UCLouvain

Reducing a Masked Implementation's Effective Security Order with Setup Manipulations And an Explanation Based on Externally-Amplified Couplings

<u>Itamar Levi</u>, Davide Bellizia and François-Xavier Standaert Aug. 2018

Motivation

Masking - a well understood SCA countermeasure

- Split sensitive variables into *d* shares.
- Compute on those shares only.

Independence assumption – the shares induced leakages are independent, and

• they are merged linearly...

It forces the adversary to estimate a higher-order statistical moment of the leakage

 data complexity grows exponentially with *d* -> amplifies the noise in the leakages

The lowest key-dependent stat. moment - security order

Concretely though, it is hard to achieve it...

amp.

tion

cases

Concl.

Motivation

Well understood non-idealities:

- Glitches
- Memory transitions

Can recombine leakages (nonlinear manner)

Can be kept under control at design (synthesis) time:

- Threshold Implementations (TIs) non-completeness [NRS11]
- Transition-based leakages can be mitigated by doubling the number of shares [BGG+14] / adding registers or refreshing [CGP+12]

=> *logical recombination*, since they can be formulated as logical conditions which can then be verified and prevented [FGP+18] => recalling yesterday's *Session 6*.

Motiva couplin Ext.gs Ext.amp. Testcases Concl.

Motivation

Well understood physical defaults:

- Glitches
- Memory transitions

Can recombine leakages (nonlinear manner)

Can be kept under control at design (synthesis) time:

- Threshold Implementations (TIs) non-completeness [NRS11]
- Transition-based leakages can be mitigated by doubling the number of shares [BGG+14] / adding registers or refreshing [CGP+12]

=> *logical recombinations*, since they can be formulated as logical conditions which can then be verified and prevented [FGP+18].

This talk: another physical default, *couplings*, recently reported by De Cnudde et al.

• Electrical dependency between the shares (e.g. capacitive, resistive)

3

What are couplings What do we know of them How to **externally** amplify them Different test cases (SW/HW)

Moving from detection to exploitation

Discussion/ how to advance

What are couplings

- Electrical
 - Capacitive
 - Resistive
 - Inductive (less local)
 - Memri/Resistive-RAM (consider new devices M/RRAM etc.)
- Affected by
 - Capacitive proximity
 - Resistive power-grid / proximity
 - All Technology params
 - Periodicity (L, RC)
- What can we control?
 - Depend on the device (SW/FPGA/ASIC...) but,
 - Mainly on the power-grid and proximity

5

In theory

 \mathbf{X}_2

In practice: not so linear and not so nice...

What do we know of them In the context of SCA

- <u>De Cnudde et al., [CBG+17, CEM18]</u> put forward that even when implemented correctly (glitches, transitions), masking can suffer from re-combinations.
 - Tweaking shares proximity (placement and routing)
 - Iterating/parallelize the shares to increase their signal/re-combination
- Typically not something an <u>adversary</u> can do .. (designers will aim to prevent)
- Practically:
 - The amplitude of these lower-order leakages was usually lower than the one of the dth order leakages [CBG+17]
 - Were evaluated by detection-tests (T-tests)
- Is there a real threat without <u>internal</u>-amplification?

couplin

gs

 \mathbf{X}_{1}

Ext.-

amp.

Test-

cases

Concl.

Motiva

tion

• A simple example (<u>resistive</u> couplings):

Motiva

tion

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

- A simple example:
 - Devices in linear mode..

$$I' = \alpha_1 I_{Sh1} + \alpha_2 I_{Sh2} - \beta (I_{Sh1} \cdot I_{Sh2})$$

- First order approx.
- No capacitive effects

$$\alpha_{i} = \frac{1}{\left(1 + \frac{2R_{ext}}{R_{on_{i}}}\right)} \approx 1$$

$$\beta = \frac{R_{ext}}{V_{DD,ext}} \left[\frac{R_{on1}}{2R_{ext} + R_{on1}} + \frac{R_{on2}}{2R_{ext} + R_{on2}}\right]_{R_{ext} \ll R_{on1}, R_{on2}} \cong \frac{2R_{ext}}{V_{DD,ext}}$$

Motiva

tion

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

- But, lowering V_{DD} has a *negative effect*...
 - Reduces the signal (typically, SNR \downarrow)
 - At some point the device will not work

- A simple example:
 - Devices in linear mode..

$$I' = \alpha_1 I_{Sh1} + \alpha_2 I_{Sh2} - \beta (I_{Sh1} \cdot I_{Sh2})$$

- First order
- No capacitive effects

$$\alpha_{i} = \frac{1}{\left(1 + \frac{2R_{ext}}{R_{on_{i}}}\right)} \approx 1$$

$$\beta = \frac{R_{ext}}{V_{DD,ext}} \left[\frac{R_{on1}}{2R_{ext} + R_{on1}} + \frac{R_{on2}}{2R_{ext} + R_{on2}}\right]_{R_{ext} \ll R_{on1}, R_{on2}} \cong \frac{2R_{ext}}{V_{DD,ext}}$$

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

Motiva

tion

- But, lowering V_{DD} has a *negative effect*...
 - Reduces the signal (typically, SNR \downarrow)
 - At some point the device will not work
- So, increasing *R*_{ext} then,
 - Too much- the device will not work
 - We might need to simult. Increase V_{DD}
 - With R_{ext} \uparrow the noise increase

$$I' = \alpha_1 I_{Sh1} + \alpha_2 I_{Sh2} - \beta (I_{Sh1} \cdot I_{Sh2})$$
$$\beta \cong \frac{2R_{ext}}{V_{DD,ext}}$$

- But, lowering V_{DD} has a *negative effect...*
 - Reduces the signal (typically, SNR \downarrow)
 - At some point the device will not work
- So, increasing R_{ext} then,
 - Too much- the device will not work
 - We might need to simult. Increase V_{DD}
 - With R_{ext} \uparrow the noise increase
- No trivial answer to what is the worst-case scenario,
 - Depends on the device, the noise, power regulator (if any).

Motiva

tion

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

• The exploration space for a certification lab is huge ...

 $I'_{\text{supply}} \approx \sum_{i} I_{i} - \frac{R_{\text{ext}}}{V_{DD}_ext} \cdot \sum_{i} \sum_{j} I_{j}I'_{i} + \dots \underbrace{I_{i}gher_powers}_{higher_powers}$ The simplified model can be generalized (*d*):

- But,
 - Expected: leakage at all stat.-moments/powers (solve MAXWELL ...) → modeling is hard

 2^{nd} -order

Motiva

tion

----> *d* ----> *d*/2

couplin

gs

1st order

Ext.-

amp.

Test-

cases

Concl.

???

- So our goals were:
 - To examine weather setup-manipulations can reduce the *effectively security-order*
 - Our explanation is based on these *externally amplified couplings*
- The approach we use:
 - To try and falsify
 - To understand if the amplitudes of lower orders leakages can be made significant with amplification

How to evaluate?

Moving on from a:

- "detection" based approach (T-test)
 - $T_{value} = (\mu_{Set_0} \mu_{Set_1}) / \sqrt{\sigma_{Set_0}^2 / |Set_0| + \sigma_{Set_1}^2 / |Set_1|}.$ Hard to connect with actual SR

- $\tilde{k} = \arg \max \hat{\rho}(\hat{M}^d_{x,k*}, (l^t_{x,k})^d)$ to actual exploitation (MCP-DPA):
 - Profiling moments (d=2 use CM, d>2 use SM..)
 - Gives us the ability to check the contribution of different statistical orders
 - The asymptotic value gives an estimation of the informativeness /SR /#samples required [MS16]

Test-cases

- We have investigated two designs / platforms:
 - HW: AES128 (8bit) 2-shares implementation adopting Domain Oriented Masking [GMK17] on Spartan6 LX75 FPGA (Sakura G board)
 - SW: 2-shares AES SBOX with the bitslice secure scheme in [JS17] implementation following Barthe et-al. [BDF+17] on an Atmel SAM4C16 (ARM Cortex-M4)
- Picoscope 5244B (quant. 12bit) +
- HW

- Sakura G's preamp
- low-noise res. (0 to 20Ω).
- $f_{clk} = 4MHz$
- S_R = 250MS/s (<- enough)
- *V_{DD}* from 1 to 1.45 V

• Lecroy WaveRunner (12bit),

- SW
- <u>Tektronix CT1 + res. (1 Ω to 39Ω)</u>, benchtop PSU
- f_{clk} = 100MHz
- $S_R = 1GS/s$
- *V_{DD}* from 1 to 1.55 V
- Removed 2.2, 0.1 μ*F* Caps...
- Commercial off-the-shelf devices yet to be explored on ASICs/ specialized 13 devices

• HW – Sbox-parallel design

SW

- 0: Input: shares of a and b (a, b) and a uniform randomness vector r.
 0: Output: shares x of x, with a ⋅ b = ^d⊕ x_i.
 1: c₁ = a ⋅ b
 2: c₂ = a ⋅ rot(b, 1)
- 2: $c_2 = a \cdot rot(b, 1)$ 3: $c_3 = rot(a, 1) \cdot b$ 4: $d_1 = c_1 \oplus r$ 5: $d_2 = d_1 \oplus c_2$ 6: $d_3 = d_2 \oplus c_3$ 7: $d_4 = d_3 \oplus rot(r, 1)$ 8: $x = d_4$ 9: return x
- SW serial \rightarrow nicer to interprate ...
- Conceptually SW will be more sensitive due to a shared power-grid

Software implementation (*u*C) – ARM32 bit (ATMEGA)

Model/Simulation

Measurement (uC)

Motiva couplin gs Ext.- Testamp. Concl.

Software implementation (*u*C) – ARM32 bit (ATMEGA)

Model/Simulation

Measurement (uC)

Figure 2: $f(l^{simu.}|s)$: (a) $\beta = 0$ (b) $\beta = 0.5$

Figure 8: f(l|s), $1 \cdot 10^6$ traces: (a) $R_{ext}=0\Omega$ (b) $R_{ext}=20\Omega$

A T-test sanity check..

- * DoM AES (Hannes et-al. [GNK17])
- * Hardware FPGA (Spartan 6) scenario

 - "detection" based approach (T-test) $T_{value} = (\mu_{Set_0} \mu_{Set_1}) / \sqrt{\sigma_{Set_0}^2 / |Set_0|} + \sigma_{Set_1}^2 / |Set_1|.$
 - Only one voltage case (nominal), R changing.

- * DoM AES (Hannes et-al. [GNK17])
- * Hardware FPGA (Spartan 6) scenario
 - Exploitation (MCP-DPA):

- Inherent leakage →
 ~x10 amplification ...
- No initial leakage → ~x10 amplification and generation

 $\tilde{k} = \arg \max \hat{\rho}(\hat{M}^d_{x,k*}, (l^t_{x,k})^d)$

- * DoM AES (Hannes et-al. [GNK17])
- * Hardware FPGA (Spartan 6) scenario Moving on from a:
 - "detection" based approach (T-test)

 $T_{value} = (\mu_{Set_0} - \mu_{Set_1}) / \sqrt{\sigma_{Set_0}^2 / |Set_0| + \sigma_{Set_1}^2 / |Set_1|}.$

• to actual exploitation (MCP-DPA):

$$\tilde{k} = \underset{k*}{\operatorname{arg\,max}} \quad \hat{\rho}(\hat{M}^{d}_{x,k*}, \ \left(l^{t}_{x,k}\right)^{d})$$

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

Motiva

tion

- * Bitslice Barthe et-al. [BDF+17]
- * Software uC scenario (ARM32 in ATMEGA)
 - SW Similar results
 - Quite alarming amplification.
 - From externally !

No. Traces for attack/profiling = 700k/10M

couplin Ext.-Motiva Test-Open Challenge - Scaling (d) Concl. tion gs amp. cases 3-shares HW model, #samples=1e7, σ_n =0.1 1.2 p=0, β=0 3-shares p=1, β=0 1 • How would it scale ? p=0, β=0.5 p=1, β=0.5 0.8 $p=0, \beta=1$ • Taking only some dominant c=1, β=1 ____0.6 factors b=0, β=2 p=1, β=2 0.4 $I_{\text{supply}}^{\prime} \approx \underbrace{\sum_{i} I_{i}}_{2^{nd}-order} - \frac{R_{\text{ext}}}{V_{DD}_ext} \cdot \underbrace{1}_{2^{nd}-order}$ $\sum I_j I'_i + \dots$ 0.2 higher_powers 1st order 0 -2 -1 0 3 5 4 Norm. Leakage (I) 4-shares HW model, #samples=1e7, $\sigma_{\rm n}$ =0.1 p=0, β=0 A-shares o=1. β=0 0.8 c=0. β=0.5 $p=1, \beta=0.5$ o=0. *β*=1 0.6 $f_{||p}$ $p=1. \beta=1$ p=0, β=2 0.4 p=1, β=2 0.2 21 0 -2 2 3 5 6 -1 0 4 Norm Leakage (I)

couplin Ext.-Motiva Test-Open Challenge - Scaling (d) Concl. tion gs amp. cases 3-shares HW model, #samples=1e7, σ_n =0.1 1.2 p=0, β=0 3-shares p=1, β=0 1 • How would it scale ? p=0, *β*=0.5 p=1, β=0.5 0.8 p=0, *β*=1 • Taking only some dominant p=1, *β*=1 ____0.6 o=0. β=2 factors p=1, β=2 $I'_{\text{supply}} \approx \underbrace{\sum_{i} I_{i}}_{2^{nd}-order} - \frac{R_{\text{ext}}}{V_{DD}_ext} \cdot \underbrace{\sum_{i} \sum_{j} I_{j}I'_{i}}_{1st \ order} + \dots \underbrace{higher_powers}_{higher_powers}.$ 0.4 0.2 0 -2 -1 0 3 5 4 Norm. Leakage (I) 4-shares HW model, #samples=1e7, $\sigma_{\rm n}$ =0.1 p=0, β=0 A-shares p=1, β=0 0.8 p=0, β=0.5 p=1, β=0.5 p=0. *β*=1 0.6 p=1, β=1 $f_{||p}$ p=0, β=2 0.4 p=1, β=2 0.2 22 0 -2 2 3 6 -1 0 4 5 Norm, Leakage (I)

Open Challenge - Scaling (d)

couplin

gs

Motiva

tion

Ext.-

amp.

Test-

cases

Concl.

Open Challenge - Scaling (d)

3-shares HW model, #samples=1e7, σ_n =0.1 1.2 p=0, β=0 3-shares $p=1, \beta=0$ • How would it scale ? p=0, *β*=0.5 p=1, *β*=0.5 0.8 Taking only some dominant p=0, B=1 $p=1. \beta=1$ J____0.6 factors p=0, β=2 p=1, β=2 0.4 $\frac{R_{\rm ext}}{V_{DD_ext}}$ $I_{
m supply}' pprox$ $I_{j}I'_{i} + ...$ 0.2 higher powers 2nd-order 1st order 0 -2 0 Norm. Leakage (I) 3 4 5 -1 • In practice, highly design 4-shares HW model, #samples=1e7, σ_n =0.1 dependent. $p=0. \beta=0$ A-shares c=1. β=0 • The question is the respective 0.8 p=0, β=0.5 p=1, β=0.5 informativeness of these lower p=0, β =1 0.6 f IIp o=1. β=1 orders moments? p=0, β=2 0.4 p=1, β=2 or how concrete is their 0.2 amplification... 24 0 2 3 -2 -1 0 5 6

couplin

gs

Ext.-

amp.

Test-

cases

Concl.

Motiva

tion

Norm, Leakage (I)

Setup manipulations (or externally amplifies couplings)

• Can have a significant impact on the security order, not only on the noise level.

We demonstrate that for off-the-shelf devices it actually happens

Open questions:

- How would the security order reduction *scale* with *d* ?
- How is it possible to build realistic "Extended-Probes" / realistic models for such adversaries ?
- Would we see the same results for ASICs / specialized devices (not off-the-shelf)

Existing design-phase tools will not do .. (e.g. *MaskVerif*/ ELMO - *logical tools*)

Thank you for your attention!