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Abstract. We improve the state-of-the-art masking schemes in two important di-
rections. First, we propose a new masked multiplication algorithm that satisfies a
recently introduced notion called Probe-Isolating Non-Interference (PINI). It captures
a sufficient requirement for designing masked implementations in a trivial way, by
combining PINI multiplications and linear operations performed share by share. Our
improved algorithm has the best reported randomness complexity for large security
orders (while the previous PINI multiplication was best for small orders). Second,
we analyze the security of most existing multiplication algorithms in the literature
against so-called horizontal attacks, which aim to reduce the noise of the actual
leakages measured by an adversary, by combining the information of multiple target
intermediate values. For this purpose, we leave the (abstract) probing model and
consider a specialization of the (more realistic) noisy leakage / random probing
models. Our (still partially heuristic but quantitative) analysis allows confirming
the improved security of an algorithm by Battistello et al. from CHES 2016 in this
setting. We then use it to propose new improved algorithms, leading to better trade-
offs between randomness complexity and noise rate, and suggesting the possibility to
design efficient masked multiplication algorithms with constant noise rate in F2.
Keywords: Masking, composability, horizontal attacks, random probing model.

1 Introduction
Masking has been established as a well-founded solution to improve security against side-
channel attacks. Intuitively, it works by splitting all the sensitive data manipulated by
an implementation in d = t+ 1 shares, and to perform the computations on those shares
only [CJRR99]. Under now well understood (noise and independence) leakage assumptions,
the security of a masked implementation grows exponentially in the number of shares.

In the current state-of-the-art, ensuring this security guarantee is generally achieved
in three main steps. First, the circuit is analyzed in the abstract probing model of Ishai
et al. [ISW03]. The latter is instrumental in detecting composition flaws due to a lack of
refreshing [CPRR13]. Concretely, such flaws can be avoided by checking the implementa-
tions in order to determine where refreshing gadgets have to be introduced [BBD+15], or
by using composable gadgets [BBD+16]. Next, the circuit is analyzed in the qualitative
bounded moment model of Barthe et al. [BDF+17], in order to determine the extent to
which physical defaults such as (e.g.,) glitches re-combine the shares and reduce the security
guarantees [MPG05]. Concretely, such flaws can be avoided both by constraining the
algorithmic design of the masking schemes (e.g., by using the non-completeness property
of threshold implementations [NRS11], which can be analyzed by extending the probing

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 2, pp. 162–198
DOI:10.13154/tches.v2019.i2.162-198

mailto:gaetan.cassiers@uclouvain.be,fstandae@uclouvain.be
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i2.162-198


Gaëtan Cassiers and François-Xavier Standaert 163

model to capture physical defaults [FGP+18]), or by mitigating the problem directly at
the hardware level [MM12]. Third and finally, the circuit is analyzed in the quantitative
noisy leakage model of Prouff and Rivain [PR13], based on information theoretic met-
rics [SMY09, DFS15]. In the latter one, masking security proofs typically require that
the leakage of each share is sufficiently noisy, which is a purely hardware assumption
that has to be verified/falsified empirically [BCPZ16, GS18]. This “multi-model approach”
(systematized in [JS17]) is theoretically validated by the work of Duc et al., who showed
that under the aforementioned noise and independence conditions, security in the noisy
leakage model is implied by security in the probing model [DDF14].

Besides, and from the performance viewpoint, masking implies significant overheads
in terms of time and randomness complexity (roughly quadratic in the number of
shares [GSF14]). Concretely, it has been observed that the randomness complexity
dominates as the number of shares in the masking schemes increases [GR17, JS17]. As a
result, significant efforts have been devoted to reduce/optimize it for masked multiplica-
tions [BBP+16, BBP+17, FPS17].

Based on this state-of-the-art, our contributions are twofold.

First, we push the analysis of masked multiplications with reduced randomness complex-
ity one step further. In this context, we observe that current solutions to ensure probing
security are either based on a mix of Non-Interferent (NI) and Strongly Non-Interferent
(SNI) multiplications [BBD+16, BBP+16], or can take advantage of a recently introduced
notion of Probe-Isolating Non-Interference (PINI) [CS18]. The latter is convenient in the
sense that it directly leads to fully composable implementations where all multiplications
are PINI and all linear operations are performed share by share (without any refreshing).
The PINI multiplication in this reference (next denoted as PINI1) allows randomness
reductions for low to moderate security orders, but was shown to have higher random-
ness complexity than an optimized combination of NI and SNI gadgets for large security
orders (in the 20th range). We propose a new multiplication algorithm (next denoted
as PINI2) which leads to the best known randomness complexity for such large orders –
ignoring [BBP+17] and restricting our analysis to boolean masking in F2 which usually
leads to the best concrete performances [GR17, JS17].

Second, we observe that by pushing the reduction of randomness complexity towards
optimal, one ignores the increased risk that the noise of each share can be reduced by an
adversary (by combining multiple leakage samples), and therefore that this optimization
can eventually be detrimental to the concrete security level of an implementation. From
the practical viewpoint, this has been demonstrated by the so-called horizontal attacks
in [BCPZ16, GS18]. From a theoretical viewpoint, it is captured by the concept of “noise
rate", which essentially corresponds to the level of noise increase (or shares’ information
reduction) that is required so that masking still provides an exponential security improve-
ment. The noise rate of Ishai et al.’s original multiplication algorithm is known to be
in O(1/t) [ISW03, PR13, DDF14, DFS15]. Recent works by Andrychowicz et al. and
Goudarzi et al. have shown that it is possible to reach noise rates in O(1/ log(t)) or even
O(1) [ADF16, GJR18]. Yet, the latter results require working in larger fields (typically
such that |F| is in O(t)).

Again motivated by the excellent performances of additive masking in small fields, we
therefore investigate the noisy leakage security of masked multiplications that can work
in F2. Our starting point for this purpose is an algorithm by Battistello et al. [BCPZ16]
(next denoted as SNI-H) which was shown to have improved resistance against horizontal
attacks based on qualitative arguments (i.e., the authors showed that the number of times
each share is manipulated is reduced compared to the algorithm by Ishai et al.). We
push the understanding of this algorithm one step further by analyzing it in the recently
proposed Local Random Probing Model (LRPM) [GGF18], which is a variation of the
Random Probing Model (RPM) by Duc et al. [DDF14]. The LRPM restricts the way the
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information leakage of an implementation is exploited to local propagation rules inspired
by the Belief Propagation (BP) algorithm used in Soft Analytical Side-Channel Attacks
(SASCA) [VGS14], which allows simple concrete evaluations of actual multiplication
algorithms (and more complex circuits). Since SASCA are among the (if not the) most
efficient way to perform horizontal attacks in the current state-of-the-art [GS18], the bounds
on the information that can be extracted thanks to SASCA (as provided by the LRPM)
can be viewed as a good approximation of the worst-case security level in the noisy leakage
model. Based on this new tool, we are able to confirm the relevance of the qualitative
analysis of Battistello et al. in a quantitative manner, and a noise rate in O(1/ log(t)). We
then describe new algorithms (derived from the one of Battistello et al., but also from PINI
multiplications and the original multiplication by Ishai et al.) with improved resistance
against horizontal attacks, suggesting a noise rate in O(1). We additionally discuss the
types of refreshing to use for improving security against horizontal attacks (i.e., the fact
that some internal refreshings used for this purpose within the multiplication algorithms do
not need to be SNI, and the randomness complexity gains that can be obtained from this
observation). Eventually, we discuss the “randomness complexity vs. noise rate" tradeoff
based on the different algorithms analyzed, suggesting gradual performance overheads as
the noise rate evolves from O(1/t) to O(1/ log(t)) and O(1).

Summarizing, our results bring two main conclusions and open problems. First, from a
theoretical viewpoint, security against horizontal attacks becomes increasingly important
as the number of shares (and claimed security order) in a masking scheme increases, and
optimizations based only on reducing the randomness complexity are not sufficient in this
context. This conclusion is based on quantitative but heuristic evaluations in the LRPM.
Obtaining tight proofs in the RPM is an interesting open problem.

Second, from a practical viewpoint, we show that horizontal attacks are relevant as
soon as the implementation is secure at high order (typically, t ≥ 6), and can cause an
exponential security reduction if the noise rate is not adapted. Applying such horizontal
attacks in an open source setting (i.e., when all implementation details are given to the
adversary) is direct with SASCA. Applying them in a close-source setting (i.e., when these
implementation details are not public) may be more challenging. In this respect, another
interesting open problem is to find out how strict is the separation between these contexts
(if there is one). For example, to what extent black box attacks (e.g., exploiting machine
learning / deep learning [MPP16]) can approach the efficiency of SASCA?

2 Background
2.1 Probing security and composability
We work with additive/boolean masking: each sensitive variable x is split into d = t+ 1
shares x0, . . . , xt that are chosen uniformly at random and independently (except xt) such
that x = x0 + · · ·+xt [CJRR99]. Most of our results can be applied for x in any finite field
of characteristic 2, but we are mainly interested in the binary (F2) case since it is known to
provide the best implementation performance thanks to bitslice implementations [GR17,
JS17]. Concretely, it means that we typically represent a circuit manipulating sensitive
variables as a sequence of elementary operations (i.e., additions and multiplications) that
we replace by their masked counterparts (that we denote as masked gadgets).

A usual first step in the assessment of a masked circuit is to analyze its security in the
(abstract) t-probing model of Ishai et al. [ISW03]. A circuit is secure in this model if and
only if all the sets of at most t intermediate values it computes are independent of all the
sensitive variables. In the context of block cipher implementations that we consider in this
paper, sensitive variables are variables that depend on the plaintext and/or the key [CPR07].
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While security in the t-probing model is relevant to concrete security in the noisy
leakage model (thanks to the reduction by Duc et al. [DDF14]), it is however not sufficient
for composability: a circuit made of the interconnection of multiple t-probing secure
circuits is not necessarily t-probing secure [CPRR13].

The stronger definition of Strong Non-Interference (SNI) [BBD+16] has been proposed as
a solution to this problem. The composition of SNI gadgets is SNI, and SNI implies probing
security [BBD+16] (if the gadgets have only one output [CS18]). However, the simple and
inexpensive way of implementing linear operations (i.e., the so-called trivial implementation
where each linear operation is applied independently for each share) is not SNI. As a result,
full block cipher implementations may require the addition of so-called “refreshing gadgets”
(e.g., instantiated by SNI multiplications by one), which cause additional overheads in
terms of time and randomness complexity [BBP+16, CS18, BGR18]. The multiplication
gadget of Ishai et al. [ISW03] (next denoted as the SNI-ISW multiplication gadget) is SNI.

Another solution for composability has recently been introduced: Probe-Isolating Non-
Interference (PINI) [CS18]. It guarantees composability, implies probing security and at
the same time, the trivial implementation of linear operations is PINI. We next introduce
the formal definition of PINI in the simulatability framework of [BBP+16] (generalized to
gadgets with n inputs instead of only 2). We also discuss an intuitive way to reason in
this framework using the idea of probe propagation.

We denote the input shares of a gadget as xi,j where i ∈ {1, . . . , n} is the input index
and j ∈ {0, . . . , t} is the share index. A set A is a set of share indices if A ⊂ {0, . . . , t}.
We use the notations xi,A = {xi,j : j ∈ A}, x∗,A = {xi,j : 1 ≤ i ≤ n, j ∈ A} and
x∗,∗ = {xi,j : 1 ≤ i ≤ n, 0 ≤ j ≤ t}.

Definition 1 (Simulatability (generalization of [BBP+16], Definition 7.1)). Let P =
{p1, . . . , pl} be a set of l probes of a gadget C with n inputs. Let I = {(i1, j1), . . . , (ik, jk)} ⊂
{1, . . . , n} × {0, . . . , t} be a set of input wires of C.

A simulator is a randomized function S : Fk
q → Fl

q. A distinguisher is a randomized
function D : Fl

q × Fnd
q → {0, 1}.

The set of probes P can be simulated with the set of input wires I if and only if there
exists a simulator S such that for any distinguisher D and any inputs x∗,∗, we have:

Pr[D(CP (x∗,∗), x∗,∗) = 1] = Pr[D(S(xi1,j1 , . . . , xik,jk
), x∗,∗) = 1],

where the probability is over the random coins in C, S and D.

Simulatability is a sufficient condition for probing security: a circuit C is t-probing
secure if any set of probes P of size t can be simulated with t shares of each input. Under
the simulatability definition we can reason transitively about sets of probes. A set of probes
can be simulated if the simulator has access to another set of probes. Hence, since the
simulation is perfect, analyzes can then “forget” the first set of probes and only consider
the second one. It allows proving probing security thanks to “probe propagation”, by
iterating the previous reasoning backwards, from a circuit’s outputs to its inputs.

The PINI definition is based on the idea of splitting the whole circuit into shares, and
forcing probes to propagate only in their own share. Since there are d = t + 1 shares
and only t adversarial probes, the latter ensures that the circuit is probing secure. The
isolation between circuit shares is naturally respected by the trivial implementation of
linear operations, but this is not the case for non-linear operations. Hence, the PINI
definition forces a simulated isolation.1

In the following definition, the set A is the set of shares’ indices (i.e., the circuit shares)
that are probed through output probes, and B is the set of circuit shares requested to

1 Since probes inside a non-linear gadget are not naturally associated to a circuit share, the simulator
can associate them to a circuit share of its choice.
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simulate the internal probes. For a gadget with inputs xi,j and outputs yi,j , all the shares
of one input are denoted as xi,∗ and all the input shares that are in the same circuit share
are all the input shares that have the same share index j: x∗,j . The same holds for outputs.

Definition 2 (Probe-Isolating Non-Interference [CS18]). Let G be a gadget over d shares
and P a set of t1 probes on wires of G (called internal probes). Let A be a set of t2 share
indices. G is t-Probe-Isolating Non-Interfering (t-PINI) if and only if for all P and A such
that t1 + t2 ≤ t, there exists a set B of at most t1 indices such that probes on the set of
wires P ∪ yG

∗,A can be simulated with the wires xG
∗,A∪B .

2.1.1 Multiplication gadgets

In this section, we introduce a framework for analyzing multiplication gadgets (from the
litterature and our new constructions) by splitting them into three stages: the MatGen
stage produces a d × d matrix of (possibly refreshed) pairs of shares of x and y, the
Product stage computes the partial products of those shares, which gives a d2 sharing of
the product, and the Compression stage compresses this sharing into a d-share output.
This process is illustrated by the next equation (for d = 4):

x0
x1
x2
x3

 ,

y0
y1
y2
y3

 MatGen−−−−→


(x0,0, y0,0) (x0,1, y1,0) (x0,2, y2,0) (x0,3, y3,0)
(x1,0, y0,1) (x1,1, y1,1) (x1,2, y2,1) (x1,3, y3,1)
(x2,0, y0,2) (x2,1, y1,2) (x2,2, y2,2) (x2,3, y3,2)
(x3,0, y0,3) (x3,1, y1,3) (x3,2, y2,3) (x3,3, y3,3)

 . . .

. . .
Product−−−−−→


α0,0 α0,1 α0,2 α0,3
α1,0 α1,1 α1,2 α1,3
α2,0 α2,1 α2,2 α2,3
α3,0 α3,1 α3,2 α3,3

 Compression−−−−−−−→


c0
c1
c2
c3

 · (1)

We next show how this general construction applies in a few particular cases of interest.

• ISW multplication [ISW03]. This is the most simple case, where the MatGen stage
is close to the identity: (xi,j , yi,j) = (xi, yj), the Product stage is a straightforward
product: αi,j = xi,j · yi,j and the Compression stage sums products and uniform
randomness in a way that ensures correctness and security: ci = αi,i +

∑t
j=0,j 6=i(ri,j +

αi,j), where ri,j = rj,i are random elements.

• Multplication of Belaid et al. [BBP+16]. This multiplication is identical to the ISW
gadget for the MatGen and Product stages. Its Compression stage is optimized to
use about two times less random elements that the ISW multiplication.2 Its principle
is shown by the following computation:3αi,i +

∑
j

(ri,j + αi,j + αj,i + rj−1 + αi,j−1 + αj−1,i)


i=0,...,t

,

for fresh randoms ri,j and rj−1.

• PINI1 multiplication [CS18]. This algorithm uses the same MatGen stage as the ISW
multiplication. Its Product stage uses the “masked shares multiplication trick” to
achieve PINI which we explain next. A probe on intermediate products xi · yi of the
ISW multiplication violates the PINI definition: its simulation requires the knowledge

2 This has the drawback of making it only NI while the ISW multiplication is SNI.
3 The actual algorithm, reproduced in Algorithm 4, is indeed more complex, as it needs to take into

account details such as parity, etc.
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of two input shares from distinct circuit shares. The masked shares’ multiplication
trick solves this problem by computing the tuple (αi,j,0, αi,j,1) = (xi · r, xi · (r + yj))
(where r is a fresh random element for each use of the trick), whose sum is indeed
xi · yj , and for which no probe can violates the PINI definition. This tuple is
then combined with the randomness of the next Compression stage as follows:
ci =

∑t
j=0(ri,j + αi,j,0 + αi,j,1) (addition is performed left-to-right).

In order to reduce the randomness consumption, the PINI1 multiplication uses the
same random bits for the masked shares’ multiplication trick and for the Compression
stage (r = ri,j = rj,i for each application of the trick). For “diagonal” (i = j) elements,
ri,i = 0. This is shown to be secure in [CS18].

• Multiplication of Battistello et al. [BCPZ16]. This algorithm uses the same Product
and Compression stages as the ISW multiplication, but its MatGen stage is modified
in order to resist horizontal attacks. This is discussed in detail in Section 4.4.

It should be noted that each of the stages may use some random bits (and sometimes,
as an optimization, the same random bits a re-used in different stages, e.g. in PINI1).
In the MatGen stage, the randomness cost comes from the use of additional “internal”
refresh gadgets (which primarily impact security against horizontal attacks), such as for
the multiplication of Battistello et al. A good example of randomness use in the Product
stage is given by the PINI2 gadget discuss in Section 3. Finally, the randomness in the
Compression stage is primarily needed for probing security (it is the only stage where
randomness is used in the SNI-ISW multiplication).

2.2 Horizontal attacks and the Local Random Probing Model
In actual side-channel attacks, the adversary observes leakage traces which depend on the
intermediate values computed by a target implementation. The samples in the traces are
typically noisy, which can be quantified by considering that there is a bound MIo on the
mutual information (MI) between each intermediate value computed and its corresponding
leakage samples. Such a practical attack scenario can be captured by the noisy leakage
model or the Random Probing Model (RPM). The first one was introduced in [PR13] as
a realistic model formalizing the information theoretic and security evaluations typically
considered in practice [SMY09]. The second one was introduced as a tool in the reduction
from the noisy leakage model to the d-probing model [DDF14].

Concretely, the exploitation of noisy leakages can be performed based on different
strategies. Standard side-channel attacks typically exploit the information related to the
shares of one (or a few) sensitive computations – typically those that can be targeted via
a divide-and-conquer approach [MOS11]. Horizontal side-channel attacks rather try to use
the information from the leakage of all the variables and all their shares [BCPZ16]. The
optimal way to perform such an attack (which would correspond to a worst-case analysis)
would be to compute Pr[K = k|L] for all k’s, where K is the sensitive variable and L is the
full leakage trace. Yet, computing directly these probabilities through the Bayes rule has a
prohibitive (computational) cost.4 An interesting approach to simplify this computation is
the Soft Analytical Side-Channel Attack (SASCA) introduced in [VGS14], which expresses
the target implementation as a code (in the meaning of coding theory) and runs the Belief
Propagation (BP) algorithm to decode it.

This attack has been recently analyzed in [GGF18], which introduces a technique to
bound its data complexity denoted as the Local Random Probing Model (LRPM). It is
based on analyzing the BP algorithm from the viewpoint of the mutual information. Guo

4 More precisely, even if K is restricted to an enumerable value, evaluating this probability requires
summing over K’s shares, which grows exponentially in d [GS18].
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et al. showed that a slightly modified version of the BP algorithm can be used to get an
upper bound MIt on the information that can be extracted from a leaking computation
thanks to a SASCA. The idea is that rather than propagating probability densities for
performing an attack (This is computationally expensive and gives the success/failure for
one attack, which makes it impractical to evaluate high security levels.5), the information
leakages are propagated. The bound can then be translated into a bound on the success
rate of the adversary (and data complexity of the attack) [DFS15].

The LRPM is therefore a specialization of the RPM where the way the leakages are
exploited is restricted to some information propagation rules similar to those of the BP
algorithm, as we explain next.

Factor graph and BP algorithm. SASCA are based on the construction of a factor
graph built from a set of relationships between intermediate values. For the masked
implementations of block ciphers, we typically consider three kinds of relationships: sums
of two elements: x = x1 +x2, products of two elements: x = x1 ·x2 and bijections: y = g(x)
where g is a bijection. The factor graph is a bipartite graph made of variable nodes (one
for each intermediate result within the leaking implementation) and function nodes (one
for each relationship), with an edge if an intermediate result appears in a relationship.
Furthermore, to each variable node is associated an intrinsic information – an estimated
Probability Density Function (PDF) – which represents the leakage that can be observed
on the corresponding intermediate result.

The principle of the BP algorithm is to exploit the relationships between variables in
order to constraint the PDF estimates. It works by sending messages (PDF estimates) on
the edges of the factor graph. Those messages are called extrinsic information. The BP
algorithm alternates two steps until the algorithm converges. The first step sends messages
from variable nodes to function nodes, and the second step sends messages from function
nodes to variable nodes. The message sent by a variable node to a function node is a
combination of the intrinsic information and the extrinsic information coming from function
nodes at the previous step, for all the function nodes the variable nodes is connected to,
except the function node that is the destination of the message being computed.6 Likewise,
the message sent by a function node to a variable node is a combination of all the incoming
messages to the function node, except the message coming from the destination variable
node (the actual combination depends on the relationship represented by the function
node, and the position – as operand or as result – of the variable). Once the algorithm
has converged, the intrinsic and extrinsic information at each node is combined to get the
final estimated PDF. We refer to [VGS14] for the details.

Local Random Probing Model. The LRPM models SASCA by using the factor graph
and the BP algorithm, with a slight modification: the messages are no longer PDF
estimates, but MI values that represent the amount of information contained in the PDF
estimates. A first consequence is that the intrinsic information is not a PDF, but the
amount of leakage observed on the variable. The second consequence is a modification of
the rules to compose messages [GGF18]:

• For messages of the first step (from variables to functions): the message sent is
the sum of the intrinsic and the extrinsic information, upper bounded to MI = 1.7
This follows from the fact that combining estimates for a variable at most sums the
information of the estimates.

5 It also avoids convergence issues when the factor graph has cycles.
6 All messages are initialized to an a priori (e.g., uniform) PDF.
7 The limitation comes from the fact that MI = 1 implies no uncertainty on the leaking variable, if the

MI unit is the field element.



Gaëtan Cassiers and François-Xavier Standaert 169

x, y + x1

x2×z

L0 L1

L2L3

Figure 1: Factor graph with six nodes. L labels indicate intrinsic information.

• For messages of the second step (from functions to variables): using the random
probing model, it is shown in [GGF18] that the information on the result of a sum
or on the operand of any operation (sum or product) is bounded by the product of
the information sent by the other concerned variables. Another case can happen
though, which was not discussed in [GGF18] (since they do not use the result of
multiplications in other operations). Namely the information on the result of a
multiplication. We discuss it in Appendix A. Simply stated, in our case (where we
multiply elements in F2), the resulting MI is the average of the MI on the operands.

• The case of bijection relationships is special: since the MI on one of the variables
related by a bijection translates into the same MI on the other variable, the two
nodes can be merged and the bijection function node removed.

• The final combination of information (once the algorithm has converged) is a sum of
all the intrinsic and extrinsic MI for each variable node.

For illustration, we next give an example of factor graph in Figure 1. The corresponding
equations for the LRPM are the following:

x = g(y), x = x1 + x2, z = x2 · y.

The messages sent at the first step of the BP algorithm are:

MIx,y→+ ← min (1,L0 + MI×→x,y) , MIx,y→× ← min (1,L0 + MI+→x,y) ,
MIx1→+ ← min (1,L1) = L1, MIx2→× ← min (1,L2 + MI+→x2) ,
MIx2→+ ← min (1,L2 + MI×→x2) , MIz→× ← min (1,L3) = L3,

and those sent at the second step are:

MI+→x,y ← MIx1→+ ·MIx2→+, MI×→x,y ← MIx2→× ·MIz→×,

MI+→x1 ← MIx2→+ ·MIx,y→+, MI×→x2 ← MIx,y→× ·MIz→×,

MI+→x2 ← MIx,y→+ ·MIx1→+, MI×→z ← (MIx,y→× + MIx2→×) /2.

The two steps are alternated until the algorithm converges.

3 New PINI Multiplication with reduced randomness
As a follow-up of the work in [CS18], we describe a new PINI multiplication gadget denoted
as PINI2 (and described in Algorithm 4) which reduces the randomness cost of PINI1 by
a factor of up to two. This new gadget draws inspiration from the NI multiplication of
Belaid et al. [BBP+16] (i.e., its reduced randomness consumption, see Section 2.1.1) and
from the PINI1 multiplication [CS18] (i.e., the masked shares’ multiplication trick in order
to achieve PINI, see Section 2.1.1). In this respect, we first note that while the masked
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shares’ multiplication trick and the reduced randomness can in principle be combined,
the masked shares’ multiplication trick needs to be optimized, as its naive use costs d2

random elements. In the PINI1 multiplication, this optimization is done by re-using the
randomness of the Compression stage. Because the reduced randomness consumed in its
Compression stage, another optimization strategy is needed for PINI2. We thus do the
following: generate d random elements s0, . . . , st and use the random r = si,j = si + sj for
the shares’ multiplication trick (for the multiplication of xi and yj). The total randomness
cost for this new gadget is thus

⌊
t2/4

⌋
+ 2t+ 1.

The instantiation of PINI2 at order t = 4 is shown below while the full gadget (Algo-
rithm 4) in Appendix B:

c0 = x0 · y0 + t0,4 + t0,2,

c1 = x1 · y1 + t1,4 + t1,2 + r1,

c2 = x2 · y2 + t2,4 + r1,2 + r0,2,

c3 = x3 · y3 + t3,4 + r3,

c4 = x4 · y4 + r3,4 + r2,4 + r1,4 + r0,4,

where:

si, ri,j , ri
$←− Fq, si,j = si + sj ,

p0
i,j = xi · si,j , p1

i,j = xi · (yj + si,j),
p2

i,j = yi · si,j , p3
i,j = yi · (xj + si,j),

ti,i+1 = ri,i+1 + p0
i,i+1 + p1

i,i+1 + p2
i,i+1 + p3

i,i+1,

ti,j = ri,j + p0
i,j + p1

i,j + p2
i,j + p3

i,j + rj−1 + p0
i,j−1 + p1

i,j−1 + p2
i,j−1 + p3

i,j−1,

Proposition 1. The masked multiplication gadget of Algorithm 4 is t-PINI.

The full proof is given in Appendix C. We next discuss the main intuitions behind it.
The PINI definition is made of two conditions: each probe on an output share can be

simulated using the input shares with the same share index, and each internal probe can
be simulated using one share of each of the input shares, all shares having the same index.

The first condition is satisfied thanks to the structure of the Compression stage (this
is actually in the proof of Belaid et al. [BBP+16]).

As for the second condition, it would trivially satisfied if each use of the masked shares’
multiplication trick used independent randomness.

However, it can be seen that the use of related randomness does not break the security:
the security could break if the adversary had multiple probes that depend on the same
si. Since each use of an si is masked with a sj , there can be security issues only when
the adversary also has multiple probes that depend on sj . In this case, the number of
adversarial probes is such that the simulator can have access to the inputs xi and yj

and can thus run a perfect simulation. An example of such a situation are probes in the
computation of xi1yj1 , xi1yj2 , xi2yj1 and xi2yj2 for some indices i1, i2, j1 and j2.

A list of masked multiplication gadgets (secure at any order) together with their
randomness complexity is given next:

• SNI multiplication of Ishai et al. [ISW03, BBD+16] (i.e. SNI-ISW): t(t+ 1)/2,

• NI multiplication of Belaid et al. [BBP+16]:
⌊
t2/4

⌋
+ t,

• PINI multiplication of Cassiers and Standaert [CS18] (i.e., PINI1): t(t+ 1)/2
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Figure 2: Software runtime cost for a bitslice, masked and composable AES S-box
implementation. The cost is measured relatively to the cost of the optimized MIMO-SNI
S-box in [CS18]. The curves for PINI1 and TPC (S-box implementation with only ISW
multiplications and no refresh elements, proven secure in [BGR18]) are indistinguishable
at the scale of this plot. The source code for this plot is available from [Cas18b].

• New PINI multiplication (i.e., PINI2):
⌊
t2/4

⌋
+ 2t+ 1.

It can be seen that our new construction has state-of-the-art asymptotic complexity of
t2/4 +O(t), while enjoying the simplicity of PINI composition.

For completeness, we illustrate how this improvement of the randomness complexity
translates into improvements of the execution time for concrete circuits. We use the
same approach as in [CS18] for this purpose: each kind of elementary operation (bitwise
logical operations and randomness generation) has a cost, and the total cost is the sum of
the elementary costs; we then estimate the runtime for various masked implementations
of the bitslice AES S-box, based on the performance evaluation of [JS17] for software
implementations on a ARM Cortex-M4 processor (considering the software PRNG scenario
where the cost for generating 32 random bits equals RC = 80 cycles).

As shown in Figure 2 (where the runtime is measured relatively to the one of the
optimized S-boxes in [CS18]), the PINI2 multiplication improves the state-of-the-art for
high orders (t ≥ 9), but performs worse than the PINI1 multiplication at lower orders
(t ≤ 7). Besides, the PINI approach is the best at any order, even when comparing with
the recent Tight Private Circuits (TPC) approach of [BGR18].8

4 Modelling SASCA
We next complement the previous analysis by considering a complementary issue. Namely,
what is the impact of horizontal attacks on masking schemes, especially when optimized

8 The TPC S-box has the same randomness cost as the PINI1 S-box. However, the latter comparison is
slightly pessimistic for the PINI approach, since it ignores the fact that applying the TPC composition
results may sometimes require additional refresh gadgets for linear operations. For example, in the case
of a masked AES implementation, all the output bits of the key rounds must come out of a SNI gadget,
which means that 96 additional refreshing gadgets must be added (since only 32 bits go through an S-box
layer in the AES key scheduling).
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for randomness? For this purpose, we will bound the resistance of an implementation
against SASCA using the LRPM introduced in [GGF18]. Our contributions are in two
main parts. First, we apply the LRPM to various (SNI and PINI) masked multiplication
gadgets (including some with qualitatively improved resistance against horizontal attacks).
The latter allows us to obtain good intuition about the impact of their design on their
resistance against SASCA, and to obtain a more quantiative view of this resistance. Second,
we propose new gadgets which improve the state-of-the-art in terms of resistance against
horizontal attacks (leading to significantly better security in low-noise contexts). The
variety of gadgets proposed allow us to explore the trade-off between noise requirements
and randomness cost in masking, recently put forward in [GGF18].

4.1 Methodology
Our goal is to use the LRPM of [GGF18] (introduced in Section 2.2) in order to measure
the resistance of various (recently proposed and new) masking algorithms to horizontal
attacks. More precisely, we analyze masked multiplication gadgets at various orders, which
are relevant targets of investigation since they usually correspond to the more complex
parts of a masked implementation (both in terms of security and efficiency).

Using the LRPM requires the following inputs:

1. The factor graph of the target gadget (or implementation), which is a graph of
relationships between all the variables manipulated.

2. The MI between each variable in the graph and the leakages.

For the first point, the relationships on the variables that appear in the gadget first include
all the ones that are explicit in the gadget (i.e., each operation of the gadget creates a
relationship). There are also variables which do not appear in the gadget such as the
(unmasked) sensitive variables: for example, an input x which only appears through it
shares x0, . . . , xt in the gadget. We include them as well in the factor graph with the
sharing relationships x = x0 + · · ·+ xt. Other implicit relationships appear when refresh
gadgets are used: for example, the sum of the inputs of a refresh is equal to the sum of
its outputs. These relationships are important to consider when a circuit uses refresh
gadgets internally (which, as will be seen next, may be relevant to improve security against
horizontal attacks). We illustrate it with a simple circuit: y = R(x), where R(·) is a refresh
gadget, x = (x0, . . . , xt) an input sharing and y = (y0, . . . , yt) an output sharing. Let us
assume that there are many manipulations of the shares yi. In this case, the BP algorithm
can propagate this information to the shares xi, but (especially if the random elements in
the refresh and the xi shares are manipulated few times and the refresh has a high logic
depth – for example by iterating many times a simple refresh algorithm) the information
extracted on xi shares can be much smaller than the information available on yi. A
SASCA targeting the input sensitive variable based on the relationship x∗ = x0 + · · ·+ xt

will therefore lead to a much lower information than actually available, by exploiting the
relationship x∗ = y0 + ·+ yt. For this example, the solution is simple: insert in the factor
graph not only the equation x∗ = x0 + · · ·+ xt, but also x∗ = y0 + · · ·+ yt. We generally
apply this strategy for all the (possibly more complex) gadgets we analyze. That is, for
each refresh gadget, we associate a new variable and insert in the factor graph the facts that
(i) the sum of the input variables of the refresh is equal to this variable, and (ii) the sum of
the variables associated to the two refresh gadgets is also equal to the associated variable.

Finally, and in order to be reflective of a concrete situation, we next evaluate the
security of multiplications z = x · y for different algorithms, where the the fresh inputs
x and y are related by a bijection and the output z is also in bijection with the input x.
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Figure 3: Target MI as a function of observation MI, for the SNI-ISW multiplication
gadget [ISW03] and the SNI-H multiplication gadget [BCPZ16]. The continuous line is the
bound on the target MI that can be extracted by the BP algorithm and the dashed line is
a lower bound for the target MI computed assuming that only the leakages on input shares
are exploited. The results for the NI multiplication gadget of Belaid et al. [BBP+16] are
identical to the SNI-ISW curves.

The latter typically corresponds to the case of a masked AES S-box implemented as a
multiplication chain in F256.9

For the second point, we first define the manipulation of a variable as its use as an
operand of an operation or its apparition as the output of an operation. We assume that
each manipulation leaks some amount MIo of information and that the leakages of all
manipulations are independent, hence we approximate the total leakage on any variable as
mMIo where m is the number of manipulations. The latter corresponds to the Independent
Operations Leakages (IOL) assumption validated in [GS18]. For each random variable, we
additionally assume that there is one manipulation associated to its generation.

4.2 Analysis of SNI multiplication gadgets
We first apply our methodology to the SNI-ISW gadget, at orders t = 3 and t = 15. Results
are reported in Figure 3, leading to the following conclusions.10

In general, for low observation MI (i.e., MIo) the trend of the target MI (i.e., MIt)
is an asymptote of slope t (as expected for tth order security). For larger MIo, we see
that the curves leave the asymptote until they reach MIt = 1. There are thus two regions
in the graph: the low MIo and high MIo regions. The boundary between these regions
varies depending on the curves (see for example SNI-ISW for t = 3 and t = 15 in Figure 3),
which essentially reflects the noise rate. The location of the boundary and the slope of
the asymptote are the two parameters that determine the security level of a gadget. In

9 This bijection between the multiplication’s inputs implies slightly more leakage than a multiplication
between independent values. Yet, its impact is limited if their shares are fresh as we next consider:
removing this link generally implies a reduction of MIt by a factor of approximately 2.

10The source code for the LRPM tool and the plots is available from [Cas18a].
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the following, since we are primarily interested in horizontal attacks (and the slope of the
asymptote is always equal to t since we only consider t-probing secure gadgets anyway),
we will focus on the noise rate, captured by the location of the boundary – concretely, we
use the point where MIt = 1 for this purpose.

More specifically, we see that the location of the boundary strongly depends on the
number of shares and security order for the SNI-ISW gadget. This comes from the fact that
this gadget manipulates each input share d times, which explains why the boundary at order
t = 3 is better than at order t = 15 for large MIo. We note that these different boundaries
correspond to the noise rate of O(1/t) that is expected for the SNI-ISW multiplication.11

By contrast, for the gadget of Battistello et al. [BCPZ16] that we also report on the
figure (denoted as SNI-H and for which the details will be given later in the paper), the
difference between the boundaries is much smaller. This is due to a different refreshing
strategy used in this gadget, that is aimed to prevent horizontal attacks. More precisely,
since each input share is manipulated only O(log(t)) times, the SNI-H gadget gains interest
over the SNI-ISW one as t increases, thanks to its better noise rate (e.g., for t = 15).
At lower orders (e.g., t = 3), the SNI-H gadget remains worse than the SNI-ISW gadget
due to the additional leakages that its embedded refresh operations imply (which are not
compensated by the improved noise rate in this case).

Going deeper into the analysis, we additionally plot lower bounds (represented with
dashed lines on the figure) which are computed by applying the methodology under the
hypothesis that only the leakages of the input shares are observed and exploited. It gives
curves MIt = min (1, (noMIo)t), where no is the number of observations of each input share.
When the asymptote of the curve is close to the lower bound, which happens for SNI-ISW
at low MIo, the BP algorithm is not able to extract much information from the internal
leakages of the gadget. Our interpretation is that the information from internal leakage is
too small for precisely estimating the random values in the gadget, and the propagation
of this information is “blocked” by the use of random elements in the multiplication. At
larger MIo, the information leaked on the internal variables becomes sufficient to (partially)
recover the random elements, hence this information can be propagated to the input shares.

Interestingly, and while the lower bound is tight for the SNI-ISW gadget in the high
noise region, it is not for the SNI-H gadget (even though the slope is still t). The latter
suggests that there are more useful leakages on intermediate variables in this case, such as
the outputs of the embedded refresh gadgets.

These analyzes confirm quantitatively the qualitative conclusion from [BCPZ16] that
the repeated manipulation of some shares is the main weakness exploited by horizontal
attacks. They cause an horizontal shift of the information theoretic curves in Figure 3,
and impose a noise level that increases with the order of the implementation. If the noise
level does not increase with the order, this shift directly translates into a security loss
on MIt of a factor O(tt) for the SNI-ISW gadget (which is reduced to O((log(t))t) if the
countermeasure of Battistello et al. is applied). In other words, this experiment highlights
that the use of the SNI-ISW (resp., SNI-H) multiplication gadget at high order requires an
amount of noise such that MIo ∝ 1/t (resp., MIo ∝ 1/ log(t)).

4.3 Analysis of PINI multiplication gadgets
The application of our methodology to the two PINI multiplication gadgets is reported
in Figure 4. For the PINI1 gadget [CS18], we observe that the global trend is very close
to the one of the SNI-ISW gadget, except that there is an horizontal shift of a factor of 2
in the asymptotic region. This is due to the multiple manipulations of the input shares
during the computation of ā · r + a · (r + b) (instead of a · b for SNI-ISW). Note that one

11 Formally, the proofs in [DFS15] require a noise rate of O(1/t2), but as discussed in [DFS15] the latter
is assumed to be due to the proof that is not completely tight.
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Figure 4: Target MI as a function of observation MI, for the SNI-ISW multiplication
gadget [ISW03], the PINI1 multiplication gadget [CS18] and the PINI2 gadget (Section 3).
The continuous line is the result of the belief propagation algorithm for the MI and the
dashed line is a lower bound for the target MI computed assuming only the leakage on
input shares are exploited. Results are shown for order 15.

of those manipulations is a use of ā, which is equivalent to a manipulation of a from the
probing security viewpoint, but not from the horizontal attacks viewpoint, which explains
why the bound is not tight.

For the PINI2 gadget, we see that the asymptotic performance is slightly better than
the one of PINI1, which is due to less manipulations of the input shares. However, there
are O(t2) operations which involve only input shares and d random bits (i.e., the si in
Algorithm 4), instead of the O(t2) random bits for SNI-ISW. This has only limited impact
at low MIo (where total leakage on the random bits is sufficiently low so they can be
considered as unknown to the adversary). But at intermediate MIo values, the accumulated
leakage on these random bits makes them partially known to the adversary, which causes
the “staircase of asymptotes” aspect of the curve.

Since both PINI multiplication gadgets have O(t) manipulations of the input shares,
they have a noise rate in O(1/t). Therefore, their use at high security order faces the same
problem as the SNI-ISW gadget: it requires a large amount of noise (i.e., MIo ∝ 1/t).

4.4 Design of improved multiplication gadgets
In this section, we first describe the multiplication of Battistello et al. (SNI-H) in the
framework of Section 2.1.1, and compare it with the ISW multiplication (SNI-ISW). We
then investigate how the SNI-H scheme can be improved against horizontal attacks. Next,
we build PINI multiplication gadgets secure against horizontal attacks by applying similar
ideas. Finally, we build new gadgets that trade a bit of resistance to horizontal attacks for
reduced randomness complexity.

The SNI-ISW multiplication is described in Algorithm 1, with the MatGen stage addi-
tionally described in Algorithm 2 (using the identity function for Refresh1 and Refresh2),
while the two other stages are interleaved in the other operations. In this (simplest) case,
MatGen is directly obtained by setting xi,j = xi and yi,j = yj .
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Algorithm 1 Generalized SNI multiplication gadget.
Require: shared factors x, y ∈ Fd

q such that
∑

i xi = x∗ and
∑

i yi = y∗

Ensure: output c ∈ Fd
q such that

∑
i ci = x∗ · y∗

M ← MatGen((x0, . . . , xt), (y0, . . . , yt)) {See Algorithm 2.}
for i = 0 to t do
for j = 0 to t do

(xi,j , yi,j)← (M)i,j

for i = 0 to t do
for j = i+ 1 to t do
ri,j

$←− Fq

zi,j ← (ri,j + xi,j · yi,j) + xj,i · yj,i

zj,i ← ri,j ;
for i = 0 to t do
ci ← xi,i · yi,i +

∑t
j=0,j 6=i zi,j

The heuristic countermeasure of Batistello et al. [BCPZ16] makes use of refresh gadgets
in the MatGen stage to avoid repeated manipulations of the same variables. It proceeds by
using a recursive algorithm which is illustrated in Figure 5b (for d = 4). This algorithm is
applied to the sharing of x and to the sharing of y to get the matrix of pairs of shares. It
is formally described by Algorithm 2 where the Refresh1 and Refresh2 algorithms are
modified as per Table 1. That is, SNI-H multiplication gadgets correspond to the case
where Refresh2 is a SNI refresh (such as the refresh of Battistello et al. [BCPZ16]), and
Refresh1 is an identity gadget (the inputs are simply wired to the outputs). (As already
mentioned, the previous SNI-ISW gadget can be instantiated by taking Refresh1 and
Refresh2 as identity gadgets, as illustrated in Figure 5a).

Algorithm 2 MatGen (If d is a power of 2).
Require: Refresh algorithms Refresh1 and Refresh2
Require: Shared factors x, y ∈ Fd

q such that
∑

i xi = x and
∑

i yi = y

Ensure: Output M ∈
(
F2

q

)d×d such that
∑

i,j xi,j · yi,j = x · y, where (xi,j , yi,j) = Mi,j .
if d=0 then
M ← [(x0, y0)]

else
X(1) ← (x0, . . . , xd/2−1)
X(2) ← (xd/2, . . . , xt)
Y (1) ← (y0, . . . , yd/2−1)
Y (2) ← (yd/2, . . . , yt)
X(1,1) ← Refresh1(X(1)); X(1,2) ← Refresh2(X(1))
X(2,1) ← Refresh1(X(2)); X(2,2) ← Refresh2(X(2))
Y (1,1) ← Refresh1(Y (1)); Y (1,2) ← Refresh2(Y (1))
Y (2,1) ← Refresh1(Y (2)); Y (2,2) ← Refresh2(Y (2))
M (1,1) = MatRef(X(1,1), Y (1,1))
M (1,2) = MatRef(X(1,2), Y (1,2))
M (2,1) = MatRef(X(2,1), Y (2,1))
M (2,2) = MatRef(X(2,2), Y (2,2))

M ←
[
M (1,1) M (1,2)

M (2,1) M (2,2)

]
return M
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(b) Battistello et al. refreshing — SNI-H.
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(c) Double refreshing — SNI-H+.

Figure 5: Exemplary instantiations of the generalized MatGen algorithm (Algorithm 2) for
d = 4. The algorithm basically corresponds to two trees of internal refresh gadgets (one
for sharings of x, one for those of y). The input shares are x0, . . . , x3. The xi,j are the
outputs of the MatGen stage (see Equation (1)).

Table 1: Refreshing gadgets used for various multiplication gadgets. BatRef is the SNI
refresh gadget of Battistello et al. ([BCPZ16], Algorithm 6). SimpleRef is a NI refresh
using t random bits (Gadget 1 of [BBD+16]). The Identity gadget wires inputs to outputs.

Refresh1 Refresh2
SNI-ISW Identity Identity
SNI-H Identity BatRef
SNI-H+ BatRef BatRef
SNI-H* SimpleRef SimpleRef
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Figure 6: Target MI as a function of observation MI, for the SNI-H and SNI-H+ multipli-
cation gadgets at orders t = 1, 3, 7, 15 and 31.

Improved SNI gadgets. The representation of the SNI-H tree (Figure 5b) compared to
the tree of SNI-ISW (Figure 5a) suggest a natural improvement (from the security against
horizontal attacks viewpoint) where more refresh gadgets are added, that we denote as
SNI-H+ (Figure 5c). It instantiates Algorithm 2 with Refresh1 and Refresh2 as SNI
refresh gadgets. (see again Table 1). In this case, the number of manipulations of each
variable is independent of the number of shares t, hence we can expect lower (possibly
constant) MIt. The security of this gadget is shown in Figure 6. We observe that the
curves for SNI-H+ are shifted to the right compared to the SNI-H curves. Furthermore,
whereas the boundary between the two regions of the SNI-H curves shifts to the left as the
order increases (in a O(log(t)) manner), the location of the boundary is almost constant
for SNI-H+ (except for a small shift at orders t ≤ 6).

An interesting note here is that the SNI-H+ gadget is the first one (in F2) for which
increasing the order increases the security level for all values of MIo and large enough t
(i.e., excepted for t ≤ 6 and MIo ≥ 5× 10−2 bit). This confirms the intuition that having
a constant number of share manipulations translates into having a constant MIo noise
requirement: the location of the boundary between the two regions of the graph is indeed
almost independent of the order in this case. The latter observation can be connected to
the concept of noise rate [ADF16]: the SNI-ISW multiplication has a O(1/t) noise rate,
SNI-H exhibits a behavior of O(1/ log(t)) noise rate, and we conjecture that SNI-H+ (and
also SNI-H*, p. 180) has an effective O(1) noise rate.

Improved PINI gadgets. The idea of “internal refreshes” used for SNI-H+ can be com-
bined with the “masked shares’ multiplication” trick of the PINI gadgets. Applying this
combination to the PINI2 multiplication gadget leads to a PINI2-H+ gadget with improved
security against horizontal attacks. A similar idea can be applied to the PINI1 gadget, but
requires some slight modifications, leading to a new algorithm that we denote as PINI3-H+
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(given in Algorithm 3).12 The PINI3 and PINI3-H variants are less interesting and will not
be discussed in detail.

Algorithm 3 Generalized PINI3 multiplication gadget.
Require: shared factors x, y ∈ Fd

q such that
∑

i xi = x∗ and
∑

i yi = y∗

Ensure: output c ∈ Fd
q such that

∑
i ci = x∗ · y∗

M ← MatGen((x0, . . . , xt), (y0, . . . , yt)); {See Algorithm 2.}
for i = 0 to t do
for j = i+ 1 to t do
ri,j

$←− Fq;
rj,i ← ri,j ;

for i = 0 to t do
for j = 0 to t do

(xi,j , yi,j)← (M)i,j ;
if i 6= j then
zi,j ← (xi,j · ri,j + ri,j) + xi,j · (yi,j + ri,j);

Ensure: zi,j = ri,j + xi,j · yi,j

for i = 0 to t do
ci ← xi,i · yi,i +

∑t
j=0,j 6=i zi,j ;

In Figure 7, we observe that the evolutions of PINI1 and PINI2 into PINI3-H+ and
PINI2-H+ follow the same trend of shifting information curves to the right (as it happens
for the evolution from SNI-ISW into SNI-H+), while preserving their other distinguishing
features. In particular, the PINI2-H+ curve still has the “staircase of asymptotes” aspect
which reduces the security level in the medium/large MIo region.
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Figure 7: Target MI as a function of observation MI, for various PINI multiplication
gadgets at order t = 15.

12 More precisely, the negation of the inputs ā cannot be computed once for each ai due to the use of
refreshed ai’s. In order to avoid the 2d2 leakage on (refreshed) input shares (which decreases significantly
the security level), we replace the evaluation of r · ā by a computation r · a + r (which uses the same
number of arithmetic operations but trades leakage on a for leakage on r).
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Figure 8: Target MI as a function of observation MI, for the SNI-H+, PINI3-H+ and
GreedyMult-H+ multiplication gadgets at orders t = 1, 3, 7, 15, 31. The curves for SNI-H+
and GreedyMult-H+ are superimposed for t ≥ 7.

Figure 8, shows that the asymptotic behavior of the PINI3-H+ gadget is identical to the
one of SNI-H+: the location of the boundary between regions is also almost independent
of the order. The main difference between the two gadgets is that the PINI3-H+ curve is
shifted of a factor of 2 to the left compared to SNI-H+, due to more manipulations of the
shares (in the masked shares’ multiplication trick), as when comparing PINI1 and SNI-ISW.

We finally note that there exists a possibility to get a PINI multiplication gadget
that does not suffer from this shift compared to SNI-ISW: the use of a SNI multiplication
gadget for which one of the inputs is refreshed (with a SNI refresh). This technique was
introduced in [GR17]. It is called “greedy strategy” and shown to be PINI in [CS18]. We
can instantiate it with the SNI-ISW gadget and the refresh of Batistello et al., and denote
it as GreedyMult. GreedyMult(x, y) = SNI-ISW(BatRef(x), y). Its variation GreedyMult-H+
uses the SNI-H+ gadget. The security of GreedyMult-H+ is displayed in Figure 8: it is the
same as that of SNI-H+ (except for low orders and large MIo).

Security vs randomness cost trade-off. Battistello et al. use a SNI refresh with random-
ness complexity O(t log(t)) in the MatGen stage. However, since this refresh is not used to
prove composability in the t-probing model, the SNI property is not strictly required.13

We hence analyze the case where this SNI refresh (Algorithm 6 of [BCPZ16]) is replaced
with a simple refresh using t random bits (Gadget 1 of [BBD+16]). The latter leads to
new gadgets SNI-H* and PINI3-H*, which are adapted versions of SNI-H+ and PINI3-H+,
(as per Table 1). We observe in Figure 9 that the security level of the these new gadgets is
almost the same as the one of the gadgets based on the refresh of Battistello et al.

Regarding the randomness cost of the gadgets, they all have a complexity in O(t2) (this
is immediately visible for the Compression stage, and proven in Appendix D for the H+
MatGen), but the use of the H* MatGen versus the H+ one results in a reduced randomness
cost of about 50 %. We defer a detailed performance comparison to Section 5.

13 We note that this property might help to formally prove the countermeasure in the RPM.
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Figure 9: Target MI as a function of observation MI, for the SNI-H+, SNI-H*, PINI3-H+
and PINI3-H* multiplication gadgets at order t = 15.

4.5 A note on SASCA and factor graphs
Before discussing performance comparisons in detail, we empirically validate the argument
of Section 4.1 that adding equations about all the input/output relationships of refresh
gadgets is actually needed to perform worst-case SASCA. As illustrated in Figure 10,
removing those relationships from the factor graph gives a less informative “SNI-H+ naive”
curve.14 We observe that the naive attack causes a significant loss to the adversary,
exhibited by a shift of the curve to the left, by a factor that depends on the order and the
type of protection against horizontal attacks considered.

We conclude that this technique should be used when analyzing SASCA in the LRPM,
since it can lead to significant reductions of the worst-case complexity and does not add
stronger hypotheses on the capabilities of the adversary. The only potential disadvantage of
this technique is that it adds cycles in the factor graph, which might harm the convergence
of the BP algorithm in practice (the analysis of which is a scope for further research).

5 Cost comparison and discussion
We finally evaluate the runtime cost of different multiplication gadgets in Figure 11, using
the estimation framework of [CS18]. Four groups of curves can be distinguished on the plot:

• The (possibly randomness-optimized) gadgets that are not protected against hori-
zontal attacks: SNI-ISW, PINI1, PINI2, GreedyMult;

• The H+ gadgets that are strongly protected against horizontal attacks with a cost
up to six times larger than the SNI-ISW multiplication gadget;

• The H* gadgets, costing almost half the cost of the H+ gadgets (but with almost
the same security against horizontal attacks as the H+ gadgets);

14 The SNI-H+ gadget is the most sensitive to the removal of the input/output refresh relationships
(yet, visible impact occurs for PINI2-H+ and PINI3-H+ as well).
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Figure 10: Target MI as a function of observation MI, for the SNI-H+ multiplication
gadget at order t = 15. For the SNI-H+ naive curve, the target MI is extracted through
the sums of the input and output shares only (naive attack). For the SNI-H+ curve, the
improved attack is considered (equations about sums of refresh input/outputs are added.
The SNI-ISW curve (which is the same for both attacks) is shown as a reference point.

• The H gadgets, which are only a bit less costly compared to the H* gadgets but have
significantly worse resistance to horizontal attacks.

Combined with the previous observation that security against horizontal attacks gains
relevance as the security order increases, the figure first suggests that the H and H+ gadget
families are in general less interesting than the (new) H* gadget family which combines
the advantages of both. Namely, it has roughly the same runtime cost as the H family,
and ensures almost the same security against horizontal atttacks as the H+ family.

Therefore, it remains two main options for concrete applications. If security against
horizontal attacks is ignored (which is not advisable – see the discussion below), the PINI1
and PINI2 algorithms provide the best performances and easy composition (depending on
the order). If security against horizontal attacks is required (which should be the default
situation at high orders), one can choose between the GreedyMult-H* and PINI3-H* gadgets
if easy composition is required (the first one has better constant security against horizontal
at the cost of a slightly higher runtime), or SNI-H* if the addition of refreshing gadgets
can be optimized in order to guarantee safe composition.

Note that our results are limited to one multiplication gadget and their security is only
analyzed in the (still heuristic) LRPM. Extending our analysis to formal proofs in the
RPM and finding way to analyze full ciphers without the computational cost of extending
the BP algorithm to such full ciphers (which is expensive) is an interesting open problem.

Besides, and to conclude, we recall that the relevance of horizontal attacks in practical
contexts depends on the adversarial assumptions, for which we can distinguish two main
cases: the open-source setting and the close-source setting. In the first one, a SASCA
can be directly conducted, and the bounds we provide are therefore directly applicable.
By contrast, if the target implementation is close-source, building the factor graph and
identifying the leakage points for all the manipulations of each variable may be more
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challenging. At least, the state-of-the-art attacks in [BCPZ16, GS18] both exploit the
knowledge of the source code. In this respect, we note that if an adversary can determine
at least one leakage point for each input share, then he can (e.g., by simple correlation)
identify the leakage points of all the manipulations of the targeted shares, even in the
closed-source setting. Hence, while a worst-case SASCA exploiting all the combinations of
shares (e.g., the merge trick for linear operations discussed in [GGF18]) may indeed be
hard to mount, this example suggests that certain types of manipulations (e.g., repetitions)
can lead to exponential security reductions even in the close-source setting.

In general, we believe the latter is a good reason to consider the security against
horizontal attacks heuristically bounded in this paper (or, if possible, formal proofs in the
future) in the evaluation of any implementation. Even more assuming the possibility that
state-of-the-art black box attacks may continuously improve in the future. Ignoring such
a threat is a risky choice since it anyway imply considering the implementation details
as a long-term secret (while standard countermeasures against side-channel attacks do
not protect against reverse-engineering). Yet, we note that it may be relevant for some
applications with high cost constraints, where moderate / mid-term security is acceptable
(and the technical difficulty of exploiting the leakages is assumed to be a sufficient barrier
for the considered case studies).
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A BP rule for result of multiplication
We first recall the formal context of the random probing model in which the rules of the
LRPM are inferred. In the random probing model, the adversary gets for each intermediate
variable X a probe P such that:

P =
{
⊥ with probability ε
X with probability 1− ε

,

and all probes are independent.
We can thus compute the MI for this probe:

MI(P,X) =
∑

p

∑
x

Pr [X = x, P = p] log|F|
(

Pr [X = x, P = p]
Pr [X = x] Pr [P = p]

)
,

=
∑

x

Pr [X = x, P = ⊥] log|F|
(

Pr [X = x, P = ⊥]
Pr [X = x] Pr [P = ⊥]

)
,

+
∑

x

Pr [X = x, P = x] log|F|
(

Pr [X = x, P = x]
Pr [X = x] Pr [P = x]

)
,

= (1− ε)
∑

x

Pr [X = x] log|F|

(
Pr [X = x] (1− ε)
Pr [X = x]2 (1− ε)

)
,

= (1− ε)H(X),
= 1− ε = Pr [P = X] ,

assuming that X has a uniform distribution.
Let us now assume that Y = X1 · X2, and that P1, P2 are probes on X1, X2 (Y is

not directly probed). We write MI1 = MI(P1, X1) and MI2 = MI(P2, X2). The extrinsic
information on Y is MIY = MI(Y, (P1, P2)). The value of Y is known if either P1 = X1 = 0,
or P2 = X2 = 0, or (P1, P2) = (X1, X2), in those cases MIY ≤ 1. Otherwise, there is not
information on Y : MIY = 0.

We hence compute

MIY ≤ Pr [P1 = X1] · (Pr [X1 = 0] + Pr [X1 6= 0] · Pr [P2 = X2])
+ Pr [P1 6= X1] · Pr [P2 = X2] · Pr [X2 = 0] ,

= MI1

(
1
|F|

+
(

1− 1
|F|

)
MI2

)
+ (1−MI1) MI2

1
|F|
,

= MI1 + MI2

|F|
+ MI1MI2

(
1− 2
|F|

)
.

In the bitslice case, |F| = 2, thus MIY ≤ (MI1 + MI2)/2, which is the result announced in
Section 2.2.

B PINI2 algorithm and Multiplication of Belaid et al.
Algorithm 4 is the NI multiplication of Belaid et al. [BBP+16] where we abstracted

away the computation of the products of shares and their addition to random elements.
The exact multiplication of Belaid et al. can be obtained by instantiating:

• init_cprod doing nothing,

• cprod computing ti,j = ri,j + xi · yj + xj · yi + rj−1 + xi · yj−1 + xj−1 · yi,
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Algorithm 4 Multiplication gadget over d shares with reduced randomness for
Compression stage. Parameterized with three sub-algorithms init_cprod, cprod and
cprod’.
Require: shared factors x, y ∈ Fd

q such that
⊕

i xi = x and
⊕

i yi = y

Ensure: output c ∈ Fd
q such that

⊕
i ci = x · y

Run init_cprod;
for i = 0 to t do
for j = 0 to t− i− 1 by 2 do
ri,d−j

$←− Fq;
for j = t− 1 downto 1 by 2 do
rj

$←− Fq;
for i = 0 to t do
ci,d ← ai · bi;
for j = t downto i+ 2 by 2 do
ti,j ← cprod(i, j);

Ensure: ti,j = ri,j + xi · yj + xj · yi + rj−1 + xi · yj−1 + xj−1 · yi

ci,j−2 ← ci,j + ti,j ;
if i 6≡ t mod 2 then
ti,j ← cprod’(i, i+ 1);

Ensure: ti,i+1 = ri,i+1 + xi · yi+1 + xi+1 · yi

ci,i ← ci,i+1 + ti,i+1;
if i ≡ 1 mod 2 then
ci,0 ← ci,i + ri;

else
ci,0 ← ci,i;

else
for j = i− 1 downto 0 do
ci,j ← ci,j+1 + rj,i;

ci ← ci,0;
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• cprod’ computing ti,j = ri,j + xi · yj + xj · yi.

The PINI2 multiplication is obtained by instantiating the generic construction as follows:

• init_cprod computing the terms and random elements for the masked shares’
multiplication trick, as specified in Algorithm 5.

• cprod computing ti,j = ri,j+p0
i,j+p1

i,j+p2
i,j+p3

i,j+rj−1+p0
i,j−1+p1

i,j−1+p2
i,j−1+p3

i,j−1,

• cprod’ computing ti,j = ri,j + p0
i,j + p1

i,j + p2
i,j + p3

i,j .

Algorithm 5 init_cprod for PINI2.
for i = 0 to t do
si

$←− Fq;
for i = 0 to t do
for j = i+ 1 to t do
si,j ← si + sj ;
p0

i,j ← ai · si,j ;
p1

i,j ← ai · (bj + si,j);
p2

i,j ← bi · si,j ;
p3

i,j ← bi · (aj + si,j);

C PINI proof
In order to prove that the multiplication gadget described in Algorithm 4 is PINI, we
present a simulation algorithm and show that it satisfies the PINI definition. The simulator
algorithm is split into two parts: the first one has access to the list of adversarial probes
and chooses the set of input share indices I that is sent to the oracle, and the second part
uses the inputs given by the oracle to simulate the probes.

Proof idea. In order to satisfy the PINI definition, the first algorithm has to satisfy two
conditions: for each adversarial probe, at most one element can be added into the output
set I, and for each adversarial probe on an output wire, only the share index of the probed
output wire can be added to I.15

To conclude the proof, we then have to show that the output of the second algorithm
is indistinguishable from the actual probes. That is, to prove that the joint distribution of
the inputs of the gadget and the values of the probes is identical to the joint distribution of
the inputs of the gadgets and the simulated probes. For probes whose expression involves
only one input variable, the simulation is simple, as the simulator can request access to
the value of the input variable. For other probes, indistinguishable simulation is possible
thanks to the random variables generated in the algorithm: if a probe is of the form x+ r
where x is an expression that depends on inputs and r is a generated random variable,
then x+ r can be perfectly simulated as an independent random variable as long as r is
not involved in any other probe. If r is involved in another probe, we prove that either

• this other probe is of the form y + r + r′ where r′ is not observed through any other
probe (hence both probes can be simulated as independent random variables), or r′
only appears in a probe that contains a random variable r′′, which itself. . . ; or

15 As a comparison, if the goal was to prove the NI property, the first algorithm would generate one
set of share indices for each (unshared) input of the gadget (whereas for PINI there is only one set that
applies to all the inputs) and add at most one element in each of those sets for each adversarial probe.
Furthermore, in a NI proof, the restriction related to the probes on output wires does not exist.
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• the simulator can request access to all the inputs involved in x, in which case the
simulator makes the same computation as the gadget.

Relationship to a previous proof by Belaid et al. Our proof follows the strategy of the
NI proof for the multiplication gadget in [BBP+16]. Indeed, our gadget uses the same
randomized compression scheme as theirs: the main modification is a more complex partial
products generation step. Furthermore, the PINI property is very close to the NI property.
In fact, if we neglect the possibility to put probes on partial products αi,j = ai · bj , then
the proof of Belaid et al. guarantees the PINI property. Since those partial products are
not present in our modified gadget, we only need to describe how to handle probes on
variables that appear in the new partial products generation step to complete the proof.

This is done in Sections C.1.2 and C.2.2. For the sake of completeness, we nevertheless
present a full proof below: Section C.1 describes the algorithm to build the set I and
Section C.2 describes the simulation algorithm.

Classification of probes. For conciseness, we introduce here a way to name the possible
probes in the gadget. The values that can be probed are: ai, bi, si, ri,j , rj , si,j , pk

i,j , ti,j ,
ci,j , and intermediate values in the computation of pk

i,j and ti,j . When discussing probes
over ti,j and their intermediate values, we distinguish two cases: probes over intermediate
values which do not involve rj−1 (hence sums of at most five terms, including ti,i+1)
denoted collectively t−i,j , and probes which involve rj−1 (sums of strictly more than five
terms and ti,j for j 6= i+ 1), denoted collectively t+i,j . Probes over any si,j or intermediate
values of pk

i,j (including pk
i,j itself) are denoted collectively p∗i,j .

C.1 Building I

C.1.1 Global probes

We cover here the probes ai, bi, si, ri,j , rj , t−i,j , t
+
i,j , ci,j . Let I1 be the empty set. For

each adversarial probe, we next add at most one element (a share index) to I1.

1. For any probe ci = ci,0, add i to I1.16 Then, for any other probe ci,j , if i 6∈ I1 then
add i to I1, else if i > 0 then add i− 1 to I1.

2. For any observed variable ai or bi or si, add i to I1.

3. For any observed variable rj add j to I1.

4. For any observed variable ri,j , if i 6∈ I1 add i to I1, else if j 6∈ I1, add j to I1.
Otherwise add j − 1 to I1.

5. For any observed t−i,j , if i 6∈ I1, add i to I1, else if j 6∈ I1, add j to I1. Otherwise add
j − 1 to I1.

6. Iterate the following until all observed t+i,j have been processed.

• Select an observed and not yet processed t+i,j such that i ∈ I1. If there is no
such t+i,j , select an observed and not yet processed t+i,j such that there are two
observed t+i,j . If there is no such t+i,j , select any observed and not yet processed
t+i,j .

• Process the selected t+i,j , which means: if j − 1 6∈ I1, add j − 1 to I1. Otherwise,
if i 6∈ I1, add i to I1, otherwise add j to I1.

16 This step ensures that the set I1 satisfies the PINI condition that the input shares required for a
given output probe have the same share index.
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C.1.2 Local probes

We cover the remaining probes: p∗i,j .
Let I2 be the empty set. If there are at least two probes in p∗i,j for a fixed pair (i, j),

then add i and j to I2, and these probes are ignored in the next (graph-building) step.
Let G be a graph whose nodes are all the share indices i. There is an edge between

i and j if there is a probe on p∗i,j (remember that there can only be zero or one probe
thanks to the previous step).

Let I3 be the empty set. For each connex component G′ of G, if G′ contains a node
which is in I1 ∪ I2 or if G′ contains a cycle then add all the nodes of G′ to I3. Otherwise,
for each probe p∗i,j which generates and edge {i, j} in G′, add i to I3.

The number of elements in I2 ∪ I3 is at most the number of probes p∗i,j thanks to the
following proposition.

Proposition 2. For any connected graph with v vertices and e edges, v ≤ e + 1 with
equality only if the graph does not contain any cycle (i.e. is a tree).

Finally, set I = I1 ∪ I2 ∪ I3.

C.2 Simulation
We now prove that a simulator knowing the input shares with share index in I can perfectly
simulate the probes.

We first show how to simulate the global probes (ai, bi, si, ri,j , rj , t−i,j , t
+
i,j , ci,j), and

then show how to simulate the local probes (p∗i,j).

C.2.1 Global probes

Observations. Before simulating, we make the following observations:

(i) all variables whose expression involves ri,j are ri,j , t−i,j , t
+
i,j , ci,k, cj,k.

(ii) all variables whose expression involves rj−1 are rj−1, t+k,j , cj−1,k, ck,l.

(iii) if two variables of the form t+i,j are probed, then i, j − 1 ∈ I.

(iv) if k ∈ I1 before Step 617 and t+i,j and t+k,j are probed, then i, k, j − 1 ∈ I.

(v) if any two of i, k, j, j − 1 are in I1 before Step 6 and t+k,j and t+i,j is probed, then
i, k, j, j − 1 ∈ I.

(vi) if k ∈ I1 or j ∈ I1 before Step 6 and t+k,j is probed and t+i,j is probed twice, then
i, k, j, j − 1 ∈ I.

(vii) if t+k,j is probed twice and t+i,j is probed twice, then i, k, j, j − 1 ∈ I.

Description of the simulation algorithm. Any probe on ai or bi can be assigned to the
correct value. For any probe on variables si, rj or ri,j , the variable is assigned to a fresh
random, as it is the case in the gadget.

For t−i,j probes, if i, j ∈ I, then the probe can be computed as it is the case in the real
algorithm. Otherwise, it is assigned a fresh random.

For t+i,j probes, if i, j, j − 1 ∈ I, then the probe can be computed as it is the case in
the real algorithm. Otherwise, it is assigned a fresh random.

For ci,j probes, the intermediates ti,k, rk,i and ri are simulated and the sum is computed.
17Numbered Steps refer to steps in Section C.1.1.
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Indistinguishability proof. The only cases where the simulation is different from the real
algorithm is the simulation of values t−i,j for which i or j is not in I and the simulation of
t+i,j for which i or j or j − 1 is not in I. In those two cases, we show that t±i,j appear to
the adversary as randoms indenpendent of any other input and probe.

Furthermore, probes on ci,j may involve ti,k for which i, k or k − 1 is not in I. We
prove that any ti,k can be perfectly simulated (i.e. is independent of any input and any
probed except ci,j) if i, k or k − 1 is not in I) if ci,j is probed.

This proves indistinguishability of the whole simulation.

Independence of t−
i,j . The variable t−i,j (hereafter denoted t) involves the random ri,j .

We show that if ri,j is not independent of all the other probes and inputs, then i, j ∈ I.
Using Observation (i), we analyze the possibilities for probes on values which depend on
ri,j .

• If ri,j is probed: Step 4 (for ri,j) of the algorithm building I1 adds18 i to I and
Step 5 (for t) adds j.

• If ri,j appears in probed ci,k: Step 1 (for ci,k) adds i to I and Step 5 (for t) adds j.

• If ri,j appears in probed cj,k: Step 1 (for cj,k) adds j to I and Step 5 (for t) adds i.

• If ri,j appears in another probed t−i,j (denoted t′): Step 5 for t and t′ adds i and j.

• If ri,j appears in a probed t+i,j (denoted t′): Step 5 for t adds i to I. Since t′ involves
the random rj−1, we have to prove that either j ∈ I or rj−1 appears as independent
of all the probes except t′ (this implies that ri,j appears as independent of t′ and thus
t appears as an independent random variable). Observation (ii) gives the variables
which depend on rj−1:

– If rj−1 (respectively cj−1,k) is probed, then Step 3 (resp. Step 1) adds j − 1 to
I, hence Step 6 for t′ adds j to I.

– If a t+k,j (denoted t′′) is probed, then Step 6 for t′ adds j − 1 or j and Step 6
for t′′ adds j − 1, k or j.
The variable t′′ involves the random rk,j . Using again Observation (i), we can
analyze the probes which depend on rk,j .
∗ If rk,j , t−k,j or ck,l is probed, then k is added to I before Step 6, which

implies that Step 6 for t′ and t′′ adds j − 1 and j to I.
∗ If another t+k,j is probed (denoted t′′′), then Step 6 ensures k, j, j − 1 ∈ I.
∗ If cj,l is probed, then j ∈ I.
∗ Otherwise, no such variable is probed, hence t′′ is seen as a random inde-

pendent of rj−1, which in turn implies that t′ is seen as a random indepent
of ri,j and thus t is also independent.

– If rj−1 appears in a probed ck,l (with k 6= i, k 6= j − 1: those case have already
been discussed), rk,j also appears in ck,l. Step 1 for ck,l adds k to I. We can
now discuss the probes which depend on rk,j .
∗ If rk,j or t−k,j is probed, then j is added to I.
∗ If ck,l′ is probed then either ck,l is a sub-sum of ck,l′ or the other way
around. In any of these situation, these sums only observe rk,j + rj−1,
hence rj−1 is independent of these sums in the view of the adversary, since
rk,j is not observed elsewhere. This implies that t′ is seen as independent
of ri,j and thus t also looks independent.

18All occurences of "adds x to I" actually mean "ensure that x ∈ I".
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∗ If a t+k,j (denoted t′′) is probed, then Step 6 for t′ and t′′ ensures j, j−1 ∈ I.
∗ If cj,l′ is probed, then j ∈ I.
∗ Otherwise, no such variable is probed, hence ck,l is seen as a random
independent of rj−1, which in turn implies that t′ is seen as a random
indepent of ri,j and thus t is also independent.

– Otherwise, no such variable is probed, hence t′ is seen as a random independent
of ri,j , which in turn implies that t is seen as independent of any probe or input.

• Otherwise, ri,j is only observed through t, hence t is independent of all probes and
inputs.

Independence of t+
i,j . The variable t+i,j (hereafter denoted t) involves the randoms ri,j

and rj−1. We show that if none of ri,j and rj−1 is independent of all the other probes and
inputs, then i, j, j− 1 ∈ I (which means that the simulator knows all the inputs involved in
t). Using Observations (i) and (ii), we analyze the possibilities for probes on values which
depend on ri,j and rj−1, assuming that both appear in at least one probe in addition to t
(otherwise t is an independent random variable).

We look at probes which involve rj−1 (using Observation (ii)):

• If rj−1 or cj−1,k is probed, then Step 3 or 1 adds j − 1 to I. We then analyze to
possible probes involving ri,j :

– If ri,j , t−i,j , ci,k is probed, then i ∈ I before Step 6, and Step 6 (for t) adds j.
– If cj,k′ is probed, then j ∈ I before Step 6, and Step 6 (for t) adds i.
– If another t+i,j is probed, then Observation (vi) applies.

• If there is a t+k,j probe (denoted t′), then this probe involves rk,j . Let us analyze the
possible probes involving this variable:

– If rk,j , t−k,j or ck,l is probed, then k ∈ I after Step 5. We then analyze the
possible probes for ri,j :
∗ If ri,j , t−i,j , ci,k or cj,k′ is probed, then Observation (v) applies: i, j, j−1 ∈ I.
∗ If t+i,j is probed, then Observation (vi) applies: i, j, j − 1 ∈ I.

– If another t+k,j is probed, then there are two t+k,j probes. We then analyze the
possible probes for ri,j :
∗ If ri,j , t−i,j , ci,k or cj,k′ is probed, then i or j is in I before 6 and Observa-

tion (vi) applies: i, j, j − 1 ∈ I.
∗ If t+i,j is probed, then Observation (vii) applies: i, j, j − 1 ∈ I.

– If cj,l is probed, then Step 1 adds j to I. We then analyze the possible probes
for ri,j :
∗ If ri,j , t−i,j or ci,k is probed, then i, j ∈ I before Step 6, hence Step 6 for t

adds j − 1 to I.
∗ If t+i,j is probed, then Observation (iii) implies i, j, j − 1 ∈ I.
∗ If cj,k′ is probed, then after Step 1, j, j − 1 ∈ I. Step 6 adds i to I.

– Otherwise, rk,j is observed only through t′, hence rj−1 is independent of t′.

• If ck,l is probed, then k ∈ I after Step 1 and this probe involves rk,j . Let use analyze
the possible probes involving rk,j :

– If rk,j or t−k,j is probed, then j ∈ I after Step 5. We then analyze the possible
probes for ri,j :
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∗ If ri,j , t−i,j or ci,k is probed, then i, j ∈ I before Step 6, hence Step 6 for t
adds j − 1 to I.

∗ If t+i,j is probed, then Observation (iii) implies i, j, j − 1 ∈ I.
∗ If cj,k′ is probed then after Step 1, j, j − 1 ∈ I. Step 6 adds i to I.

– If t+k,j is probed, again analyzing possible probes depending on ri,j :

∗ If ri,j , t−i,j , ci,k or cj,k′ is probed, then Observation (v) applies: i, j, j−1 ∈ I.
∗ If t+i,j is probed, then Observation (vi) applies.

– If cj,l is probed, then j ∈ I before Step 6. We then analyze the possible probes
for ri,j :
∗ If ri,j , t−i,j or ci,k is probed, then i, j ∈ I before Step 6, hence Step 6 for t

adds j − 1 to I.
∗ If t+i,j is probed, then Observation (iii) implies i, j, j − 1 ∈ I.
∗ If cj,k′ is probed then after Step 1, j, j − 1 ∈ I. Step 6 adds i to I.

– Otherwise, rk,j is observed only through ck,l, hence rj−1 is independent of ck,l.

Independence of ti,j if ci,k is probed. If ci,k is probed, then i ∈ I (before Step 4). We
distinguish two cases: j 6= i+ 1 and j = i+ 1.

First, if j = i+1, the variable ti,j = ti,i+1 involves the random ri,i+1. If ri,i+1 is probed
through ri,i+1, t−i,i+1, ci+1,l, then i, i+ 1 ∈ I and all the inputs required to compute ti,i+1
are known. If ri,i+1 is probed through a ci,k′ or not probed, then ri,i+1 is only observed
through ti,i+1, which can thus be simulated as an independent random.

Second, if j 6= i + 1, the variable ti,j involves the randoms ri,j and rj−1. If any of
those is not observed through any probe, ti,j is independent from any other input or probe
(except possibly some ci,k′) and can thus be independently simulated. We analyze the
possible probes for rj−1:

• If rj−1 is observed through rj−1, t+k,j or cj−1,k′ , then j − 1 ∈ I. We then analyze the
possible probes for ri,j :

– If ri,j is observed through ri,j , t−i,j or cj,l, then i, j, j − 1 ∈ I.

– If ri,j is observed through t+i,j , then j − 1 ∈ I. In this case, ri,j is only obseved
through the sum ri,j +p0

i,j +p1
i,j +p2

i,j +p3
i,j , which itself looks like an independent

random and the inputs for the remaining part of ti,j (rj−1 + p0
i,j−1 + p1

i,j−1 +
p2

i,j−1 + p3
i,j−1) are known.

– The other possibility for ri,j to be observed is a probe on ci,l. In this case
all observations of ri,j are through ti,j , which can thus be simulated as an
independent random.

• If rj−1 is observed through a ck′,l, then k′ ∈ I and this ck′,l probe involves tk′,j . This
variable involves in turn rk′,j . We then analyze the possible probes for rk′,j :

– If rk′,j , t−k′,j or cj,l′ is observed, then k′, i, j ∈ I. We now list the possible probes
for ri,j :
∗ If ri,j , t−i,j , t

+
i,j or cj,l is probed, then j − 1 ∈ I.

∗ The other possibility for ri,j to be observed is a probe on ci,l. In this case
all observations of ri,j pass through ti,j , which can thus be simulated as an
independent random.

– If t+k′,j is probed, then j − 1 ∈ I. Possible probes for ri,j :

∗ If ri,j , t−i,j or cj,l is probed, then j ∈ I.
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∗ If t+i,j is probed, then Observation (v) applies.
∗ The other possibility for ri,j to be observed is a probe on ci,l. In this case

all observations of ri,j are through ti,j , which can then be simulated as an
independent random.

– Finally, if rk′,j is only observed through a ck′,l′ (and ck′,l), then those observa-
tions only observe rk′,j and rj−1 through the sum rk′,j +rj−1, which implies that
rj−1 is indepentent from any other probe or input, which proves independence
of ti,j .

C.2.2 Local probes

In this section, we discuss how to simulate the local probes p∗i,j and the probes on si and
sj .

Description of the simulation algorithm. To simulate a probe on si or sj , we assign
to it a fresh random. For probes on p∗i,j , we always have i ∈ I thanks to the algorithm
in Section C.1.2. In the case where j ∈ I or if the probe does not involve aj or bj , the
simulator imitates the gadget. Otherwise, the term aj + si,j or bj + si,j or si,j is taken as
a fresh random, and the remaining part of the computation imitates the gadget.

Indistinguishability proof. The only case where the simulation is different from the real
algorithm is the simulation of a value p∗i,j (denoted p) which involve aj + si,j or bj + si,j

or si,j and for which j is not in I. In this case, we show that aj + si,j , bj + si,j or si,j

(denoted collectively ui,j) appears to the adversary as a random indenpendent of any input
and probe (except p itself), which proves the indistinguishability. Assuming that j 6∈ I
and that some p∗i,j is probed, we firstly show that si and sj are not probed, secondly that
ui,j is independent of any global probe simulated in the previous section, and thirdly that
all ui,j ’s that have to be simulated and for which j 6∈ I are independent of each other and
of the inputs.

Let us observe that if p∗i,j is probed and si or sj is probed (which implies i ∈ I1 or
j ∈ I1), then i, j ∈ I (thanks to steps in Section C.1.2), which proves the first statement.

For the second statement, looking at the previous proof for the simulation of global
probes (Section C.2.1), we observe that if a p∗i,j is involved in a global probe, then either
i, j ∈ I, or the global probe observes only the sum p∗i,j + r where r is an independent
random. If j 6∈ I, p∗i,j is thus independent of the global probes.

We now consider the third statement. Since two p∗i,j probes that are in distinct connected
components of G (G is defined in Section C.1.2) are independent of the global probes and
have no observed link between their random s· variables, they are thus independent of
each other. Let us consider probes that are in the same connected component of G. This
component is a tree (otherwise i, j ∈ I). Let i be a leave of the tree (which, by definition,
is connected to only one edge). This means that the only observation of si is a probe p∗i,j ,
or p∗j,i (denoted p) that is represented by the edge connected to i.

Re-writing the equation si,j = si + sj as si = sj + si,j and considering that si is never
observed (except through si,j) puts into evidence that si,j (which is the only way through
which si and sj are involved in p) is a random variable independent of everything except
p and that sj is a random variable independent of p. Thus, the required ui,j or uj,i can
be generated as an independent random variable for the purpose of simulating p. Finally,
since sj and all the other nodes in G′ are independent of si, we can safely remove i form
G′ and apply iteratively the procedure to the new tree, which concludes the proof.
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D SNI-H costs Θ(d2) random bits.
In this section, we compute preciesly the randomness complexity of the multiplication
gadget of Battistello et al. (SNI-H): Θ(d2) (previous bound was O(d2 log d)).

Let Rd be the randomness cost of the refresh of Battistello et al. for a d-sharing input
(where d is a power of 2). Let Cd be then randomness cost of the refreshing part of the
SNI-H multiplication19.

Inspection of the algorithm gives C2 = 0 and Cd = 4Cd/2 + 4Rd/2 (for d > 1). Let
C ′i = C2i and R′i = R2i . We can rewrite the recurrence equation as C ′i = 4C ′i−1 + 4R′i−1
(with C ′1 = 0), which gives:

C ′i =
i−1∑
j=1

4i−jR′j .

Using that Rd = d
(
log2 d− 1

2
)
(which can be shown by building a recurrence equation

thanks to inspection of the algorithm), and hence R′i =
(
i− 1

2
)

2i, we find:

C ′i = 4i
i−1∑
j=1

2−j

(
j − 1

2

)
= 4i

i−1∑
j=1

j2−j − 1
2

i−1∑
j=1

2−j

 .

Using the identities:
n∑

k=1
zk = z

1− zn

1− z ,

and
n∑

k=1
kzk = z

1− (n+ 1)zn + nzn+1

(1− z)2 ,

we get:

C ′i = 4i

(
3
2 −

1 + 2i
2i

)
.

This implies:
1
24i ≤ C ′i ≤

3
24i,

which leads to:
1
2d

2 ≤ Cd ≤
3
2d

2.

and to the conclusion Cd = Θ(d2).
We note that this computation gives also the cost of the refreshing part of SNI-H+,

which is twice the refreshing cost of SNI-H.

19 The non-refreshing part costs d(d− 1)/2 random bits.
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