous section, the detection
thresholds as well as the p-values used in the TVLA methodology are derived from
the distributions of the test statistics under the null hypothesis. For the tests relying
on an independent signal assumption, these values are derived from the distribution
corresponding to Σ1, e.g., as depicted by the dashed line in Figure 8 for α = 0.1.11 This
becomes problematic once this assumption is violated and the observed distributions of
the test statistics differ from the one assuming independent signals. It would for example
imply that the threshold (the dashed lines) would remain unchanged in the Σ2 and Σ3
cases, despite their distributions differing significantly from the Σ1 one.

Since the detection threshold is used to conclude the presence of leakages, using a
faulty threshold (e.g., for Σ2 and Σ3) may lead to an incorrect interpretation of the test
results. In order to illustrate this risk, we estimated the empirical false positive rate α̂
corresponding to detection with the three covariance matrices in simulations. This α̂
corresponds to the sampled probability that the test statistic is larger than the threshold
chosen for a given α. In our case, a correct test is expected to have an α̂ that is close to
α = 0.1. The results are given in Table 1.

Table 1: Empirical false positive rate α̂ estimated from 100, 000 experiments.

Σ1 Σ2 Σ3

Welch’s t-test with min-p 0.099 0.051 0.018
D-test 0.101 0.236 0.237

Hotelling’s T 2-test 0.101 0.099 0.102
Hotelling’s T 2-test with min-p 0.101 0.095 0.09

In the Σ1 case, the α̂ of all tests converges to the expected value since the independent
signal assumptions is indeed fulfilled. By contrast, for Σ2 and Σ3, the derived threshold and
p-value are no longer correct for Welch’s t-test with min-p and the D-test, as illustrated in
the second and the third columns of the table.

11 This value of α is chosen to simplify the later estimation of an empirical false positive rate α̂. Further
note that Figure 8 depicts the zero distributions of the test statistics (i.e., no leakage) and, thus, only a
proportion of α of the test statistics should exceed the threshold.
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For Welch’s t-test with min-p, the estimated α̂ converges to values that are smaller
than α = 0.1 when increasing the dependencies. This confirms the intuition from Figure 8a,
where the distributions are pushed towards the center. It results in a smaller fraction of
the estimated test statistics exceeding the threshold, hence a lower α̂.

An opposite behavior is exhibited by the D-test. For increasingly dependent signals,
the α̂ becomes larger than expected, which can also be observed in Figure 8b where the
area right of the threshold is larger for Σ2 and Σ3.

Hence, Hotelling’s T 2-test is the only candidate that gives the correct false positive rate
even for dependent signals, since it does not rely on the independent signal assumption.

Intuitively, these results indicate that Welch’s t-test with min-p may behave too
conservatively if incorrectly assuming independence. In such cases, it will declare the
presence of leakages with a confidence level higher than expected by the evaluator, leading
to a reduced detection rate (increased β) as shown in Figure 9a. In this figure, we estimate
the correct detection thresholds for Σ2 by sampling which is feasible since we choose
α = 0.1, and use them to compare the detection rates with faulty and correct thresholds.
It is obvious that the performances of the test suffer significantly from wrongly assuming
independence. This effect is easily explained by the most extreme case of fully dependent
signal and noise (i.e., if all entries of Σ are the same). In this scenario, all nl tests
would produce the same test statistic and should, therefore, be reduced to only one test.
Nevertheless, if this test statistic is still compared to a threshold assuming nl independent
tests, it will result in an overestimation of the security, i.e., the evaluator may not detect
existing leakages because of the erroneous threshold.

Interestingly, since the D-test shows the opposite trend (cf. Figure 9b) and may be
too optimistic (i.e., declare leakages too fast) if incorrectly assuming independence, the
combination of these two tests may be used to heuristically bound the detection rate if
Hotelling’s T 2-test cannot be launched due to computational reasons.12
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(a) Welch’s t-test with min-p.
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Figure 9: Detection rate errors due to incorrect signal independence assumption based on
simulated traces with the covariance matrix Σ2 and SNR = 0.004.

Alternatively, Hotelling’s T 2-test can be combined with min-p to allow more flexibility.
For example, the evaluation of unprotected asymmetric primitives might result in very long
and dense traces. In this case, it is impossible to compute the whole covariance matrix.
Instead, the whole trace is partitioned into smaller sections and Hotelling’s T 2-test is
applied to each separately. This results in multiple test statistics which we combine using
min-p. Since the separate tests are not necessarily independent, the false positive rate can
be negatively affected as with Welch’s t-test. To verify this, we repeat the experiment
of Table 1 by generating 10× longer traces and splitting them into 10 sections. The results
are given in the last row. It is noticeable that, as for Welch’s t-test, the hybrid approach

12 The latter remains heuristic since the conservative and pessimistic nature of these two tests is only
concluded based on experiments in practically-relevant yet limited scenarios.
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suffers from a reduced α̂, however, to a smaller degree. This strongly depends on the
number of considered sections, e.g., the most extreme case would be conducting a test for
each sample point separately making it equivalent to the Welch’s t-test with min-p. .

4 Practical Experiments
Up to now, we only considered simulated experiments for which we precisely controlled
the leakages’ density and dependency. To evaluate the performance of the tests in an
actual detection scenario, we additionally conducted practical experiments using masked
implementations of the AES in hardware and software. For both cases, we initially conduct
the tests on the complete (pre-processed) traces before applying filtering to improve
detection performances. In particular, we use closed-source filtering (i.e., peak extraction)
for the hardware case study and open-source filtering for the software AES.

4.1 First Case Study: Masking in Hardware
We asses the leakages of a protected hardware design. Masking schemes in this scenario
usually process the shares of an encoding in parallel, i.e., the leakages are not spread over
multiple cycles, but contained in one. Therefore, to perform a dth-order evaluation, it
is usually not necessary to apply the full pre-processing (cf. Figure 2), but instead it is
sufficient to raise each point of the original traces separately to the dth power:

X ′ =
{

(Xi)d , ∀ i ∈ {1, . . . , nl}
}
, Y ′ =

{
(Yi)d , ∀ i ∈ {1, . . . , nl}

}
.

Architecture. As a case study, we use the publicly-available code from [GMK16], which
implements AES protected with the Domain Oriented Masking (DOM) scheme.13 We
decided to synthetize the core for two shares which is expected to provide protection
against first-order attacks. The main part of the design is the protected Sbox which is
implemented in eight pipeline stages. In total, the circuit produces one encryption in
246 cycles and requires 18 bits of randomness per cycle to ensure first-order security. We
generate this randomness using an unprotected AES running in counter mode initialized
with a random seed. More precisely, before encrypting a RAM FIFO is filled with the total
amount of randomness required for one encryption and the PRNG is deactivated during
the masked encryption to minimize the noise in the measurements. For more details on
the architecture, we refer the reader to the original publications [GMK16, GMK17].

Measurement Setup. The targeted architecture is running at 4[MHz] on a Sakura-X
board containing a Kintex-7 FPGA. The measurements are taken with a passive probe
placed between the power supply and the target FPGA. This power signal is sampled with
a Picoscope 5000 oscilloscope at a sampling frequency of 500[MS/s]. In order to reduce
the noise, we repeat the experiments for each randomness seed 20 times and average the
results. The recorded traces are of length nl = 31, 250.

Results. Since the design is protected by masking with two shares, we need to pre-process
the traces to evaluate the second-order leakages of the device. To this end, we make the
traces mean-free and square each point in time.

We first compare the detection methods on the entire preprocessed traces. Since
with nl = 31, 250 the traces are too long to invert the covariance matrix, we perform
Hotelling’s T 2-test with the min-p. The results are given in Figure 10a. As expected, all
detection methods successfully declare the presence of leakages, i.e., their p-value exceeds

13 The source code is available at https://github.com/hgrosz/aes-dom.

https://github.com/hgrosz/aes-dom
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Figure 10: Leakage detection results using the measurements of a masked hardware AES
implementation protected by DOM with two shares.

the detection threshold (dashed line). It is noticeable, that Welch t-test combined with
a min-p approach requires around 2.5 · 106 traces to detect leakages, while the D-test
reaches the threshold for 4 · 106 measurements and the T 2-test with min-p around 5.2 · 106

traces, which indicates a low density. Indeed, only 824 points out of the 31, 250 exceed the
threshold for the Welch’s t-test, which means a density of around 0.027.

In order to further improve the detection performances, we then increased the density of
the traces by filtering the sample points. One possibility which does not require knowledge
of the implementation is peak extraction [MOP07]. It is based on the idea that most of
the useful leakage samples are concentrated around the peaks of the clock cycles. In the
following, we reduce the traces by choosing only l points within each cycle (selected such
that they correspond to the power peak within a cycle).

Figure 10c contains the p-values for the three detection methods on reduced traces
with l = 8, where Hotelling’s T 2-test requires 1.75 · 105 traces to reach the threshold, the
t-test 2.4 · 106, and the D-test 1.25 · 106. Interestingly, the t-test with min-p gets more
improvements from longer traces than the increased density.

In Figure 10d, we show the average number of traces required in order to reach the
α = 10−5 threshold with respect to l. On this figure, we observe that by increasing
the number of points per cycle, and so nl, both methods first improve, as expected
from Figure 5a. However, by continuously increasing l, Hotelling’s T 2-test requires more
traces at some point. This can be explained by a reduced density which then results in
a less efficient detection (Figure 6). More precisely, in this case the additional leakage
samples correspond to lower logic activity and therefore have a lower signal.

In order to better understand our results, we additionally investigated the covariance
matrix of our measurements. It is obvious from the heat map given in Figure 10b that
it is not diagonal, meaning there are dependencies between the points of the traces. As
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discussed in Subsection 3.3, this makes the interpretation of the results for Welch’s t-test
with min-p, the D-test, and Hotelling’s T 2-test with min-p more challenging.

For filtered traces, we can interpret Welch’s t-test’s reduced performance as a combina-
tion of two factors. First, it does not benefit as much from multiple informative points
as the multi-tuple tests. Second, it relies on the independent signal assumptions which
is not fulfilled. We posit that the latter is also the reason why the D-test detects faster
than Hotelling’s T 2-test. As shown before, it may underestimate the security in case of
dependent signals, leading to faster detection due to an incorrect threshold. Therefore, in
this case Hotelling’s T 2-test is the only candidate that provides the statistically correct
results and detects leakages significantly faster than Welch’s t-test with min-p. We also
note that it is indeed (heuristically) bounded by the two other methods.

By contrast, for unfiltered traces, the density is significantly reduced. Therefore, the
performances of both Hotelling’s T 2-test and the D-test suffer, while Welch’s t-test is
only slightly hampered. In this scenario, Hotelling’s T 2-test is less useful (as observed in
simulations), while the other two still pose (heuristic) bound on the p-value.

4.2 Second Case Study: Masking in Software
We next validate our methodology in a masked software setting. In contrast with the
previous hardware design, the shares are now processed serially, splitting their leakages
over multiple points in the traces. In this case, open-source adversaries can use their
implementation knowledge to test only the relevant dth-order tuples, while closed-source
ones must test all the possible tuples. In the latter case the density is expected to rapidly
decrease and the computational complexity increases.

Architecture. The targeted architecture is an Atmel 8-bit design implementing the Rivain-
Prouff masking scheme from [RP10] with three shares. More precisely a single Sbox is
implemented in 2406[cycles] and requires 144 random bits. The randomness is generated
before each encryption thanks to an unprotected AES reduced to 3 rounds. The obtained
random bits are stored in memory and accessed during the AES encryption.

Measurement Setup. The measurement setup is a ChipWhisperer-Lite by NewAE
Technology Inc.14 The power signal is measured with a Picoscope 5000 at frequency of
20[MS/s]. The targeted device is an ATxMEGA128d4 which is clocked at 7.37[MHz]. We
recorded 16 Sboxes for a total of nl = 120, 000 leakage points.

Results. Similar to the hardware case study, the covariance matrix of the measurements
as given in Figure 11b is not diagonal and, therefore, indicates a dependency between the
points of the traces. In the following, we examine both adversarial scenarios (closed- vs.
open-source) and show the limitations of the tests in these settings.

In the first case, the adversary has only very limited knowledge of the target imple-
mentation, i.e., she is not able to select points-of-interest. Given that the implementation
uses three shares, it should ideally protect against all first- and second-order attacks.
However, as noted in [BGG+14], physical effects not considered in the model can reduce
the security order. For our measurements, we came to the same conclusion and found
second-order leakages. Therefore, in the following, we compare the detection tests at order
two instead of three. Since the test of all n′l(2) =

(120,000+2−1
2

)
> 1010 tuples exceeds the

capabilities of our setup, we decided for the unfiltered detection to evaluate only n′l = 106

randomly selected tuples within each Sbox. For traces of this size, the computation of
the covariance matrix is still out of reach for our setup (cf. Appendix C for a discussion
about the time complexity) and even the hybrid of Hotelling with min-p is not viable

14 http://newae.com/tools/chipwhisperer/.

http://newae.com/tools/chipwhisperer/
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(b) Estimated covariance matrix (in log10(S)
scale) computed on 512 tuples of interest.
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Figure 11: Leakage detection results: masked software AES implementation.

given the large number of costly matrix inversions needed to be done. Therefore, we
only consider Welch’s t-test with min-p and the D-test in this case, which benefit from
a computational complexity that is linear in the trace length. The detection results are
depicted in Figure 11c. It is noticeable that Welch’s t-test with min-p outperforms the
D-test due to the low density of the traces (the latter was not even able to detect).

Next, we emulated an open-source evaluator by using the Welch’s t-test results (on
averaged traces) to filter the trace points. The obtained ti’s of a single Sbox for 100, 000
measurements are depicted in Figure 11a, of which only 124 (i.e., the blue crosses in
Figure 11a) out of 106 are above the detection threshold. This translates to a density of
0.0001 which is in line with the expectation that the density is severely decreased through
exhaustive pre-processing. Based on this preliminary experiment, we select the points of
interest in each Sbox with the lowest p-values and keep only nl = 3, 200 ones.

The results for the three methods with these filtered tuples are given in Figure 11d.
As expected, the detection rate of all three tests improves considerably due to the higher
density. Furthermore, due to dependencies, Welch’s t-test with min-p overestimates the
number of traces compared to the Hotelling’s T 2-test. An important observation is that,
even though the combination of Hotelling’s T 2-test with the min-p approach leads to
overestimate the number of traces required, we obtain a significant gain compared to a
classical t-test based approach. Because of the difference of the test statistic distribution
under the independence assumption and real one, the D-test requires more traces to reach
the 10−5 threshold. However, it remains too optimistic for lower thresholds.
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Figure 12: Proposed security assessment framework.

5 Discussion and Conclusion
In this paper, we proposed to use Hotelling’s T 2-test and its specialization the D-test for
leakage detection. In our experiments, we have shown that multi-tuple detection can lead
to improved detection rates over classical Welch’s t-test with min-p if the measurements
are dense. For low-density traces, the test methodology based on Welch’s t-test performed
better. Furthermore, we explored the dependent signal issue which may lead to an
overestimation of the security order by classical TVLA and an underestimation by the
D-test. Only Hotelling’s T 2-test behaves in a statistically sound manner with non-diagonal
covariances. Nevertheless, its increased computational complexity can be problematic for
(e.g.,) masked software implementations, in which case a closed-source evaluator may not
be able to apply it even with the min-p extension.

All these observations raise the question of what methodology should be used to
perform sound leakage detection. Since we found that not one test is optimal for every
setting, we instead propose a generic framework depicted in Figure 12, based on the
adversarial assumptions considered in the evaluation. The goal of this framework is to
allow evaluators to make founded claims about the main security-influencing parameters
of their implementations (i.e., SNR, dependency, density, security order).

First, we consider the implementation knowledge of the adversary. For open-source
designs, we assume that it is possible to filter non-informative points from the traces and
only process points-of-interest in the detection. In this setting, Hotelling’s T 2-test is the
optimal choice to evaluate the security order. Thanks to the filtering, the evaluator is able
to make founded claims about the density of the measurements (i.e., it is expected to be
close to φ = 1) and limit the trace length nl enabling the computation of S−1. Therefore,
both drawbacks of Hotelling compared to the D-test and Welch’s t-test with min-p are
eliminated. If even the filtered traces are too long for standard Hotelling, it is advised to
apply it with the min-p extension (which may then lead to overestimate the number of
traces needed to detect, yet in a more limited manner than by directly using Welch’s t-test
with the min-p approach. For closed-source designs, the evaluator cannot make a founded
a priori statement about the density of the measurements. Therefore, in this setting, we
recommend running both a multi-tuple test (either Hotelling, Hotelling with min-p or the
D-test, depending on whether computing S−1 is needed/feasible) and Welch’s t-test with
min-p in parallel. If the multi-tuple test detects faster, we can conclude that the density is
sufficiently high, while the opposite can be concluded if Welch’s t-test wins. In both cases,
the evaluator estimates the security order with minimum data complexity.

Second, assessing the level of noise in the measurements mostly depends on whether
the randomness used in countermeasures is known or unknown to the evaluator. If it is



Olivier Bronchain, Tobias Schneider and François-Xavier Standaert 339

known, the evaluator can directly estimate the SNR of each share separately as described
in [JS17], and from that draw conclusions about the sufficiency of the noise level. By
contrast, if it is unknown, the evaluator is limited to heuristics such as the recently-proposed
χ2-test [MRSS18]. Essentially, the heuristic runs the distribution-based χ2-test in parallel
to a moment-based evaluation method like Welch’s t-test with min-p, Hotelling, Hotelling
with min-p, or the D-test. If the χ2-test outperforms the moment-based test, the evaluator
gets a warning signal that the noise level may be low and (for example) insufficient for the
masking countermeasure to provide its exponential security increase.

In general, this framework puts forward that whenever working in a closed-source
setting and without known randomness, the tests to launch typically depend on whether
the independent signal assumption is acceptable and whether S−1 is computable. Hence,
it recalls that as the evaluation setting becomes more challenging, additional assumptions
and heuristics are increasingly needed, which also implies that the conclusions obtained in
such settings need to be considered with care. For the evaluation of the noise level, the
heuristic comes from relying on the aforementioned χ2-test. As for the evaluation of the
security order, it comes from the impossibility to compute a sound threshold based on
Hotelling’s test – yet, in this case using Welch’s t-test with min-p, Hotelling with min-p,
and the D-test provide an interesting set of (heuristic) lower and upper bounds.

In this respect, a final remark is that strictly speaking, these tests work under an
assumption of (close-to) Gaussian leakages. The latter is typically acceptable for un-
protected implementations, but not for masked implementations with a multiplicative
pre-processing. As mentioned in Section 1.2, the usual assumption in this case is that
the sample means that are tested are still close-enough to Gaussian, as per to the central
limit theorem. Intuitively, we expect that (i) in case of insufficient noise, the assumption
will be problematic, but this should be detected thanks to the SNR value (if accessible
to the evaluator) or the χ2-test (otherwise), and (ii) in case of large enough noise, the
exponential increase of the number of traces to detect should be sufficient for the central
limit theorem to be effective. Yet, it is an interesting open problem to to determine the
extent to which this assumption can be problematic in practice (in particular in the more
challenging to interpret cases where no detections occur).

Supplementary Material. We provide the code for the simulated experiments from which
every simulation-based figure can be generated as a complement of the paper 15.
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A Distributions
The distributions used in the paper are defined in Table 2, where Γ is the gamma function,
γ the lower incomplete gamma function, B the beta function, I the regularized incomplete
beta function, and 2F1 is the hypergeometric function.

Table 2: The PDF’s and CDF’s of the considered distributions.
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B Investigated Covariance Matrix
The exact values of the investigated covariance (cf. Figure 7) denoted as σ2

i,j are defined
according to a dependency coefficient ∆ and the SNR. The diagonal elements are given by
the SNR such that σ2

i,i = 2/SNR, and the non-diagonal elements are defined as

σ2
i,j = max(σ2

i,i · (1−∆ · |i− j|), 0),

where ∆ measures the independence of one random variable Xi (resp., Yi) with the
adjacent ones. Since Σ1 is diagonal, the coefficient ∆ is equal to infinity. For Σ2 and Σ3,
the coefficients are respectively ∆ = 0.1 and ∆ = 0.02. For example, this results in the
covariances σ2

0,1 = 0.9 and σ2
0,2 = 0.8 for Σ2 with SNR = 1.

C Computational Complexity Evaluations
Once the traces have been collected, the obtained measurements need to be processed. Since
these methods require different knowledge about the data, the time spend in processing
is not the same. In the following, we show the CPU time required for the three leakage
detection methods. The code is written in Python3 and is based on Numpy1.14 library. The
time is recorded for a single core of an Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz.
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Figure 13: Required CPU time of the leakage detection algorithms.
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First, we observe that the computational complexity of Welch’s t-test with min-p and
the D-test grows linearly with the number of points in the trace nl, since they are processed
independently (cf. Figure 13a) with only a minor overhead for the D-test (due to the
summed t2i ). However, computing and inverting the pooled covariance matrix is roughly
quadratic in nl, as depicted in Figure 13a. As a result, it rapidly becomes out of reach for
large traces (e.g., pre-processed for higher-order detection).

Second, the complexity grows linearly with the number of collected measurements NX

and NY in all the cases. However, the constant is much larger for the Hotelling’s T 2-test
due to the matrix computation (cf. Figure 13b).

Finally, we mention that even if the processing complexity of the Hotelling’s T 2-test is
much larger, it significantly reduces the time spent in measurement (in the case of dense
traces), which is generally the longest part of a side-channel security evaluation. So in the
case of short and dense traces (i.e., open-source design), the Hotelling’s T 2-test remains
the methodology of choice. In the case of long and low density traces, the D-test should
be performed with only a minor overhead in computational complexity and potentially a
larger gain in data complexity (cf. Figure 12).

D Comparisons to alternative TVLA
In this section, we provide further observations related to other TVLA-based approaches.
First, we conduct some fixed vs. random experiments and compare it to our fixed vs. fixed
results. Second, we discuss the behavior of the original approach from [GJJR11] to reduce
the false positive rate (i.e., multiple tests) in our scenario.

Fixed vs. random or fixed vs. fixed? Figure 14 highlights the detection rates for both
the t-test and D-test with 500 average experiments. In both cases, we observe that for a
fixed number of traces, the false negative probability β is smaller in the case of fixed vs.
fixed than in the fixed vs. random scenario, as expected from [DS16]. This observation
justifies the choice of fixed vs. fixed for the performed experiments. Nevertheless, it is
expected that the observations for fixed vs. fixed transfer to fixed vs. random.
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Figure 14: Detection rate for various input sets.

Multiple tests. The approach of [GJJR11, CMG+] consists in running twice the same
experiment with the different inputs and declare the presence of leakage if one of the
random variables shows leakage in both experiments. In the following, we consider two
variants of this approach. The original 2×-Welch’s t-tests are evaluated with the same
threshold th1 as a single test. However, as shown later, this may leads to incorrect
results. Therefore, we conduct another experiment with 2×-Welch’s t-test and an adjusted



Olivier Bronchain, Tobias Schneider and François-Xavier Standaert 345

Table 3: Empirical false positive rate α̂ estimated from 100, 000 experiments.

th Σ1 Σ2 Σ3

Welch’s t-test with min-p th1 0.1 0.051 0.017
2×-Welch’s t-test with min-p th1 0.010 0.002 0
2×-Welch’s t-test with min-p th2 0.099 0.025 0.002

threshold th2, which should guarantee the correct fault positive rate in case of independent
samples. Table 3 contains the sampled false positive α for various such experiments.

It is noticeable that without an adequately adjusted threshold, the false positive rate
is significantly reduced for 2×-Welch’s t-test. In particular, it is set to α2 for Σ1 which
is significantly smaller than α. Only by adjusting the threshold to th2, the new tests
performs as expected. Therefore, in practice it is necessary to consider this effect when
trying to correctly interpret the results of a 2×-Welch’s t-test.

The false negative probabilities of these approaches are depicted in Figure 15 with N
representing the total amount of collected traces.16 First, by moving from a single Welch’s
t-test to two by keeping the same threshold th1, the first method obtains a smaller β with
the same number of traces. However, this comparison is not fair since the two approaches
do not have the same α. So by adjusting the threshold to th2, and so keeping the same α
for a fair comparison, the single test approach performs better. This is due to the fact
that in the second case, a single test is performed on half of the measurements.
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Figure 15: Detection rate of comparison with TVLA

16 Note that for 2×-Welch’s t-test, each test is performed with N/2 traces.
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