
Analysis and Improvement of Differential
Computation Attacks against Internally-Encoded

White-Box Implementations
Matthieu Rivain1 and Junwei Wang1,2,3

1 CryptoExperts
2 University of Luxembourg

3 University Paris 8
{matthieu.rivain,junwei.wang}@cryptoexperts.com

Abstract. White-box cryptography is the last security barrier for a cryptographic
software implementation deployed in an untrusted environment. The principle of
internal encodings is a commonly used white-box technique to protect block cipher
implementations. It consists in representing an implementation as a network of
look-up tables which are then encoded using randomly generated bijections (the
internal encodings). When this approach is implemented based on nibble (i.e. 4-bit
wide) encodings, the protected implementation has been shown to be vulnerable to
differential computation analysis (DCA). The latter is essentially an adaptation of
differential power analysis techniques to computation traces consisting of runtime
information, e.g., memory accesses, of the target software. In order to thwart DCA,
it has then been suggested to use wider encodings, and in particular byte encodings,
at least to protect the outer rounds of the block cipher which are the prime targets
of DCA.
In this work, we provide an in-depth analysis of when and why DCA works. We
pinpoint the properties of the target variables and the encodings that make the attack
(in)feasible. In particular, we show that DCA can break encodings wider than 4-bit,
such as byte encodings. Additionally, we propose new DCA-like attacks inspired from
side-channel analysis techniques. Specifically, we describe a collision attack partic-
ularly effective against the internal encoding countermeasure. We also investigate
mutual information analysis (MIA) which naturally applies in this context. Compared
to the original DCA, these attacks are also passive and they require very limited
knowledge of the attacked implementation, but they achieve significant improvements
in terms of trace complexity. All the analyses of our work are experimentally backed
up with various attack simulation results. We also verified the practicability of our
analyses and attack techniques against a publicly available white-box AES implemen-
tation protected with byte encodings –which DCA has failed to break before– and
against a “masked” white-box AES implementation –which intends to resist DCA.
Keywords: White-box Cryptography · Internal Encoding · Differential Computa-
tion Analysis · Collision Attack · Mutual Information Analysis

1 Introduction
Software implementations of cryptographic algorithms in the real world suffer more severe
challenges than expected in their design model. In addition to the well-known side-channel
analysis (SCA) attacks [Koc96, KJJ99, Cor99, PQ03], an adversary sometimes might gain
full access to a software implementation of a cryptographic algorithm. She could then try
to extract the underlying secret key by all kinds of means, e.g. by performing static or

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 2, pp. 225–255
DOI:10.13154/tches.v2019.i2.225-255

mailto:matthieu.rivain@cryptoexperts.com,junwei.wang@cryptoexperts.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i2.225-255

226 Analysis and Improvement of Differential Computation Attacks

dynamic analysis of the controlled binary [Sv99], or by interfering in the execution and
exploiting leakage from erroneous outputs as in (differential) fault analysis [BDL97, BS97].

The seminal work on white-box cryptography (WBC), introduced by Chow et al.
in 2002 [CEJvO02a] intends to protect cryptographic software against these kinds of
threats. In particular, it aims to render key extraction difficult –if not infeasible– to
any malicious party that would gain full access to the program and/or the execution
environment. With the development of smartphones and wearable devices embedding third
party applications, more and more cryptographic implementations are being deployed in
untrusted environments, resulting in a growing interest for white-box cryptography.

Despite its practical interest, no provably secure white-box implementation can be
found in the literature after almost 20 years of exploration. Many different white-box
schemes have been proposed to protect implementations of block ciphers [CEJvO02a,
CEJvO02b, BCD06, XL09, Kar11] but all these solutions have been broken by structural
attacks [BGEC04, GMQ07, MGH09, MRP13, LRM+14]. This situation has pushed the
industry to deploy home-made white-box implementations, the designs of which are kept
secret, to meet the growing needs. Although these implementations might not be secure
against a well-informed adversary, the security of their designs can make them practically
hard to break since e.g. known structural attacks do not apply as is.

The internal encoding principle was first put forward in the seminal white-box pa-
per [CEJvO02a] and is still commonly used as a countermeasure to provide some levels of
protection in a white-box context. The main principle is first to turn the implementation
with some key into a sequence of connected look-up tables, then a bijection and its inverse
are applied to each pair of connected tables to hide their content. Encodings can be divided
into two categories: internal and external encodings. In particular, external encodings
are bijections applied on the input or output of the cipher. However, the application of
external encodings changes the specification of the original cipher, which is prohibitive for
many use cases of white-box cryptography based on predefined (standard) cryptographic
algorithms. For this reason, we only focus on internal encodings in the present paper.

At CHES 2016, Bos et al. proposed to use differential computation analysis (DCA)
to attack white-box implementations [BHMT16]. DCA is mainly an adaptation of the
differential power analysis (DPA) techniques [KJJ99] to the white-box context. It exploits
the fact that the variables appearing in the computation in some unknown encoded form
might have a strong linear correlation with the original plain values. It works by first
collecting some computation traces, which are composed of the runtime computed values
over several executions through a dynamic instrumentation tool, such as Intel PIN. One
then makes a key guess and predicts the value of a (supposedly) computed intermediate
variable, and compute the correlation between this prediction and each sample of the
computation trace. The key guess with the highest peak in the obtained correlation trace
is selected as key candidate. The power of DCA comes from the fact that the attacker does
not need to know the underlying implementation details. This approach has been shown
especially effective to break many publicly available white-box implementations [BHMT16]
(many of which are protected with internal encodings), and it was extensively used as a
white-box cryptanalytic technique in the recent WhibOx contest.1

Related Works. Although impressive, the effectiveness of DCA to break implementations
protected by internal encodings was left without formal explanation in [BHMT16]. This
gap was addressed recently by Bock et al. who provide in [BBMT18, BBB+17] a first
formal explanation of the DCA success. However their analysis is partly experimental
(in particular for wrong key guesses) and it is limited to the case of linear and/or nibble
encodings, which appeals for a more formal and more general analysis. DCA was also
recently extended by Bogdanov et al. in [BRVW18] to defeat implementations protected

1See https://whibox-contest.github.io.

https://whibox-contest.github.io

Matthieu Rivain and Junwei Wang 227

by standard side-channel countermeasures such as masking and shuffling. The authors
propose a thorough analysis of this setting but they do not consider the use of internal
encodings which is a common countermeasure in the white-box context.

Our Contributions. This paper has three main contributions:

1. Analysis and improvement of DCA. We first reformulate DCA in the well-
established theory of Boolean functions. We provide an in-depth analysis of the
attack that pinpoints when and why DCA works against encoded implementations.
Our results include close formulas for the DCA success probability with respect
to different parameters (and in particular the encoding width). This allows us to
validate several formal and informal claims of [BBMT18]. Moreover, we show that
DCA can actually break byte (and wider) encodings by targeting variables beyond
the first round of the cipher.

2. New DCA-like collision attack. We propose a new kind of collision attack in
the passive white-box setting where an adversary observes a computation trace with
only limited knowledge of the underlying implementation. Our attack is as generic as
DCA but it can defeat internal encodings with a significantly lower trace complexity.
For instance, we could break a publicly available implementation protected with byte
encodings in about 60 traces with our collision attack whereas DCA requires about
1800 traces. We give some theoretical analysis of our collision attack and show that
its success can be formulated as a balls-and-containers game.

3. Application of mutual information analysis (MIA). We suggest to apply MIA
to the passive white-box attack setting. In particular, we propose a more efficient
variant of MIA attack against internal encodings. We also analyze the deep connection
between this improved MIA and our collision attack.

All our analyses are backed up with attack simulations and practical attack experiments
against a publicly available white-box implementation protected with byte encodings –which
DCA has failed to break before– and against a “masked” white-box AES implementation
–which intends to resist DCA.

Organization. We first introduce the notations and the preliminaries in Section 2. Sec-
tion 3 reviews the internal encoding countermeasure and the passive white-box attack
model considered in this article. Afterwards, the three different attack techniques, namely,
DCA, collision attack, and MIA are introduced and analyzed in Section 4, Section 5 and
Section 6 respectively. Some comparison and conclusion are finally given in Section 7 and
Section 8.

2 Preliminaries
Along this paper, we use the following notations. The random variables are denoted by
uppercase Latin letters, e.g., X, while the lowercase letter x denotes a particular realization
of X. We further denote vectors by bold symbols, e.g., x. Latin letters in calligraphic
format, e.g. X are used to denote random distributions and finite sets. For a random
variable X ∼ X , ΦX or ΦX denotes the cumulative distribution function (CDF) of X
and PrX (x) or PrX(x) denotes the probability mass function (PMF) of X evaluated on x.
Finally, we denote [n] the set of positive integers not greater than n, i.e., {1, 2, · · · , n}.

228 Analysis and Improvement of Differential Computation Attacks

2.1 Hypergeometric Distribution
The hypergeometric distribution HG(α, β, τ) is a discrete distribution describing the prob-
ability of the number of successes in τ draws without replacement where the sample
population has size β and contains exactly α successes. The PMF of HG(α, β, τ) is

PrHG(α,β,τ)(t) =
(
α
t

)(
β−α
τ−t
)(

β
τ

) .

And its variance is Var
(
HG(α, β, τ)

)
= τ αβ

(
1− α

β

)(
β−τ
β−1

)
.

In this paper, we will consider a special case of hypergeometric distribution, denoted
H̃G(n), which is defined as

H̃G(n) = HG
(
2n−1, 2n, 2n−1) ,

for some n ∈ N. The variance of this distribution satisfies Var
(
H̃G(n)

)
= 22n−4

2n−1 .

2.2 Pearson’s Correlation Coefficient
The Pearson’s correlation coefficient is a measure of the linear correlation between two
random variables X and Y . It is defined by the following equation

Cor(X,Y) = Cov(X,Y)
σX · σY

= E(XY)− E(X)E(Y)√
E(X2)− (E(X))2

√
E(Y 2)− (E(Y))2

,

where Cov(X,Y) is the covariance between X and Y , E(X) is the expectation of X, and
σX is the standard deviation of X. The correlation coefficient satisfies −1 ≤ Cor(X,Y) ≤ 1,
where the lower bound is reached when X and Y are negatively linearly correlated, and
the upper bound is achieved when X and Y are positively linearly correlated. A zero
correlation is obtained if X and Y are linearly independent (which doesn’t imply that X
and Y are independent).

2.3 Boolean Functions
Let F2 denote the field with 2 elements and let n be a positive integer. A Boolean function
f with n variables is a function from Fn2 to F2.

The weight of a Boolean function f , denoted by wt(f), is the number of 1s in its value
table, i.e. wt(f) = |{x ∈ Fn2 : f(x) = 1}|. A Boolean function f is balanced if wt(f) = 2n−1

(i.e. if it has as many 0 outputs as 1 outputs). The set of balanced n-variable Boolean
functions is denoted by B(n) in this paper. The bias (or imbalance) of a Boolean function
f is defined as

B(f) =
∑
x∈Fn2

(−1)f(x) = 2n − 2 · wt(f) . (1)

We have B(1 + f) = −B(f) and B(f) = 0 iff f ∈ B(n).
A Boolean function f has a unique algebraic normal form (ANF), which is given by

a set of coefficients au ∈ F2, u ∈ {0, 1}n as f(x1, x2, · · · , xn) =
∑
u∈{0,1}n aux

u where
xu =

∏n
i=1 x

ui
i .

2.4 Boolean Correlation
Let f, g be two n-variable Boolean functions and b, b1, b2 ∈ F2, define

Nf
b =

∣∣∣{x ∈ Fn2 : f(x) = b
}∣∣∣ ,

Nf,g
b1b2

=
∣∣∣{x ∈ Fn2 : f(x) = b1, g(x) = b2

}∣∣∣ .

Matthieu Rivain and Junwei Wang 229

Then the Pearson’s correlation between f(X) and g(X) for a uniform random input X
over Fn2 , simply denoted by Cor(f, g) for the sake of clarity, satisfies

Cor(f, g) = Nf,g
11 N

f,g
00 −N

f,g
10 N

f,g
01√

Nf
1 N

f
0 N

g
1N

g
0

,

If f, g ∈ B(n), the above can be simplified to

Cor(f, g) = 1
2n
∑
x∈Fn2

(−1)f(x)+g(x) = 1
2nB(f + g) .

2.5 Vectorial Boolean Functions
Let n, m be two positive integers. A (n,m)-vectorial Boolean function (VBF) f is a
function from Fn2 to Fm2 . A VBF is balanced if the cardinality of {x ∈ Fn2 : f(x) = y}
equals 2n−m for every y ∈ Fm2 . Given a (n,m)-VBF f , the Boolean functions f1, f2, · · · , fm
such that f(x) =

(
f1(x), f2(x), · · · , fm(x)

)
, are called the coordinatefunctions of f . If a

(n,m)-VBF is balanced, then any non-zero linear combination of its coordinate functions
is balanced.

3 Internal Encodings and Adversary Model
3.1 Internal Encoding
The principle of internal encodings was proposed by Chow et al. at SAC 2002 [CEJvO02a]
to protect block ciphers from key extraction in the white-box context. The fundamental
idea is first to turn the implementation into a network of look-up tables with a hard-
coded key. Then these tables are encoded by randomly sampled bijections, called internal
encodings in the literature.2 More specifically, for any pair of connected tables, an invertible
transformation T is applied to the output of the first table, and then the inverse of T is
applied to the input of the subsequent table. A comprehensive tutorial of the internally-
encoded AES implementation of Chow et al. can be found in [Mui13].

For a given encoded implementation of some block cipher, any intermediate variable
can be expressed as the output of an internal encoding ε : Fm2 7→ Fm2 applied to some
variable s. The latter can be expressed through a key dependent function ϕk : Fn2 7→ Fm2 of
a public variable x (part of the plaintext or the ciphertext) for some subkey k ∈ K. This
formalism is depicted in Figure 1. In this paper, we consider that ϕk is a balanced VBF
which shall be the case for a vast majority of attack scenarios. In practice, the bit-size m
of the internal encodings is usually small in consideration of the code size (since storage
is exponential in m). For instance, the AES implementation of Chow et al. is based on
nibble encodings (i.e. m = 4).

x ϕk(·) s ε(·) v

input sensitive variable intermediate variable

n m mm

Figure 1: An illustration of how a sensitive intermediate variable is encoded.
2As aforementioned, the application of external encodings is out of the scope of this work.

230 Analysis and Improvement of Differential Computation Attacks

Whenever the target variable is such that n = m, namely if the number of plaintext
bits in its expression equals the bit-size of the encoding, and assuming that ε is a uniformly
sampled bijection, then ε ◦ ϕk is a uniform random bijection which is independent of the
secret key k. Consequently, there is no leakage of the underlying key k from the table
itself, nor from the encoded variable ε(s). This makes appear a fundamental requirement
common to all kinds of DCA-like attack against encoded implementations: the target
intermediate variable must be a key-dependent non-injection, i.e., ϕk must be such that
n > m.

Note that although the above requirement is mandatory for a DCA-like attack to work,
it does not represent a strong constraint for the attacker since such key-dependent non-
injective intermediate variables naturally exist in standard block cipher designs. Indeed,
for security reasons, a block cipher should have a good diffusion, which means that
each bit of the internal state should depend on all the bits of the plaintext after a few
rounds. For most block ciphers, such key-dependent non-injective variables can be found
in the first couple of rounds, e.g. in AES 1st round, a nibble of an S-box output or a
byte of the MixColumn output. The former is the typical target of DCA attacks in the
literature [BHMT16, BBMT18], while the latter will be the case study in our experiments.
Note that any byte of the AES state in the second (or a later) round is also a key-dependent
non-injective variable.

3.2 Passive Adversary Model
We consider a passive adversary who invokes the white-box implementation many times by
using freely chosen inputs. With the help of dynamic binary instrumentation (DBI) tools,
she can record the so-called computation trace, consisting of the accessed (read and write)
memory addresses, values and associated instructions. In particular, the table lookups are
included in the computation traces. Each computation trace v is composed of T samples,
i.e.,

v = (v1, v2, · · · , vT),
where vj ∈ V, for every j ∈ [T] for some set V. In the following, we consider an
adversary that collects N computation traces

(
v(1),v(2), · · · ,v(N)) corresponding to N

inputs
(
x(1), x(2), · · · , x(N)) of the target variable. Alternatively, the N traces can be

interpreted as an N × T matrix, where a row is a computation trace v(i), and a column is
composed of N instances of the same intermediate variable over different computations.

In some attack scenarios, the adversary may first preprocess the traces before launching
her analysis. For instance, she can remove all the constant or duplicate samples in the
traces; she can also split each multi-bit sample into a tuple of bits to get a binary trace in
which V = {0, 1}.

The adversary attempts to build a distinguisher D, mapping the inputs
(
x(i))

i
and the

corresponding computation traces
(
v(i))

i
to a score vector :

(δk)k∈K = D
((
x(1), · · · , x(N)), (v(1), · · · ,v(N))).

A distinguisher can be built with outputs in a similar way. Without loss of generality,
we only consider the distinguisher built with inputs. The adversary then selects the key
guess k with the highest score δk as the candidate for the correct key value k∗. Hence, the
success probability of the attack is defined as

psucc = Pr
(
k∗ = argmax

k∈K
δk

)
.

In a typical scenario, the adversary targets a key dependent sensitive variable s = ϕk(x).
Then for each key guess k ∈ K, she computes a prediction of the target sensitive variable

Matthieu Rivain and Junwei Wang 231

ϕk(x). The score for a key guess k ∈ K is calculated by measuring some form of dependency
between the predictions ϕk

(
x(i)) and the computation traces v(i).

We consider three different distinguishers in this work. Specifically, we first provide
an in-depth analysis of the DCA distinguisher [BHMT16]. Then we suggest to use a new
DCA-like collision attack to analyze white-box implementations. We further demonstrate
the application of MIA in this setting and improve it for attacking internal encodings.

4 Differential Computation Analysis
Differential computation analysis, proposed at CHES 2016, breaks a massive amount
of publicly accessible white-box implementations [BHMT16]. DCA simply consists in
applying differential power analysis (DPA) techniques to computation traces. In this
section, we first formally define the DCA distinguisher in Section 4.1. Then we provide
an in-depth analysis of DCA against implementations protected by internal encodings in
Section 4.2. Specifically, we pinpoint when and why DCA works by using some properties
of Boolean functions. In particular, we show that DCA can break encodings wider than 4
bits (such as byte encodings) and that it can target variables deeper in the cipher than in
the first (or last) round. We validate our theoretical analysis through several simulations in
Section 4.3 and successful attacks on two white-box implementations in Section 4.4. In the
end, several specific discussions, including a comparison with [BBMT18], are conducted.

4.1 DCA Distinguisher
In the following, we denote respectively by k a key guess, k∗ the correct key guess, and k×
a wrong key guess. For clarity, we abuse notations by skipping the parameter k in the
selection function by letting ϕ = ϕk, ϕ∗ = ϕk∗ and ϕ× = ϕk× . We then denote ϕi the i-th
coordinate of ϕ, and vj the j-th sample in a trace.

The DCA distinguisher for a key guess k is calculated as the maximal absolute value
of the correlation between the i-th bit of hypothesized sensitive variable ϕi(X), for some
i ∈ [m], and each trace sample Vj , that is

δdca
k = max

j∈[T]

∣∣Cor
(
ϕi(X), Vj

)∣∣ .
In practice, the adversary does not compute the exact value of the above correlation,

but an estimation of it based on sampled computation traces corresponding to random
plaintexts. Moreover she could try several different selection functions ϕ and any i ∈ [m]
until the correlation for one key guess can be distinguished from the others. We note that
this definition of DCA distinguisher is similar to [BRVW18].

Although DCA can work whatever the definition space V of the samples in the compu-
tation trace, we consider hereafter that all the samples have been previously split into bits
before computing the correlation scores (i.e. we have V = {0, 1}).

4.2 Analysis of DCA against Encoded Implementations
In the following, we first introduce the formal (idealized) model which we use for our
theoretical analysis. We then exhibit the distributions of the underlying correlation scores
for different key guesses, and we analyze the success rate of DCA in this model.

Idealized model. We perform our analysis in an idealized model in which the functions
(ϕk)k∈K are modeled as independent random balanced (n,m)-VBF. Using such an ideal
assumption is common in symmetric cryptanalysis and it is justified in practice since the
S-boxes are usually chosen in such a way that ϕk and ϕk′ are highly uncorrelated (as

232 Analysis and Improvement of Differential Computation Attacks

independent random functions would be). To get a formal model for the full computation
trace, we further ideally assume that except the m coordinates of ε ◦ ϕk∗(X), the samples
can be expressed as Vj = fj(X) where the fj ’s are uniform random functions of B(n).

Note that this idealized model is used for our theoretical analysis which is then
challenged and validated using attack simulations and practical attack experiments.

Distributions of correlation scores. Hereafter, we characterize the correlation score
Cor

(
ϕi(X), Vj

)
when V is the target encoded variable i.e. V = ε ◦ ϕ∗(X) for a uniformly

distributed plaintext variable X and a random m-bit encoding ε. According to our model,
we have ϕ = ϕ∗ if the key guess is correct (i.e. k = k∗); ϕ and ϕ∗ are mutually independent
otherwise. We have:

Cor
(
ϕi(X), Vj

)
= Cor(ϕi, εj ◦ ϕ∗) = 1

2n · B(εj ◦ ϕ∗ + ϕi).

Our analysis is based on the following key lemma.

Lemma 1. Let g ∈ B(n). Let f be a random function uniformly sampled in B(n)
independently of g. Then we have

B(f + g) = 4 ·Nf,g
00 − 2n with Nf,g

00 ∼ H̃G(n) ,

where H̃G(n) is the hypergeometric distribution with parameters (2n−1, 2n, 2n−1).

Proof. By Equation 1, we have B(f + g) = 2n − 2 · wt(f + g). Since both f and g are
balanced, we have wt(f + g) = 2n − 2 ·Nf,g

00 (see definition of Nf,g
00 in Section 2.4), which

implies B(f + g) = 4 ·Nf,g
00 − 2n. Since Nf,g

00 is the number of inputs x for which f(x) = 0
among the 2n−1 inputs satisfying g(x) = 0, we directly get Nf,g

00 ∼ H̃G(n) by definition of
the hypergeometric distribution and the uniformity of f .

For the sake of clarity, we let Yk be the bias B(εj ◦ ϕ∗ + ϕi) for a key guess k ∈ K, and
only consider Yk in our analysis. For the correct key guess k∗, we have

Yk∗ = B(εj ◦ ϕ∗ + ϕ∗i) = 2n−m · B(εj + li) ,

where li(x) = xi (the ith coordinate of x). Since ε is an m-bit random permutation, εj is
randomly distributed over B(m). According to Lemma 1, we then get

Yk∗ = 2n−m+2 ·Nεj ,li
00 − 2n with N

εj ,li
00 ∼ H̃G(m) .

On the other hand, for an incorrect key guess k× ∈ K \ {k∗}, we have –according to our
ideal assumption– that εj ◦ ϕ∗ and ϕ×j are randomly and independently distributed over
B(n), which implies

Yk× = B(εj ◦ ϕ∗ + ϕ×i) = 4 ·Nεj◦ϕ,ϕ×i
00 − 2n with N

εj◦ϕ,ϕ×i
00 ∼ H̃G(n) . (2)

The mean of Yk∗ and Yk× are both 0, but recalling that Var
(
H̃G(`)

)
= 22`−4

2`−1 (which equally
holds for ` = n or m), their variances satisfy

Var(Yk∗) = 22n

2m − 1 and Var(Yk×) = 22n

2n − 1 . (3)

This makes the distributions of Yk∗ and Yk× easily distinguishable for practical parameters
m and n (with n > m) as illustrated hereafter.

Matthieu Rivain and Junwei Wang 233

4 6 8 10 12 14 16

0.25

0.5

0.75

n

P
r
(|Y

k
∗
|>

m
ax

k
×
|Y

k
×
|) m = 4

m = 5
m = 6
m = 7
m = 8
m = 9
m = 10
m = 11
m = 12

Figure 2: Pr
(
|Yk∗ | > maxk× |Yk× |

)
for n ∈

{4, · · · , 16} and m ∈ {4, · · · ,max(n, 12)}
and |K| = 2n.

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

Yk∗ and Yk×

P
M
F

Yk∗ modeled
Yk× modeled

0

1,000

2,000

3,000

4,000

C
o
u
n
ts

Yk∗ simulated
Yk× simulated

Figure 3: The histogram for the simulation
(using 10 thousand trials) matches the theo-
retical analysis when (n,m) = (8, 4).

DCA success probability. For DCA to succeed, the encoding ε of the target variable
must be such that the max absolute correlation over the coordinates j ∈ [m] for the right
key guess k∗ is greater than the max absolute correlation over the coordinates j ∈ [m] and
the wrong key guesses k× ∈ K \ {k∗}. We denote such an event Succε in the following,
that is

Succε : max
j
|Cor(ϕ∗i , εj ◦ ϕ∗)| > max

j, k×
|Cor(ϕ×i , εj ◦ ϕ∗)| .

Note that the probability that the above event occurs only depends on the random genera-
tion of ε, which happens during the compilation process of the white-box implementation.
If this condition is satisfied, then the attack will succeed provided that the number of
computation traces is sufficient to get enough accuracy in the correlation estimation. We
first analyze the occurrence probability of Succε and then address the trace complexity.

Let us first look at the simpler case of a single j, namely the probability to get
|Cor(ϕ∗i , εj ◦ ϕ∗)| > maxk× |Cor(ϕ×i , εj ◦ ϕ∗)|. In our idealized model, this amounts to get∣∣Yk∗ ∣∣ > maxk×

∣∣Yk× ∣∣ where Yk∗ and Yk× are as defined above.

Proposition 1. Under our idealized model, we have

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2

∑
0≤z<2m−2

PrH̃G(m)(z) ·
(
1− 2 · ΦH̃G(n)(2

n−m · z)
)|K|−1

.

The proof of Proposition 1 is given in Appendix A. We observe that the probability
Pr
(
|Yk∗ | > maxk× |Yk× |

)
only depends on n, m and |K| in our idealized model. To illustrate

Proposition 1, we plot in Figure 2 this probability for several values of n and m, taking
|K| = 2n (which would basically occur for a target function of the form ϕk(x) = ϕ′(x⊕k)).
For instance, for n = 8,m = 4, we have more than 1

2 probability to get |Yk∗ | greater than
|Yk× | for the 255 wrong key guesses k×. This illustrates why DCA works on nibble encoding
of the AES S-box. We also see that for m = 8, the probability Pr

(
|Yk∗ | > maxk× |Yk× |

)
increases with n and also exceeds 1

2 for n ≥ 13. This suggests that DCA can also work on
byte encodings by targeting an intermediate variable depending on e.g. 16 plaintext bits.

Figure 3 further plots the distributions of Yk∗ and Yk× for n = 8,m = 4 (as well as
some simulations commented below). We observe that the difference of variances makes
the two distributions easily distinguishable. We further observe that whenever Yk∗ 6= 0,
we have a very high probability that |Yk∗ | > |Yk× |. This is because the values taken by
Yk∗ are multiples of 2n−m+2 (which equals 64 for n = 8,m = 4), therefore Yk∗ 6= 0 implies
|Yk∗ | ≥ 2n−m+2. On the other hand, the standard deviation of Yk× , which is close to 2n/2

according to Equation 3 (i.e. around 16 for n = 8), might be significantly smaller than

234 Analysis and Improvement of Differential Computation Attacks

2n−m+2. More generally, if for a small constant qα, n is chosen such that

qα · σ(Yk×) ≈ qα · 2
n
2 ≤ 2n−m+2 ⇔ n ≥ 2m+ 2(log2 qα − 2)

we have an overwhelming probability α that |Yk∗ | > |Yk× |.3 For instance, taking n ≥ 2m+2
gives qα ≥ 8 which (under a Gaussian approximation of Yk×) implies α ≥ 1 − 10−14.
Consequently, choosing n slightly greater than 2m we get

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
≈ 1− Pr(Yk∗ = 0) = 1− PrH̃G(m)(2

m−2) (4)

where PrH̃G(m)(2
m−2) =

(2m−1

2m−2

)2/(2m
2m−1

)
.

It can be checked from Figure 2 that Pr
(
|Yk∗ | > maxk× |Yk× |

)
indeed converges

towards the above approximation as n grows and that the convergence is indeed achieved
for n ≥ 2m+ 2.

Let us now extend Proposition 1 to the general case of Succε where the max is taken
over all the coordinates j ∈ [m]. We shall extend our idealized model by assuming that
the coordinate functions ϕj are mutually independent random functions of B(n).

Proposition 2. Under our idealized model, we have

Pr
(
Succε

)
=

∑
0≤z<2m−2

µ(z) ·
(

1− 2 · ΦH̃G(n)

(
2n−m · z

))m·(|K|−1)

where

µ(z) =
m∑
`=1

(
m

`

)
·
(

2PrH̃G(m)(z)
)`
·
(

1− 2ΦH̃G(m)(z)
)m−`

.

The proof of Proposition 2 is given in Appendix B. In Section 4.3, we provide a
comparison of Pr

(
Succε

)
in the ideal setting and in a real setting.

As above, taking n ≥ 2m+ 2, we get |Yk× | < 2n−m+2 with overwhelming probability
(for all the wrong key guesses k× and coordinates j), and hence Succε occurs whenever
Yk∗ = B(εj ◦ ϕ∗ + ϕ∗i) is non-zero for a single j ∈ [m]. That is

Pr
(
Succε

)
≈ 1− Pr(Yk∗ = 0)m = 1− PrH̃G(m)(2

m−2)m . (5)

This approximation is also empirically validated in Section 4.3.
We have analyzed the probability that an internal encoding ε makes it possible for a

DCA to succeed. Let us now extend the analysis by considering the full computation trace.
Under our idealized model, the latter is composed of the m coordinates of ε ◦ ϕ∗(X) and
of T −m samples generated from fresh random functions of B(n). We have the following
corollary of Proposition 2.

Corollary 1. Let Full-Succε denote the event

Full-Succε : max
j∈[T]

|Cor(ϕ∗i , Vj)| > max
j∈[T], k×

|Cor(ϕ×i , Vj)| .

Under our idealized model, we have

Pr
(
Full-Succε

)
≥

∑
0≤z<2m−2

µ(z) ·
(

1− 2 · ΦH̃G(n)

(
2n−m · z

))T ·(|K|−1)
(6)

where µ(z) is defined as in Proposition 2.
3Here qα is the quantile of α meaning that we have probability α that Yk× is smaller (in absolute

value) than qα times its standard deviation. In particular, α quickly converges towards 1 as qα grows.

Matthieu Rivain and Junwei Wang 235

The inequality in Equation 6 directly results from

max
j∈[T]

|Cor(ϕ∗i , Vj)| ≥ max
j∈[m]

|Cor(ϕ∗i , εj ◦ ϕ∗)| .

The rest of the proof is similar to the proof of Proposition 2.

In the above propositions (and corollary), we have exhibited the probability that the
exact correlation score is greater for the right key guess k∗ than for any wrong key guess k×.
Although this is a necessary condition for DCA to succeed, one further needs to get some
estimations of the correlation scores which are accurate enough to ensure the superiority
of the right correlation peak. We analyze hereafter the number of traces necessary to meet
such a practical condition.

Trace complexity. Let us recall that Cor(ϕ∗i , εj ◦ ϕ∗) = 2−n · Yk∗ . We have seen that,
with high probability (see Equation 5), we have Yk∗ 6= 0, and hence |Yk∗ | ≥ 2n−m+2, for at
least one coordinate j. We consider hereafter that this event indeed occurs from which we
get

δdca
k∗ = max

j∈[m]
|Cor(ϕ∗i , εj ◦ ϕ∗)| ≥ 2−m+2 .

Moreover, taking n ≥ 2m + 2, we have seen that the variables Yk× are an order
of magnitude lower than the 2n−m+2, hence the correlation scores δdca

k× are an order of
magnitude lower than δdca

k∗ . In such a case, the number of traces for a successful correlation
attack can be approximated by

N ≈ cst ·

(
1

ln
(1+ρ

1−ρ
))2

≈ cst′ ·
(1
ρ

)2
,

where cst and cst′ are small constants (depending on the desired success probability) and
where ρ is the correlation of the right key guess, i.e. ρ = δdca

k∗ in our context. The first
approximation is due to Mangard [Man04] and the second is a Taylor approximation which
is sound as long as ρ is small enough (which holds in our case for typical values of m). We
hence get a trace complexity of N = O(22m).

4.3 Simulations
In order to verify that our ideal analysis soundly captures the behavior of an actual DCA,
we perform several attack simulations taking an AES S-box output as target variable,
with n = 8, and for different encoding size m = {4, 5, 6, 7, 8}. Specifically, we look at the
distributions of Yk∗ = B(εj ◦ ϕ + ϕ∗i) and Yk× = B(εj ◦ ϕ + ϕ×i), and the probabilities
of events:

∣∣Yk∗ ∣∣ > maxk×
∣∣Yk×∣∣ and Succε, with ϕk(x) = S(m)(x ⊕ k) where S(m) is the

AES S-box shrunk to its m least significant bits (and hence ϕk is a (8,m)-VBF). For all
settings, our simulation results are averaged over 10,000 trials and ε is a fresh random
m-bit bijection in each trial. The full simulations are done according to the procedures
depicted in Figure 9 in Appendix C.

As an illustration, we plot the histogram for (n,m) = (8, 4) in Figure 3, which
demonstrates that our theoretical analysis on distributions of Yk∗ and Yk× matches the real
distributions obtained in a DCA experiment. We further compare in Table 1 the ideal and
simulation settings for the probabilities Pr

(
|Yk∗ | > maxk× |Yk× |

)
and Pr

(
Succε

)
. We can

observe that the figures obtained through our ideal analysis match pretty well the simulation
results. For instance, when (n,m) = (8, 4), the probabilities of |Yk∗ | > maxk× |Yk× | are
about 0.6071 (ideal setting) and 0.6194 (simulation). Note that the difference is of same
order of magnitude (i.e. 10−2) as the precision of the simulation results (based on 10, 000
trials).

236 Analysis and Improvement of Differential Computation Attacks

Table 1: The simulation and theoretical (ideal) analysis results for n = 8,m = {4, 5, 6, 7, 8}
by using AES-128 first round S-box as the selection function.

(n,m) Pr(|Yk∗ | > maxk× |Yk× |) Pr
(
Succε

)
ideal simulation ideal simulation

(8,4) 0.6071 0.6194 0.9264 0.9722
(8,5) 0.2837 0.2859 0.7598 0.8032
(8,6) 0.1259 0.1281 0.3556 0.3749
(8,7) 0.0305 0.0299 0.0716 0.0723
(8,8) 0.0027 0.0021 0.0025 0.0020

We also verify the soundness of the approximation in Equation 4 and Equation 5
when one takes n = 2m+ 2. For this purpose, we compare in Table 2 the probabilities of
the events

∣∣Yk∗ ∣∣ > maxk×
∣∣Yk× ∣∣ and Succε obtained from our approximations, from our

propositions in the ideal model, and from simulations. The simulations are based on 10,000
attack trials, where ϕk is defined as ϕk(x) = ϕ(x⊕ k) for some (n,m)-VBF ϕ randomly
picked in each trial.

Table 2: The simulation and theoretical (ideal) analysis results for n = 2m + 2 where
m = {3, 4, 5, 6, 7} by targeting at a n-bit random bijection.

(n,m) Pr(|Yk∗ | > maxk× |Yk× |) Pr
(
Succε

)
Equation 4 ideal simulation Equation 5 ideal simulation

(8,3) 0.4857 0.4857 0.4853 0.8640 0.8640 0.8828
(10,4) 0.6193 0.6193 0.6123 0.9790 0.9790 0.9736
(12,5) 0.7244 0.7244 0.7141 0.9984 0.9984 0.9960
(14,6) 0.8029 0.8029 0.8027 0.999941 0.999941 1.0000
(16,7) 0.8598 0.8598 0.8615 0.999998934 0.999998934 1.0000

4.4 Practical Attack Experiments
4.4.1 Target Implementations

The NSC Variant. In NoSuchCon (NSC) 2013, a Windows binary embedding with a
white-box implementation of AES-128 protected by external and internal encodings, was
published by Vanderbéken as a challenge.4 Due to the presence of external encodings, the
authors of [BHMT16] failed to to break this challenge with DCA. Besides the challenge
binary, Vanderbéken also published its generator, which led to the publication of multiple
variants.5 One interesting variant, referred as the NSC variant in the following, is an
implementation protected with internal encodings only (i.e. an implementation of the
standard AES-128). However, since it makes use of byte encodings, this implementation
was believed to resist DCA.5

Lee’s CASE 1 Implementation. Recently, Lee et al. published a white-box imple-
mentation of AES against DCA attack [LKK18] which consists in applying additional
countermeasures to the original Chow et al.’s implementation. Three protection cases
are suggested: CASE 1 uses some masking techniques before applying internal encodings
to protect the first and last round of the implementation; CASE 2 and CASE 3 work

4See http://www.nosuchcon.org/2013/ and http://seclists.org/fulldisclosure/2013/Apr/133.
5See https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_nsc2013_variants.

http://www.nosuchcon.org/2013/
http://seclists.org/fulldisclosure/2013/Apr/133
https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_nsc2013_variants

Matthieu Rivain and Junwei Wang 237

as CASE 1 but with larger internal encodings (byte instead of nibbles) applied to more
variables in the outer rounds. An implementation (under the form of a binary program)
was made publicly available for CASE 16 but not for CASE 2 nor CASE 3. In this work,
we do not intend to give a full cryptanalysis of Lee’s proposal, but we point out that the
masking technique can be bypassed by targeting an input byte of the second round, i.e.
an output byte of the first-round MixColumn, which allows us to apply a simple DCA
attack as described below.

4.4.2 Target Variables

In all our experiments, we select one MixColumn output byte in the first round as our
target. Such a byte s satisfies

s = MixColumn
(
S(x1 ⊕ k∗1), S(x2 ⊕ k∗2), S(x3 ⊕ k∗3), S(x4 ⊕ k∗4)

)
= S(x1 ⊕ k∗1)⊕ S(x2 ⊕ k∗2)⊕ 2 · S(x3 ⊕ k∗3)⊕ 3 · S(x4 ⊕ k∗4) ,

where S denotes the AES S-box, (x1, x2, x3, x4) are four plaintext bytes, and the above
multiplications (by 2 and 3) are on the field F256.

In order to reduce the key space for guessing such a byte, we select some random
plaintext with fixed value for x3 and x4 (specifically x3 = x4 = 0). Doing so, the byte s
can be rewritten as s = S(x1 ⊕ k∗1)⊕ S(x2 ⊕ k∗2)⊕ c∗ for some (secret) constant c∗ and
the encoded byte ε(s) is identically distributed (over a random choice of ε) to the byte
ε
(
S(x1 ⊕ k∗1)⊕ S(x2 ⊕ k∗2)

)
. We then make a 2-byte key guess (k1, k2) and calculate the

predictions of the target byte as

ϕk1,k2(x1, x2) = S(x1 ⊕ k1)⊕ S(x2 ⊕ k2)

for each plaintext with bytes (x1, x2). Our selection function ϕ is hence a (16, 8)-VBF and
the size of the key space is 216.

Although we only focus on recovering two key bytes, we could easily repeat this attack
by swapping the fixed pair of bytes to recover k∗3 and k∗4 and do the same for the 3 other
MixColumn computations. Moreover, we can fix a pair of bytes in each column while
collecting the traces, so that only two sets of traces would be sufficient to recover the full
key.

4.4.3 Attack Results

For each implementation, some preliminary analysis of the binary allowed us to obtain the
addresses of the executable code segment in the virtual memory. We were then able to
collect the bytes written on the stack during an execution. For such a purpose we used the
SideChannelMarvels Tracer tool.7 We thus obtained computation traces composed of 1850
and 21536 byte samples for the NSC variant and Lee’s CASE 1 implementation respectively.
Each of these samples was split into bits to get binary traces from which we removed the
duplicated columns. We finally obtained binary computation traces composed of 6077 and
24012 samples for the NSC variant and Lee’s CASE 1 implementation respectively.

For the NSC variant, we collected 1,800 traces from which we computed the correlation
traces for each key guess as described in Section 4.1. As an illustration, Figure 4 plots the
correlation traces obtained when the least significant bit of the target variable is used as
prediction function. The attack was conducted for the 8 prediction bits, and the correct
key guess was ranked first (among the 216 guesses) in 4 out of 8 attacks.

One can observe multiple peaks in the correlation trace for the right key guess that might
correspond to different manipulations of the target variable through different encodings

6See https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1.
7See https://github.com/SideChannelMarvels/Tracer.

https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1
https://github.com/SideChannelMarvels/Tracer

238 Analysis and Improvement of Differential Computation Attacks

Figure 4: DCA correlation traces on the NSC variant for the good key guess (in blue) and
for 256 (out of 216 − 1) incorrect key guesses (in gray).

ε. It is worth noting that, as exhibited in our analysis, these peaks converge towards
correlation scores which are multiples of 2−m+2 i.e. of 1

64 for m = 8. The first clearly
distinguishable peak is around 5

64 ≈ 0.078 while the two next peaks are around 6
64 ≈ 0.094

(the match is not perfect due to the estimation error).
Using 1800 traces implies that the average noise in the correlation trace is around√

1/1800 ≈ 0.02 (which reaches 0.06 when we take the max over 256 correlation traces as
we observe on Figure 4). That is why only the peaks around 6

64 are clearly distinguishable
from the noise and that is why the maximal peak is reached for the good key guess for only
4 selection bits out of 8. Taking more traces would certainly ensure that smaller multiples
of 1

64 could also be distinguishable from the noise which would increase the number of
prediction bits (up to 8) for which the attack works.

For Lee’s CASE 1 implementation, we were able to mount a successful attack using
4000 traces. The obtained correlation traces are very similar to Figure 4 which all includes
a few distinguishable peaks for the right key guess.

4.5 Discussion
4.5.1 The Case of Linear Encodings

We address hereafter the case of linear encodings, which are encodings ε that can be
expressed as

ε(s) = A · (s1, · · · , sm)T ⊕ bT .

where (s1, · · · , sm) is the binary representation of s, A = (aj,`)j,`∈[m] ∈ Fm×m2 is an
invertible binary matrix and b = (bj)j∈[m] ∈ Fm2 is a binary vector. For such a linear
encoding, we get εj ◦ ϕ∗(x) = bj +

∑m
`=1 aj,` ϕ

∗
` (x) for every j ∈ [m] and hence

Cor(ϕi, εj ◦ ϕ∗) = 1
2n ·B

(
ϕi + bj +

m∑
`=1

aj,` ϕ
∗
`

)
.

Then we differentiate three cases:

• if ϕ = ϕ∗ (i.e. the key guess is correct) and if aj,i = 1 and aj,` = 0 for every
` ∈ [m] \ {j}, then we have |Cor(ϕi, εj ◦ ϕ∗)| = 1

2n · |B(bj)| = 1;

• if ϕ = ϕ∗ (i.e. the key guess is correct) and if aj,` = 1 for some ` ∈ [m] \ {j}, then
ϕ∗i + bj +

∑m
`=1 aj,` ϕ

∗
` is balanced implying |Cor(ϕi, εj ◦ ϕ∗)| = 0;

• if ϕ = ϕ× (i.e. the key guess is incorrect), under our idealized model, we have
|Cor(ϕi, εj ◦ ϕ∗)| = 1

2n |B(ϕi + f)| where f = bj +
∑m
`=1 aj,` ϕ

∗
` is a random function

of B(n) (since f is a linear combination of the coordinates of a random balanced VBF

Matthieu Rivain and Junwei Wang 239

ϕ∗) and independent of ϕi, namely |Cor(ϕi, εj ◦ ϕ∗)| is distributed as the variable
1

2n · Yk× (see Equation 2).

We can deduce that if the matrix A has at least one row –say the jth row– of Hamming
weight 1, i.e. with a single coefficient to aj,i = 1, then for the corresponding i ∈ [m], we
have |Cor(ϕi, εj ◦ϕ∗)| = 1 which implies that DCA (targeting the ith bit of ϕ) will succeed
with overwhelming probability. If no such row of Hamming weight 1 occurs, then the right
guess correlation is indistinguishable from the wrong guess correlations and DCA fails
with high probability.

There is a certain probability that a random encoding happens to be a linear encoding.
This is especially likely when m = 2, 3. In particular, when m = 2, there are only 6 possible
εj(s1, s2) with ANF

s1 + b , s2 + b , and s1 + s2 + b , where b ∈ F2 .

Hence, given i and j, all the possible encodings are linear, and only si + b satisfies the
condition aj,i = 1 and aj,` = 0 for every ` ∈ [m] \ {j}. This high probability of getting a
linear encoding implies that the success of DCA against encodings of size m = 2, 3 is less
likely than for greater value of m as indicated by Proposition 2..

4.5.2 Comparison to Previous Analysis

In [BBMT18, BBB+17], Bock et al. conduct an analysis to explain the ineffectiveness of
linear and/or nibble encodings against DCA. In comparison, our analysis covers random
(non-linear) encodings of any size m. Regarding the cases of linear encodings and (non-
linear) nibble encodings, our analysis is consistent with the results of Bock et al. while
providing more formal statements (under some ideal assumption) and close formulas for
the success rate of DCA with respect to the attack parameters (n,m, |K|).

More precisely, for the case of linear encodings, our analysis of Section 4.5.1 is similar
to Theorem 1 in [BBMT18, BBB+17], but the latter does not deal with the correlation
scores of wrong key guesses, whereas our analysis characterizes these scores under an ideal
assumption. For the case of nibble encodings, our analysis exhibits the distribution of the
right guess correlation score as Cor(εj◦ϕ∗, ϕ∗i) = 1

4 ·N
εj◦ϕ∗,ϕ∗i
00 −1, with Nεj◦ϕ∗,ϕ∗i

00 ∼ H̃G(4).
This result implies in particular that the possible correlation scores for the right guess are
multiples of 1

4 , which is the purpose of Theorem 2 in [BBMT18]. Besides the correlation
scores for the good key guess, our analysis further characterizes the distribution for wrong
guess correlation scores, whereas this distribution is considered “close to 0” in [BBMT18].

Bock et al. also look at the empirical distribution of the correlation scores for the correct
key guess with 10,000 attack simulations on the AES S-box protected by nibble encodings.
In the considered scenario, the max correlation score is taken over the 8 predicted bits and
the 4 output bits of the encoding. Tweaking Proposition 2 to this case, the probability to
have a correlation peak of 1

4 (4− z) is given by

µ(z) =
32∑
`=1

(
32
`

)
·
(

2PrH̃G(4)(z)
)`
·
(

1− 2ΦH̃G(4)(z)
)32−`

.

Table 3 compares the above formula to the figures given in [BBMT18] which shows a good
match between our formal analysis and the simulation results given by Bock et al..

5 Collision Attack
Generating and analyzing collisions in a computation is a common attack technique in the
side-channel context [SLFP04, MME10]. In this section, we propose a new class of gray-
box DCA-like collision attacks to break white-box implementations protected by internal

240 Analysis and Improvement of Differential Computation Attacks

Table 3: Simulation results in [BBMT18] vs. our formula for nibble encodings.

Score Count [BBMT18] Probability
1 55 µ(0) = 0.0050

0.75 2804 µ(1) = 0.2724
0.50 7107 µ(2) = 0.7118
0.25 34 µ(3) = 0.0108

0 0 µ(4) = 0.0000

encodings. We first give in Section 5.1 a formal description of our collision distinguisher
within the previously introduced passive attack model. Then we show in Section 5.2 how
it can effectively break the NSC variant and Lee’s CASE 1 white-box implementations.
We finally give a theoretical analysis of the success probability and trace complexity of our
collision attack in Section 5.3.

5.1 Collision Attack Distinguisher
Following the passive attack model introduced in Section 3.2, the adversary first collects
N computation traces

(
v(i))

i
corresponding to N inputs

(
x(i))

i
for the target function ϕ.

Then for each pair of inputs
(
x(i1), x(i2)) where i1, i2 ∈ [N], i1 6= i2, and their corresponding

computation traces
(
v(i1),v(i2)), the adversary computes a collision computation trace

(CCT):
w(i1,i2) =

(
w

(i1,i2)
1 , w

(i1,i2)
2 , · · · , w(i1,i2)

T

)
,

with w(i1,i2)
j = v

(i1)
j � v(i2)

j for every j ∈ [T] where the operator � is defined as

a� b :=
{

1 if a = b,
0 otherwise.

Namely, the collision computation trace for indexes (i1, i2) has a 1 at the jth sample
position iff a collision occurs between the jth samples of the computation traces v(i1) and
v(i2). Similarly, the collision prediction for a key guess k ∈ K and input values

(
x(i1), x(i2))

is defined as
ψk
(
x(i1), x(i2)) := ϕk

(
x(i1))� ϕk(x(i2)).

The collision distinguisher for a key guess k is then defined as the maximal correlation
between the CCT and the corresponding collision prediction for k, i.e.,

δca
k = max

j∈[T]
Cor

(
ψk
(
X(i1), X(i2)),W (i1,i2)

j

)
.

As for DCA, the above correlation coefficient is estimated based on the collected samples
x(i) and w(i,j), for i, j ∈ [N].

The soundness of our collision attack against internal encodings can be summarized
with the following observation: if some sensitive variable collides for a pair of inputs, so
does the corresponding encoded variable in the computation trace. Conversely, if some
sensitive variable does not collide for a pair of inputs, neither does the corresponding
encoded variable in the computation trace. As a consequence, there is a perfect match
between the collision prediction and the target sample in the CCT for the correct key guess
(implying a correlation score to 1) whereas this should not hold for an incorrect key guess.

For a typical selection function ϕ, the instances (ϕk)k corresponding to the different
key guesses behave like independent random functions. Hence, the success probability of
our collision attack quickly grows with the number of collision pairs, as we analyze in more
details in Section 5.3.

Matthieu Rivain and Junwei Wang 241

5.2 Practical Attack Experiments
To validate our intuition, we first experiment our collision attack against the NSC variant
and Lee’s CASE 1 white-box implementations described in Section 4.4.1. We use the same
target variable as in our DCA experiments, which is a MixColumn output in the first
round, turned into a (16, 8)-VBF –with a key space of size 216– by fixing two input bytes
(see Section 4.4.2 for details).

Our collision attack recovers the two key bytes using 60 computation traces only (which
is to be compared with the 1800 traces required by DCA). As an illustration, Figure 5
plots the correlation traces for the correct key guess and for 256 (out of 216 − 1) incorrect
key guesses. We observe some correlation peaks to 1 for the correct key. For the key guess
ranked second, we observe a few peaks reaching 0.5 whereas for the other key guesses most
of the peaks are around or lower than 0.25.

Figure 5: Collision attack traces on the NSC variant for the good key guess (in blue) and
for 256 (out of 216 − 1) incorrect key (in gray).

The same collision attack has been applied to Lee’s CASE 1 implementation and could
also recover the correct (two-byte) key guess using 60 traces. Although no implementations
of Lee’s CASE 2 & 3 are publicly available, we note that these variants (which consist in
applying byte encodings to internal rounds) should not prevent our collision attack.

5.3 Theoretical Analysis
We analyze hereafter the success and trace complexity of our collision attack in the idealized
model. For this purpose, we first introduce a random experiment that we shall call the
balls-and-containers game.

The balls-and-containers game. In an (α, β, γ)-balls-and-containers game experiment,
a player randomly places α different balls in γ different containers of β slots each, such
that, at each step, the random placement of a ball is done uniformly among the remaining
free slots.8 As an illustration, the outcome of 4 independent experiments of the (5, 3, 6)-
balls-and-containers game is represented in Figure 6.

We say that a container collides when it contains more than one ball at the end of an
experiment. For instance, the 3rd and 5th containers collide in the first experiment in
Figure 6 whereas the other containers do not collide. We further say that the outcomes of
two experiments are isomorphic whenever a reordering of the containers in one outcomes
yields a distribution of the balls among the containers which is the same as for the other
outcome. For instance, the outcomes of the two first experiments in Figure 6 are isomorphic.
Collision probability. Consider a (α, β, γ)-balls-and-containers game for which γ > α (i.e.
there are more containers than balls). Let Col be the event that at least one container
collides. We have

8In particular a container with one or several ball(s) has a lower probability to receive a new ball than
a container with only free slots.

242 Analysis and Improvement of Differential Computation Attacks

Containers

1 2 3 4 5 6
E
x
p
er
im

en
ts

1

2

3

4

Figure 6: Outcome of 4 independent experiments of the (5, 3, 6)-balls-and-containers game,
in which different balls are in different colors.

Pr(¬ Col) = 1− Pr(Col) = g(α, β, γ) ,

where

g(α, β, γ) :=
α−1∏
i=1

β(γ − i)
γβ − i

. (7)

Lemma 2. If α < β and α < γ, we have

g(α, β, γ) < exp
(
− (α− 2)(α− 1)

2γ

)
.

The proof is provided in Appendix D.

Isomorphism probability. Let us denote Iso the event that two independent experiments of
the (α, β, γ)-balls-and-containers game are isomorphic. Given γ′ the number of containers
with at least one ball in the first experiment, we have

Pr(Iso) ≤
γ′−1∏
i=1

β(γ − i)
γβ − i

·
α−1∏
i=γ′

β − 1
γβ − i

≤ g(α, β, γ) .

The above probability can be interpreted as follows. In order to have the second experiment
isomorphic to the first one, the two following shall occur:

(1) taking one ball from each γ′ non-empty container in the first experiment, one must
get that these γ′ balls are placed in different containers in the second experiment;

(2) each of the remaining balls must end in a specific container (with at most β − 1 free
slots) to satisfy the isomorphic property.

The first inequality comes from the fact that there might be less than β − 1 remaining free
slots in a container for the placing of the remaining balls. The second inequality holds by
definition of g (see Equation 7) and from β(γ − i) > β − 1 (since γ > α).

Collision attack success probability. We analyze our collision attack under an idealized
model as the one considered for our analysis of DCA (see Section 4.2). In particular, the
functions (ϕk)k∈K are assumed to be mutually independent random balanced (n,m)-VBFs.
Unlike DCA, the collision attack does not split the samples in the computation trace
into bits. We hence consider that the definition space of the Vj ’s matches the encoding
definition space, i.e. V = Fm2 . For some j∗ ∈ [T], we have Vj∗ = ε ◦ ϕ∗(X), for the other

Matthieu Rivain and Junwei Wang 243

j ∈ [T] \ {j∗}, we ideally assume that the samples can be expressed as Vj = fj(X) where
the fj ’s are uniform random balanced (n,m)-VBFs.

We first consider the success event

Succ : Cor
(
ψk∗
(
X(i1), X(i2)),W (i1,i2)

j∗

)
> max

k×
Cor

(
ψk×

(
X(i1), X(i2)),W (i1,i2)

j∗

)
,

i.e. the correlation is maximal for the correct key guess at the right sample index j∗. Note
that for j∗, we have

W
(i1,i2)
j∗ = ε ◦ ϕ∗(X(i1))� ε ◦ ϕ∗(X(i2)) = ϕ∗(X(i1))� ϕ∗(X(i2)) = ψk∗

(
X(i1), X(i2)) .

For some given set of inputs (x(i))i∈N , the above success event relies on two events E1 and
E2, with Succ = E1 ∩ E2, which are defined as

E1 : ∃ (i, j), 1 ≤ i < j ≤ N, s.t. ϕ∗(x(i)) = ϕ∗(x(j)) ,

and

E2 : ∀ k×∈ K \ {k∗}, ∃ (i, j), 1 ≤ i < j ≤ N, s.t. ψk∗(x(i), x(j)) 6= ψk×(x(i), x(j)) .

The event E1 ensures that the collision predictions ψk∗
(
x(i), x(j)) are not all equal to

zero for the right key guess, which must hold so that the correlation score for k∗ is well
defined.9 The event E2 ensures that for all the wrong key guesses, (ψk×(x(i), x(j)))i,j does
not perfectly match (ψk∗(x(i), x(j)))i,j , which implies a correlation score strictly lower than
1.

Assuming that we have N < 2m, we can express the collision attack success in terms
of balls-and-containers game experiments, by considering

• the inputs (x(i))i∈N as N different balls,

• the output values of ϕ as 2m different containers,

• the number of preimages of a given output through ϕ as the 2n−m slots in each
container.

Then each key guess k gives rise to a (α, β, γ)-balls-and-containers game experiment with
α = N , β = 2n−m, γ = 2m where the randomness of ϕk acts as a random placement of
the inputs (xi)i∈N in the 2m output values with a maximum of 2n−m slots per output
value (which results from the balanceness of ϕk). The mutual independence of the (ϕk)k∈K
implies the mutual independence of the balls-and-containers game experiments.

The event E1 then holds if at least one container collides in the experiment corresponding
to k∗, i.e.,

Pr(E1) = Pr(Col) = 1− g(N, 2n−m, 2m) . (8)

On the other hand, the event E2 holds if none of the experiments for k× ∈ K \ {k∗} is
isomorphic to the experiment for k∗. The mutual independence of these experiments imply

Pr(E2) =
(
1− Pr(Iso)

)|K|−1 ≥
(
1− g(N, 2n−m, 2m)

)|K|−1
. (9)

Proposition 3. Under our idealized model, we have

Pr(Succ) ≥
(
1− g(N, 2n−m, 2m)

)|K| ≥ 1− |K| · exp
(
− (N − 2)(N − 1)

2m+1

)
.

9In principle we should also ensure that the collision predictions for the right key guess are not all
equal to one, i.e. the inputs (x(i))i∈N do not all map to the same output through ϕk∗ , but this shall
occur with overwhelming probability so we neglect this requirement.

244 Analysis and Improvement of Differential Computation Attacks

The proposition is a direct consequence of Equation 8 and Equation 9 (first inequality),
and Lemma 2 (second inequality).

Let us now extend the analysis by considering the full computation trace. Under our
idealized model, the latter is composed of ε ◦ ϕ∗(X) and of T − 1 samples generated from
fresh random balanced (n,m)-VBFs. We have the following corollary of Proposition 3.

Corollary 2. Let us denote Full-Succ the success event

Full-Succ : max
j∈[T]

Cor
(
ψk∗
(
X(i1), X(i2)),W (i1,i2)

j

)
> max
j∈[T],k×

Cor
(
ψk×

(
X(i1), X(i2)),W (i1,i2)

j

)
.

Under our idealized model, we have

Pr(Full-Succ) ≥
(
1− g(N, 2n−m, 2m)

)T ·|K| ≥ 1−T · |K| · exp
(
− (N − 2)(N − 1)

2m+1

)
. (10)

Corollary 2 is a straightforward extension of Proposition 3 where (|K| − 1) + 1 in the
exponent is replaced by T · (|K| − 1) + 1 which directly implies the above inequality.

Trace complexity. From the above analysis, we can easily deduce the trace complexity
of our collision attack. Let λ be some parameter such that one wants to achieve a success
probability 1− 10−λ. By Corollary 2, taking

N =
√

2m+1
(
λ log 10 + log T + log |K|

)
+ 1 , (11)

implies Pr(Full-Succ) ≥ 1− 10−λ. Given a (high) success probability, a trace size and a
key space, the number of required computation traces is hence N = Θ(2m2), which is a
significant improvement over DCA for which we have N = O(22m).

In order to illustrate our analysis, Figure 7 plots the lower bound on the success
probability (Equation 10) for n = 16, m = 8, |K| = 2n, and T ∈ {1, 103, 106}. We see that
multiplying the size of the computation trace by a factor 1000 only implies a small gap (less
than 20) in the number of required traces. In order to illustrate the tightness of the bounds,
we further plot the middle lower bound in Equation 10, i.e. (1− g(N, 2n−m, 2m))T ·|K|, as
well as the lower bound obtained by a straight application of Lemma 2. We observe that
our explicit lower bound only implies a gap of 5 in the number of required computation
traces, which is fairly tight.

50 60 70 80 90 100 110 120 130 140
0

0.5

1
(85, 0.991)

(70, 0.133)

(80, 0.937)
(85, 0.942) (104, 0.946) (120, 0.949)

lower bound with T = 1

lower bound with T = 103

lower bound with T = 106

middle lower bound with T = 1

lower bound on g (Lemma 2) with T = 1

Figure 7: Success probability lower bound (Equation 10) over an increasing N for n = 16,
m = 8, and |K| = 2n.

Matthieu Rivain and Junwei Wang 245

6 Mutual Information Analysis
Mutual Information Analysis (MIA) was introduced in the side-channel context for an
adversary that has very limited knowledge about the leakage distribution and how it
relates to computed data [GBTP08, BGP+11]. In particular, MIA can deal with any kind
of –possibly uncommon, odd, or complex– leakage function. It therefore naturally applies
in the white-box context to attack implementations protected with internal encodings
since the latter can be thought of as particular cases of –especially complex– leakage
functions. We first recall the MIA distinguisher in Section 6.1, then we give a brief analysis
on its behavior in the considered white-box setting in Section 6.2, and finally we present
experimental results in Section 6.3.

6.1 MIA Distinguisher
The MIA distinguisher for a key guess k is calculated as the maximal mutual information
between the prediction ϕk(X) and each trace sample Vj , that is

δmia
k = max

j∈[T]
I
(
ϕk
(
X
)
;Vj
)

The basic notions of information theory are recalled in Appendix E. Note that unlike the
side-channel context in which evaluating the mutual information usually involves complex
pdf estimation methods, we are only dealing with discrete variables here which makes the
practical evaluation simpler.

6.2 Analysis and Improvement
In practice the adversary computes the MIA distinguisher based on sample values. In
the following, we shall use denote Î and Ĥ the sample versions of the mutual information
and the entropy which are computed based on a uniform random selection of the inputs
(x(i))i∈[N].

Let j∗ be the sample index such that Vj∗ = ε ◦ϕk∗(X). For clarity, we abuse notations
by skipping the parameter k in the selection function by letting ϕ = ϕk, ϕ∗ = ϕk∗ and
ϕ× = ϕk× . We have

Î
(
ϕ(X);Vj∗

)
= Î
(
ϕ; ε ◦ ϕ∗

)
= Î
(
ϕ;ϕ∗

)
where we drop the argument X in ϕ and ϕ∗ for the sake of clarity, and where the last
equality holds by the bijectivity of ε. Let us look at the success event that, for the right
sample index j∗, the mutual information score is the greatest for the correct key guess,
that is

Succ : Î
(
ϕ∗;ϕ∗

)
≥ max

k×
Î
(
ϕ×;ϕ∗

)
.

For the correct key guess, we have

Î
(
ϕ∗;ϕ∗

)
= Ĥ

(
ϕ∗
) N→∞−−−−−→ H

(
ϕ∗
)

= m .

On the other hand, for an incorrect key guess, we have

Î
(
ϕ×;ϕ∗

)
= Ĥ

(
ϕ∗
)
− Ĥ

(
ϕ×|ϕ∗

)
.

We hence deduce that Succ occurs if and only if Ĥ
(
ϕ×|ϕ∗

)
6= 0 for every k× ∈ K \ {k∗},

which is equivalent to the following event

E : ∀k×∈ K\{k∗}, ∃(i, j), 1 ≤ i < j ≤ N, s.t. ϕ∗(x(i)) = ϕ∗(x(j)) and ϕ×(x(i)) 6= ϕ×(x(j)) .

246 Analysis and Improvement of Differential Computation Attacks

Note that this event is close but different from the intersection E1 ∩ E2 analyzed for the
collision attack. In particular we have E ⇒ E1 ∩ E2 but E1 ∩ E2 6⇒ E. In other words,
our collision attack succeeds whenever MIA succeeds but the converse is not true.

Nevertheless, the event E has still a high probability to occur when the parameters are
chosen as in our collision attack. For instance, let n = 2m and N = Θ(2m2). According
to the birthday paradox, we have a high probability to get a small number q of collisions
ϕ∗(x(i)) = ϕ∗(x(j)). The event E does not occur, if for some k× we also have ϕ×(x(i)) =
ϕ×(x(j)) for all these q collisions, which happens with probability lower than

(2m−1
2n−N

)q ≤
1

2qm . We thus obtain a high probability Pr(E) ≥ 1− |K|2qm and hence we also have N = O(2m2)
for MIA.

Improved MIA. We show hereafter that a simple improvement of MIA can make it
as successful as our collision attack. We know that for the right key guess we have
Î
(
ϕ∗;ϕ∗

)
= Ĥ

(
ϕ∗
)
. So for a guess k, we know that if Î

(
ϕ;ϕ∗

)
6= Ĥ

(
ϕ
)
then k 6= k∗. Our

improvement simply consists in setting the score associated to k to 0 whenever such an
inequality occurs, that is

δmia
k =

{
H(ϕk(X)) if maxj∈[T] I

(
ϕk(X);Vj

)
= H(ϕk(X)),

0 otherwise.

For this new distinguisher, we still have Ĥ
(
ϕ∗
)
as score for the right key guess. But for

a wrong key guess, we get a zero score whenever

Î
(
ϕ×;ϕ∗

)
= Ĥ

(
ϕ×
)
− Ĥ

(
ϕ∗|ϕ×

)
6= Ĥ

(
ϕ×
)
⇔ Ĥ

(
ϕ∗|ϕ×

)
6= 0 .

Therefore, for this improved distinguisher, the success occurs if and only if for every
k× ∈ K \ {k∗} we have either Ĥ

(
ϕ×|ϕ∗

)
6= 0 (as for standard MIA) or Ĥ

(
ϕ∗|ϕ×

)
6= 0.

Equivalently, the failure occurs if for one k× ∈ K \ {k∗} we have Ĥ
(
ϕ×|ϕ∗

)
= 0 and

Ĥ
(
ϕ∗|ϕ×

)
= 0. This failure event holds if the distribution of the inputs (x(i))i∈[N] among

the different output values of ϕ are isomorphic for k× and k∗ in the sense of the balls-and-
containers game introduced in Section 5.3. We deduce that the success of the improved
MIA is equivalent to the event E2 considered in the analysis of the collision attack. In
other words, the improved MIA succeeds if and only if our collision attack succeeds, except
that the improved MIA does not need the event E1 to occur. We then have similar success
probabilities than in Proposition 3 where |K| can be replaced by |K| − 1. However, this
difference has a negligible impact on the number of traces (which clearly appears while
looking at Equation 11) and one can consider that the two attacks have similar trace
complexities in our idealized model.

6.3 Practical Attack Experiments
We perform practical experiments for the generic and improved MIA against the NSC
variant implementation. We use the same target variable as in our DCA and collision attack
experiments, which is a MixColumn output in the first round, turned into a (16, 8)-VBF
–with a key space of size 216– by fixing two input bytes (see Section 4.4.2 for details). For
each attack, we first perform some preprocessing step in order to speed-up the attack.

Preprocessing. In order to save some computation we detect all the “informationally
equivalent” samples in the collected traces, namely indexes i and j for which

Ĥ(Vi) = Ĥ(Vj) = Î(Vi ; Vj) ,

Matthieu Rivain and Junwei Wang 247

or equivalently for which there is a one-to-one relation between the samples (v(`)
i)`∈[N]

and (v(`)
j)`∈[N]. We then remove these “informational” duplicates (i.e. we either drop the

column i or the column j in the set of computation traces). This can be done efficiently
by grouping the indexes for which Ĥ(Vi) has a given value and only computing Î(Vi ; Vj)
within each group. This preprocessing allows us to compress the computation traces by a
factor 10 (from 1850 samples to 185), which is especially interesting given the large key
space |K| = 216.

Standard MIA. We could recover the two key bytes (ranked first) with standard MIA
using 115 traces. As an illustration, we plot the the mutual information traces for the
right key guess and for 256 (out of 216 − 1) in Figure 8. These are obtained using 150
computation traces in order to make the right guess peak clearly visible.

3

4

5

6

7

Sample

M
ut

ua
lI

nf
or

m
at

io
n

Figure 8: Mutual information traces for the correct key guess (in blue) and 256 (out of
216 − 1) incorrect key guesses (in gray).

Improved Attack. Our experiments show that the improved attack substantially decreases
the number of required traces. Namely, we can recover the right key guess using 70 traces.
We observe that only the correct key guess has a positive score, i.e. Ĥ(ϕ∗) ≈ 5.89, and all
the incorrect key guesses have a score to 0. This is quite similar to our collision attack,
which requires 60 traces to recover the same two key bytes on the same implementation.

7 Comparison

In this section, we compare the three attack techniques analyzed in this paper. First of all,
they all belong to the same family of computation analysis attacks that record computed
values during the execution of white-box implementation and then apply side-channel
attack techniques. In particular, these attacks are gray-box in the sense that they can
work with only limited knowledge of the implementation and of the computation traces
(e.g. one does not need to know the implementation details or the location of the target
variables in the traces).

Another apparent similarity is that these three techniques require a non-injective
property of the target variable. However we stress that this requirement is intrinsic to
collision and mutual information attacks (as already noted in [PR09, BGP+11] for the
latter), whereas it is not for DCA. Indeed the necessity of targeting non-injection is implied
by the context, namely the presence of random encodings to protect the implementation,
and DCA could work without such a requirement in other contexts.

248 Analysis and Improvement of Differential Computation Attacks

Table 4: Trace complexity of DCA, collision attack (CA) and MIA against internal
encodings, where m is the encoding bit-size (m = 8 in the NSC variant).

DCA (Section 4) CA (Section 5) MIA (Section 6)

Theoretical trace complexity O
(

22m
)

O
(

2
m
2
)

O
(

2
m
2
)

Number of traces for NSC variant 1800 60 70

The trace complexities of the three approaches are summarized in Table 4. Notably,
compared to DCA, our collision attack and MIA have low trace complexities. Namely, they
only require about 2m2 traces and are thus very effective at defeating internal encodings.
For instance, while using 16-bit encodings would imply a huge code size,10 our collision
attack or improved MIA would still break the implementation with a few hundred traces.

In terms of time complexity, DCA and MIA take Θ(T · |K| ·N) operations whereas
the collision attack takes Θ(T · |K| · N2) operations. Assuming that we have |K| = 2n
and that we take n = 2m as suggested in our analyses these time complexities become
O(24m · T), O(23m · T), and O(22.5m · T) for DCA, CA and MIA respectively. Despite its
slightly better asymptotic time complexity, MIA was slower than our collision attack in
our practical attack experiments. This would probably not be the case in a setting where
more computation traces are required (typically with a higher m).

Finally, we note that our collision attack and MIA are especially suited to attack internal
encodings since both attacks rely on the collision behavior of some target variables which is
not affected by the application of a random bijection. This explains their superiority over
DCA in this context. However, in the presence of different countermeasures (especially
affecting the collision behavior) these attacks could fail where a DCA could still succeed.
We let a broader comparison in different white-box scenarios as an open topic for future
research.

8 Conclusion
In this paper, we have taken one step towards the analysis and improvement of differential
computation (gray-box) attacks against white-box implementations. In particular, we have
focused on implementations protected with internal encodings and we have conducted a
thorough analysis of DCA in this context. Our results formally pinpoint when and why
DCA succeeds in defeating internal encodings. In particular, whereas DCA was believed
inefficient in breaking byte encodings, we have shown that it actually works for a good
choice of the target variable, which was validated through practical attack experiments on
publicly available white-box implementations.

Besides, we have introduced a new collision-based DCA-like attack and we have sug-
gested to apply mutual information analysis (MIA) against internally encoded white-box
implementation. These two approaches have been theoretically and practically demon-
strated very powerful in this context where they achieve a much lower trace complexity
than DCA.

Our work suggests that internal encodings, as sole white-box countermeasure, are
insufficient to resist DCA-like attacks. Several interesting research directions are raised by
our work such as analyzing the level of resistance that can be reached by a combination
of countermeasures against this kind of gray-box attacks, and improving these attack
techniques, or finding new ones, to address further white-box settings.

10With 16-bit encodings, a single encoded table taking two arguments (e.g. an encoded XOR) requires
22×16 × 2 bytes which is more than 8 GB.

Matthieu Rivain and Junwei Wang 249

Acknowledgments
The authors are grateful to Albert Spruyt for helpful discussions. This work was partially
done while the second author was visiting Riscure. The second author was supported
by European Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 643161.

References
[BBB+17] Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain,

Wil Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen,
and Alexander Treff. White-box cryptography: Don’t forget about grey
box attacks. Cryptology ePrint Archive, Report 2017/355, 2017. https:
//eprint.iacr.org/2017/355.

[BBMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.
On the ineffectiveness of internal encodings - revisiting the DCA attack on
white-box cryptography. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 103–120. Springer, Heidelberg, July
2018.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. Perturbing and
protecting a traceable block cipher. In Communications and Multimedia Secu-
rity, 10th IFIP TC-6 TC-11 International Conference, CMS 2006, Heraklion,
Crete, Greece, October 19-21, 2006, Proceedings, pages 109–119, 2006.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer,
Heidelberg, May 1997.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white
box AES implementation. In Helena Handschuh and Anwar Hasan, editors,
SAC 2004, volume 3357 of LNCS, pages 227–240. Springer, Heidelberg,
August 2004.

[BGP+11] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain,
François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual informa-
tion analysis: a comprehensive study. Journal of Cryptology, 24(2):269–291,
April 2011.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differ-
ential computation analysis: Hiding your white-box designs is not enough.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 215–236. Springer, Heidelberg, August 2016.

[BRVW18] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang.
Higher-order DCA against standard side-channel countermeasures. Cryp-
tology ePrint Archive, Report 2018/869, 2018. https://eprint.iacr.org/
2018/869.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 513–525. Springer, Heidelberg, August 1997.

https://eprint.iacr.org/2017/355
https://eprint.iacr.org/2017/355
https://eprint.iacr.org/2018/869
https://eprint.iacr.org/2018/869

250 Analysis and Improvement of Differential Computation Attacks

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Selected Areas in
Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, pages 250–270,
2002.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Security and
Privacy in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002,
Washington, DC, USA, November 18, 2002, Revised Papers, pages 1–15, 2002.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for
elliptic curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors,
CHES’99, volume 1717 of LNCS, pages 292–302. Springer, Heidelberg, August
1999.

[FY+38] Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological,
agricultural and medical research. Statistical tables for biological, agricultural
and medical research., 1938.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors,
CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, Heidelberg,
August 2008.

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis
of white box DES implementations. In Carlisle M. Adams, Ali Miri, and
Michael J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 278–295.
Springer, Heidelberg, August 2007.

[Kar11] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC 10, volume 6829 of
LNCS, pages 278–291. Springer, Heidelberg, December 2011.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[LKK18] Seungkwang Lee, Taesung Kim, and Yousung Kang. A masked white-box
cryptographic implementation for protecting against differential computation
analysis. IEEE Trans. Information Forensics and Security, 13(10):2602–2615,
2018.

[LRM+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 265–285. Springer, Heidelberg, August 2014.

[Man04] Stefan Mangard. Hardware countermeasures against DPA - A statistical
analysis of their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA 2004,
volume 2964 of LNCS, pages 222–235. Springer, Heidelberg, February 2004.

Matthieu Rivain and Junwei Wang 251

[MGH09] Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. Cryptanalysis of a
generic class of white-box implementations. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages
414–428. Springer, Heidelberg, August 2009.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced
power analysis collision attack. In Stefan Mangard and François-Xavier Stan-
daert, editors, CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
Heidelberg, August 2010.

[MRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao-
Lai white-box AES implementation. In Lars R. Knudsen and Huapeng Wu,
editors, SAC 2012, volume 7707 of LNCS, pages 34–49. Springer, Heidelberg,
August 2013.

[Mui13] James A. Muir. A tutorial on white-box AES. Cryptology ePrint Archive,
Report 2013/104, 2013. http://eprint.iacr.org/2013/104.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD. In
Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, CHES 2003,
volume 2779 of LNCS, pages 77–88. Springer, Heidelberg, September 2003.

[PR09] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of
mutual information based side channel analysis. In Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09,
volume 5536 of LNCS, pages 499–518. Springer, Heidelberg, June 2009.

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-
attack on AES: Combining side channel- and differential-attack. In Marc Joye
and Jean-Jacques Quisquater, editors, CHES 2004, volume 3156 of LNCS,
pages 163–175. Springer, Heidelberg, August 2004.

[Sv99] Adi Shamir and Nicko van Someren. Playing “hide and seek” with stored
keys. In Matthew Franklin, editor, FC’99, volume 1648 of LNCS, pages
118–124. Springer, Heidelberg, February 1999.

[XL09] Y. Xiao and X. Lai. A secure implementation of white-box aes. In 2009 2nd
International Conference on Computer Science and its Applications, pages
1–6, Dec 2009.

http://eprint.iacr.org/2013/104

252 Analysis and Improvement of Differential Computation Attacks

A Proof of Proposition 1
Proof. Under our idealized model, the functions (εj ◦ ϕ∗ + ϕi)ϕ∈{ϕk:k∈K} are mutually
independent, hence their bias, i.e. the variables (Yk)k∈K, are also mutually independent.
Moreover, the (Yk×)k×∈K\{k∗} are identically distributed. We can then write:

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
=

2n∑
y=−2n

Pr
(
Yk∗ = y

)
· Pr
(
|y| > max

k×
|Yk× |

)
=

2n∑
y=−2n

Pr
(
Yk∗ = y

)
·
∏
k×

Pr
(
|y| > |Yk× |

)
=

2n∑
y=−2n

Pr
(
Yk∗ = y

)
· Pr
(
|y| > |Yk× |

)|K|−1
.

We further have that the distributions of Yk∗ and Yk× (for every k×) are both symmetric
centered in 0, that is Pr(Yk = y) = Pr(Yk = −y) for every k and y, which gives

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2

∑
−2n≤y<0

Pr
(
Yk∗ = y

)
· Pr
(
|y| > |Yk× |

)|K|−1

= 2
∑

−2n≤y<0
Pr
(
Yk∗ = y

)
·
(
1− 2 · ΦYk× (y)

)|K|−1
.

Using a change of variable y = 2n−m+2z − 2n, we have Pr
(
Yk∗ = y

)
= PrH̃G(m)(z) and

ΦYk× (y) = ΦH̃G(n)(2
n−m · z), which finally yields:

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2

∑
0≤z<2m−2

PrH̃G(m)(z) ·
(
1− 2 · ΦH̃G(n)(2

n−m · z)
)|K|−1

.

B Proof of Proposition 2
Proof. For any i, j ∈ [m], and k ∈ K, let Y jk = B(εj ◦ ϕ∗ + ϕi), then

Pr
(
Succε

)
= Pr

(
max
j∈[m]

∣∣Y jk∗ ∣∣ > max
j∈[m],k×∈K\{k×}

∣∣Y jk× ∣∣)
=

2n∑
y=1

Pr
(

max
j∈[m]

∣∣Y jk∗ ∣∣ = y

)
· Pr

(
y > max

j,k×
|Y jk∗ |

)

where

Pr
(

max
j∈[m]

∣∣Y jk∗ ∣∣ = y

)
= Pr

({
j :
∣∣Y jk∗ ∣∣ = y

} ⋂ {
j :
∣∣Y jk∗ ∣∣ ≤ y} 6= ∅

)
=

m∑
`=1

Pr
(∣∣∣{j :

∣∣Y jk∗ ∣∣ = y
}∣∣∣ = `

∧ ∣∣∣{j :
∣∣Y jk∗ ∣∣ < y

}∣∣∣ = m− `
)

=
m∑
`=1

(
m

`

)
· Pr

(∣∣Y jk∗ ∣∣ = y
)`
· Pr

(∣∣Y jk∗ ∣∣ < y
)m−`

=
m∑
`=1

(
m

`

)
· Pr

(
Y jk∗ = ±y

)`
· Pr

(
−y < Y jk∗ < y

)m−`

Matthieu Rivain and Junwei Wang 253

and

Pr
(
y > max

j,k×
|Y jk× |

)
=

∏
j,k×

Pr
(
y > |Y jk× |

)
= Pr

(
y > |Y jk× |

)m·(|K|−1)

=
(
1− 2 · ΦYk× (−y)

)m·(|K|−1)

according to the mutual independence of the
(
ϕk
)
k∈K and the mutual independence of

their coordinate functions in our idealized model.

Using a change of variable y = 2n − 2n−m+2z, we have Pr
(
Y jk∗ = ±y

)
= 2PrH̃G(m)(z)

and Pr
(
− y < Y jk∗ < y

)
= 1− 2ΦH̃G(m)(z) and ΦYk× (−y) = ΦH̃G(n)(2

n−m · z), which gives

Pr
(

max
j∈[m]

∣∣Y jk∗ ∣∣ = y

)
=

m∑
`=1

(
m

`

)
·
(

2PrH̃G(m)(z)
)`
·
(

1− 2ΦH̃G(m)(z)
)m−`

(denoted by µ(z) hereafter) and

Pr
(
y > max

j,k×
|Y jk× |

)
=
(

1− 2 · ΦH̃G(n)(2
n−m · z)

)m·(|K|−1)
.

In summary,

Pr
(
Succε

)
=

2m−2∑
z=1

µ(z) ·
(

1− 2 · ΦH̃G(n)(2
n−m · z)

)m·(|K|−1)
.

254 Analysis and Improvement of Differential Computation Attacks

C Procedures for DCA Simulation

1: procedure DcaSimulation(ϕ, n,m,N)
2: k∗, k×←$K
3: i, j←$ {1, 2, · · · ,m}
4: for k ∈ K do
5: for x ∈ Fn2 do
6: Tk(x)←

(
ϕk(x)� (i− 1)

)
& 1

7: end for
8: end for
9: c1, c2 ← 0

10: for l← 1 to N do
11: ε ←$ E
12: for j′ ∈ [m], x ∈ Fn2 do
13: Ej′(x)←

(
ε ◦ ϕk∗(x)� (j′ − 1)

)
& 1

14: end for
15: for j′ ∈ [m], k ∈ K do
16: Bk,l,j′ ← Bias(Ej′ , Tk, n)
17: end for
18: if Bk∗,l,j > maxk∈K\{k∗}Bk,l,j then
19: c1 ← c1 + 1
20: end if
21: if maxj′ Bk∗,l,j′ > maxk×,j′ Bk×,l,j′ then
22: c2 ← c2 + 1
23: end if
24: end for
25: return

(
Bk∗,l,j , Bk×,l,j

)
1≤l≤N , c1

N , c2
N

26: end procedure

1: procedure Bias(T1, T2, n)
2: w ← 0
3: for i← 1 to 2n do
4: w ← w + T1(i)⊕ T2(i)
5: end for
6: return 2n − 2 · w
7: end procedure

Figure 9: DCA simulation procedures for a (n,m) selection function ϕ with N trails.
Here K = Fn2 , and ε←$ E means randomly sampling a m-bit permutation, which can be
efficiently achieved by [FY+38].

D Proof of Lemma 2

Proof. We have γ·β−i·β
γ·β−i = 1− i− i

β

γ− i
β

and i−1
γ−1 <

i− i
β

γ− i
β

(since i ≤ β and i < γ). We deduce

g(α, β, γ) <
α−1∏
i=1

(
1− i− 1

γ − 1

)
.

According to the mean inequality we get

α−1

√√√√α−1∏
i=1

(
1− i− 1

γ − 1

)
<

1
α− 1

α−1∑
i=1

(
1− i− 1

γ − 1

)

=1− α− 2
2γ − 2 < 1− α− 2

2γ < exp
(
−α− 2

2γ

)
.

Combing the two above formulas concludes the proof.

Matthieu Rivain and Junwei Wang 255

E Information Theory Preliminaries
Entropy. The Shannon entropy of a discrete random variable X ∈ X measures the
uncertainty of X. It is defined by the following equation

H(X) = −
∑
x∈X

Pr(X = x) · log2 Pr(X = x).

The joint entropy of two discrete random variables X and Y expresses the uncertainty of
the combination of variables:

H(X,Y) = −
∑

x∈X ,y∈Y
Pr(X = x, Y = y) · log2 Pr(X = x, Y = y).

The joint entropy satisfies, H(X,Y) = H(Y,X) and

max
(
H(X),H(Y)

)
≤ H(X,Y) ≤ H(X) + H(Y), (12)

where the left equality is reached if and only if (iff) Y is a deterministic function of X,
and the right equality occurs iff X and Y are independent. The conditional entropy of a
random variable X given by another variable Y expresses the uncertainty on X if Y is
known:

H(X|Y) = −
∑

x∈X ,y∈Y

(
Pr(X = x, Y = y) · log2 Pr(X = x|Y = y)

)
,

which satisfying
0 ≤ H(X|Y) ≤ H(X)

where both the left equality and the right equality are reached with the same condition of
Equation 12.

Mutual Information. The mutual information (MI) of two discrete random variables X
and Y expresses the dependence between them. It measures the quantity of information
one has obtained on X by observing Y . It is defined as

I(X;Y) = −
∑

x∈X ,y∈Y
Pr(X = x, Y = y) · log2

(
Pr(X = x, Y = y)

Pr(X = x) · Pr(Y = y)

)
.

It can also be computed by the Shannon entropy

I(X;Y) = H(X)−H(X|Y)
= H(X) + H(Y)−H(X,Y)
= H(X,Y) + H(X|Y)−H(Y |X).

The mutual information satisfies I(X;Y) = I(Y ;X) and

0 ≤ I(X;Y) ≤ min
(
H(X),H(Y)

)

	Introduction
	Preliminaries
	Hypergeometric Distribution
	Pearson's Correlation Coefficient
	Boolean Functions
	Boolean Correlation
	Vectorial Boolean Functions

	Internal Encodings and Adversary Model
	Internal Encoding
	Passive Adversary Model

	Differential Computation Analysis
	DCA Distinguisher
	Analysis of DCA against Encoded Implementations
	Simulations
	Practical Attack Experiments
	Discussion

	Collision Attack
	Collision Attack Distinguisher
	Practical Attack Experiments
	Theoretical Analysis

	Mutual Information Analysis
	MIA Distinguisher
	Analysis and Improvement
	Practical Attack Experiments

	Comparison
	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Procedures for DCA Simulation
	Proof of Lemma 2
	Information Theory Preliminaries

