
Deep Learning to Evaluate Secure RSA
Implementations

Mathieu Carbone1, Vincent Conin1, Marie-Angela Cornélie2, François
Dassance3, Guillaume Dufresne3, Cécile Dumas2, Emmanuel Prouff4 and

Alexandre Venelli3

1 SERMA Safety and Security, France, {m.carbone,v.conin}@serma.com
2 CEA LETI, France, {cecile.dumas,marie-angela.cornelie}@cea.fr

3 Thales ITSEF, France,
{francois.dassance,guillaume.dufresne,alexandre.venelli}@thalesgroup.com

4 ANSSI, France, emmanuel.prouff@ssi.gouv.fr

Abstract. This paper presents the results of several successful profiled side-channel
attacks against a secure implementation of the RSA algorithm. The implementation
was running on a ARM Core SC 100 completed with a certified EAL4+ arithmetic
co-processor. The analyses have been conducted by three experts’ teams, each
working on a specific attack path and exploiting information extracted either from the
electromagnetic emanation or from the power consumption. A particular attention
is paid to the description of all the steps that are usually followed during a security
evaluation by a laboratory, including the acquisitions and the observations pre-
processing which are practical issues usually put aside in the literature. Remarkably,
the profiling portability issue is also taken into account and different device samples
are involved for the profiling and testing phases. Among other aspects, this paper
shows the high potential of deep learning attacks against secure implementations of
RSA and raises the need for dedicated countermeasures.
Keywords: Side-Channel Attacks · RSA · Deep Learning

1 Introduction
Side-channel analysis (SCA) is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem implementation to recover some leakage about its secrets.
It is often much more efficient than a cryptanalysis mounted in the so-called black-box
model where no leakage occurs, and dedicated countermeasures are usually implemented to
protect the execution of cryptographic algorithms on embedded systems. In most of secure
products like smart-cards, the security is achieved by combining techniques applied at
the software level (e.g. masking/blinding [Cor99] or shuffling [MOP07]) with mechanisms
acting at the hardware level (e.g. clock jittering, white noise addition or power consumption
balancing [MOP07]). This is especially true for RSA implementations where resistance
against side-channel attacks is achieved by defining a secure exponentiation algorithm (at
software level) on the basis of a secure arithmetic co-processor (e.g. implementing a fast
Montgomery modular arithmetic while limiting information leakage) [BMV05, BÖPV03].

When it comes to assess the robustness of an RSA implementation against the SCA
threat, several attacks are performed by experts, usually after a leakage characterization
step. To help security evaluators, some technical reports like the AIS-46 published by
BSI [fIS18] give overviews and recommendations on the relevant side-channel attacks that
have to be applied against implementations. Among them, the so-called family of profiled

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 2, pp. 132–161
DOI:10.13154/tches.v2019.i2.132-161

mailto:m.carbone@serma.com,v.conin@serma.com
mailto:cecile.dumas@cea.fr,marie-angela.cornelie@cea.fr
mailto:francois.dassance@thalesgroup.com,guillaume.dufresne@thalesgroup.com,alexandre.venelli@thalesgroup.com
mailto:emmanuel.prouff@ssi.gouv.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i2.132-161

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 133

SCA is recognized as the most effective ones since the underlying adversary is assumed
to priorly use an open copy of the final target to precisely tune all the parameters of the
attack. It includes Templates Attacks [CRR02] and Stochastic modelling (a.k.a. Linear
Regression Analysis) [DPRS11, Sch08, SLP05]. This attack strategy where the adversary
precedes the attack by a supervised training phase may be viewed as a classical Machine
Learning problem and a recent line of works has started to build connections between the
world of side-channel analysis and the world of Machine Learning (with a particular focus
on Deep Learning).

Related Works

Many studies have been published to argue on the efficiency of profiled attacks against
(secure) block cipher implementations (see e.g. [BLR13, GHO15, HZ12, HGM+11, LBM14,
LMBM13, LPB+15, PSB+18] for the most recent ones). However, few works have been
published on asymmetric cryptographic implementations like ECDSA or RSA. Some like
[MAB+18] have followed a machine learning approach to demonstrate successful detection
of state-of-the-art cache-based SCAs. Other profiled attacks (like e.g. [LBM14]) have
been tested against RSA but the targeted implementation was not secure (neither on
the software nor on the hardware level). The main challenge when attacking secure RSA
implementations is that the attack must be able to recover more than 90% of the secret
parameter from a single execution1 (due to exponent randomization [Cor99]) without
knowing neither the message nor the modulus which are processed (due to input and
modulus randomizations [Gir06]). The so-called class of horizontal collisions attacks has
been introduced to specifically address this issue [Wal01]. However, even if the subsequent
works like [BJPW13, CFG+10, PZS17, vWWB11] have improved the original idea, none
of them has been shown to be efficient against an implementation running on a defensive
arithmetic co-processor (like e.g. those whose security has been certified in a Common
Criteria framework [Arr18]).

Contributions

To the best of our knowledge, this paper presents the first full profiled attack against an
RSA implementation running on a certified arithmetic co-processor and equipped with
classical side-channel countermeasures (blinding of the message, blinding of the exponent
and blinding of the modulus as e.g. detailled in [Cor99]).2 Several attacks, exploiting either
the electromagnetic emanation or the power consumption measured during the processing,
are presented that combine the principles of address-bit DPA attacks [IIT02, MDS99b]
and horizontal attacks [BJPW13] with machine learning techniques like Convolutional
Neural Networks (CNN) to accurately recover the value of the exponent bits. A special
attention is paid to the description of the acquisition campaigns and of the pre-processing
of the measured traces, as the latter steps are known to pose practical difficulties when it
comes to attack arithmetic co-processors (e.g. synchronization issues, size of the traces

1In this case, [SW14a] shows that the secret RSA parameter may be efficiently reconstruct from several
randomized representations if the random value used for the blinding has bit-length 64, which is common
in today implementations.

2A certified arithmetic co-processor comes with guidelines that detail how to use the crypto-coprocessor
in a secure manner. As a cautionary note, we alert the reader on the fact that we did not have access to
the code in order to verify the compliance with these guidelines. Moreover, as discussed in the conclusion
of the paper, the software part of the targeted RSA implementation does not embed specific security
mechanisms to defeat horizontal or address-bit side-channel attacks. This choice has been done deliberately
by CryptoExperts’ team (https://www.cryptoexperts.com/) who was responsible for the development of
the RSA software part. Actually, the latter implementation was part of a challenge organized by ANSSI’s
laboratory of hardware security for industrial partners. This paper shows that the application of advanced
profiling attacks like those based on Deep Learning renders security mechanisms against horizontal and
address-bit attacks mandatory to achieve a high level of security.

https://www.cryptoexperts.com/

134 Deep Learning to Evaluate Secure RSA Implementations

and choice of the sampling rate, few information on the details of the hardware processing,
etc.). Also, the question of profiling portability (i.e. the ability to apply a profiling done
on a device A to attack a device B with the same architecture) is addressed by using
different device samples. Our results practically demonstrate that, in our context, the latter
portability does not significantly impact the effectiveness of our attacks. More generally,
our work shows that the ability of the deep learning algorithms to efficiently operate on
highly-dimensional inputs (which are leakage measurements in our context) even in the
presence of signal jittering makes them a tool of choice for the secure evaluation of RSA
implementations (in addition to the methods already in the toolbox of the evaluator – see
e.g. [fIS18] –).

Paper Organization

Section 2 is dedicated to the presentation of the software and hardware aspects of the
target RSA implementation and the identification of two attack paths. Then, we de-
scribe in Section 3 the acquisitions’ campaigns that have been launched to measure the
power consumption and the electromagnetic emanation during the RSA processing. A
leakage characterization analysis has afterwards been done on the measured traces. It is
discussed in Section 4. Eventually, Section 5 presents our profiled attacks’ results and
our main observations related to the application of deep learning attacks against RSA
implementations.

2 Target Presentation & Attack Paths
2.1 Target Presentation: Hardware Part
2.1.1 Brief Hardware Description

The hereby target of evaluation is a software RSA SFM (StraightForward Mode in opposition
to the Chinese Remainder Mode) running on a 0.13um 32-bit Contact Smartcard IC. The
IC has been EAL4+ certified in Asia (out of the European SOG-IS scheme [Mem18]). It
features an ARM core SC 100 with 18 KB of RAM, 8 KB of ROM and 548 KB of FLASH.
An overview of the IC die and of the main blocks is given in Figure 1.

Figure 1: General view of the die after sample opening; mag 50X

The RSA multiplications and squarings are performed with the same operation of the
embedded arithmetic co-processor which includes a dedicated memory area, the so-called

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 135

crypto-RAM, composed of 8 segments of 64 words (2048 bits). Moreover, to speed-up
the processing, the modular arithmetic routines of the library are based on Montgomery
arithmetic. It is detailed here-after.

2.1.2 Low Level Library and Montgomery Arithmetic

The co-processor of the device studied in this paper implements the so-called Montgomery
arithmetic (see e.g. [BSS05] for a clear and short introduction). Roughly speaking, the
core idea of this arithmetic is to replace several costly modular reductions with the same
modulus by some pre-processing and then efficient divisions by a well-chosen power of 2
(we recall that such divisions simply consist in right binary shifts).

Let N denote a modulus and let us assume that we want to compute a sequence
of operations in the form x · y mod N for x, y ∈ Z/NZ. Thanks to the arithmetic co-
processor, this processing is done by calling a so-called Montgomery multiplication. Before
running such a multiplication, the operands must be normalized, i.e. put in Montgomery
representation x̃ = x ·R mod N and ỹ = y ·R mod N , where R is the Montgomery constant
defined in our context by R .= 2ω mod N with ω being the smallest multiple of 32 which is
greater than or equal to log2(N). Then, a hardware routine computing u · v ·R−1 mod N
is executed for u = x̃ and v = ỹ. It may be checked that the following equality holds:

x̃ · ỹ ·R−1 mod N = (x · y) ·R mod N = z̃ ,

so that the output is indeed the Montgomery representation of z = x · y mod N .
Once the initial operands of a sequence of modular multiplications have been put in

Montgomery representation, all operations are performed under this representation. In
particular, modular multiplications are replaced by Montgomery multiplications with the
pre-defined RSA modulus N and the Montgomery constant R. In our context, this is
actually done through the procedure MMM(idest, i1, i2) which stores in the segment of index
idest the result of the Montgomery multiplication between values stored in segments of
indexes i1 and i2. The output and input values are in Montgomery representation. When
the computation is over, the final result is put back in its natural integer form (which
simply consists in multiplying the result by R−1 modulo N).

2.2 Target Presentation: Software Part

The targeted RSA implementation is based on a Left-to-Right Square & Multiply Always
exponentiation algorithm [Cor99] combined with three countermeasures: input randomiza-
tion, modulus randomization and exponent randomization. Moreover the code is branch-less
as the exponent bit is not tested and since no conditional jump is performed.

2.2.1 Countermeasures

Modulus Randomization. This technique is based on the following equality:

md mod N = (md mod k0 ·N) mod N, (1)

where k0 is any (random) positive integer co-prime to N . Note that any integer lower
than p and q is co-prime to N , and in particular, any integer of bit-length 64 (or less) is
co-prime to N . The modulus randomization technique then simply consists (1) in picking
up a random integer k0, (2) in computing the exponentiation modulo k0 ·N and (3) in
reducing the result modulo N .

136 Deep Learning to Evaluate Secure RSA Implementations

Input Randomization. The input randomization technique involved in our target imple-
mentation can only be used jointly with the modulus randomization technique. It is based
on the following equation:

md mod N = ((m+ k1 ·N)d mod k0 ·N) mod N, (2)

where k0 and k1 are any (random) positive integers, k0 being co-prime to N . The input
randomization technique hence consists in picking a random integer k1 and adding k1 ·N
to the input m, before the exponentiation (modulo k0 ·N).

Exponent Randomization. This technique is based on the following equality:

md mod N = md+k2·φ(N) mod N, (3)

where φ denotes the Euler’s totient function, and where k2 is any (random) positive integer.
In case of an RSA modulus N = p · q (with p and q prime), we have φ(N) = (p− 1)(q− 1).
The principle of the exponent randomization countermeasures is to pick a random integer
k2 and evaluate the RSA exponentiation with exponent d′ = d+ k2 · φ(N).

Final Implementation. Values p and q are prime integers of bit-length 512. So the
modulus N is a 1024-bit integer. The combination of the three masking countermeasures
corresponds to the following computation:

((m+ k1 ·N)d+k2·φ(N) mod k0 ·N) mod N, (4)

where m is the plaintext in Montgomery representation, k0, k1 and k2 are some random
positive integers of bit-length 64. By consequence, the masked input m′ .= m + k1 · N ,
the masked modulus N ′ .= k0 ·N used to perform the MMMs, the masked exponent d′ and
all the values involved in the modular exponentiation have size n = 1024 + 64 = 1088
bits. This implementation is completed by the first step that transforms the plaintext in
Montgomery representation m 7→ m̃ = m/R mod N ′) and the last step doing the inverse
operation putting back the result in its natural integer form to obtain the ciphertext (see
Sect. 2.1 for more details).

2.2.2 Implementation of the modular exponentiation

The detailed implementation is given in Algorithm 1. It is based on a classical Square &
Multiply Always strategy to get a processing flow which is independent of the exponent
value. It uses 4 memory segments that respectively contain the input of the exponentiation
and the intermediate values resulting from the bit-by-bit exponentiation precessing. These
addresses are denoted by @(j) with j ∈ [1..4].

At each loop, a squaring then a multiplication are always executed. So two computations
are processed during the exponentiation: the true one is stored at address @(j) with
j = segacc, whereas the dummy one is stored at address @(j) with j = segdum. The values
of the two indices segacc and segdum vary according to the value of the exponent bit which
is treated. Their updating is done without conditional branch thanks to the use of a third
index segfree. Moreover the input is stored at address @(j) with j = segin and the value of
segin does not vary during the processing.

After the processing of Algorithm 1, the result is reduced modulo N to get the correct
signature as described in (4).

2.3 Attack Paths
As the use of randomization techniques breaks the dependency between the intermediate

values of the processing and the side-channel observations, an attacker cannot work

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 137

Algorithm 1 Modular Exponentiation Square & Multiply Always
Require: the masked input m′ in Montgomery representation, the masked exponent d′

of size n bits, the function MMM initialized with the modulus N ′ and the Montgomery
factor R, and four memory segments @(j) with j ∈ [1..4].

Ensure: address @(1) contains m′ d′ mod N ′
1: @(1)← m
2: @(2)← 1
3: segin ← 1
4: segacc ← 2
5: segdum ← 3
6: for i = 0 to n− 1 do
7: s← d′[n− 1− i] . Read from left to right
8: segfree ← 9− segacc − segdum
9: MMM(segfree, segacc, segacc) . SQUARE
10: segacc ← segfree
11: segfree ← 9− segacc − segdum
12: MMM(segfree, segacc, segin) . MULTIPLY
13: segacc ← s× segfree + (1− s)× segacc
14: segdum ← s× segdum + (1− s)× segfree
15: @(segdum)← 1
16: MMM(segacc, segacc, segdum) . Montgomery representation to integer normal form
17: @(1)← @(segacc)

vertically (i.e. with several executions of the RSA processing). He has to mount an attack
horizontally (i.e. with a single trace). The target implementation described in previous
sections contains two main vulnerabilities which can be exploited in a profiled attack
scenario. The first one focuses on the address indices manipulation and may be viewed
as an example of address-bit DPA [IIT02, MDS99a], while the second one focuses on the
operands’ manipulation and exploits the same principles as the horizontal collision attacks
[BJPW13]. They are detailed in the next two sections. It is here important to remember
that, in both cases, the challenging point is to be able to successfully apply the attack
to recover almost all the secret exponent bits by exploiting a single leakage trace (after
profiling). This will be discussed in the second part of the paper.

2.3.1 Address Indices Manipulation.

The exponentiation Square & Multiply Always described in Algorithm 1 contains a potential
vulnerability related to the manipulation of the index segfree (that is linked to the memory
address where the result of the Montgomery multiplication is stored).

It may be observed that the address index segfree can take three different values
(theoretically unknown); in other terms, segfree successively belongs to three different
classes during the whole modular exponentiation. Remarkably, the sequence of classes
depends on the exponent bits, and we will see that this dependency may be exploited to
recover sensitive information. More precisely, segfree stays unchanged for two consecutive
exponentiation loop indices i and i + 1 if and only if the corresponding exponent bit
d′[n− 1− i] equals 1. Thus, by knowing whether segfree stays in the same class or not, an
attacker may learn the values of all the exponent bits except the last one.

From a more formal point of view, it may be checked that the value of segfree at input
of the MMM processing during the ith squaring (resp. during the ith multiplication) takes
the form 2+#dec(i) where, for every i in [0..n−2], the value #dec(i) is recursively defined

138 Deep Learning to Evaluate Secure RSA Implementations

Table 1: Registers Manipulation (Example).
i d′[n− 1− i] segfree during squaring segfree during mult.

segfree = #offset + #dec(i) segfree = #offset + #dec(i)
0 0 2 + 2 2 + 0
1 0 2 + 1 2 + 2
2 1 2 + 0 2 + 1
3 1 2 + 0 2 + 1
4 1 2 + 0 2 + 1
5 0 2 + 0 2 + 1
6 1 2 + 2 2 + 0
7 1 2 + 2 2 + 0
8 0 2 + 2 2 + 0
9 0 2 + 1 2 + 2

as follows:

#dec(i+ 1) =
{

#dec(i)− (1− d′[n− 1− i]) mod 3 , for the squaring
#dec(i) + 2(1− d′[n− 1− i]) mod 3 , for the multiplication , (5)

with #dec(0) equalling 2 and 0 respectively for the squaring and the multiplication.
Table 1 gives an illustration of the dependency between the exponent bits and the

consecutive values of #dec(i) when the 10 most significant bits of d′ equal 0011101100.

2.3.2 Operands’ Manipulations

Another attack path is based on a property of the algorithm Square & Multiply Always.
Indeed, when the exponent bit d′[n − 1 − i] treated at loop index i is zero, then the
multiplication is useless and hence, the result is thrown. This implies that the subsequent
operation (a squaring) shares an operand with the previous multiplication. If, at the
opposite, d′[n− 1− i] equals 1, then the multiplication and the subsequent squaring are
not likely to share the same operand because the result of one is the entry of the other one.
This property is convenient to retrieve the involved bit of the secret exponent. Indeed, if
we denote by asq.

i (resp. amult.
i) the left-hand side operand of the squaring at loop index i

(resp. of the multiplication at loop index i), this attack path consists in comparing amult.
i

and asq.
i+1 in order to retrieve the bit exponent d′[n− 1− i] at loop i.

3 Presentation of the Acquisitions Campaign
For the two attack paths identified in previous section, it is important to precisely identify
in each trace/observation the sub-parts corresponding to the MMM processings. In the next
sections, we show how this can be done for both the power consumption and electromagnetic
measurements, in the context of a defensive arithmetic co-processor. In the first (Icc) case,
the measurements correspond to the full RSA processing, while they only correspond to
the processing of the 7 MSB of the exponent in the second (EM) case. This difference is a
direct consequence of the fact that our EM attacks (that target internal operations of the
co-processor) required measurements at a much greater sampling rate than that needed
for our Icc attacks (namely 2.5 GS/s versus 50 MS/s).3

3Our SNR characterization of the EM measurements show that the sampling rate could have been
maybe smaller without too much impacting the attack efficiency, but we did not experimentally validate
this observation.

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 139

3.1 Power Consumption Measurements
A first acquisition campaign has been launched to measure the power consumption

(Icc) during the processing of the RSA implementation described in previous section
(namely Algorithm 1 with masked exponents, masked messages and masked moduli of
size n = 1088 = 1024 + 64). The power consumption (Icc) was measured at 50 MS/s
using a Lecroy WaveRunner 625Zi oscilloscope. This (low) sampling rate suggests that
an alternative to the traditional bench-top oscilloscope, e.g. a PC oscilloscope such as
Picoscope, could have been used in the present case.

Each acquisition, denoted by L, was composed of around 25, 000, 000 time samples
that have been split into 2n sub-traces L0, ..., L2n−1. This splitting has been done by
following a so-called correlation pattern matching [VKMJ10] approach (i.e. the signal
pattern corresponding to the MMM is correlated as a sliding window with the full trace,
then the maximums of correlation allow the extraction of the different occurrences of
patterns from the trace). A new set has been rebuilt with these patterns ensuring a per
multiplication fast resynchronization (see Figure 2a and Figure 2b). Afterwards, each of
these multiplication patterns has been pre-processed, i.e. decimated by a factor 5 after
being filtered by a linear low pass filter (see Figure 2c). The resulting MMM processing
sub-traces Lj are each composed of around 2, 247 time samples after this pre-processing
step. Note that the pre-processing step, e.g. the choice of the decimation parameter,
was guided by the strength of the resulting univariate first-order leakage assessment (see
Subsubsection 4.1.1). This allows us to get a stronger leakage strength for the attacks
with a lower computation cost.

Finally all the MMM processing sub-traces Lsq.
i corresponding to a squaring (i.e. defined

s.t. Lsq.
i = L2i) have been gathered into a same set, and the same processing has been done

for the sub-traces Lmult.
i corresponding to a multiplication (i.e. defined s.t. Lmult.

i = L2i+1).
The fact that the mean of 100 sub-traces does not fade away (see Figure 2c) was considered
as a valuable experimental validation of our resynchronization effectiveness.

The campaign and the pre-treatment have been repeated on several smart-cards.

3.2 Electromagnetic Measurements
A second acquisition campaign has been launched to measure the electromagnetic

emanations during the processing of the seventh most significant bits of the masked
exponent of the RSA. The implementation was similar to that targeted in previous section
(namely the masked modulus, the masked message and the masked exponent were all of
size 1088 bits). The signal has been acquired with a 2.5 GS/s sampling rate over 200 µs
(see Figure 3 for the processing of the 7 first MSB of the exponent). Each acquired trace
was composed of 5, 000, 000 time samples which correspond to the 7 MSB of the masked
exponent. A standard laboratory equipment has been used to perform the campaign
(Lecroy WaveRunner 625Zi oscilloscope and Langer ICR EM probe). An example of
measurement is plotted in Figure 3.

As done for the power consumption campaign, each trace has been roughly split into sub-
traces Lj corresponding to MMM processings. Then, the latter traces have been reorganized
to group all the sub-traces Lsq.

i corresponding to a squaring in one set and all sub-traces
Lmult.
i corresponding to a multiplication in another set (due to the regularity of Algorithm 1,

Lsq.
i = L2i and Lmult.

i = L2i+1). In the following, we however continue to use the notation
Lj when the discussion is valid whatever the nature of the operation.

As it may be observed in Figure 4, two peculiar types of patterns can be identified in
each sub-trace Lj : the first one corresponds to the initialization of the operation which

140 Deep Learning to Evaluate Secure RSA Implementations

(a) Illustration of a part of the signal, with
the succession of squaring and multiplication
by MMM processing.

(b) A single MMM.

(c) Mean of 100 MMM processing patterns
after filtering and decimation by a factor 5.

Figure 2: Alignment steps of the MMM processing traces.

e.g. includes Steps 7, 8, 10 and 11 in Algorithm 1, while the second one corresponds to
the multi-precision MMM operation itself (squaring or multiplication). These two patterns
are likely to contain information on the processed secret bit and they have therefore been
analyzed.

MMM initialization alignment. The parts corresponding to the MMM initialization have been
extracted from each Lj . Each part contained around 30, 000 time samples. Figure 5a
shows the overlapping of 10 such parts. A desynchronization is clearly observable, in
particular around the two large EM peaks marked in red. Figure 5 presents the different
resynchronization steps that have been followed to correct this issue. A first alignment
step has been applied by fixing a threshold EM amplitude value and by aligning all EM
traces when they reach this threshold. The dotted line in Figure 5 refers to the selected
threshold. Figure 5b shows the traces after this first alignment step and it may be observed
that the traces are indeed correctly aligned on the first large EM peaks (marked in green).
However, a timing desynchronization is still present as EM peaks on the right part of the
figure are clearly not aligned. Hence, another alignment step is required. Figure 5c shows
traces after the application of a so-called sliding correlation alignment method which may
be viewed as a variant of the correlation pattern matching approach [VKMJ10] applied in
previous section. It first consists in selecting a small timing window on a reference EM
trace and in setting maximum shift offsets. Then, for each shift, Pearson’s correlation is
computed between the current trace to align and the reference trace for the given window.
The maximum correlation value implies that a correct shift has been found. Then, the
window slides over time and the algorithm is re-applied. This technique allows for the
realigning of traces in cases where the desynchronization changes over time.

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 141

Figure 3: Sequence of MMM processings for the first MSBs of the exponent.

Figure 4: EM emanation during a single loop of Algorithm 1.

MMM operation alignment. The EM patterns corresponding to the MMM squaring operation
have also been extracted from each sub-trace Lsq.

i and then resynchronized. The size
of those patterns was roughly 300, 000 time samples (ten times more compared to the
initialization). Figure 6 presents the different resynchronization steps needed to obtain
aligned traces. Figure 6a shows the overlapping of 10 extracted patterns. As expected,
it may be observed that the MMM multi-precision operation is composed of small sub-
operations (marked in black) which correspond to the arithmetic co-processor unitary
operations. Figure 6b shows a zoom on some of these sub-operations. As previously, a
timing desynchronization is observable. Hence, the same sliding correlation alignment
technique has been applied. Figure 6c presents some overlapped traces after this alignment,
zoomed on some sub-operations. The sub-operations are clearly aligned with each others
and over time during the whole MMM operation.

After all realignment steps, no trace was discarded for both the dataset containing the
MMM-initialization patterns and the dataset containing the MMM-operation patterns. This is
due to the fact that no strong desynchronization countermeasures are implemented. The
campaign and the pre-treatment have been repeated on several smart-cards.

4 Leakage Assessment
To verify that the (Icc and EM) sub-traces pre-processed as detailed in Subsection 3.1

and Subsection 3.2 contain information that are exploitable to test the attack paths
presented in Subsection 2.3, a leakage assessment has been done. First, we have verified
that both Icc and EM sub-traces could be used to perform the attack related to the
address indices manipulation (Subsubsection 2.3.1). From this leakage assessment, it is

142 Deep Learning to Evaluate Secure RSA Implementations

(a) Raw traces overlapped. (b) Traces after the first alignment step.

(c) Traces after the second alignment step.

Figure 5: Alignment steps of the MMM pre-processing traces.

not clear whether the address indices leak during their manipulation by the CPU or by the
arithmetic co-processor (without full open access to the code, such a conclusion is actually
difficult to draw). Secondly, we have verified that the EM sub-traces (and more precisely
the portion related to the MMM processing part) contain enough information to test the
attack related to the operand’s manipulation (Subsubsection 2.3.2).

4.1 Address Indices Manipulation
4.1.1 Power Consumption

To characterize the information leakage, a univariate first-order leakage assessment related
to the first attack path identified in Subsection 2.3 has been launched on 2, 016 RSA
processing observations pre-treated as described in Subsection 3.1. This led to two labelled
databases of sub-traces (Lsq.

i)i61088×2016 and (Lmult.
i)i61088×2016 respectively corresponding

to squarings and multiplications with the MMM routine. By using the fact that the random
masks and the secret exponents were known, the Normalized Inter-Class Variance (NICV)
[BDGN14] has been estimated for all the 2, 247 time samples composing the sub-traces in
each dataset. The goal is to detect statistical dependency with the value of the memory
index segfree. We recall that the NICV at time sample t, denoted by NICV[t], is defined as:

NICV[t] .= 1
1

SNR[t] + 1
,

with

SNR[t] =
Vsegfree [E[Lsq. | segfree]]
Esegfree [V[Lsq. | segfree]] or SNR[t] =

Vsegfree [E[Lmult. | segfree]]
Esegfree [V[Lmult. | segfree]] ,

where Lsq. (res. Lmult.) denotes the random variable associated to the observations (Lsq.
i)i

(resp. (Lmult.
i)i).

The NICV has also been computed with respect to the value of the masked exponent bit
associated to a multiplication processing (i.e. dataset (Lmult.

i)i). For comparison purpose,
the three characterizations are plotted on top of each other in Figure 7.

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 143

(a) Raw traces overlapped. (b) Zoom on some sub-operations.

(c) Aligned traces zoomed on some sub-
operations.

Figure 6: Alignment steps of the MMM operations traces.

Figure 7: Icc Campaign – NICV scores w.r.t. time samples; in blue, segfree values for Lsq.,
in orange segfree values for Lmult., in magenta the exponent bit values for Lmult..

The most significant information leakage (orange trace) is found for segfree and a MMM
processing corresponding to a multiplication (i.e. random variable Lmult.). This makes
segfree as a leakage of choice to perform SCA: leakages related to segfree during a squaring
(blue trace) is significantly smaller and also leakages related to the bits of the randomized
exponent associated to the multiplications patterns (magenta trace).

The NICV computations performed on another cards reveal similar leakages and no
significant difference has been found.

144 Deep Learning to Evaluate Secure RSA Implementations

4.1.2 Electromagnetic

First order univariate leakage assessment has also been conducted on 45, 000 electro-
magnetic traces acquired as described in Subsection 3.2. For both sets of sub-traces
(Lsq.

i)i<7×45,000 and (Lmult.
i)i<7×45,000, a SNR characterization has been performed w.r.t.

the value of register index segfree. Exploiting the observation reported in Subsection 3.2,
the SNR has only been computed on the first 30, 000 points of the sub-traces (which
correspond to the MMM initializations). Figure 8 shows, on top and for temporal reference,
an original aligned EM trace of the initialization part of the Lsq.

i sub-traces and, on bottom,
the corresponding SNR results.

Figure 8: EM Campaign – SNR result for the segfree value versus the squaring initialization
(bottom) and original EM trace (top).

The SNR is around 55.10−2 for the best points of interest. The corresponding points
will be used in our deep learning attacks reported in Subsection 5.2. A similar leakage
assessment has also been performed on another card. The SNR results are very similar
between the two cards. However, a temporal shift between SNR peaks has been observed
(see Figure 9).

This shift is due to a clock frequency variation between cards. This difference has
to be compensated in order to be able to utilize traces from different cards during the
side-channel analysis. It can be done by detecting every electromagnetic peak of every
original trace and recreating a new trace by concatenating same length intervals around
the peaks.

4.2 Operands’ Manipulations
In order to apply the attack path described in Subsubsection 2.3.2 on EM leakages, one

must be able to recover enough information on the left-hand side operand value of each
MMM operation from the corresponding sub-traces Lmult.

i and Lsq.
i pre-treated as explained

in Subsection 3.2 (50, 000 traces have been used, each composed of around 300, 000 time
samples).

Since the co-processor performs elementary operations on 32-bits words, it seemed to be
sound to focus on a specific 32-bit (sub)-word of each target operand (whose bit-length
was 1088 for our experiments). In Figure 10 (top), it may first be observed that the
leakage of the 32 bits of a single word of the left-hand side operand during a MMM processing

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 145

Figure 9: EM Campaign – SNR results on MMM initialization traces using segfree value
on 2 different cards.

is unbalanced. Indeed the amplitude of the SNR for the 12th less significant bit of the
word is almost hundred times greater than that of the others. Moreover, and as expected,
this bit leaks at many different locations. Figure 10 (bottom) secondly shows that these
characteristics are true for all the 32-bits words composing the MMM operand. It also shows
that the SNRs corresponding to the 12th bit of the 34 words are not exactly located at
the same time samples.

Due to our first observation, we decided to restrict the recovery to the most leaking bits,
i.e. all the 12th bits of the 32-bits words composing the operand.4 As a consequence of
our second observation, a different set of points of interest has been recorded for the 12th
bit of each operand word.

4Since this operand is assumed to have size 1088 = 34 × 32, the number of 32-bits words per 1088-bits
operand, and hence the number of guessed bits, is 34.

146 Deep Learning to Evaluate Secure RSA Implementations

Figure 10: Monobit SNRs (on 50, 000 traces) for the first operand of the MMM. Top: 32
SNR traces for each bit of the least significant 32-bit word. Bottom: 34 SNR traces for all
the 12th bit of each 32-bit sub-word of the operand.

5 Attacks Description and Results
5.1 Registers Manipulation (Power Consumption)
To exploit the information revealed by the characterization described in Subsubsection 4.1.1,
several acquisition campaigns with a RSA masked modulus of bit-length n = 1088 have
been launched with a sampling rate equal to 50 MS/s. Three different samples of the
target smart-card have been used, which led to split the acquisitions sets as follows:

• Set C0: the card #0 is used for the profiling/training stage over the 100 first
multiplication patterns from the modular exponentiation. The power consumption
has been measured for 2, 016 RSA execution. Hence, the set is composed of 201, 600 =
2, 016× 100 multiplication patterns.

• Set C1: the card #1 is used as an evaluation/validation set for the training of deep
learning algorithms. The 100 first multiplication patterns of 30 traces have been
recorded. The set is hence composed of 3, 000 multiplication patterns.

• Set C2: the power consumption of a full randomized modular exponentiation has
been measured on card #2. It is the attacked set for the exploitation/testing stage.
The set is composed of 1088 multiplication patterns.

For comparisons, several profiled approaches have been tested on the campaigns. They
have been performed on a 256 Gb RAM calculation server with NVIDIA Tesla P100-
PCIE-16Gb. The scores listed in the following table for all the attacks correspond to
the percentage of all the 1088 exponent bits which are revealed once the attack has been
performed against segfree for a single trace in our set C2.

Some of the attacks listed above are very impacted by the size of the sub-traces on
which they are applied (e.g. TA or KNN). To get a fair comparison, all the profiled attacks
have hence been performed after reducing the sub-traces Lmult.

i to 9 Points of Interest
(POI for short) selected thanks to the characterization described in Subsubsection 4.1.1
(see Figure 7). We insist here on the fact that, after resynchronization, this is exactly
the same points which are kept for all the sub-traces (used for profiling or for attack).

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 147

Table 2: Attacks success rates (left), loss and accuracy for the CNN training (right).

Attack type Best score

Template attack (TA) [CJRR99] 83.4%

Random Forest [MLB11] 93.1%

Support Vector Machine [HGM+11, ZGLG14] 97.1%

MLP [HGM+11, MDM16] 98.38%

K-Nearest Neighbors (KNN) [Bis07] 98.7%

Extreme Gradient Boosting [Bis07] 98.7%

Convolutional Neural Network [Bis07] 99.31%

For template attacks, and following the analysis done in [FR14], different considerations
regarding the covariance matrix have been tested: no covariance matrix (i.e. replaced by
identity matrix), a covariance matrix for each class, common “pooled” covariance matrix
(i.e. average of the covariance matrices over all the classes). Neural networks and machine
learning parameters have been optimized using various approaches such as grid search
and Bayesian optimization (see e.g. [BB12] for an argumentation of this approach). More
specifically hyperas/hyperopt library [Pum18, Ber18] was used for CNN.

The CNN has been trained with the acquisitions in set C0. The acquisitions in C1
have been used as an evaluation set. The obtained training accuracy is 99.64% while the
accuracy for the evaluation set is 99.27%. The figure in Table 2 gives the evolution of the
accuracy and the loss as a function of the number of epochs, for both the training and
validation sets. We recall that the accuracy evaluates how accurate is the model prediction
compared to the given (true) labelling, while the loss (which is the value that aims to be
minimized during the training) is a summation of the errors made when comparing the
trained algorithms outputs and the (true) labels. Remarkably, the results immediately
converge around 99% and over-fitting on the validation set quickly arises; it is thus decided
to stop the learning very quickly, at epoch 7.

After the recovery of 99.31% of the full randomized exponent, the wrong guesses can be
corrected thanks to [SW14b]. To apply the latter correction, the attack has to be repeated
against 15 full randomized exponents (i.e. 15 full RSA processings) to reveal the secret
exponent in clear.

The architectures of the trained MLP and CNN models are given in Figure 11 and
Figure 12.

Figure 11: Architecture of the best trained MLP

148 Deep Learning to Evaluate Secure RSA Implementations

Figure 12: Architecture of the best trained CNN

5.2 Registers Manipulation (EM)
To exploit the information revealed by the characterization described in Subsubsection 4.1.2,
deep learning attacks targeting the value of the register segfree have then been applied on
the electromagnetic measurements. For this attacks’ campaign, taking into account the
comparisons’ results presented in previous section, we chose to only test MLP and CNN
architectures. Since it was no longer needed to scale the dimension of the exploited traces
to comply with the capacity of other profiling techniques, this choice allowed us to test
the efficiency of the latter models almost directly on the squaring initialization sub-traces
identified in Subsection 3.2. In other words we did not select a small number of POI and
directly took the 13, 000 first time samples among 30, 000 in the MMM initialization pattern
of each sub-trace (the SNR characterization reported in Subsection 4.2 indeed shows that
the amount of useful information in the second half of the sub-traces is much less than
that in the first half). The training and testing have been done on a high-end desktop PC,
composed notably of 128 Gb RAM and an NVIDIA TITAN Xp graphics card.

Similarly as reported in Subsection 5.1, the architectures and the hyper-parameters
have been searched by exhaustively testing all values in specific intervals carefully chosen
to bound the overall computational effort. First, the profiled attacks have been tested on
the sub-traces re-aligned as described in Subsection 3.2. Then, to validate the robustness
of CNN models to de-synchronization effects, they have also been tested on raw sub-traces
without specific re-alignment.

Aligned traces. For the training phase, datasets of 750, 000 aligned traces acquired on
the 3 different cards have been grouped to form the training dataset C0 and the validation
dataset C1 (10% of the training dataset). For the testing phase, a dataset C2 of 10, 000
aligned traces acquired on a fourth card has been built. The whole 13, 000 first time
samples of the sub-traces described in Subsection 3.2 are used to input the models.

A first standardization step [GBCB16, Section 12.2.1] has been applied on the datasets
in order to help the training by cancelling the mean of each sample and by equalizing
the covariances (see also [LBOM12]). To get a rough idea of the impact of the different
architectures and hyper-parameters tuning on the model accuracy, the generation of ten
random models has been launched. Each model has been trained over 3 epochs and this
process has been done for both MLP and CNN architectures. Then, different metrics (as
e.g. the accuracy and the loss) have been involved to compare them and to eventually
select the best parameters. For each of the ten networks, these metrics have been analysed
in order to assess the performance of the networks with regards to their architecture
(number of layers, number of neurons per layers, etc.) and their hyper-parameters (learning

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 149

rate, regularization rate, etc.). This analysis has allowed us to identify the best network
parameters and hyper-parameters amongst the randomly generated ones.

In a second step, the selected MLP and CNN models have been selected and directly
applied to the 10, 000 sub-traces in dataset C1. The accuracy of the best MLP model and
CNN model was respectively 99.87%, and 99.7%. The architecture of the best MLP model
is given in Figure 13a and the best CNN model is given in Figure 13b.

(a) Best MLP architecture (b) Best CNN architecture

Figure 13: Best neural networks architectures on aligned traces.

A more in-depth tuning of the hyper-parameters has been launched on the best CNN
model in order to improve it. In particular, the number of epochs, the batch size, the
optimizer algorithms have been tested thoroughly. Finally, different initialization weights
have been set for the architectures, hence resulting in different initial conditions for the
networks. An ensemble learning technique [Zho12, Section 4.2] has then been applied
on the different initialized networks. Several copies of the same network with different
initializations have eventually been trained and their results have been averaged (aka
cross-validated). The best CNN model has then been repeated 3 times using this ensemble
learning method. This technique gave the best accuracy for our CNN model, namely
99.91%.

Raw traces. One of the main advantages of the CNN models is the temporal invariance
of the convolution layers. This theoretically allows neural networks to be immune against
desynchronization. Therefore, CNN models have also been trained on 750, 000 electro-
magnetic traces without the alignment steps (corresponding to Figure 5b) and applied to
10, 000 traces from another card.

Contrary to the aligned traces case, the standardization pre-processing technique has
no sense on desynchronized traces. Hence, the datasets values have only been scaled in the
range [0, 1]. Then, a random search over 20 networks has been launched. The training has
been performed over 10 epochs (instead of 3 due to the greater difficulty for the networks
in finding relevant patterns in desynchronized data). On aligned traces, most of randomly
generated architectures gave significant results. Here, only a few of the 20 generated
architectures gave high accuracies (> 90%). The best model accuracy was only 93.3%.
To improve it, a new layer called batch normalization [IS15] has been integrated. This
additional layer has been included in the random architecture search and 10 new neural
networks have been generated. Using the batch normalization layers in CNN models, the
best model accuracy was 97.7%.

The architecture of the best CNN model with batch normalization is given in Figure 14.
Table 3 summarizes the accuracy of the deep learning attacks targeting the register

150 Deep Learning to Evaluate Secure RSA Implementations

Figure 14: Best CNN with batch normalization architecture on raw traces.

manipulation on the electromagnetic traces. The percentage corresponds to the ability
of the trained model to recover a bit of the masked exponent. A success rate of 97%
(or greater) is considered to be sufficient to recover the full exponent with non-negligible
probability (possibly combined with techniques as in [SW14a]).

Table 3: Attacks summary.
Attack type Best score

Multi-Layer Perceptron on aligned traces 99.7%
Convolutional Neural Network on aligned traces 99.91%
Convolutional Neural Network on raw traces 97.7%

5.3 Values Manipulation (EM)
Based on the analysis recalled in Subsection 4.2, the goal is to recover, from two EM
leakages Lmult.

i and Lsq.
i+1, the twelve bit of each of the 34 words composing the two

left-hand side operands amult.
i and asq.

i+1 of consecutive MMM processings, before performing
a comparison between the two bit sets and decide whether amult.

i equals asq.
i+1 or not (which

directly gives the corresponding exponent bit, see Subsubsection 2.3.2).

First stage: training. For the reasons discussed in Subsection 4.2, for each of the 34
words, a new model has been trained to recover the 12th bit from a single observation. The
database C0 for the training was composed of 10, 000 traces, each of size of 300, 000 time
samples corresponding to a single MMM processing. Since the latter size was unnecessarily
too high, the SNR characterization reported in Subsection 4.2 has been priorly used to
reduce them to 5, 000 points of interest, which were different for each word. This led to the
definition of 34 training databases of 10, 000 traces composed of 5, 000 samples: the first
8, 000 traces were dedicated to the training, while the remaining 2, 000 traces were used
for validation. The traces in the i-th database are labelled by the 12th bit of the i-th word
of the left-hand side operand of the corresponding MMM processing. Then, the CNN model
depicted on Figure 15 has been trained onto each database. As for previous trainings, we
observed that the validation accuracy quickly converged to the training accuracy (after
only 2 epochs).

Second stage: guessing values. The 34 trained models have then then been tested on
a new test database C2 composed of 1, 400 traces corresponding to different single MMM

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 151

Figure 15: CNN architecture.

processings. Before each of the 34 tests, the traces have been reduced to 5, 000 samples by
selecting the corresponding points of interest identified during the signal characterization.
For the 1, 400 traces, the success rate of our 34 models ranges from 88% to 99.5%, with an
average of 95%.

Third stage: recovering the exponent bit. Eventually, the attack is performed on a
single trace. For each exponent bit d′[n − 1 − i], i ∈ [1..n − 1], two values have to be
recovered, so the 34 trained models are applied twice, on Lmult.

i and on Lsq.
i+1. Before each

of the 2× 34 attacks, the two targeted sub-traces are reduced to 5, 000 samples by selecting
the same points of interest. Based on the 2× 34 guessed bits, our purpose was to decide if
the left-hand side operands collide or not.

Given the average accuracy of our 34 models (to correctly recover the twelve bit of a
given 32-bits word), it may be checked that only 26 bits (or more) among the 34 ones
have to be equal in order to accurately decide that there is a collision or a non-collision,
and hence that the corresponding exponent bit is 1 or 0 (a detailed argumentation of this
point is given in Appendix A). Eventually, with a recovering of 34 bits of each operand
with an average success rate of 95%, we were able to recover all the exponent bits with
a success rate close to 100% (except for the least significant one which was recovered by
exhaustive testing).

6 Conclusion
In this paper, the results of several profiled/supervised side-channel attacks against a
secure implementation of the RSA algorithm have been described and discussed. The
implementation was running on a ARM Core SC 100 with a secure arithmetic co-processor.
The work has been co-jointly done by three different teams, each working on a specific
attack path. For completeness, and because this information is often missing in the
literature while being of important practical interest, we have detailed all the attack steps
(identification of the attack paths, acquisitions, pre-processing, attacks) that are usually
followed to evaluate the security of an implementation in a security laboratory. The
attacks results, which exploit different types of leakages measured either through the power
consumption or the electromagnetic emanation of the devices, show the high potential of

152 Deep Learning to Evaluate Secure RSA Implementations

deep learning attacks (and in particular CNN models) against secure implementations of
RSA. The architectures of the best trained models are given for information. They however
strongly depend on the device, the targeted algorithm and the measurements campaigns,
and even if some general design principles may be reused, it is very likely that they cannot
be directly applied on a context differing on one of the latter points. Usually, a EAL4+
certified arithmetic co-processor leaks much less information than what was observed in this
paper. We hence expect the attack to be more difficult to directly apply on devices certified
in the SOG-IS scheme, especially if the security guidelines of the chip are correctly followed
(which is verified by the evaluation laboratory during the testing of the software part). To
remove the first attack path exploiting the dependence between the secret exponent bits
and the variable addresses, countermeasures exist like e.g. the randomization of the roles
of the registers used during the exponentiation [IIT03]. Dealing with the second attack
path is more tricky. Replacing the Square & Multiply Always exponentiation algorithm by
another one, like for instance the Montgomery Ladder [JY02, Mon87], is not a solution
since collisions are still exploitable (as argued in [BJPW13]). A possible approach is to
frequently re-randomize the internal state as proposed in [BJPW13] or to re-randomize
the output of each modular operations as proposed in [DV11]. Another possibility is to
mix (in a random order) several exponentiation routines. A careful analysis of the security
and efficiency of these countermeasures and/or the design of new ones are open avenues
for further research.

Acknowledgements
The target implementation used in this paper to present the different attacks is part of a
challenge organized by ANSSI’s laboratory of hardware security for industrial partners. It
has been developed by CryptoExperts (https://www.cryptoexperts.com/) who delib-
erately did not include countermeasures against horizontal and address-bit attacks. We
would like to thank them, and also people who were involved in the project at ANSSI:
Soline Renner, Manuel San-Pedro, Adrian Thillard and Jérôme Vidal. Eventually, we
thank Victor Lomné from Ninjalab (https://ninjalab.io/) who performed preliminary
tests to validate the challenge (and hence the target security).

References
[Arr18] Common Criteria Recognition Arrangement. Common Criteria Portal. https:

//www.commoncriteriaportal.org/, 2018.

[BB12] James Bergsta and Yoshua Bengio. Random search for hyper-parameter
optimization. Jounal of Machine Learning Research, 13(Feb):281–305, 2012.

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-
channel leakage and trace compression using normalized inter-class variance.
In Ruby B. Lee and Weidong Shi, editors, HASP 2014, Hardware and Archi-
tectural Support for Security and Privacy, Minneapolis, MN, USA, June 15,
2014, pages 7:1–7:9. ACM, 2014.

[Ber18] James Bergstra. Hyperopt: Distributed Asynchronous Hyperparameter Opti-
mization in Python. https://github.com/hyperopt/hyperopt, 2018.

[Bis07] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer, 1 edition, 2007.

https://www.cryptoexperts.com/
https://ninjalab.io/
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/
https://github.com/hyperopt/hyperopt

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 153

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal
and vertical side-channel attacks against secure RSA implementations. In
Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The Cryptographers’
Track at the RSA Conference 2013, San Francisco,CA, USA, February 25-
March 1, 2013. Proceedings, volume 7779 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2013.

[BLR13] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient Template Attacks Based
on Probabilistic Multi-class Support Vector Machines. In Stefan Mangard,
editor, Smart Card Research and Advanced Applications CARDIS, volume
7771 of Lecture Notes in Computer Science, pages 263–276. Springer Berlin
Heidelberg, 2013.

[BMV05] Lejla Batina, Nele Mentens, and Ingrid Verbauwhede. Side-channel issues
for designing secure hardware implementations. In 11th IEEE International
On-Line Testing Symposium (IOLTS 2005), 6-8 July 2005, Saint Raphael,
France, pages 118–121. IEEE Computer Society, 2005.

[BÖPV03] Lejla Batina, Siddika Berna Örs, Bart Preneel, and Joos Vandewalle. Hardware
architectures for public key cryptography. Integration, 34(1-2):1–64, 2003.

[BSS05] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, editors. Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture Note
Series. Cambridge University Press, 2005.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel
Soriano, Sihan Qing, and Javier López, editors, ICICS, volume 6476 of Lecture
Notes in Computer Science, pages 46–61. Springer, 2010.

[CJRR99] S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. A Cautionary Note Regarding
Evaluation of AES Candidates on Smart-Cards. In Second AES Candidate
Conference – AES 2, March 1999.

[Cor99] J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Koç and Paar [KP99], pages 292–302.

[CRR02] S. Chari, J.R. Rao, and P. Rohatgi. Template Attacks. In Kaliski Jr. et al.
[KJKP02], pages 13–29.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate Side Channel Attacks and Leakage Modeling. Journal of
Cryptographic Engineering, 1(2):123–144, 2011.

[DV11] Vincent Dupaquis and Alexandre Venelli. Redundant modular reduction
algorithms. In International Conference on Smart Card Research and Advanced
Applications, pages 102–114. Springer, 2011.

[fIS18] Federal Office for Information Security. Minimum Requirements for Evalu-
ating Side-Channel Attack Resistance of RSA, DSA and Diffie-Hellman Key
Exchange Implementations. BSI, 2018.

[FR14] Aurélien Francillon and Pankaj Rohatgi, editors. Smart Card Research and
Advanced Applications - 12th International Conference, CARDIS 2013, Berlin,
Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of
Lecture Notes in Computer Science. Springer, 2014.

154 Deep Learning to Evaluate Secure RSA Implementations

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. Neural network based attack
on a masked implementation of AES. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA,
5-7 May, 2015, pages 106–111. IEEE Computer Society, 2015.

[Gir06] C. Giraud. An RSA Implementation Resistant to Fault Attacks and to
Simple Power Analysis. IEEE Transactions on Computers, 55(9):1116–1120,
September 2006.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptographic Engineering, 1(4):293–302, 2011.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In Werner Schindler and
Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure Design
- Third International Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings, volume 7275 of Lecture Notes in Computer Science,
pages 249–264. Springer, 2012.

[IIT02] K. Itoh, T. Izu, and M. Takenak. Address-bit Differential Power Analysis
of Cryptographic Schemes OK-ECDH and OK-ECDSA. In Kaliski Jr. et al.
[KJKP02], pages 129–143.

[IIT03] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. A Practical Countermea-
sure against Address-Bit Differential Power Analysis. In C.D. Walter, Ç.K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages 382–396.
Springer, 2003.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[JY02] M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In Kaliski Jr.
et al. [KJKP02], pages 291–302.

[KJKP02] B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, editors. Cryptographic Hardware and
Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in Computer
Science. Springer, 2002.

[KP99] Ç.K. Koç and C. Paar, editors. Cryptographic Hardware and Embedded Systems
– CHES ’99, volume 1717 of Lecture Notes in Computer Science. Springer,
1999.

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. IJACT, 3(2):97–115, 2014.

[LBOM12] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural Networks: Tricks of the Trade (2nd ed.), volume
7700 of Lecture Notes in Computer Science, pages 9–48. Springer, 2012.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A machine learning approach against a masked AES. In Francillon
and Rohatgi [FR14], pages 61–75.

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 155

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In Stefan Mangard
and Axel Y. Poschmann, editors, Constructive Side-Channel Analysis and
Secure Design - 6th International Workshop, COSADE 2015, Berlin, Germany,
April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture Notes in
Computer Science, pages 20–33. Springer, 2015.

[MAB+18] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry,
Muneeb Yousaf, Umer Farooq, Vianney Lapotre, and Guy Gogniat. Machine
Learning For Security: The Case of Side-Channel Attack Detection at Run-
time. In ICECS-2018, Bordeaux, France, December 2018.

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. Profiling power analysis
attack based on MLP in DPA contest V4.2. In 39th International Conference
on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria,
June 27-29, 2016, pages 223–226. IEEE, 2016.

[MDS99a] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Investigations of Power
Analysis Attacks on Smartcards. In the USENIX Workshop on Smartcard
Technology (Smartcard ’99), pages 151–161, 1999.

[MDS99b] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Power Analysis Attacks
of Modular Exponentiation in Smartcard. In Koç and Paar [KP99], pages
144–157.

[Mem18] SOG-IS Members. SOG-IS Portal, 2018.

[MLB11] Olivier Markowitch, Liran Lerman, and Gianluca Bontempi. Side channel
attack: An approach based on machine learning. In 2nd International Workshop
on Constructive Side-Channel Analysis and Secure Design, COSADE 2011,
February 2011.

[Mon87] P.L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Fac-
torization. Mathematics of Computation, 48:243–264, 1987.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks
– Revealing the Secrets of Smartcards. Springer, 2007.

[PSB+18] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR Cryptology ePrint Archive, 2018:53,
2018.

[Pum18] Max Pumperla. Keras + Hyperopt: A very simple wrapper for convenient
hyperparameter optimization. https://github.com/maxpumperla/hyperas,
2018.

[PZS17] Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. A sys-
tematic approach to the side-channel analysis of ECC implementations with
worst-case horizontal attacks. In Wieland Fischer and Naofumi Homma, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 534–554. Springer,
2017.

https://github.com/maxpumperla/hyperas

156 Deep Learning to Evaluate Secure RSA Implementations

[Sch08] Werner Schindler. Advanced Stochastic Methods in Side Channel Analysis on
Block Ciphers in the Presence of Masking. Journal of Mathematical Cryptology,
2:291–310, 2008.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis. In J.R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659
of Lecture Notes in Computer Science. Springer, 2005.

[SW14a] Werner Schindler and Andreas Wiemers. Power attacks in the presence of
exponent blinding. J. Cryptographic Engineering, 4(4):213–236, 2014.

[SW14b] Werner Schindler and Andreas Wiemers. Power attacks in the presence of
exponent blinding. J. Cryptographic Engineering, 4(4):213–236, 2014.

[VKMJ10] B. V. K. Vijaya Kumar, Abhijit Mahalanobis, and Richard D. Juday. Correla-
tion Pattern Recognition. Cambridge University Press, New York, NY, USA,
2010.

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improv-
ing differential power analysis by elastic alignment. In Aggelos Kiayias, editor,
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 104–119.
Springer, 2011.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In Ç.K. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2001, volume 2162 of Lecture Notes in Computer Science,
pages 286–299. Springer, 2001.

[ZGLG14] Zhong Zeng, Dawu Gu, Junrong Liu, and Zheng Guo. An improved side-
channel attack based on support vector machine. In CIS, pages 676–680. IEEE
Computer Society, 2014.

[Zho12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC, 2012.

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 157

A Optimal Number of Binary Collisions to Decide on the
Operands’ Equality

Assuming that 34 bits of two binary values have been correctly recovered with some
probability, our goal is to optimize our ability to correctly assess that the two values are
equal each other.

A direct approach, named T , is to simply test whether the two returned sets of 34 bits
equal or not and conclude about the collison. The success rate of T will increase with the
success rates of the involved models. As all the 2× 1088 bits are not known, we are not
sure of success, but a complete recovering of each operand is not necessary to suspect a
collision. The success rate of T depends on the probability to correctly guess the collision
but also to correctly guess the non-collision. From 6 we remark the probability of false
negative should decrease by considering less bits. This phenomenon is advantageous in a
certain limit as the probability of false positive increases in the same time.

A good compromise leads to the second strategy, named S, that consists in deciding the
collision from the equality of possibly less bits among the 34 bits. Equation 7 shows that
this number of bits which must match also depends on the success rates of the involved
models. For instance, if this success rate is 95% (which is almost case for our experiments),
then only 26 bits (or more) among the 34 ones have to be equal in order to accurately
decide that there is a collision or a non-collision (and hence that the the corresponding
exponent bit is 1 or 0).

Proposition 1. We suppose the distribution of the values and the masked exponent is
almost uniform, and the 68 attacks are independent. We denote p the probability to correctly
predict a bit and α = p2 + (1− p)2.
The probability to correctly guess that amult.

i = asq.
i+1 and amult.

i 6= asq.
i+1 from the equality of

the 34 targeted bits (event named T) is estimated by:

τ(T) ≈ 1
2

(
α34 + 1− 1

234

)
(6)

The probability to correctly guess that amult.
i = asq.

i+1 and amult.
i 6= asq.

i+1 from the equality of
only c bits among the 34 targeted bits (event named S(c) c ∈ [0..34]) is estimated by:

τ(S(c)) ≈ 1
2

 ∑
c≤j≤34

(
34
j

)
αj(1− α)34−j + 1−

∑
c≤j≤34

(34
j

)
234

 (7)

The success rates are drawn for several guessing probabilities p in Figure 16. We remark
that guessing a operand bit with more than 83% success is enough to achieve at least 90%
success to recover the bit exponent.

158 Deep Learning to Evaluate Secure RSA Implementations

Figure 16: Evolution of the success rate τ(S(c)) (ordinate) in function of c (abscissa) for
different probabilities p (colors). A zoom is drawn in the box.

Proof. The two values that collide or not are represented by the random variables X ∈M
and Y ∈ M where M = {0, . . . , 2n − 1}. The values of the corresponding bits are
represented by the random variables Xi and Yi where i ∈ B = {0, . . . , n− 1}. We suppose
that the distribution of the masked exponent bits is almost uniform, so the collision (bit
equal to 0) has same probability than the non-collision (bit equal to 1).

Pr [X = Y] = Pr [X 6= Y] = 1
2 . (8)

We also suppose that the realizations of X and Y are uniformly distributed between
0 and 2n − 1. This is not exactly correct because they are modular values. So ∀x ∈
M, Pr [X = x] = 1

2n and ∀y ∈M, Pr [Y = y] = 1
2n . This implies:

Pr [X = x and Y = x|X = Y] = 1
2n , (9)

and

Pr [X = x and Y = y|X 6= Y] = 1
22n − 2n = 1

2n(2n − 1) . (10)

The two guessed values are represented by the random variables GX ∈M and GY ∈M.
The values of the corresponding bits are represented by the random variables GXi and
GY i where i ∈ B. Here we only guess the bit number 12 of the 32-bit words, so we define
the set of these bit indexes B12 = {j|j ∈ B and j mod n

32 = 12}.
We denote pi(a, b) the probability to predict that the bit GXi (resp. GY i) equals to b

knowing that it equals to a in reality. So ∀i ∈ B and ∀(a, b) ∈ {0, 1}2:

pi(a, b) = Pr [GXi = b|Xi = a] = Pr [GY i = b|Yi = a] (11)

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 159

The following probabilities are defined ∀i ∈ B and will be used later:

αi = Pr [GXi = GY i|Xi = Yi] = 1
2

∑
(a,b)∈{0,1}2

pi(a, b)2 (12)

γi = Pr [GXi 6= GY i|Xi = Yi] =
∑

a∈{0,1}

pi(a, 0)pi(a, 1) (13)

βi = Pr [GXi = GY i] = 1
4

∑
(a,a′,b)∈{0,1}3

pi(a, b)pi(a′, b) (14)

δi = Pr [GXi 6= GY i] = 1
2

∑
(a,a′)∈{0,1}2

pi(a, 0)pi(a′, 1) (15)

First we compute the probability of predicting a collision knowing that the two values
really collide. We suppose that the 68 attacks are independent, so the probability of
guessing one bit GXi or GY i only depends on the true value, i.e. it does not depend on
the others bits.

For a subset of bits B′ ⊆ B12 and for a set of correct bit values (bi)∀i∈B12
, we define

GB′((bi)i∈B12) the fact of correctly guessing the bits of the subset and of being wrong
about the others.

GB′((bi)i∈B12)⇔ ∀i ∈ B′, GXi = GY i = bi

and ∀j /∈ B′, GXj = bj , GY j = 1− bj (16)

Given a subset B′ ⊆ B12 of correct guessed bits, the probability of predicting a collision
knowing this is true is:

Pok(B′) = Pr [GB′((bi)i∈B12)|X = Y] (17)

=
∑

bi∈{0,1}
∀i∈B12

∑
x∈M

Pr [X = x|X = Y] Pr [GB′((bi)i∈B12)|X = Y = x] (18)

The sum on all possible values x ∈M can be rewritten as multiple sums on each bit
xi ∈ {0, 1} of x.

Pok(B′) = 1
2n

∑
bi∈{0,1}
∀i∈B12

2n−|B12|
∑

xi∈{0,1}
∀i∈B12

Pr [GB′((bi)i∈B12)|X = Y = x] (19)

= 1
2|B12|

∑
bi∈{0,1}
∀i∈B12

∑
xi∈{0,1}
∀i∈B′

∑
xj∈{0,1}
∀j /∈B′

Pr [∀i ∈ B′, GXi = GY i = bi|X = Y = x]
× Pr

[
∀j /∈ B′, GXj = bj , GY j = 1− bj |X = Y = x

]
(20)

We separate the terms related to bits in B′:

Pok(B′) = 1
2|B12|

∑
bi∈{0,1}
∀i∈B′

∑
xi∈{0,1}
∀i∈B′

∏
i∈B′

Pr [GXi = bi|Xi = xi]2

×
∑

bj∈{0,1}
∀j /∈B′

∑
xj∈{0,1}
∀j /∈B′

∏
j /∈B′

Pr
[
GXj = bj |Xj = xj

]
× Pr

[
GY j = 1− bj |Yj = xj

]
(21)

160 Deep Learning to Evaluate Secure RSA Implementations

After factorization, we have:

Pok(B′) = 1
2|B12|

∏
i∈B′

∑
bi∈{0,1}

∑
xi∈{0,1}

pi(xi, bi)2

×
∏
j /∈B′

∑
bj∈{0,1}

∑
xj∈{0,1}

pj(xj , bj)pj(xj , 1− bj) (22)

= 1
2|B12|

∏
i∈B′

2αi ·
∏
j /∈B′

2γj (23)

Pok(B′) =
∏
i∈B′

αi
∏
j /∈B′

γj (24)

Given a subset B′ ⊆ B12 of correct guessed bits, the probability of predicting a collision
knowing this is false is:

Pko(B′) = Pr [GB′((bi)i∈B12)|X 6= Y] (25)

=
∑

bi∈{0,1}
∀i∈B12

∑
(x,y)∈M2

x6=y

Pr [X = x and Y = y|X 6= Y]

× Pr [GB′((bi)i∈B12)|X = x and Y = y] (26)

We separate the collisions:

Pko(B′) = 1
2n(2n − 1)

∑
bi∈{0,1}
∀i∈B12

 ∑
(x,y)∈M2

Pr [GB′((bi)i∈B12)|X = x and Y = y]

−
∑
x∈M

Pr [GB′((bi)i∈B12)|X = x and Y = x]
)

(27)

After binary rewritting, we have:

Pko(B′) = 22·n−2|B12|

2n(2n − 1)
∑

(bi,xi,yi)∈{0,1}3

∀i∈B′

∏
∀i∈B′

pi(xi, bi)pi(yi, bi)

×
∑

(bj ,xj ,yj)∈{0,1}3

∀j /∈B′

∏
∀j /∈B′

pj(xj , bj)pj(yj , 1− bj)

− 2n−|B12|

2n(2n − 1)
∑

(bi,xi)∈{0,1}2

∀i∈B′

∏
∀i∈B′

pi(xi, bi)2

×
∑

(bj ,xj)∈{0,1}2

∀j /∈B′

∏
∀j /∈B′

pj(xj , bj)pj(xj , 1− bj) (28)

Carbone, Conin, Cornélie, Dassance, Dufresne, Dumas, Prouff, Venelli 161

After simplification with the above defined probabilities, we have:

Pko(B′) = 22·n−2|B12|

2n(2n − 1)

(∏
∀i∈B′

4βi

) ∏
∀j /∈B′

4δj


− 2n−|B12|

2n(2n − 1)

(∏
∀i∈B′

2αi

) ∏
∀j /∈B′

2γj

 (29)

=
2n
∏
i∈B′ βi

∏
j /∈B′ δj −

∏
i∈B′ αi

∏
j /∈B′ γj

2n − 1 (30)

If the size n is such that 2n � 1, we approximate:

Pko(B′) ≈
∏
i∈B′

βi
∏
j /∈B′

δj (31)

So we deduce the probabilities of prediction with all bits in case of collision or not:

Pr [T |X = Y] = Pok(B12) (32)
Pr [T |X 6= Y] = Pko(B12) (33)

and the probabilities of prediction with a minimum number of identical bits in case of
collision or not:

Pr [S(c)|X = Y] =
∑
s∈Sc

Pok(s) (34)

Pr [S(c)|X 6= Y] =
∑
s∈Sc

Pko(s) (35)

where P(B12) is the set of subsets of B12, c ∈ {1 . . . |B12|} and Sc = {s|s ∈ P(B12) and |s| ≥
c}.

These computations can be simplified if the probabilities pi are the same for all the bits.
If for all i ∈ B12, pi(0, 0) = pi(1, 1) = p then αi = α = p2 + (1− p)2 and γi = γ = 2p(1− p)
and βi = β = δi = δ = 1

2 . The above probabilities become:

Pr [T |X = Y] = α34 (36)

Pr [T |X 6= Y] ≈ 1
234 (37)

Pr [S(c)|X = Y] =
∑

c≤j≤34

(
34
j

)
αj(1− α)34−j (38)

Pr [S(c)|X 6= Y] ≈
∑

c≤j≤34

(
34
j

)
1

234 =
∑
c≤j≤34

(34
j

)
234 (39)

At last, the success rates τ(T) and τ(S(c)), representing the probabilities that the
predictions T and S(c) are correct, are estimated by:

τ(T) = Pr [X = Y] Pr [T |X = Y] + Pr [X 6= Y] Pr [not T |X 6= Y]

≈ 1
2

(
α34 + 1− 1

234

)
(40)

τ(S(c)) ≈ 1
2

 ∑
c≤j≤34

(
34
j

)
αj(1− α)34−j + 1−

∑
c≤j≤34

(34
j

)
234

 (41)

	Introduction
	Target Presentation & Attack Paths
	Target Presentation: Hardware Part
	Target Presentation: Software Part
	Attack Paths

	Presentation of the Acquisitions Campaign
	Power Consumption Measurements
	Electromagnetic Measurements

	Leakage Assessment
	Address Indices Manipulation
	Operands' Manipulations

	Attacks Description and Results
	Registers Manipulation (Power Consumption)
	Registers Manipulation (EM)
	Values Manipulation (EM)

	Conclusion
	Optimal Number of Binary Collisions to Decide on the Operands' Equality

